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MULTIVARIATE SPATIAL MAPPING OF SOIL WATER HOLDING
CAPACITY WITH SPATIALLY VARYING CROSS-CORRELATIONS1

BY RACHEL M. MESSICK, MATTHEW J. HEATON AND NEIL HANSEN

Brigham Young University

Irrigation in agriculture mitigates the adverse effects of drought and im-
proves crop production and yield. Still, water scarcity remains a persistent
issue and water resources need to be used responsibly. To improve water use
efficiency, precision irrigation is emerging as an approach where farmers can
vary the application of water according to within field variation in soil and
topographic conditions. As a precursor, methods to characterize spatial vari-
ation of soil hydraulic properties are needed. One such property is soil water
holding capacity (WHC). This analysis develops a multivariate spatial model
for predicting WHC across a field at various soil depths using sparse WHC
observations and covariates such as soil electrical conductivity. To capture
spatially varying cross-correlations in an efficient manner, we propose to ex-
tend the conditional specification of a multivariate Gaussian process by using
spatially varying coefficients. Because data is already sparse, our analysis
fully utilizes incomplete observations by imputing missing values that we
treat as not missing at random. Additionally, due to the high cost of mea-
suring WHC, we use a multivariate integrated mean square error criterion to
choose a new observation location that, after sampling, will result in the least
predictive uncertainty across the entire field.

1. Introduction.

1.1. Research motivation and data. From 2011 to the present, California has
experienced severe drought conditions. A recent assessment report from the Na-
tional Oceanic and Atmospheric Administration (NOAA) classified California’s
water resources as “severely depleted” [Seager et al. (2014)]. In addition to
drought, increased competition for water resources, aquifer depletion and climate
change increase water scarcity for irrigated agriculture. Society’s ability to deal
with water scarcity while still maintaining sufficient agriculture to support life is
dependent upon the efficient use of water; that is, farmers need to efficiently man-
age their limited water resources by using only the necessary amount of water to
grow their crops and allocating additional water for urban use.
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A design goal of a traditional sprinkler irrigation system is to maximize unifor-
mity of water application across the entire irrigated surface. While uniform water
application is a technology achievement in itself, irrigated fields are known to vary
in topography, soil type and crop productivity [Mzuku et al. (2005)]. Inherent spa-
tial variability can result in a uniform irrigation application being too much or too
little water in some areas within the field. Longchamps et al. (2015) showed that
soil water content in irrigated fields varies both spatially and temporally, even when
fields have been leveled. New technology is available that allows for variable rate
irrigation within a field, achieved by varying travel speed and by regulating sec-
tions of nozzles along the sprinkler [Sadler et al. (2005)]. Variable rate irrigation
has potential to increase efficiency of irrigation water use and to reduce leaching
and runoff. To benefit from variable rate irrigation technology, a practical approach
is needed to develop prescription maps for variable rate irrigation.

Water holding capacity (WHC) describes how much plant available water a spe-
cific soil can store [Allen et al. (1998)] and is determined as the difference between
the amount of water in the soil at upper and lower limits. The upper limit, often
referred to as the soil field capacity, is the amount of water a well-drained soil re-
tains after being fully wetted and allowed to freely drain. The lower limit, often
referred to as the permanent wilting point, is the amount of water remaining in the
soil when plants can no longer access it. Soil WHC varies as a function of soil tex-
ture. For example, a coarse, sandy textured soil has a lower WHC than silty or clay
textured soils because the relatively large soil pores in the sandy soil result in a low
upper limit. The WHC of a soil also varies with soil layering by depth. Knowing
the variation of WHC for the soils within an irrigated field provides information
to the manager about how much water can be supplied to plants from the soil in a
specific area of the field and how much irrigation water is required to replenish a
depleted soil without leaching. Hence, the goal of this paper is to develop statis-
tical methodology for characterizing the spatial variability of soil available WHC
which information can be used in a variable rate irrigation system.

Obtaining measurements of WHC is an expensive and time-consuming process.
Water holding capacity can be estimated in the laboratory from soil cores collected
from multiple depths and field positions [Klute (1986)] or in the field by measuring
water content over a time period long enough to observe a typical range of soil
water conditions [Bruce and Luxmoore (1986)]. In the latter case, permanent tubes
(that reach a depth of 1.5 meters) must be installed at each location in the field and
at regular (e.g., weekly) time intervals; farmers manually insert a neutron probe
into each tube to measure, via reflectometry, soil water content at various depths.
Thus, the cost and time requirements limit the utility of both of these methods for
precision irrigation applications.

For this research, we consider WHC data collected at 31 different spatial loca-
tions across a farm field in Iliff, CO (40°46′ N, 103°2′ W). At each of the 31 lati-
tude/longitude locations, soil water content was measured weekly during the 2012
growing season at up to 5 depths in 0.3 meter increments (the greatest depth being
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1.5 m). For each combination of spatial location and soil depth, the maximum ob-
served water content over time was identified as the WHC, without consideration
of a lower limit. Plots of the observed WHC data at each depth and the total WHC
across depths are provided in Figure 1. All plots and results for WHC are reported

FIG. 1. Spatial variation of measured water holding capacity (WHC) in m3/m3 by depth in 0.3 m
increments and the total WHC to 1.5 m.
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FIG. 2. (a) Measured log(EC) surface with overlaid WHC sampling locations. Different colored
locations correspond to the groupings used to explore spatially-varying correlations. (b) Scatterplot
of log(EC) vs. total WHC (first 3 depths) in m3/m3.

in m3/m3, while all analysis was done at the in/ft scale. Of the 31 locations at
which WHC is observed, only 17 locations have WHC recorded at each of the 5
depths. Specifically, the data include 31 measurements at depths 1 and 2, 30 mea-
surements at depth 3, 26 measurements at depth 4, and 20 measurements at depth 5.

As displayed in Figure 1, WHC on a single field can vary widely from one point
to another. However, due to high monetary and opportunity costs, measuring WHC
at many locations across a field is not a reasonable option. Alternatively, obtain-
ing a measurement of the soil electrical conductivity (EC) (a correlated covariate
with WHC) is affordable and is already common practice among farmers [Kitchen
et al. (2003)]. For example, one widely used approach is to directly measure the
electrical conductivity of soil with sensors installed on coulter disks that are pulled
through the soil with a tractor and couple measurements with GPS coordinates.
The left panel of Figure 2 displays log(EC) measurements at 2291 locations across
the research field (measurements capture EC between 0 m and 0.75 m in depth)
with the colored points indicating the 31 locations at which WHC is also measured
(log scale used to lessen the effect of outliers). The right panel of Figure 2 displays
a scatterplot of log(EC) versus the total WHC at depths 1–3 (where complete data
is available). Note from the left panel of Figure 2 that EC varies over the field,
while the right panel displays a positive relationship between EC and WHC. By
successfully exploiting the relationship between EC and WHC to predict WHC,
farmers would better be able to assess the irrigation needs of their agriculture fields
(and hence better manage water resources).

1.2. Research challenges and contributions. In this paper, we have two goals:
(i) estimate how WHC varies across a field using EC and accurately quantify un-
certainty in the predictions and (ii) identify new locations that, if sampled, will
reduce uncertainty in the prediction. Goal (i) can be accomplished by statistically
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modeling the WHC data but, in doing so, a number of intricacies must be ac-
counted for. First and foremost, recall that, at each spatial location, WHC is ob-
served at 5 different depths. An intuitive approach would be to model WHC as a
Gaussian process over a three-dimensional domain (lat-lon-depth). However, soil
science postulates that correlation in WHC is more determined by soil type than
by depth [see Natural Resources Conservation Service (1997), Plaster (2013)]. The
modeling repercussions of this fact are that the correlation would be discontinu-
ous as a function of depth with discontinuities at the depths where the soil type
changes. Given the requirement that a correlation function must be positive defi-
nite, statistical modeling of a discontinuous correlation function would be difficult.
Thus, instead of using a univariate spatial model in three dimensions, we employ
a spatial model over a two-dimensional domain, considering each of 5 depths at
every spatial location as a multivariate outcome. To complicate modeling issues,
however, cross-correlations between WHC at each depth potentially vary over the
spatial domain (the so-called spatially varying cross-correlation problem). To il-
lustrate, we clustered the set of locations into four spatially contiguous groups that
correspond with the different colored points in Figure 2. Empirical correlations be-
tween depths for each group are displayed in Table 1. From Table 1, note that the
empirical correlations between depths vary by group (spatial location), showing
possible space-varying inter-depth correlations.

While multivariate spatial data models are well developed [Apanasovich and
Genton (2010), Apanasovich, Genton and Sun (2012), Gelfand and Banerjee
(2010), Gelfand et al. (2004), Genton and Kleiber (2015), Gneiting, Kleiber and
Schlather (2010), Royle and Berliner (1999)], methods that account for spatially
varying correlations are less so due to the difficulty of ensuring a positive definite

TABLE 1
Empirical cross-correlations between WHC at various depths and spatial locations. Group

assignments correspond to those displayed in Figure 2

Correlation Between Depths

Depths Group 1 Group 2 Group 3 Group 4

(1,2) 0.77 0.67 0.43 0.99
(1,3) 0.73 0.66 0.66 0.73
(1,4) 0.71 0.72 0.89 0.30
(1,5) 0.33 −0.21 −0.79 0.99
(2,3) 0.75 0.99 0.40 0.73
(2,4) 0.12 0.98 0.35 0.30
(2,5) 0.13 0.56 −0.86 0.99
(3,4) 0.49 0.99 0.92 0.87
(3,5) −0.28 0.58 −0.74 0.79
(4,5) 0.16 0.47 −0.77 0.38
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covariance matrix at each location. However, the following are a few notable ex-
ceptions. Gelfand et al. (2004) capture spatially varying correlations by allowing
the coefficients in a linear model of coregionalization (LMC) to vary over space.
Fuentes and Reich (2013) use a spatial stick-breaking prior to construct a spatially
varying distribution for the multivariate process and then smooth the processes
with a spatially varying kernel. Guhaniyogi et al. (2013) develop low-rank spatially
varying cross-covariance processes that allow for interpolated cross-covariances at
arbitrary locations. Majumdar, Paul and Bautista (2010) use kernel convolutions to
build nonstationary cross-covariances. Sang, Jun and Huang (2011) use paramet-
ric regression to predict cross-covariances dependent upon informative predictors
or covariates. Kleiber and Genton (2013) take a more theoretical approach and
derive sufficient conditions for positive definiteness of a spatially varying cross-
covariance matrix. From a practical standpoint, many of these existing methods
require large data sets to estimate the associated parameters. For this research,
we take a fundamentally different and novel approach to the problem of spatially
varying correlations by using spatially varying coefficients [Gelfand et al. (2003)]
in a conditional specification for multivariate spatial fields [Cressie and Zammit-
Mangion (2015), Royle and Berliner (1999)]. This approach is not only computa-
tionally simple and interpretable but also allows for low-rank representations of the
cross-correlations through basis function expansions. Furthermore, these methods
can be effectively applied in small data settings.

A second notable challenge in modeling WHC is the presence of incomplete
observations. Recall that, of the 31 locations where WHC is observed, only 17
locations have WHC recorded at each of the 5 depths and the remaining 14 loca-
tions have varying degrees of missing data. Exclusion of all incomplete data points
would eliminate 14 locations from the analysis (45% of locations). According to
knowledge from those who collected the data, a measurement is missing if the
resulting WHC is very low, which suggests a not missing-at-random mechanism
[NMAR; Little and Rubin (2002)]. For this analysis, we assume that a WHC mea-
surement is missing if it falls below a threshold of 0.01 (the smallest observed
WHC). We subsequently adopt a Bayesian approach to impute the missing values,
working under the constraint that such values must lie between 0 and 0.01.

Given the relatively sparse spatial data available for accomplishing goal (i), var-
ious regions in the spatial domain may have undesirably high uncertainty in WHC.
For this reason, additional observations of WHC may be desired to rein in uncer-
tainty. Due to the high cost of data collection, farmers are often hesitant to allow
further substantial data collection. Hence, given the scenario under which such
data is collected, we desire to find the single sampling location on the spatial field
that, when WHC is measured, will result in the largest decrease in predictive uncer-
tainty [Goal (ii) above]. This “sequential design” problem is discussed by Santner,
Williams and Notz (2003) who outline a collection of sequential spatial design
techniques (e.g., space-filling and criterion-based designs). Additionally, the com-
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puter science literature considers the issue of sensor placement [see, e.g., Krause,
Singh and Guestrin (2008) and the references therein]. Notably, relevant sampling
designs, such as space-filling and Latin hypercube designs [Johnson, Moore and
Ylvisaker (1990), Sacks, Schiller and Welch (1989)], are primarily useful for se-
lecting initial sampling locations in that they do not incorporate knowledge of the
surface already learned from observations. Likewise, the most common follow-up
designs in spatial and geospatial statistics based on prediction error, expected im-
provement [Kleiber et al. (2013)], entropy [Currin et al. (1991)] or integrated mean
square error [IMSE; Ranjan et al. (2011)] are primarily for univariate random vari-
ables. Here, we propose a simple multivariate extension of the IMSE criterion of
Ranjan et al. (2011) to select follow-up locations that reduce prediction uncer-
tainty.

To reiterate, the primary statistical contributions of this article are to (i) pro-
pose a conditional model for multivariate spatial processes that incorporates spa-
tially varying cross-correlation through the use of spatially varying coefficients and
(ii) extend the spatial IMSE design criterion of Ranjan et al. (2011) to the multi-
variate setting. Additionally, in terms of agricultural science, this article seeks to
help farmers understand the variation in WHC across a field using limited data.
This understanding will give farmers more information in efficiently allocating
scarce water resources. The remainder of this paper is outlined as follows. Sec-
tion 2 outlines our statistical model, and Section 3 describes the multivariate IMSE
criterion for selecting additional observation locations. Section 4 applies our model
and IMSE criterion to the WHC data, and Section 6 provides discussion and addi-
tional areas of research.

2. A spatial model for water holding capacity. Let y1(s), . . . , y5(s) repre-
sent WHC at spatial location s ∈ S measured at depths 1 through 5, respectively.
Using a conditional specification, we represent the likelihood as

(1)

[
y1:5(s)

] = [
y1(s)|y2:5(s)

][
y2(s)|y3:5(s)

]
× [

y3(s)|y4:5(s)
][

y4(s)|y5(s)
][

y5(s)
]
,

where [·] denotes an arbitrary distribution and yi:j (s) = (yi(s), . . . , yj (s))
′. We as-

sume a Gaussian process model for each depth and include the WHC at subsequent
depths in the process mean. Specifically, we model, for j = 1, . . . ,5,

(2)
yj (s)|{yk(s) : k > j

} = x′
j (s)βj + ∑

k>j

γjk(s)
(
yk(s) − x′

k(s)βk

) + · · ·

+ wj(s) + εj (s),

where xj (s) is a P -vector of covariates (with intercept) specific to depth j mea-
sured at location s (e.g., the EC measurements) with coefficients βj , γjk(s) is the
location-specific “loading” of depth k onto depth j , wj(s) is a mean zero, Gaus-
sian process, independent of all other quantities, where Cov(wj (s1),wj (s2)) =
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σ 2
j Mνj

(‖s1 − s2‖|φj ) is the Matérn covariance function with smoothness νj and
decay parameter φj , and εj (s) is a mean zero, white noise Gaussian process, also
independent of all other quantities, with variance τ 2

j . An additional error term ac-
counting for measurement error might be appropriate in the case that measurement
error variance is known, but, as we have no knowledge of the measurement error
variance in this application [if included, the measurement error would be con-
founded with εj (s)], we utilize εj (s) to account for both small-scale spatial vari-
ation and measurement error. Note that in (2) we choose to order the conditioning
from the deepest point to the shallowest (e.g., depth 4 is conditional on depth 5,
depth 3 is conditional on depth 4 and 5, etc.). Cressie and Zammit-Mangion (2015)
note that this ordering is arbitrary, but we validate this decision via DIC compar-
ison reported in Section 4. It should also be noted that this model assumes only
pointwise interaction between depths—a justifiable assumption due to the natural
horizontal layering of the soil; that is, soil types are more similar horizontally than
vertically. Hence, knowing the soil type (or, in this case, the WHC) of the soil layer
directly below is sufficient. Additionally, from a statistical perspective, including
more than pointwise interactions can greatly increase the parameter space. Given
the small amount of available data, it is likely that we would be unable to estimate
such a large number of parameters.

Given the large number of parameters in (2), it is reasonable to consider em-
ploying the Markov assumption, such that (2) becomes

(3)
yj (s)|{yj+1(s)

} = x′
j (s)βj + γj (j+1)(s)

(
yj+1(s) − x′

j+1(s)βj+1
) + · · ·

+ wj(s) + εj (s).

The Markov and non-Markov approaches will be formally compared in Section 4,
but until that point, without loss of generality, we continue to consider the non-
Markov model.

The spatially varying cross-correlations between depths in (2) are captured by
the location-specific loadings γjk(s). To illustrate, consider Cov(y4(s1), y5(s2))

(similar derivations exist for any two locations and any two depths). From (2),

y4(s) = x′
4(s)β4 + γ45(s)

(
y5(s) − x′

5(s)β5
) + w4(s) + ε4(s),

and

y5(s) = x′
5(s)β5 + w5(s) + ε5(s).

Standard algebraic manipulations yield

Cov
(
y4(s1), y5(s2)

) = E
(
y4(s1)y5(s2)

) −E
(
y4(s1)

)
E

(
y5(s2)

)
= γ45(s1)

[
E

(
y5(s1)y5(s2)

) −E
(
y5(s1)

)
E

(
y5(s2)

)]
= γ45(s1)Cov

(
y5(s1), y5(s2)

)
= γ45(s1)

(
σ 2

5 Mν5

(‖s1 − s2‖|φ5
) + τ 2

5 1{s1=s2}
)
,
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where 1A is an indicator for the set A. Hence, under the conditional specification
in (2), the correlation between any two locations (s1, s2) at any two corresponding
depths (j, k) (for j < k) is completely determined by γjk(s1), which subsequently
leads to spatially varying cross-correlations.

Let yj = (yj (s1), . . . , yj (sn))
′ be the vector of observations measured at

depth j . The process model specification in (2) implies a joint distribution of

yj |{yk : k > j} ∼N
(
Xjβj + ∑

k>j

Dkγ jk, σ
2
j Mj + τ 2

j In

)
,(4)

where Xj is the n × P design matrix with ith row x′
j (si ), Dk = diag(yk − Xkβk)

is the n × n diagonal matrix whose diagonal elements are formed from the error
vector (yk − Xkβk), and γ jk = (γjk(s1), . . . , γjk(sn))

′ is the length n vector of γ

coefficients, Mj is the n × n matrix of correlations at depth j with i�th element
Mνj

(‖si − s�‖|φj ), and In is the rank n identity matrix. The joint model in (4) is
obviously overparameterized because, for depth j , there are P +(5−j)×n+4 un-
known parameters. However, much of this overparameterization can be remedied
by using low-rank, basis function representations of the γ coefficients; that is, let
γjk(s) = γ 	

jk + ∑L
�=1 bjk,�(s)γ

	
jk,� = b′

jk(s)γ
	
jk , where γ 	

jk is an overall mean and
bjk,�(·) is a basis function with associated coefficient γ 	

jk,�. While many choices
of basis functions are available, we recommend those commonly employed in a
spatial setting such as bisquare basis functions [Cressie and Johannesson (2008),
Kang and Cressie (2011)], predictive processes [Banerjee et al. (2008), Finley et al.
(2009)], compactly supported basis functions [Lemos and Sansó (2009), Nychka
et al. (2015)] or kernel convolutions [Higdon (2002)]. Using basis function expan-
sions, γ jk is represented as

γ jk = Bjkγ
	
jk,(5)

where Bjk is a n × (L + 1) matrix of known basis functions with ith row b′
jk(si ).

Substituting (5) into (4) results in

yj |{yk : k > j} ∼ N
(
X	

jθ j , σ
2
j Mj + τ 2

j In

)
,(6)

where X	
j = [Xj ;Dj+1Bj (j+1); . . . ;D5Bj5] and θ j = (β ′

j ,γ
	′
j (j+1), . . . ,γ

	′
j5)

′.
Using this basis function approach, there are now P + (5 − j) × L + 4 unknown
parameters. Careful choice of L can ensure that n > (P + (5 − j) × L + 4) and
the parameters are well identified.

Using basis function expansions, the spatially varying coefficients model in (4)
reduces to the simple spatial model in (6), which facilitates ease in estimation de-
spite a complex dependency structure among the variables. To simplify estimation
further, we reparameterize (6) to

yj |{yk : k > j} ∼N
(
X	

jθ j , κ
2
j

(
ωjMj + (1 − ωj )In

))
,(7)
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where κ2
j = σ 2

j + τ 2
j is the total variance, and ωj = σ 2

j /(σ 2
j + τ 2

j ) is the per-
cent of the total variance attributable to spatial variation. Using this parameteriza-
tion, the parameters θ j and κ2

j , under certain prior assumptions, will have closed-
form complete conditional distributions facilitating sampling in a Markov chain
Monte Carlo (MCMC) framework. Additionally, because ωj ∈ [0,1], discretizing
the support of the prior distribution for ωj to a fine grid over [0,1] enables di-
rect sampling of ωj from its complete conditional distribution with minimal loss
of information. Of course, a beta prior for ωj would also be appropriate, but the
complete conditional distribution would not be closed form and a Metropolis–
Hastings algorithm would be required. Finally, recall that the Matérn covariance
Mj is governed by unknown parameters φj (controlling the spatial decay) and
νj (controlling the spatial smoothness). Following results from Zhang (2004), we
recommend, without loss of predictive power, to simply fix each νj and estimate
φj . Traditionally, gamma, inverse-gamma or log-normal priors are used for φj , but
we opt for the computationally simpler discrete uniform prior advocated by Diggle
and Ribeiro (2002). Specifically, we construct a discrete uniform prior for φj by
choosing a correlation target, say 0.5, and considering a sequence of distances
{dk : 0 < d1 < d2 < · · · < dK} such that two points dk units apart have correlation
0.5. We then back transform the distances into corresponding φj values, resulting
in reasonable values for φj that are given equal prior weight.

3. Sequential design for sampling WHC. The data presented in Section 1
include n = 17 locations, where WHC is measured at each depth and n = 14 loca-
tions with varying degrees of incomplete or missing data. Given the few number
of data points for parameter estimation, the model presented in Section 2 may
yield predictions at certain spatial locations that have a high degree of uncertainty.
To reduce uncertainty in WHC to reasonable values, additional sampling may be
required. However, the cost of collecting more WHC data is high, and we wish
to ensure that additional sampling locations reduce predictive uncertainty across
the entire field; that is, given n locations at which data is gathered, we seek the
(n + 1)th location which, when appended to the data, minimizes prediction un-
certainty. As discussed in the Introduction and validated in Section 5.2, we con-
sider a multivariate extension of the work of Ranjan et al. (2011) who propose the
integrated mean square error (IMSE) criterion for selecting additional sampling
locations.

Let y(si ) be the vector of WHC observations at location si , Y = {y(si) : i =
1, . . . , n} represent the set of WHC observations and ψ be the vector of all param-
eters in the model described in Section 2 with parameter space � . Furthermore,
let A represent a Q × 5 user-specified matrix such that Ay(s) represents pre-
dictive quantities of interest. For example, if Q = 1 and A = (1,0,0,0,0), then
Ay(s) = y1(s), suggesting that WHC at depth 1 is of predictive interest. Natu-
rally, if A = I , then prediction at all 5 depths is of interest. If a new observation
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y(s0) is gathered at s0, then the mean square error (MSE) at location s is given by

MSE
(
s|y(s0),ψ

) = E
[∥∥Ay(s) − Aŷ(s)

∥∥2|y(s0),Y,ψ
]
,(8)

where ‖ · ‖ denotes a vector norm (here, we set ‖ · ‖ to be the L2-norm, but
other norms may be more suitable depending on the application) and ŷ(s) =
E(y(s)|y(s0),Y,ψ) is the predicted value of y(s) given the data Y , the “new”
observation y(s0) and the parameters ψ . Note that (8) is defined in terms of a vec-
tor where A controls the main quantities of predictive interest. A new location snew
is chosen such that

(9)

snew = arg min
s0

IMSE(s0)

= arg min
s0

∫
�

∫
S

MSE
(
s|y(s0),Y,ψ

)[ψ |Y]ds dψ,

where [ψ |Y] is the posterior distribution ψ .
The integrals in (9) are not available in closed form. Hence, we approximate

these integrals using Riemann and Monte Carlo integration. Specifically, we use
the fact that the double integrals in (9) can be expressed as

(10)

E[ψ |Y]
[∫

S
MSE

(
s|y(s0),Y,ψ

)
ds

]

≈ E[ψ |Y]
[


G∑
g=1

MSE
(
s	
g|y(s0),Y,ψ

)]
,

where {s	
1, . . . , s

	
G} is a regularly spaced grid of locations on S with equal grid

area . Equation (10) suggests an intuitive Monte Carlo approach to calculat-
ing IMSE. Namely, given a potential sampling location s0, at each iteration in
a Markov chain Monte Carlo algorithm, to sample ψ from its posterior distri-
bution, (i) draw y(s0) from its predictive distribution, (ii) draw {y(s	

g) : g =
1, . . . ,G} from the predictive distribution conditional on y(s0), and (iii) retain


∑G
g=1 ‖Ay(s	

g) − Aŷ(s	
g)‖2. Calculation of (10) is then carried out via Monte

Carlo integration using the retained values of 
∑G

g=1 ‖Ay(s	
g) − Aŷ(s	

g)‖2. We
note that, while this is a straightforward algorithm, it is computationally demand-
ing when considering a large number of possible “new locations.”

4. Application to WHC.

4.1. Spatial mapping of WHC. Based on the model proposed in Section 2, the
unknown parameters are {θ j , κ

2
j ,ωj ,φj } for j = 1, . . . ,5. Noninformative, Jef-

fery’s priors were chosen for θ j and κ2
j , leading to closed-form complete condi-

tional distributions. As mentioned above, the priors for ωj and φj were assumed
to be discrete uniform with 20 values for each ωj and 10 values for each φj . We
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note that these discrete uniform prior distributions also lead to closed-form com-
plete conditional distributions for each ωj and φj . Though it can be shown that the
complete conditional distribution of the constrained missing data follows a trun-
cated multivariate Gaussian distribution, sampling directly from this distribution is
complex due to the correlation structure and the NMAR constraint that each value
lies in (0,0.01). Hence, we elect to use a Metropolis algorithm with independent
U(0,0.01) proposal distributions to update all missing values simultaneously.

To obtain draws from the joint posterior distribution, we ran 5 chains of a Gibbs
sampler for 5000 iterations after a burn-in of 200 iterations. Despite the few num-
ber of iterations, we found convergence to be acceptable among the estimated pa-
rameters; that is, trace plots showed adequate mixing and Gelman–Rubin diagnos-
tics [Gelman and Rubin (1992)] supported convergence. Additionally, most Monte
Carlo standard errors [Jones et al. (2006)] fell below 0.01, with a few lying be-
tween 0.01 and 0.04. While computation time for parameter estimation and WHC
prediction is reasonable, and would easily allow for more iterations, the design
portion of the process is computationally expensive. Thus, with parameter con-
vergence being satisfactory even with only 4800 iterations, we find the relatively
small number of iterations to be well justified.

In regards to the effect of EC on WHC, we considered both linear and nonlinear
models and found that, across all metrics described below, a linear relationship was
preferred. Additionally, while continuous basis function expansions of γ jk in (5),
such as kernel convolutions, are attractive in many settings, they may overfit the
sparse observed data in this application. Hence, we compare a regionally constant
model with two regions for γ jk to a model using Gaussian kernel basis functions.
For both models, the basis function matrix in equation (5) is of the form

(11) Bjk = (1n,W ),

where 1n denotes a length n vector of ones, and W = {wi�} is an n × L matrix of
“weights.” In the case of the Gaussian kernel we set

wi� = 1√
2πλ2

exp
{
−‖si − s	

�‖2

2λ2

}
,

where we have L “knots” s	
1, . . . , s

	
L and λ2 denotes the (unknown) variance of

the kernel (for this application we consider L = 5). Alternatively, in the regionally
constant model with two regions (which are defined below), L = 1 and

(12) wi1 = 1R1(s),

where R1 denotes the set of locations corresponding to region 1.
To define the regions in the regionally constant model, we cluster the observa-

tions using gradient clustering [Heaton, Christensen and Terres (2017)]. The left
panel of Figure 3 includes the regionalization resulting from gradient clustering,
and the right panel delineates the field into regions according to the data in the
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FIG. 3. Field regions according to (a) Gradient Clustering and (b) the Web Soil Survey. Due to
the similarity, we used the gradient clustering regionalization in (a) to define the regionally constant
model.

USDA Soil Survey (i.e., the two regions have fundamentally different soils ac-
cording to the USDA). The USDA soil survey primarily uses remote sensing data
[Natural Resources Conservation Service (2016)], while our partitioning is based
on the observed data; hence we opt to use our partitioning but draw confidence
in our spatial partition from that fact that the two partitions are similar. For each
of the three proposed models (regionally constant with 2 regions, Gaussian ker-
nel convolutions and spatially constant), we consider both Markov [as in (3)] and
non-Markov conditioning.

To further compare our modeling choice to simpler alternatives, we also con-
sidered four additional model specifications. First, to assess the need for spatially
varying cross-correlations, we consider a spatially constant model with Bjk = 1n

in both a Markov and non-Markov conditioning framework [see equation (3)]. Sec-
ond, we considered a “3-D” model where correlation is determined by distance in
space and depth using the correlation function Corr(d1, d2) = exp{−α1d1 −α2d2},
where d1 is the distance in space and d2 is the distance in depth such that αi gov-
erns the decay across dimension i. Finally, we considered a nonstationary version
of this 3-D model, where α1 and α2 were allowed to be specific to the same regions
as the regionally constant model.

Table 2 compares the six different models in terms of leave-one-out cross-
validated bias, root mean square error (RMSE), coverage, coverage of the total
WHC, predictive interval width of total WHC, continuous rank probability score
[CRPS; Gneiting and Raftery (2007)] and DIC. The cross-validated bias is defined
as

Bias = 1

5 × 17

17∑
i=1

5∑
d=1

(
yd(si ) − ŷd,−i(si )

)
,
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TABLE 2
Leave-one-out model comparison results in terms of bias, root mean square error (RMSE),

predictive interval coverage (CVG), total coverage (TCVG), predictive interval width (PIW),
continuous rank probability score (CRPS) and deviance information criterion (DIC). “R,” “SC”
and “G” denote the regional, spatially constant and Gaussian kernel models, while “M” denotes
the use of the Markov assumption in equation (3). The convolution models are slightly better at

prediction, but have wider predictive intervals. Additionally, the regionally constant models fit the
data better (in terms of DIC)

Bias RMSE CVG TCVG PIW CRPS DIC

R 0.038 0.110 0.941 0.882 0.248 4.931 422.130
R-M 0.038 0.113 0.906 0.941 0.238 4.959 444.405
SC 0.042 0.109 0.953 0.882 0.235 4.799 493.499
SC-M 0.043 0.111 0.894 0.824 0.238 4.900 509.154
G 0.031 0.090 0.988 0.941 0.260 4.186 512.303
G-M 0.031 0.088 0.976 0.941 0.260 4.046 496.531
3D 0.064 0.227 0.884 0.832 0.473 5.750 555.305
3D-R 0.051 0.154 0.903 0.882 0.315 5.284 523.454

where ŷd,−i (si ) is the posterior predictive mean of yd(si) with the ith observation
omitted. Likewise, RMSE is defined as

RMSE =
√√√√ 1

5 × 17

17∑
i=1

5∑
d=1

(
yd(si) − ŷd,−i (si )

)2
.

Coverage is defined as the percent of all predictive intervals that include the left-out
value, and predictive interval width is the length between the interval endpoints.

The model comparison results in Table 2 are mixed. At first glance, the convolu-
tion models appear to be best for predicting, with the lowest RMSE, lowest CRPS
and best coverage. However, the predictive interval widths are considerably higher,
suggesting that these convolution models are highly variable due to the sparse na-
ture of the data. In contrast, the regionally constant models still attain adequate
coverage (the 0.882 coverage value is within binomial sampling variability due to
the fact that only 17 values were able to be left out) while fitting the data substan-
tially better (smallest DIC) and obtaining smaller predictive interval widths. The
spatially constant models are comparable to the others in terms of most criteria,
but have considerably higher DIC values than do the regionally constant models.
Likewise, the 3-D alternatives are not preferred, which we attribute to the fact that
correlation across depth is governed more by soil type than distance. For these rea-
sons, we use the regionally constant, non-Markov model as our final model in this
application. Additionally, to substantiate our decision to condition from deepest to
shallowest as opposed to shallowest to deepest, we compared the DICs from the
regionally constant, non-Markov models for each approach. The respective DICs
were 422.130 and 452.96, supporting the deepest to shallowest conditioning.
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FIG. 4. The location-specific posterior means of the posterior predictive distribution for WHC (in
m3/m3) across the spatial field.

Predictions resulting from this model are included in Figure 4. Note the consis-
tency between the plots in Figure 4 and those in Figure 1, suggesting adequate use
of the data to achieve spatial kriging. Also, the predictions appear consistent with
certain agricultural principles, such as the fact that there is less spatial variation
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FIG. 5. Posterior densities of β1,j for depths j = 1, . . . ,5. The posterior probabilities of β1,j > 0
for j = 1, . . . ,5 are, respectively, 0.956, 0.895, 0.989, 0.996 and 0.989.

in WHC within the topsoil layer, but as depth increases and the topsoil layer ends,
there is much more spatial variation due to varying depth in soil horizons or layers.

An apparent feature from Figure 4 is that the EC measurements tend to be highly
correlated with WHC at lower depths, as various spatial features in EC are also
present in the predicted values of WHC. This result is further displayed by Fig-
ure 5, which reports the posterior kernel density estimates of β1,j , the coefficient
for the relationship between WHC and log(EC) at depth j . From Figure 5, notice
the general strengthening relationship as j increases. Specifically, the posteriors
suggest the strongest positive relationship between log(EC) and WHC to be at
depth 4, while at depth 2 there appears to be no significant relationship. This may
be the result of the EC measurements being a better reflection of EC at greater
depths than at shallow depths.

Table 3 presents the estimated correlations between depths in both regions, and
illustrates the difference in inter-depth cross-correlations between the two regions
as hypothesized. Notably, because the regions defined by the gradient clustering
closely match changes in soil composition as seen in Figure 3, the difference in
correlations is likely dependent upon the soil composition.

4.2. Selection of additional sampling locations. Figure 6 shows the predictive
interval widths (a measure of predictive uncertainty) for the WHC predictions in
Figure 4. From Figure 6, low depths seem to have greater uncertainty than shallow
depths (particularly for the far southwest region of the field). Additionally, this
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TABLE 3
Estimated colocated correlations between depths for each of the two regions along with 95%

credible intervals

Correlation Between Depths

Southwest Region Northeast Region

Depths Lower Center Upper Lower Center Upper

(1,2) 0.63 0.80 0.90 −0.05 0.28 0.56
(1,3) 0.53 0.73 0.87 −0.51 −0.18 0.20
(1,4) −0.18 0.19 0.54 −0.55 −0.16 0.23
(1,5) −0.54 −0.08 0.35 −0.71 −0.39 0.10
(2,3) 0.28 0.58 0.79 0.31 0.60 0.80
(2,4) −0.41 −0.02 0.36 0.44 0.69 0.86
(2,5) −0.47 −0.07 0.37 0.06 0.46 0.75
(3,4) 0.24 0.58 0.79 0.80 0.90 0.96
(3,5) −0.60 −0.22 0.26 0.57 0.79 0.92
(4,5) −0.46 −0.01 0.46 0.54 0.79 0.92

southwest region of the field has high variability in EC, and further data may be
desired to better estimate the relationship between EC and WHC in this region.

Using the IMSE method outlined in Section 3, we approximate IMSE for each
of 100 candidate “new” locations, considering two different A matrices. One sim-
ple choice in A is the matrix A1 = (

1 1 1 1 1
)

(the sum across depths), account-
ing for the uncertainty in all depths. However, because most of the uncertainty
occurs in depths 3, 4 and 5, a second choice of A is the matrix

(13) A2 =
⎛
⎝0 0 1 0 0

0 0 0 1 0
0 0 0 0 1

⎞
⎠ .

The IMSE results are summarized in Figure 7, which displays the IMSE for all 100
candidate locations (the location with the lowest IMSE indicated by a star) with
the left panel using A1 and the right using A2. The plots align with what might
be expected based on where data is limited; that is, the locations with especially
sparse data are those with the lowest IMSE.

5. Validation of statistical methods. To demonstrate that the methods in-
troduced in this paper are indeed valid, we present the results of two simulation
studies. In the first, we validate the model results and model comparison methods,
and in the second, we validate that the design criterion outlined in Section 3 selects
an appropriate location.

5.1. Validation of statistical model. The main purposes of this simulation
study are to, first, ensure that model parameters are learned from the data rather
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FIG. 6. WHC (m3/m3) 95% predictive interval widths.

than overly influenced by the prior specification, and, second, validate the use of
the model selection criteria summarized in Table 2. To do this, we generated 50
full fields of WHC data (at all 2291 prediction locations) using the posterior mean
of the regionally constant, non-Markov analysis described in Section 4 (which was
our selected model). For each of the 50 simulated fields, we fit and compared each
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FIG. 7. IMSE for all 100 candidate locations.

of the models described in Section 4 except the 3-D models (which were excluded
because correlation in depth is more related to soil layering). Specifically, we con-
sidered three different specifications of basis functions Bjk (regionally constant
bases, Gaussian kernel bases and nonspatially varying bases) and two different de-
pendency structures (Markov and non-Markov) to the simulated WHC at the same
31 locations as observed in the true data.

Table 4 compares the six models according to the same criteria as in Table 2.
From Table 4, the models are comparable in terms of predictive power with a slight
preference to the R-M model in terms of CRPS. Interestingly, the greatest discrep-
ancy between the models comes in terms of DIC, where the regionally constant
non-Markov model is clearly preferred. This result, therefore, reassures our deci-
sion to utilize DIC as an accurate model selection criterion.

TABLE 4
Simulation model comparison results in terms of bias, root mean square error (RMSE), predictive
interval coverage (CVG), total coverage (TCVG), predictive interval width (PIW), continuous rank

probability score (CRPS) and deviance information criterion (DIC). “R,” “SC” and “G” denote the
regional, spatially constant and Gaussian kernel models, while “M” denotes the use of the Markov
assumption in equation (3). Models are comparable in terms of all metrics except DIC, in which the

regionally constant non-Markov clearly outperforms the others

Bias RMSE CVG TCVG PIW CRPS DIC

R 0.002 0.106 0.954 0.944 0.267 927.982 407.913
R-M 0.001 0.106 0.946 0.948 0.268 923.155 457.004
SC −0.001 0.107 0.941 0.930 0.265 941.044 481.811
SC-M −0.001 0.106 0.937 0.939 0.269 930.125 491.071
G −0.003 0.106 0.949 0.935 0.268 931.457 465.190
G-M −0.003 0.106 0.944 0.942 0.271 927.250 482.811
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Having successfully validated our model selection process, we examine the es-
timated coverages for βj and γjk for all depths j = 1, . . . ,5 and k > j . Again,
letting the coverage equal the proportion of all 95% credible intervals containing
the true parameter value, all estimated coverages fall between 0.92 and 1.0, offer-
ing evidence of sufficient accuracy of parameter estimates. Notably, each of the
marginal posterior distributions (not shown for the sake of brevity) were markedly
more peaked than the corresponding prior distribution, suggesting adequate statis-
tical learning.

5.2. Validation of sequential sampling design. To validate our proposed se-
quential sampling design using IMSE, we simulated 50 fields of WHC values at
all 2291 locations using the posterior mean of the regionally constant, non-Markov
analysis from Section 4 and specified the realizations at the 31 locations in the
application above as the observed data. For this validation exercise, we compare
the predictive performance of our model after adding a 32nd observation where
this additional observation was chosen using one of three criteria: (i) the proposed
IMSE criterion with A = I , (ii) the location with greatest posterior predictive un-
certainty and (iii) the location that maximizes a geometric space-filling criteria
over the spatial design given the original 31 sampling locations.

The average RMSE when selecting an additional point via IMSE was 7.01
compared to 6.95 and 6.93 when using the greatest predictive uncertainty and
space-filling criteria, respectively, indicating nearly identical point prediction per-
formance. However, we are interested in not only point prediction but also the
uncertainty associated with these predictions. As such, define the cumulative gen-
eralized predictive variance as

CGV =
5∑

d=1

|�d,U|O|(14)

as a measure of predictive uncertainty where �d,U|O is the conditional variance
of the unobserved locations given the observed locations at the dth depth and | · |
is the determinant. The CGV was 4540 for the IMSE criterion compared to 5471
and 5523 when using greatest predictive uncertainty and space-filling criteria, re-
spectively. This is an approximately 17% decrease in the cumulative predictive
variance when adding an observation using the IMSE criterion compared to the
other methods [Ranjan et al. (2011) saw similar decreases], suggesting that the
IMSE criterion successfully chooses locations that not only aid in point prediction
but also decrease predictive uncertainty.

6. Conclusions. This article had two main purposes: (i) use EC to accurately
predict WHC at various depths across an agricultural field while properly account-
ing for predictive uncertainty, and (ii) locate points which, if added to the observed
data, would minimize the predictive uncertainty. To accomplish (i), we used a con-
ditional specification of a Gaussian process model. However, in order to account
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for potential spatially varying cross-correlation between depths, we proposed the
use of spatially varying coefficients in the conditional model. Though we devel-
oped a general method for characterizing the space-varying coefficients using ba-
sis functions, model comparison revealed that a regionally constant model for the
WHC application was preferred. We accomplished (ii) using a multivariate exten-
sion of IMSE, choosing as the “next” location the point with the lowest estimated
IMSE. Comparison of IMSE for various predictive quantities of interest (total vs.
depths 3–5) showed strikingly similar choices of the next location.

Our choice to treat WHC at all depths as a multivariate outcome (rather than
modeling correlation based on depth), while scientifically and empirically justified
above, precludes us from extrapolating WHC deeper than the deepest measured
depth (in this case, 1.5 meters). Note, however, that extrapolation to deeper depths
is not of direct interest in this application because root depth for most crops typ-
ically does not exceed this depth [see Natural Resources Conservation Service
(1997), Chapter 3]. Certainly, there could be applications where such an extrapo-
lation is needed, in which case the modeling strategy would likely need to depend
on distance in depth and soil type. We leave the use of such correlation functions
for future work.

For the sampling design problem above, we only considered adding one ad-
ditional sampling location at a time. This decision was made primarily based on
personal conversations with farmers who indicated that most farmers are reluctant
to allow WHC sampling on their field due to the high cost of data collection. Given
this reluctancy, adding one additional sampling location is a constraint under which
this research has to operate. However, in many cases, adding more than one sam-
pling location may be possible and desired. In such cases, following Ranjan et al.
(2011), the methods described in Section 3 could be extended so as to consider
multiple additional sampling locations.

Quantifying the spatial variability of WHC is only one metric necessary to gen-
erate prescription maps for a variable rate irrigation system. Other metrics include
water inputs, such as precipitation and irrigation, and water losses, including evap-
otranspiration, runoff and drainage. Each of these variables are spatially and tem-
porally dynamic. While this represents a necessary first step, additional work will
be needed to model the spatial and temporal variation of the full water balance
equation, leading to prescription maps for precision irrigation [Longchamps et al.
(2015)].

In terms of contributions to agricultural science, this research offers farmers and
agricultural scientists insight into the WHC of a field using sparse observations.
Such information allows them to efficiently utilize scarce water resources. The
multivariate predictions also offer them a better understanding of how soil varies
at lower depths, as this is not readily observable.

Acknowledgments. The authors would like to thank Dr. C. Shane Reese for
providing helpful discussion and insight into the multivariate IMSE criterion. Any



90 R. M. MESSICK, M. J. HEATON AND N. HANSEN

opinions, findings and conclusions or recommendations expressed in this material
are those of the author(s) and do not necessarily reflect the views of the National
Science Foundation.

REFERENCES

ALLEN, R. G., PEREIRA, L. S., RAES, D., SMITH, M. et al. (1998). Crop evapotranspiration—
guidelines for computing crop water requirements—FAO irrigation and drainage paper 56. FAO,
Rome 300 D05109.

APANASOVICH, T. and GENTON, M. G. (2010). Cross-covariance functions for multivariate random
fields based on latent dimensions. Biometrika 97 15–30. MR2594414

APANASOVICH, T. V., GENTON, M. G. and SUN, Y. (2012). A valid Matérn class of cross-
covariance functions for multivariate random fields with any number of components. J. Amer.
Statist. Assoc. 107 180–193. MR2949350

BANERJEE, S., GELFAND, A. E., FINLEY, A. O. and SANG, H. (2008). Gaussian predictive process
models for large spatial data sets. J. R. Stat. Soc. Ser. B. Stat. Methodol. 70 825–848. MR2523906

BRUCE, R. R. and LUXMOORE, R. J. (1986). Water retention: Field methods. In Methods of Soil
Analysis: Part 1—Physical and Mineralogical Methods, 2nd ed. (A. Klute, ed.). 663–686. Soil
Science Society of America, American Society of Agronomy, Madison, WI.

CRESSIE, N. and JOHANNESSON, G. (2008). Fixed rank kriging for very large spatial data sets. J.
R. Stat. Soc. Ser. B. Stat. Methodol. 70 209–226. MR2412639

CRESSIE, N. and ZAMMIT-MANGION, A. (2015). Multivariate spatial covariance models: A condi-
tional approach. Available at arXiv:1504.01865v1.

CURRIN, C., MITCHELL, T., MORRIS, M. and YLVISAKER, D. (1991). Bayesian prediction of
deterministic functions, with applications to the design and analysis of computer experiments. J.
Amer. Statist. Assoc. 86 953–963. MR1146343

DIGGLE, P. J. and RIBEIRO, P. J. (2002). Bayesian inference in Gaussian model-based geostatistics.
Geogr. Environ. Model. 6 129–146.

FINLEY, A. O., SANG, H., BANERJEE, S. and GELFAND, A. E. (2009). Improving the performance
of predictive process modeling for large datasets. Comput. Statist. Data Anal. 53 2873–2884.
MR2667597

FUENTES, M. and REICH, B. (2013). Multivariate spatial nonparametric modelling via kernel pro-
cesses mixing. Statist. Sinica 23 75–97. MR3076159

GELFAND, A. E. and BANERJEE, S. (2010). Multivariate spatial process models. In Handbook of
Spatial Statistics 495–515. CRC Press, Boca Raton, FL. MR2730963

GELFAND, A. E., KIM, H.-J., SIRMANS, C. F. and BANERJEE, S. (2003). Spatial modeling with
spatially varying coefficient processes. J. Amer. Statist. Assoc. 98 387–396. MR1995715

GELFAND, A. E., SCHMIDT, A. M., BANERJEE, S. and SIRMANS, C. F. (2004). Nonstationary
multivariate process modeling through spatially varying coregionalization. TEST 13 263–312.
With discussion by Montserrat Fuentes, Dave Higdon and Bruno Sansó and a rejoinder by the
authors. MR2154003

GELMAN, A. and RUBIN, D. B. (1992). Inference from iterative simulation using multiple se-
quences. Statist. Sci. 7 457–472.

GENTON, M. G. and KLEIBER, W. (2015). Cross-covariance functions for multivariate geostatistics.
Statist. Sci. 30 147–163. MR3353096

GNEITING, T., KLEIBER, W. and SCHLATHER, M. (2010). Matérn cross-covariance functions for
multivariate random fields. J. Amer. Statist. Assoc. 105 1167–1177. MR2752612

GNEITING, T. and RAFTERY, A. E. (2007). Strictly proper scoring rules, prediction, and estimation.
J. Amer. Statist. Assoc. 102 359–378. MR2345548

http://www.ams.org/mathscinet-getitem?mr=2594414
http://www.ams.org/mathscinet-getitem?mr=2949350
http://www.ams.org/mathscinet-getitem?mr=2523906
http://www.ams.org/mathscinet-getitem?mr=2412639
http://arxiv.org/abs/arXiv:1504.01865v1
http://www.ams.org/mathscinet-getitem?mr=1146343
http://www.ams.org/mathscinet-getitem?mr=2667597
http://www.ams.org/mathscinet-getitem?mr=3076159
http://www.ams.org/mathscinet-getitem?mr=2730963
http://www.ams.org/mathscinet-getitem?mr=1995715
http://www.ams.org/mathscinet-getitem?mr=2154003
http://www.ams.org/mathscinet-getitem?mr=3353096
http://www.ams.org/mathscinet-getitem?mr=2752612
http://www.ams.org/mathscinet-getitem?mr=2345548


MULTIVARIATE SPATIAL MAPPING OF SOIL WATER HOLDING CAPACITY 91

GUHANIYOGI, R., FINLEY, A. O., BANERJEE, S. and KOBE, R. K. (2013). Modeling complex spa-
tial dependencies: Low-rank spatially varying cross-covariances with application to soil nutrient
data. J. Agric. Biol. Environ. Stat. 18 274–298. MR3110894

HEATON, M. J., CHRISTENSEN, W. F. and TERRES, M. A. (2017). Nonstationary Gaussian process
models using spatial hierarchical clustering from finite differences. Technometrics 59 93–101.
MR3604192

HIGDON, D. (2002). Space and space–time modeling using process convolutions. In Quantitative
Methods for Current Environmental Issues (C. Anderson, V. Barnett, P. C. Chatwin and A. H.
El-Shaarawi, eds.) 37–56. Springer-Verlag, London.

JOHNSON, M. E., MOORE, L. M. and YLVISAKER, D. (1990). Minimax and maximin distance
designs. J. Statist. Plann. Inference 26 131–148. MR1079258

JONES, G. L., HARAN, M., CAFFO, B. S. and NEATH, R. (2006). Fixed-width output analysis for
Markov chain Monte Carlo. J. Amer. Statist. Assoc. 101 1537–1547. MR2279478

KANG, E. L. and CRESSIE, N. (2011). Bayesian inference for the spatial random effects model. J.
Amer. Statist. Assoc. 106 972–983. MR2894757

KITCHEN, N. R., DRUMMOND, S. T., LUND, E. D., SUDDUTH, K. A. and BUCHLEITER, G. W.
(2003). Soil electrical conductivity and topography related to yield for three contrasting soil–crop
systems. Agron. J. 95 483–495.

KLEIBER, W. and GENTON, M. G. (2013). Spatially varying cross-correlation coefficients in the
presence of nugget effects. Biometrika 100 213–220. MR3034334

KLEIBER, W., SAIN, S. R., HEATON, M. J., WILTBERGER, M., REESE, C. S. and BINGHAM, D.
(2013). Parameter tuning for a multi-fidelity dynamical model of the magnetosphere. Ann. Appl.
Stat. 7 1286–1310. MR3127948

KLUTE, A. (1986). Water retention: Laboratory methods. In Methods of Soil Analysis: Part 1—
Physical and Mineralogical Methods, 2nd ed. (A. Klute, ed.) 635–662. Soil Science Society of
America, American Society of Agronomy, Madison, WI.

KRAUSE, A., SINGH, A. and GUESTRIN, C. (2008). Near-optimal sensor placements in Gaussian
processes: Theory, efficient algorithms and empirical studies. J. Mach. Learn. Res. 9 235–284.

LEMOS, R. T. and SANSÓ, B. (2009). A spatio-temporal model for mean, anomaly, and trend fields
of North Atlantic sea surface temperature. J. Amer. Statist. Assoc. 104 5–18. MR2662306

LITTLE, R. J. A. and RUBIN, D. B. (2002). Statistical Analysis with Missing Data, 2nd ed. Wiley-
Interscience [John Wiley & Sons], Hoboken, NJ. MR1925014

LONGCHAMPS, L., KHOSLA, R., REICH, R. and GUI, D. W. (2015). Spatial and temporal variabil-
ity of soil water content in leveled fields. Soil Sci. Soc. Amer. J. 79 1446–1454.

MAJUMDAR, A., PAUL, D. and BAUTISTA, D. (2010). A generalized convolution model for multi-
variate nonstationary spatial processes. Statist. Sinica 20 675–695. MR2682636

MZUKU, M., KHOSLA, R., REICH, R., INMAN, D., SMITH, F. and MACDONALD, L. (2005).
Spatial variability of measured soil properties across site-specific management zones. Soil Sci.
Soc. Amer. J. 69 1572–1579.

NATURAL RESOURCES CONSERVATION SERVICE (1997). National Engineering Handbook: Irriga-
tion guide. U.S. Department of Agriculture.

NATURAL RESOURCES CONSERVATION SERVICE (2016). National Soil Survey Handbook. U.S.
Department of Agriculture.

NYCHKA, D., BANDYOPADHYAY, S., HAMMERLING, D., LINDGREN, F. and SAIN, S. (2015).
A multiresolution Gaussian process model for the analysis of large spatial datasets. J. Comput.
Graph. Statist. 24 579–599. MR3357396

PLASTER, E. (2013). Soil Science and Management. Cengage Learning, Independence, KY.
RANJAN, P., LU, W., BINGHAM, D., REESE, S., WILLIAMS, B. J., CHOU, C.-C., DOSS, F.,

GROSSKOPF, M. and HOLLOWAY, J. P. (2011). Follow-up experimental designs for computer
models and physical processes. J. Stat. Theory Pract. 5 119–136. MR2829827

http://www.ams.org/mathscinet-getitem?mr=3110894
http://www.ams.org/mathscinet-getitem?mr=3604192
http://www.ams.org/mathscinet-getitem?mr=1079258
http://www.ams.org/mathscinet-getitem?mr=2279478
http://www.ams.org/mathscinet-getitem?mr=2894757
http://www.ams.org/mathscinet-getitem?mr=3034334
http://www.ams.org/mathscinet-getitem?mr=3127948
http://www.ams.org/mathscinet-getitem?mr=2662306
http://www.ams.org/mathscinet-getitem?mr=1925014
http://www.ams.org/mathscinet-getitem?mr=2682636
http://www.ams.org/mathscinet-getitem?mr=3357396
http://www.ams.org/mathscinet-getitem?mr=2829827


92 R. M. MESSICK, M. J. HEATON AND N. HANSEN

ROYLE, J. A. and BERLINER, L. M. (1999). A hierarchical approach to multivariate spatial model-
ing and prediction. J. Agric. Biol. Environ. Stat. 4 29–56. MR1812239

SACKS, J., SCHILLER, S. B. and WELCH, W. J. (1989). Designs for computer experiments. Tech-
nometrics 31 41–47. MR0997669

SADLER, E. J., EVANS, R., STONE, K. C. and CAMP, C. R. (2005). Opportunities for conservation
with precision irrigation. J. Soil Water Conserv. 60 371–378.

SANG, H., JUN, M. and HUANG, J. Z. (2011). Covariance approximation for large multivariate
spatial data sets with an application to multiple climate model errors. Ann. Appl. Stat. 5 2519–
2548. MR2907125

SANTNER, T. J., WILLIAMS, B. J. and NOTZ, W. I. (2003). The Design and Analysis of Computer
Experiments. Springer, New York. MR2160708

SEAGER, R., HOERLING, M., SCHUBERT, S., WANG, H., LYON, B., KUMAR, A., NAKAMURA, J.
and HENDERSON, N. (2014). Causes and predictability of the 2011–14 California drought. As-
sessment report, National Oceanic and Atmospheric Administration, Silver Spring, MD.

ZHANG, H. (2004). Inconsistent estimation and asymptotically equal interpolations in model-based
geostatistics. J. Amer. Statist. Assoc. 99 250–261. MR2054303

DEPARTMENT OF STATISTICS

210 TMCB
BRIGHAM YOUNG UNIVERSITY

PROVO, UTAH 84602
USA
E-MAIL: messick.rachel@gmail.com

mheaton@stat.byu.edu
neil_hansen@byu.edu

http://www.ams.org/mathscinet-getitem?mr=1812239
http://www.ams.org/mathscinet-getitem?mr=0997669
http://www.ams.org/mathscinet-getitem?mr=2907125
http://www.ams.org/mathscinet-getitem?mr=2160708
http://www.ams.org/mathscinet-getitem?mr=2054303
mailto:messick.rachel@gmail.com
mailto:mheaton@stat.byu.edu
mailto:neil_hansen@byu.edu

	Introduction
	Research motivation and data
	Research challenges and contributions

	A spatial model for water holding capacity
	Sequential design for sampling WHC
	Application to WHC
	Spatial mapping of WHC
	Selection of additional sampling locations

	Validation of statistical methods
	Validation of statistical model
	Validation of sequential sampling design

	Conclusions
	Acknowledgments
	References
	Author's Addresses

