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ASSESSING SYSTEMATIC RISK IN THE S&P500 INDEX
BETWEEN 2000 AND 2011: A BAYESIAN NONPARAMETRIC

APPROACH1

BY ABEL RODRÍGUEZ∗, ZIWEI WANG† AND ATHANASIOS KOTTAS∗

University of California, Santa Cruz∗ and IAC Publishing Labs†

We develop a Bayesian nonparametric model to assess the effect of sys-
tematic risks on multiple financial markets, and apply it to understand the be-
havior of the S&P500 sector indexes between January 1, 2000 and December
31, 2011. More than prediction, our main goal is to understand the evolution
of systematic and idiosyncratic risks in the U.S. economy over this particu-
lar time period, leading to novel sector-specific risk indexes. To accomplish
this goal, we model the appearance of extreme losses in each market using
a superposition of two Poisson processes, one that corresponds to systematic
risks that are shared by all sectors, and one that corresponds to the idiosyn-
cratic risk associated with a specific sector. In order to capture changes in
the risk structure over time, the intensity functions associated with each of
the underlying components are modeled using a Dirichlet process mixture
model. Among other interesting results, our analysis of the S&P500 index
suggests that there are few idiosyncratic risks associated with the consumer
staples sector, whose extreme negative log returns appear to be driven mostly
by systematic risks.

1. Introduction. Systematic risk can be loosely defined as the vulnerability
of a financial market to events that affect all (or at least most) of the agents and
products in the market. This is in contrast to idiosyncratic risks, which are risks to
which only specific agents or products are vulnerable.

The notions of systematic and idiosyncratic risks play a key role in motivat-
ing investment diversification. In this paper, we study the evolution of systematic
and idiosyncratic risks in the U.S. economy by focusing on the behavior of the
S&P500 index and its sector components. The Standard & Poor’s 500, or S&P500
index, is a commonly watched stock market index in the U.S., constructed as a
market-value weighted average of the prices of the common stock of 500 publicly
traded companies. Standard & Poor’s, which publishes the index, selects the com-
panies included in the S&P500 index to be representative of the industries in the
U.S. economy. These companies are commonly grouped into ten economic sectors:
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consumer discretionary, consumer staples, energy, financials, health care, industri-
als, materials, information technology, telecommunication services and utilities.
The largest sector (consumer discretionary) includes 81 companies, whereas the
smallest (telecommunication services) includes only 8. In addition to the overall
S&P500 index, Standard & Poor’s publishes separate indexes for each of these
sectors. The behavior of these sector-specific indexes is of independent interest;
for example, the performance of the industrial and consumer discretionary com-
ponents of the S&P500 is used by some analysts as a leading indicator of future
economic growth.

The most widely used tool to characterize idiosyncratic risks in financial
markets is the Capital Asset Pricing Model (CAPM) [French (2003), Treynor
(1961, 1962)]. The form of the CAPM can be derived from a structural model in
which agents maximize the expected utility derived from the investment, which is
a function of the expected return on risky activities and the associated variance, as
well as those of the market as a whole. The parameters can then be estimated using
linear regression to relate the expected returns of an individual security or sector
to those of the market. The estimated regression coefficient (the so-called “beta”)
measures the sensitivity of the expected excess asset returns to the expected excess
market returns, with larger values of “beta” indicating investments with substantial
idiosyncratic risks.

The original CAPM has been repeatedly criticized as being too simplistic [e.g.,
Fama and French (2004)], and extensions have been driven by considerations both
empirical [e.g., the three factor model discussed in Fama and French (1992)] and
theoretical [e.g., the behavioral model discussed in Daniel, Hirshleifer and Sub-
rahmanyam (2001)]. Two obvious concerns with estimates of idiosyncratic risk
based on the CAPM are the assumption that deviations from the model follow
Gaussian distributions and their reliance on expected returns. Indeed, from a risk
management perspective, it is more appealing to define these concepts on the ba-
sis of the behavior of extreme returns. As the financial crises of 2007 and 2008
demonstrated, the behavior of markets (e.g., the level of correlation among asset
prices) during periods of distress can dramatically deviate from their behavior dur-
ing periods of calm. Variations of CAPM that focus on extreme returns include
Barnes and Hughes (2002), Allen et al. (2009) and Chang, Hung and Nieh (2011).
In these papers, quantile regression instead of ordinary linear regression is used to
relate the returns of individual securities to those of the market.

This paper develops a novel approach to estimate systematic and idiosyncratic
market risks. Unlike the CAPM model, our focus is on tail risks, that is, risks as-
sociated with rare extreme losses (e.g., those associated with negative asset price
movements of more than three standard deviations), and on reduced-form models
for the relative frequency of extreme losses rather than structural models for the
behavior of market actors. More specifically, we model the time of appearance of
extreme losses in each market using a superposition of two Poisson processes, one
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that corresponds to systematic risks that are shared by all sectors, and one that cor-
responds to the idiosyncratic risk associated with a specific sector. In order to cap-
ture changes in the risk structure over time, the intensity functions associated with
each of the underlying components are modeled using a Dirichlet process (DP)
mixture model [Antoniak (1974), Escobar and West (1995)]. Hence, our model can
be conceptualized as an example of a Cox process [Cox (1955)]. In contrast to the
CAPM setting, the proposed methodology does not rely (implicitly or explicitly)
on the assumption that returns arise from a Gaussian distribution. Furthermore,
our model is dynamic in nature, allowing for the structure of the different risks to
evolve over time. As with the CAPM, the main goal of our analysis is a general
description of the structure of the different risks and explanation rather than predic-
tion. For example, the modeling approach results in idiosyncratic, sector-specific
risk indexes, as well as metrics that quantify the overall relative importance of
idiocycratic and systematic risks on each sector.

There has been a growing interest in recent years on identifying systemic risks,
that is, events that can trigger a collapse in a certain industry or economy. Some
recently introduced measures of systemic risk include the CoVaR of Adrian and
Brunnermeier (2010), the marginal expected shortfall (MSE) of Acharya et al.
(2010) and the systemic risk measure (SRISK) of Acharya, Engle and Richardson
(2012). Although some of the methods are relevant, these metrics are not tailored
to systematic and idiosyncratic risks.

To motivate the class of models we develop, consider the daily returns asso-
ciated with the ten sectors making up the S&P500 index (see also Section 4).
Figure 1 presents the most extreme negative log returns on four of those sectors
between January 1, 2000 and December 31, 2011. It is clear from the figure that
all sectors present an increased frequency of extreme losses around periods of dis-
tress, such as the so-called “dot com” bubble burst in March of 2000 and the climax
of the financial crises in September 2008. However, it is also clear that certain fea-
tures are particular to specific sectors, such as the increased number of extreme
returns in the energy sector in 2004 and 2005. Furthermore, even when the fre-
quency of losses tends to increase significantly for all markets, it is not the case
that extreme losses occur in all markets on exactly the same dates.

The rest of the paper is organized as follows. In Section 2, we develop the mod-
eling approach, and in Section 3, we discuss posterior simulation, with techni-
cal details included in the supplementary material [Rodríguez, Wang and Kottas
(2017)], as well as subjective prior elicitation. Section 4 considers the analysis of
the U.S. market, using data from the S&P500 index. Finally, Section 5 provides
concluding remarks.

2. Modeling approach. We focus on the negative log returns for the ten
S&P500 sector indexes

xi,j = −100 × log
(

Si,j

Si−1,j

)
,
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FIG. 1. Negative log returns above 2% for four sectors of the S& P500 index (consumer staples,
energy, financials and information technology). Vertical dotted lines identify seven events of signif-
icance to the markets: the bursting of the dot com bubble (03/10/2000), the 09/11 terrorist attacks
(09/11/2001), the stock market downturn of 2002 (09/12/2002), the bursting of the Chinese bubble
(02/27/2007), the bankruptcy of Lehman Brothers (09/16/2008), Dubai’s debt standstill (11/27/2009)
and the beginning of the European sovereign debt crisis (08/27/2010).

where Si,j is the value of the index for sector j = 1, . . . , J = 10 at time i =
1, . . . , T . Note that large positive values of xi,j indicate a large drop in the price
index associated with sector j , and thus for risk management purposes we are
interested in large values of xi,j . Hence, for a given threshold u, we focus our at-
tention on the collections of times {tj,k : k = 1, . . . , nj , j = 1, . . . , J }, where tj,k
is the date associated with the appearance of the kth negative log return in sector j

that is larger than u.
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For each sector j , we regard the collection of times {tj,k : k = 1, . . . , nj } at
which exceedances occur as a realization from a point process Nj(t) defined on
[0, T ], that is, Nj(t) = ∑nj

k=1 I[tj,k,T ](t), where I�(t) denotes the indicator func-
tion of set �. In turn, each Nj(t) is constructed as the superposition of two inde-
pendent, nonhomogeneous Poisson processes. The first such process accounts for
systematic risk and has a cumulative intensity function �∗

0 that is common to all
sectors, while the second is associated with the idiosyncratic risk and has a cumu-
lative intensity function �∗

j that is specific to each sector. Because of properties
of superpositions of Poisson processes, this assumption implies that each Nj(t)

is also a nonhomogeneous Poisson process with cumulative intensity �j(t) =
�∗

0(t) + �∗
j (t) and intensity function λj (t) = λ∗

0(t) + λ∗
j (t), where λ∗

0 and λ∗
j

are the Poisson process intensities associated with �∗
0 and �∗

j , respectively.
The modeling approach for the �∗

j builds from the direct connection of a non-
homogeneous Poisson process cumulative intensity/intensity function with a dis-
tribution/density function. Specifically, for j = 0,1, . . . , J , we can write �∗

j (t) =
γ ∗
j F ∗

j (t), where γ ∗
j ≡ �∗

j (T ) = ∫ T
0 λ∗

j (t)dt (< ∞) is the rate parameter control-
ling the total number of exceedances, and F ∗

j (t) = �∗
j (t)/�

∗
j (T ) is a distribution

function on [0, T ] that controls how the exceedances are distributed over time.
Hence, the sector-specific cumulative intensity function �j can be written as

�j(t) = γjFj (t) = {
γ ∗

0 + γ ∗
j

}{ γ ∗
0

γ ∗
0 + γ ∗

j

F ∗
0 (t) + γ ∗

j

γ ∗
0 + γ ∗

j

F ∗
j (t)

}
.

This construction implies that the sector-specific exceedance rate, γj , is the sum of
the systematic and idiosyncratic rates, while the sector-specific distribution func-
tion, Fj , can be written as a mixture of the systematic and idiosyncratic distribution
functions. The corresponding weight, εj = γ ∗

0 /(γ ∗
0 + γ ∗

j ), represents the propor-
tion of exceedances in sector j that are associated with the systematic component.
In addition, note that values of εj close to 1 (which are associated with γ ∗

0 � γ ∗
j )

imply a stronger association in the pattern of extreme losses.
Because each Nj(t) follows a Poisson process, the probability that at most r

exceedances will be observed in sector j during time period [t0, t0 + �] is
r∑

i=0

{ϒj(t0,�)}i exp{−ϒj(t0,�)}
i! ,

where ϒj(t0,�) = �j(t0 +�)−�j(t0). These exceedance probabilities are easier
to interpret than the intensity functions through which the model is defined. For
example, the probability that no exceedances are observed in sector j between
time points t0 and t0 + � is given by

exp
{−[

�j(t0 + �) − �j(t0)
]} = exp

{−[
�∗

0(t0 + �) − �∗
0(t0)

]}
× exp

{−[
�∗

j (t0 + �) − �∗
j (t0)

]}
,
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where the first term in the right-hand side expression corresponds to the probabil-
ity of no exceedance due to the systematic component and the second term corre-
sponds to the probability of no exceedance due to the idiosyncratic component. In
this sense, our model implies a multiplicative risk structure.

2.1. Modeling the intensity functions. To generate a flexible model that can
capture changes in the pattern of extreme returns over time, we model the densities
f ∗

0 and f ∗
1 , . . . , f ∗

J associated with the systematic and idiosyncratic distribution
functions F ∗

0 and F ∗
1 , . . . ,F ∗

J using DP mixtures. In particular,

f ∗
j (t) ≡ f ∗(

t |G∗
j , τ

) =
∫

ψ(t |μ,τ)dG∗
j (μ), j = 0,1, . . . , J,

where ψ(t |μ,τ) is a kernel density on [0, T ] indexed by parameters μ and τ , and
G∗

j is a discrete mixing distribution.
By carefully choosing the kernel ψ and the prior on the mixing distribution G∗

j ,
we can obtain a flexible model for the intensity functions. Hence, we opt for a prior
on G∗

j that has full support on the space of discrete distributions. In particular, G∗
j

is assigned a DP prior [Ferguson (1973)] with precision parameter αj and baseline
(centering) distribution H , which is common to all G∗

j . Thus, using the stick-
breaking DP constructive definition [Sethuraman (1994)],

G∗
j (·) =

∞∑
l=1

{
vj,l

∏
s<l

(1 − vj,s)

}
δμ̃j,l

(·), j = 0,1, . . . , J,

where δa(·) denotes the degenerate measure at a, the atoms {μ̃j,1, μ̃j,2, . . .} form a
sequence of random variables independent and identically distributed according to
H , and {vj,1, vj,2, . . .} is another sequence (independent of {μ̃j,1, μ̃j,2, . . .}) of in-
dependent and identically distributed random variables according to a Beta(1, αj )

distribution.
Because in our application the support for the point process is a compact set,

a natural choice for the kernel ψ(t |μ,τ) is the rescaled beta density,

(2.1)
1

T

(τ)

(μτ/T )({1 − μ/T }τ)

(
t

T

)μτ/T −1(
1 − t

T

){1−μ/T }τ−1
I[0,T ](t),

where μ ∈ [0, T ] is a location parameter (the mean of the kernel distribution), and
τ > 0 can be interpreted as a scale parameter.

Note that if μτ/T > 1 and {1 − μ/T }τ > 1, then the rescaled beta density is
unimodal, with the mode located approximately at μ, for large τ . Hence, the loca-
tion mixture of beta kernels can accommodate the type of risk clustering we ob-
serve in Figure 1. Furthermore, because DP mixtures allow for a countable number
of mixture components, the model is dense on the space of absolutely continuous
distributions on [0, T ] as long as the baseline distribution H and the prior on the
scale parameter τ are selected to provide full support on the domain of the param-
eters of the rescaled beta kernel [see, e.g., Diaconis and Ylvisaker (1985)]. Note
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that the precision parameter αj controls the relative weight of the mixture compo-
nents, with smaller values of αj favoring mixtures with a small number of effective
components. On the other hand, the baseline distribution H controls the location
of the mixture components.

Besides a prior on the densities f ∗
0 , f ∗

1 , . . . , f ∗
J , full prior specification for

the intensity functions λ1(t), . . . , λJ (t) requires priors for the rate parameters
γ ∗

0 , γ ∗
1 , . . . , γ ∗

J . In the case of the rate associated with the common component,
γ ∗

0 , a natural choice is a gamma distribution with shape parameter aγ ∗
0

and rate pa-
rameter bγ ∗

0
. For the idiosyncratic component, we use a more general, zero-inflated

gamma prior with density,

p
(
γ ∗
j |π) = (1 − π)δ0

(
γ ∗
j

) + πGam
(
γ ∗
j |aγ ∗

j
, bγ ∗

j

)
, j = 1, . . . , J,

where Gam(a, b) denotes a gamma distribution with mean a/b. Note that the case
γ ∗
j = 0 corresponds to εj = 1, that is, all exceedances in sector j are driven by

systematic risks. Hence, this zero-inflated prior allows us to formally test for the
presence of idiosyncratic risks. In the sequel we refer to this test as the idiosyncracy
test.

2.2. Hierarchical priors. The model is completed by adding hyperpriors to
model parameters. For the baseline distribution H , we note that the parameter
μ in equation (2.1) is constrained to the [0, T ] interval. Hence, a natural choice
for H is another rescaled beta distribution with density h(μ) ∝ (μ/T )aμ−1{1 −
(μ/T )}bμ−1

I[0,T ](μ). Although the full Bayesian model can be extended to incor-
porate a hyperprior for one or both of the parameters of H , this was not necessary
for the application to the S&P500 data. In fact, we applied the model using the
default choice of a uniform distribution for H ; sensitivity of posterior inference
results to this choice, as well as to the other hyperprior choices, is discussed in
Section 4.2.

The remaining priors are selected for computational convenience. In particular,
a conditionally conjugate Gam(aα, bα) prior is assigned to the DP precision pa-
rameters αj , j = 0,1, . . . , J . Similarly, the conditionally conjugate prior for the
mixing probability π is given by a Beta(aπ , bπ) distribution. Finally, the scale pa-
rameter τ is assigned an inverse gamma distribution with shape aτ and scale bτ

[denoted by IGam(aτ , bτ )]. Details on informative hyperparameter elicitation are
discussed in Section 3.2

2.3. Related literature. The DP mixture modeling approach for the systematic
and idiosyncratic intensities builds on earlier work for temporal or spatial Poisson
processes [Kottas and Sansó (2007), Taddy and Kottas (2012)]. This methodology
has been applied to inference for neuronal firing intensities [Kottas et al. (2012)],
tracking the intensity of violent crime [Taddy (2010)], risk assessment for extremes
of environmental time series [Kottas, Wang and Rodríguez (2012)] and analysis of
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hurricane landfall occurrences [Xiao, Kottas and Sansó (2015)]. These applica-
tions involve modeling of dependent Poisson process intensities, with the index
of dependence ranging from a finite set indicating different experimental condi-
tions [Kottas et al. (2012)], to discrete time [Taddy (2010), Xiao, Kottas and Sansó
(2015)], to space [Kottas, Wang and Rodríguez (2012)]. Dependence in the prior
model for the intensities is built through dependent DP [MacEachern (2000)] or
spatial DP [Gelfand, Kottas and MacEachern (2005)] priors for the corresponding
mixing distributions that define the mixture model for the Poisson process den-
sities. Bassetti, Casarin and Leisen (2014) discuss other prior models for finite
collections of distributions, including dependent Pitman–Yor process priors which
extend dependent DP priors.

This paper provides an example of a more structured dependent prior model for
a finite collection of Poisson process intensities. The representation of the sector-
specific distribution function Fj as a mixture of a systematic and an idiosyncratic
component is reminiscent of the models for dependent random distributions dis-
cussed in Müller, Quintana and Rosner (2004), Hatjispyros, Nicoleris and Walker
(2011), and Kolossiatis, Griffin and Steel (2013). Müller, Quintana and Rosner
(2004) focused on the case Fj = εH0 + (1 − ε)Hj , for j = 1, . . . , J , where the
Hj , j = 0,1, . . . , J , are assigned independent DP priors with precision parame-
ters αj and common centering distribution. Kolossiatis, Griffin and Steel (2013)
studied the more general version, Fj = εjH0 + (1− εj )Hj , albeit for two distribu-
tions, arguing for a dependent prior on (ε1, ε2) built from εj = γ0/(γ0 + γj ), with
independent gamma priors for γ0, γ1 and γ2. Hatjispyros, Nicoleris and Walker
(2011) used a similar modeling approach, but with a priori independent ε1 and
ε2. Although there is an apparent connection in model structure with these earlier
methods, the motivation for our modeling approach is different. Indeed, the objec-
tive of the earlier work is to construct dependent random densities through mixture
modeling, where the prior model for the Fj is used for the dependent mixing dis-
tributions. However, our model structure for the sector-specific Poisson process
densities, fj = εjf

∗
0 + (1 − εj )f

∗
j , for j = 1, . . . , J , follows from the assumption

that the point process associated with the presence of extreme values can be con-
structed as a superposition of Poisson processes. In particular, the structure with
sector-specific weights of the form εj = γ ∗

0 /(γ ∗
0 + γ ∗

j ) is a direct consequence
from the superposition of the Poisson processes, rather than a particular model
choice as in Kolossiatis, Griffin and Steel (2013).

Regarding the point process literature, a relevant reference is Griffiths and Milne
(1978), where a bivariate point process was studied such that the marginals, N1(t)

and N2(t), follow the same Poisson process with cumulative intensity �(·). The
key result provides a specific form for the Laplace transform of the bivariate point
process which is achieved if and only if the marginals admit the representation,
N1(t) = M1(t) + M2(t) and N2(t) = M2(t) + M3(t), where M1(t), M2(t) and
M3(t) are independent Cox processes with respective cumulative intensities ν(·),
μ(·) and ν(·), with μ(·) ≤ �(·) almost surely, and ν(·) = �(·)−μ(·). The Laplace
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transform is the main functional used in the study of completely random mea-
sures (CRMs), which are defined in terms of underlying Poisson processes and
have been used as general nonparametric prior models for distributions; see, for
example, Lijoi and Prünster (2010) for a review. Hence, this result has inspired
work on dependent CRMs, built from dependent Poisson processes that admit the
representation above. We refer to Lijoi, Nipoti and Prünster (2014a, 2014b) for
related theory and inference methods in the context of mixture models, as well
as to Lijoi and Nipoti (2014) for modeling dependent hazard rate functions in
survival analysis. [Alternative methods for construction of dependent CRMs in-
clude Leisen and Lijoi (2011) and Leisen, Lijoi and Spanó (2013).] Although this
work is based on the same representation for Poisson process intensities that we
use in our approach, the objective is to build nonparametric priors for dependent
distributions. In particular, the representation in terms of a common term and an
idiosyncratic term is utilized mainly as a mechanism to build dependence in the
prior model for two correlated distributions. In our approach, the particular rep-
resentation is the key modeling assumption for the occurrence of extreme values,
and inference for the systematic and idiosyncratic components is of direct inter-
est.

3. Posterior simulation and prior elicitation.

3.1. Markov chain Monte Carlo posterior inference. Our modeling approach
is based on the decomposition of the Poisson process intensity into the total
intensity, γj = γ ∗

0 + γ ∗
j , and the Poisson process density, fj (t) = εjf

∗
0 (t) +

(1− εj )f
∗
j (t), for t ∈ [0, T ]. Under this decomposition, the likelihood function as-

sociated with the nonhomogeneous Poisson process giving rise to the exceedances
in sector j is γ

nj

j exp{−γj }∏nj

k=1 fj (tj,k). Hence, the joint posterior distribution
for our model can be written as

p
({

γ ∗
j

}
, {vj,l}, {μ̃j,l}, τ, {αj }, π |data

)

∝
J∏

j=1

(
γ ∗

0 + γ ∗
j

)nj exp
{−(

γ ∗
0 + γ ∗

j

)}

×
J∏

j=1

nj∏
k=1

(
γ ∗

0

γ ∗
0 + γ ∗

j

∞∑
l=1

{
v0,l

∏
s<l

(1 − v0,s)

}
ψ(tj,k|μ̃0,l, τ )(3.1)

+ γ ∗
j

γ ∗
0 + γ ∗

j

∞∑
l=1

{
vj,l

∏
s<l

(1 − vj,s)

}
ψ(tj,k|μ̃j,l, τ )

)

× p(π)p(τ)p
(
γ ∗

0
) J∏
j=1

p
(
γ ∗
j |π) J∏

j=0

∞∏
l=1

h(μ̃j,l)Beta(vj,l|1, αj )

J∏
j=0

p(αj ),
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where the priors p(π), p(τ), p(γ ∗
0 ), p(γ ∗

j |π), for j = 1, . . . , J , and p(αj ), for
j = 0,1, . . . , J , are given in Section 2.

Since the posterior distribution is computationally intractable, we resort to a
Markov chain Monte Carlo (MCMC) algorithm [Robert and Casella (2004)] for
simulation-based inference. To sample from the posterior distribution associated
with the nonparametric component of the model, we use blocked Gibbs sampling
[Ishwaran and James (2001), Ishwaran and Zarepour (2000)]. Hence, for compu-
tational purposes, we replace the mixing distributions G∗

0,G
∗
1, . . . ,G

∗
J with finite-

dimensional approximations:

GN
j (·) =

N∑
l=1

{
uj,l

∏
s<l

(1 − uj,s)

}
δμ�

j,l
(·), j = 0,1, . . . , J,

where, as before, the μ�
j,l are drawn independently from H and the uj,l are inde-

pendent Beta(1, αj ), for l = 1, . . . ,N − 1, but uj,N = 1 to ensure that the weights
sum to 1. The truncation level N can be chosen to any desired level of accu-
racy using distributional results for the DP stick-breaking weights. In particular,
E(

∑N
l=1 uj,l

∏
s<l(1 − uj,s)|αj ) = 1 − {αj/(αj + 1)}N , which can be averaged

over the prior for αj to estimate the prior expectation for the partial sum of the
first N weights. In practice, in addition to using the above result to guide the selec-
tion of N , we perform a sensitivity analysis to investigate the impact of our choice
(see Section 4).

Furthermore, we expand the model by introducing for each observation tj,k a
pair of latent configuration variables, (rj,k,Lj,k), where rj,k ∈ {0, j} is an indi-
cator for the systematic or idiosyncratic component, whereas Lj,k ∈ {1, . . . ,N}
identifies the respective mixture component under the truncation approximation for
GN

0 or GN
j . More specifically, independently for j = 1, . . . , J and k = 1, . . . , nj ,

Pr(rj,k = 0|γ ∗
0 , γ ∗

j ) = 1 − Pr(rj,k = j |γ ∗
0 , γ ∗

j ) = γ ∗
0 /(γ ∗

0 + γ ∗
j ), and, for l =

1, . . . ,N , Pr(Lj,k = l|rj,k = 0,GN
0 ) = u0,l

∏
s<l(1 − u0,s) and Pr(Lj,k = l|rj,k =

j,GN
j ) = uj,l

∏
s<l(1−uj,s). In addition to the aforementioned indicator variables

associated with the mixture representation of the intensity functions, we introduce
a set of binary indicators, ξ1, . . . , ξJ , such that Pr(ξj = 0|π) = 1−π . Inferences on
Pr(ξj = 0|data) provide an operational mechanism to implement the idiosyncrasy
test discussed at the end of Section 2.1. Details of the posterior simulation algo-
rithm, and on point and interval estimation for the intensity functions λ∗

0, . . . , λ
∗
J ,

are provided in the supplementary material [Rodríguez, Wang and Kottas (2017)].
As pointed out by one of the referees, a possible alternative to the blocked Gibbs

sampler is a slice sampler [e.g., Griffin and Walker (2011), Kalli, Griffin and
Walker (2011)]. Such an approach allows posterior simulation from most model
parameters without explicitly truncating the countable representation for the G∗

j ,
j = 0,1, . . . , J , and is therefore attractive if the inference objectives are limited
to posterior predictive estimation which does not require posterior samples for the



ASSESSING SYSTEMATIC RISK IN THE S&P500 INDEX 537

mixing distributions. However, key for our analysis is inference for the sector-
specific intensities, λj (t), j = 1, . . . , J , defined through mixture densities f ∗

j (t),
j = 0,1, . . . , J , and for the probability of r exceedances over a given period. And,
we are interested not only in point estimates for these functionals, but also in es-
timates of the uncertainty. Obtaining those estimates requires posterior samples
for the mixing distributions, for which truncation is necessary also under a slice
sampler. Hence, the advantages of slice sampling in this context are limited.

3.2. Hyperparameter elicitation. To elicit the model hyperparameters, histor-
ical and/or expert information can be used. Such information is typically available
for most liquid financial markets. We recommend that this elicitation process be
complemented with a careful sensitivity analysis over a reasonable range of prior
beliefs.

Consider first the parameters γ ∗
0 , γ ∗

1 , . . . , γ ∗
10, which control the total number

of exceedances observed in each sector and the relative distribution of these ex-
ceedances between the systematic and idiosyncratic component of the model. Be-
cause of their role in the model, we can elicit a value for the expected number
of extreme returns in a given sector j [which corresponds to E(γ ∗

0 + γ ∗
j )] by as-

suming that returns in the sector are normally distributed so that E(γ ∗
0 + γ ∗

j ) ≈
T × �({−u − ζj }/κj ), where � denotes the standard normal distribution func-
tion, and ζj and κj are rough estimates of the mean and standard deviation of
returns for sector j . The values of ζj and κj can be obtained from historical data
or expert knowledge. For simplicity, it can be assumed that ζj and κj are the same
for every sector, leading to a model where sectors are exchangeable, but this is
not required. Similarly, we can exploit the interpretation of γ ∗

0 /(γ ∗
0 + γ ∗

j ) as the
proportion of exceedances arising from the systematic component to elicit expert
information about the most likely value of such rate, as well as a high probability
range for its value. This same information can be used to provide informative pri-
ors for 1 − π , the prior probability that the risk in a given sector is entirely driven
by the systematic component.

Next, consider eliciting the hyperparameters associated with the densities f ∗
0

and f ∗
1 , . . . , f ∗

J . A common feature of extreme returns in financial time series is
that they tend to cluster over time [e.g., Mandelbrot (1963)]. Hence, the priors for
the precision parameters α0, α1, . . . , αJ (which, as mentioned in Section 2, control
the number of mixture components) should support relatively large values. A rough
value for the number of components, which can be used to select the prior mean
of αj [see, e.g., Escobar and West (1995)], can be elicited from a rough estimate
of the frequency at which distress periods arise in sector j . Similarly, the value
for the scale parameter τ can be elicited from prior information about the length
of distress periods. Finally, in the absence of prior information about the time at
which distress periods occur, we recommend that H be selected so that the prior
mean for f ∗

0 and f ∗
1 , . . . , f ∗

J is close to uniform.
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TABLE 1
S&P500 sector indexes and their associated tickers

Sector number Ticker Sector description

1 S5COND Consumer discretionary
2 S5CONS Consumer staples
3 S5ENRS Energy
4 S5FINL Financials
5 S5HLTH Health care
6 S5INDU Industrials
7 S5MATR Materials
8 S5INFT Information technology
9 S5TELS Telecommunications

10 S5UTIL Utilities

4. Systematic and idiosyncratic risks in the U.S. economy: An analysis of
the S&P500 index and its components. The data analyzed in this section cor-
responds to the negative daily log returns above u = 2% on each of the ten sectors
that make up the S&P500 index from the time period between January 1, 2000
and December 31, 2011. This results in sample sizes for extreme returns that range
from 85 (for consumer staples) to 387 (for information technology). Prices for
the individual indexes were obtained from Bloomberg financial services; see Ta-
ble 1 for the corresponding tickers. A 2% drop in the market has been historically
used as a threshold for trading curbs on program trades (which involve a basket of
stocks from the S&P500 index where there are at least 15 stocks or where the value
of the basket is at least $1 million). Although these particular trading curbs were
abandoned in late 2007 because of their inefficacy in reducing market volatility,
we believe that the 2% threshold is still a useful guideline to identify periods of
distress in the market without excessively thinning the sample. We repeated our
analysis for other values of the threshold u without significant qualitative changes
in the conclusions; refer to the supplementary material [Rodríguez, Wang and Kot-
tas (2017)].

All inferences reported here are based on 3000 posterior samples obtained after
a burn-in period of 20,000 iterations and thinning of the original chain every 50
iterations. Convergence of the MCMC algorithm was monitored using trace plots
as well as the R statistic discussed in Gelman and Rubin (1992). In particular, we
ran four independent chains started from overdispersed initial values and compared
between and within chain variability in the value of the log-likelihood function
and in some of the hyperparameters in the model. No lack of convergence was
evident from these diagnostics. The algorithm was implemented in C/C++, and
total execution time was approximately 16 hours on a MacBook laptop with a 2
GHz Intel Core 2 Duo processor and 2GB of memory.

Using the guidelines discussed in Section 3.1, the truncation level for the
blocked Gibbs sampler was set to N = 60. A sensitivity analysis (using both
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TABLE 2
Parameters of the prior distributions used in the analysis of the

S&P500 sectors

Parameter Prior parameters

π aπ = 0.5, bπ = 2
γ ∗

0 aγ ∗
0

= 7.32, bγ ∗
0

= 0.06

γ ∗
j , j = 1, . . . ,10 aγ ∗

j
= 1.32, bγ ∗

j
= 0.06

τ aτ = 5, bτ = 2400
αj , j = 0,1, . . . ,10 aα = 4, bα = 1/3
H aμ = 1, bμ = 1

N = 50 and N = 70) suggests that values larger than 60 lead to essentially identi-
cal results.

Table 2 summarizes our choice of prior hyperparameters. For γ ∗
0 , . . . , γ ∗

10 and
π , the choice reflects the prior belief that the systematic component of the risk
explains the majority of exceedances observed in the data. Indeed, we construct
our prior for π by assuming that E(π) = 0.2 and placing high probability on values
of π close to zero. Moreover, we specify the priors for γ ∗

0 , . . . , γ ∗
10 on the basis

of a 0 mean return with 18% annualized volatility for the S&P500, along with
the prior beliefs that on average 85% of the observed exceedances, and with 0.99
probability at least 50% of them, arise from the systematic component of the model
(recall the discussion in Section 3.2). On the other hand, our choice of priors for
H , for τ and for the αj , j = 0,1, . . . , J , is guided by the fact that we expect highly
multimodal intensity functions, but have little information about where the modes
lie. Hence, our prior supports relatively large values of αj [E(αj ) = 12 a priori]
so that individual realizations from the prior are multimodal, but we set H to the
uniform distribution and favor relatively large values of τ so that the prior mean
shape of the intensity function is relatively flat (see Figure 3). In all cases, the
posterior distributions for all hyperparameters appear to be concentrated relative
to the corresponding prior distributions. Results from prior sensitivity analysis are
discussed in Section 4.2.

Estimates of the overall intensities λ1(t), . . . , λ10(t) associated with each of the
ten components of the S&P500 index can be seen in Figure 2. The last two panels
also provide summaries of the prior distribution over intensities induced by the
prior choices discussed above. By comparing some of those estimates to the raw
data presented in Figure 1, it becomes clear that the model faithfully reproduces
the main features of the data. Furthermore, the uncertainty associated with these
estimates is relatively low. The ratio of these intensities with respect to the intensity
associated with the systematic component, λ1(t)/λ

∗
0(t), . . . , λ10(t)/λ

∗
0(t), can be

used as a time-dependent index of idiosyncratic risk on each of the sectors of
the U.S. economy tracked by the S&P500 index. Indeed, note that λj (t)/λ

∗
0(t) =
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FIG. 2. The top three rows and the left panel on the bottom row show the posterior mean of the
overall intensity, λj , j = 1, . . . ,10, associated with the different components of the S&P500 index,
along with posterior 95% pointwise credible intervals. The headers on each panel include the number
of exceedances observed in each sector over the 12-year period under study. The last two plots in the
bottom row present prior realizations for the intensity function (middle panel) and the mean prior
intensity function along with prior 95% pointwise credible intervals (right panel).
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FIG. 3. The left panel shows the posterior mean of f ∗
0 , the density associated with the systematic

risk component of the S&P500 index, including posterior 95% pointwise credible intervals. The
middle panel shows prior realizations for f ∗

0 , while the right panel plots the prior mean and prior
95% pointwise credible intervals for f ∗

0 .

1 + {γ ∗
j f ∗

j (t)/(γ ∗
0 f ∗

0 (t))} indicates the excess risk of a given sector relative to
the baseline at time t , with sectors that exhibit little idiosyncratic risk across time
having λj (t)/λ

∗
0(t) ≈ 1 for all t .

Next, Figures 3 and 4 show estimates of the densities f ∗
0 and f ∗

1 , . . . , f ∗
10 asso-

ciated with the systematic and idiosyncratic risk intensities. Figure 5 presents the
posterior densities for ε1, . . . , ε10, the (average) proportion of the risk attributable
to the systematic component in each of the ten sectors. Note that in half the sectors
(consumer discretionary, consumer staples, health care, industrials and utilities) the
proportion of extremes associated with the systematic component is at least 80%,
while for the rest (energy, financials, information technology, telecommunications
and materials) the proportion is between 40% and 80%. In addition, note that the
density for the systematic risk shows peaks that coincide, or shortly follow, impor-
tant stock market events. On the other hand, the behavior of the idiosyncratic risk
varies drastically with the economic sector and, in most cases, can be explained by
factors that are sector specific. For example, the energy and utilities sectors present
increases in idiosyncratic risk during 2005, a period that corresponded to sharp in-
creases in oil prices but that was otherwise relatively calm. On the other hand, the
idiosyncratic risk associated with the financial sector increases dramatically after
the summer of 2007. An oversized idiosyncratic risk for this sector after 2007 is
clearly reasonable as financials were the main driver of the recent crisis. Similarly,
the idiosyncratic risks associated with the information technology and telecommu-
nication services sectors are particularly elevated between 2000 and 2002, a period
that included the bursting of the so-called dot-com bubble. Finally, note that the
idiosyncratic risk associated with consumer staples is almost negligible over the
whole period under study, with our idiosyncrasy test suggesting that there is mod-
erate evidence for the absence of idiosyncratic risk in this sector of the S&P500
index. This is reasonable, as the consumer staples sector includes companies that
produce and trade basic necessities whose consumption might be affected by gen-
eral economic conditions but is otherwise relatively stable.
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FIG. 4. Posterior mean of the idiosyncratic densities, f ∗
1 , . . . , f ∗

10, associated with the different
components of the S&P500 index, along with posterior 95% pointwise credible intervals.
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FIG. 5. Posterior density for εj , j = 1, . . . ,10, the overall proportion of risk attributable to the
systematic component on each of the ten components of the S&P500 index.

As we discussed in Section 2, we can alternatively quantify the level of risk
through the probability of observing at least one exceedance during a given period
of time. Figure 6 shows for four different sectors the posterior distributions for
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FIG. 6. The left column plots show for four different sectors the posterior densities for the odds ra-
tio of the probability of at least one exceedance in the month starting two weeks after the bankruptcy
of Lehman Brothers against the probability of at least one exceedance in the month ending two weeks
before the bankruptcy. The right column plots show the corresponding posterior densities associated
with the idiosyncratic component, and the middle column includes the posterior density associated
with the systematic component. The vertical line indicates the mean of the posterior distribution.
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the odds ratios of the probability of at least one exceedance in the month starting
two weeks after the bankruptcy of Lehman Brothers versus the probability of at
least one exceedance in the month ending two weeks before the bankruptcy. Note
that all sectors show an increase in risk after the Lehman Brothers bankruptcy.
However, the increase is lower for financials than it is for the other sectors (the
estimated posterior probabilities are 1.000, 0.913 and 0.977 for consumer staples,
energy and information technology, respectively). Indeed, note that systematic risk
increases after the bankruptcy of Lehman Brothers but the idiosyncratic risk asso-
ciated with financials actually decreases (as does the one for energy, although to
a lesser degree), while the idiosyncratic risks associated with information tech-
nology and consumer staples increased. The increase in risk in the information
technology and consumer staples sectors could be explained by the fact that one
of the main effects of Lehman’s bankruptcy was a collapse in the short-term cor-
porate debt market. Hence, although the bankruptcy of Lehman Brothers actually
reduced the uncertainty in the financial sector of the economy, it caused real dam-
age to companies in other sectors that are extremely dependent on short-term debt.
Note that companies that are part of the S&P500 energy sector are typically not
reliant in short-term funding, hence the limited impact of Lehman’s bankruptcy in
their idiosyncratic risk.

4.1. Model validation. The model was validated using two different ap-
proaches. First, an out-of-sample cross-validation exercise was conducted, with
cross-validation datasets being constructed by randomly selecting 20% of the ob-
servations from each sector to be used as held-out data. The remaining 80% of the
data was used to fit our nonparametric model and generate nominal 90% highest
posterior density (HPD) intervals for new exceedances. The true coverage of these
HPD intervals was then evaluated on the held-out data. Figure 7 presents exam-
ples of cross-validation samples and the corresponding densities for two different
sectors.

We repeated the process described above for 10 different cross-validation
datasets, with the results presented in Figure 8. As expected, there is variability in
the coverage rates depending on the sector and the specific cross-validation dataset.
However, the results suggest that for the most part the real coverage rates are in
line with the nominal coverage, which suggest that the model does not under- or
over-fit.

In addition to the cross-validation exercise described above, in-sample goodness
of fit was investigated using quantile-quantile plots for the posterior distribution of
inter-event times. More specifically, we use the time-rescaling theorem [see, e.g.,
Daley and Vere-Jones (2003)], according to which if {tj,k : k = 1, . . . , nj } is a real-
ization from a nonhomogeneous Poisson process with cumulative intensity �j(t),
then the transformed point pattern {�j(tj,k) : k = 1, . . . , nj } is a realization from
a homogeneous Poisson process with unit intensity. Hence, if the Poisson process
assumption is correct, then we would expect the transformed inter-arrival times
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FIG. 7. Examples of cross-validation datasets (plotted on the horizontal axis) for two sectors, and
the posterior mean and 95% pointwise interval estimates for the densities associated with them.

zj,1, . . . , zj,nj
defined as zj,k = 1 − exp{−[�j(tj,k|Gj, τ) − �j(tj,k−1|Gj, τ)]}

(with the convention tj,0 = 0) to be uniformly distributed on the unit interval.
A variant of this check for extreme value models was originally proposed by Hill
(1975) in the context of threshold selection.

Figure 9 presents quantile-quantile plots of the posterior means of these trans-
formed inter-arrival times, E(zj,k|data), for k = 1, . . . , nj , against the quantiles of

FIG. 8. Results from the cross-validation exercise to investigate the coverage rate of the highest
posterior density intervals associated with the nonparametric model.
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FIG. 9. Quantile-quantile plot of the posterior means for the transformed inter-arrival times
against the quantiles of a uniform distribution (solid line) for each of the ten S&P500 sectors.
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a uniform distribution for each of the ten S&P500 sectors. For the most part the
fit appears acceptable, although there is some evidence of poor fit for a couple
of sectors. In particular, note that for consumer staples our model tends to sys-
tematically predict shorter inter-arrival periods than those that would be expected
under the Poisson model. Similar, albeit less dramatic, biases can also be seen for
information technology. Note that these two sectors (along with telecommunica-
tions services) are identified by the cross-validation exercise as the ones where the
model overfits the most.

4.2. Prior sensitivity analysis. In addition to testing the sensitivity of our anal-
ysis to the choice of the threshold u (see the supplementary material [Rodríguez,
Wang and Kottas (2017)]), we carried out a comprehensive sensitivity analysis to
assess the effect of prior distributions on posterior inferences. First, we considered
three alternative sets of hyperparameters for the mixture kernel scale parameter
τ corresponding to IGam(5,4000), IGam(10,7200) and IGam(2,500) priors. The
hyperparameters were selected to represent a range of situations where the prior
mean is both larger and smaller than the one used for our previous analysis, as
well as different levels of concentration. Posterior inferences were mostly unaf-
fected under any of these scenarios.

Next, we considered four alternative prior specifications for the precision pa-
rameters α0, . . . , α10, specifically, a Gam(4,1/3), a Gam(10,2), a Gam(2,0.4)

and a Gam(3,3) prior. Inferences for the intensity function were mostly unchanged
under these prior distributions. However, inferences for individual hyperparame-
ters were somewhat affected. In particular, smaller values for E(αj ) naturally lead
to somewhat smaller posterior means for the αj , but also to larger posterior values
for τ and an increase in the posterior mean for some of the εj [e.g., for consumer
staples we have Pr(ε2 = 1|data) = 0.71 under the Gam(3,3) prior]. On the other
hand, changes in the prior dispersion of αj had no discernible effect on the individ-
ual posterior distributions of the hyperparameters, as long as the prior mean was
kept constant.

To assess the effect of the baseline distribution H on posterior inferences, we
considered an alternative rescaled beta distribution with aμ = bμ = 3. This prior
tends to favor the localization of distress periods toward the middle of the time
series. This alternative baseline distribution leads to somewhat smoother estimates
for the density functions f1, . . . , f10, and to less multimodal estimates for the id-
iosyncratic intensities f ∗

1 , . . . , f ∗
10. In addition, the posterior means for the αj and

for τ tend to be slightly smaller. However, the overall structure of the results is
unchanged.

We also considered an alternative specification for the priors on γ ∗
0 and

γ ∗
1 , . . . , γ ∗

10 where we assume that the number of extreme returns in each sector
is consistent with a 2% positive annualized return and a 25% annualized volatility
for the S&P500, while only 50% of the exceedances come from the systematic
component, and Pr(0.2 < γ ∗

0 (γ ∗
0 +γ ∗

j )−1 < 0.8) = 0.99. This leads to aγ ∗
0

= 7.65,
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bγ ∗
0

= 0.65, and aγ ∗
j

= 7.65, bγ ∗
j

= 0.65 for j ≥ 1. As before, these new priors
have very little impact on the inference for the intensity functions. Also, although
the posterior distributions on the weights ε1, . . . , ε10 are somewhat affected, the
qualitative outcome is identical under both analyses. In particular, in both cases
consumer staples is the only sector for which we find little or no evidence of an
idiosyncratic component. The difference focuses on the level of evidence provided
by the analysis: under the new prior, the idiosyncrasy test provides very strong
evidence that shocks in consumer staples are driven exclusively by the systematic
component [Pr(ε2 = 1|data) ≈ 1], while for the other sectors we have very strong
evidence for the presence of idiosyncratic components [Pr(εj = 1|data) = 0 for
j = 1,3,4, . . . ,10].

Finally, we investigated the effect on posterior inferences of alternative prior
distributions on π . In addition to the original Beta(0.5,2) prior (which favors the
hypothesis that most of the exceedances are generated by the systematic compo-
nent of the model), we considered a uniform and a Beta(0.5,0.5) prior for π .
While the Beta(0.5,0.5) had a negligible effect on posterior inferences, the use of
a uniform prior led to an increase in the posterior mean for some of the εj [e.g.,
Pr(ε2 = 1|data) = 0.76].

5. Discussion. We have developed a novel modeling approach for simulta-
neous risk assessment in multiple sectors of the U.S. economy that focuses on
modeling the dependence in the appearance of large losses in the different sectors
constituting the S&P500 index. Some of the advantages of the proposed method-
ology include its nonparametric nature, its focus on extreme returns rather than
average returns, and the interpretability of the components of the model. These
features lead to robust indexes and hypothesis tests for the presence of idiosyn-
cratic risks in specific sectors of the economy.

Although our application used data from equity markets to understand the inter-
dependence across different sectors of the economy, the proposed model also has
potential applications in debt markets. In particular, reduced-form credit risk mod-
els [e.g., Lando (1998)] are also Cox process models for debt default. Therefore,
our model could be extended to estimate the probability of default for firms within
and across multiple economic sectors.
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SUPPLEMENTARY MATERIAL

Supplement to “Assessing systematic risk in the S&P500 index between
2000 and 2011: A Bayesian nonparametric approach” (DOI: 10.1214/16-
AOAS987SUPP; .pdf). The supplementary material contains results from sensi-
tivity analysis to the choice of the threshold, as well as details for the MCMC

http://dx.doi.org/10.1214/16-AOAS987SUPP
http://dx.doi.org/10.1214/16-AOAS987SUPP
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algorithm and on posterior inference. It is available as Rodríguez, Wang and Kot-
tas (2017).
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