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1. Introduction. Analyses of coauthorship and citation networks offer a fer-
tile ground for studying research and collaboration patterns of scientific commu-
nities. Ji and Jin’s efforts of collecting, cleaning and summarizing in various ways
citation and coauthorship networks for statisticians is a great step forward to pro-
vide the community with a first such data set for self-study. They perform several
descriptive analyses of the underlying networks to extract interesting patterns: they
study trends of productivity over time, extract most prolific authors and research
areas using various centrality measures, and find communities in these networks.
We look forward to seeing this data set serving as a yardstick for fitting social
network models to large data sets. Perhaps more interestingly, we see it as raising
new research questions from the modeling, data representation and computational
points of view and becoming a standard testbed for evaluating network models—
both old and new—and testing scalability of inference procedures. In this regard,
it is with great pleasure that we write this comment.

Here we take a model-based approach and consider the effects of various types
of author interactions on the analysis and inference about the citation and coau-
thorship data sets. We are generally interested in three types of questions, two of
which we discuss here: what are well-fitting models for the data? Is a simple net-
work representation best for answering questions we ask, or should we be consid-
ering alternative representations? How can we scale existing network model fitting
and goodness-of-fit testing procedures to networks of this size, as well as larger
networks that the authors intend to collect? These forthcoming data sets should re-
duce sampling bias, but of course come at a price of a dramatic increase in network
size and computational cost. We expect that availability of the data sets Ji and Jin
have provided the community will encourage methodological research to push the
limits of performing nonasymptotic inference in large and sparse networks.

We became aware of their data collection effort at a time when we were devel-
oping a basic exponential family model for hypergraphs, placing probabilities on
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occurrence of connected groups of nodes of arbitrary size instead of pairs of nodes
in a random graph. Indeed, in Stasi et al. (2014), a mock example of a coauthorship
data set is used as a motivation for the new model. Subsequently, we introduced
an ERGM that is based on a summary of a global connectivity structure called k-
core decomposition [Karwa et al. (2016)]. Hence, we reconsider Ji and Jin’s data
through the lens of these two network models, but first let us begin with some more
classical models.

2. Fitting dyad-independent models based on node degrees. The data col-
lected by Ji and Jin contains two key data sets: (1) a bipartite graph of authors
and papers where a link exists from node i to node j if author i wrote paper j ;
(2) a network of citations of papers where a link exists from node i to node j if
paper i cites paper j . From these two data sets, Ji and Jin extract two networks
whose nodes are authors: two coauthorship networks and one citation network. In
the “Coauthorship network A” there is an undirected edge between nodes i and j

if author i coauthored at least 2 papers with author j . In the “Coauthorship net-
work B” there is an undirected edge between nodes i and j if author i coauthored
at least 1 paper with author j . In the citation network of authors, there is a directed
edge from author i to author j if i has cited at least 1 paper by j .

It is important to note that, strictly speaking, the number of citations between
authors and the number of coauthors are counts greater than 1. They are converted
to a binary network by using thresholding, a popular technique in network analysis
used to avoid multiple edges. Moreover, in the citation network of authors, the self-
citations are set to 0 to avoid loops in the network representation so that the result
is a desirable simple graph.

Once a network representation is extracted from the data, there are many ways
to analyze it using descriptive statistics. For instance, Ji and Jin consider degree
centrality of these extracted networks to measure the importance of nodes. In the
coauthorship network, they use node degrees to identify most collaborative au-
thors, while in the citation network of authors, they use the number of citers—the
in-degree of the corresponding directed graph—to identify top authors. From the
point of view of modeling, it is natural to ask whether degree-based analysis is suf-
ficient for these networks; in particular, models based on degrees exhibit dyadic in-
dependence and we question whether such an assumption is valid. In other words,
when a statistic is used to summarize a data set, we see it as a sufficient statistic of
some model and then ask what that model is and how well it fits the data.

We investigate the above question for node degrees of both citation and coau-
thorship networks. The simplest but nicely interpretative model for random di-
rected graphs whose sufficient statistics are the node in- and out-degrees is the p1
model [Holland and Leinhardt (1981)]. The model assumes that dyads (i.e., ci-
tation pairs) are independent and assigns probabilities to four types of citations:
outgoing, incoming, reciprocated and none, represented by i → j , i ← j , i ↔ j
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and i � j , respectively. Node-specific parameters represent attractiveness and ex-
pansiveness, and there is an additional parameter for the overall tendency of the
network to reciprocate citations. This parameter can be set to be zero or a nonzero
constant; Holland and Leinhardt consider both versions of the model. Fienberg and
Wasserman (1981) represent p1 in log-linear form, turning networks into 0/1 con-
tingency tables, and extend the model to allow for the differential reciprocity ef-
fect by including dyad-specific reciprocation parameters. [The model was later ex-
tended to fit within the block model framework; see Fienberg, Meyer and Wasser-
man (1985).] For undirected graphs such as the coauthorship network, p1 reduces
to the β model [Blitzstein and Diaconis (2010)] that has had a long history in
various literatures.

The log-linear representation allows the use of tools from algebraic statistics
introduced in Diaconis and Sturmfels (1998) to fit the p1 model and perform a
nonasymptotic goodness-of-fit test; see (2010) for the basic theoretical results
for the p1 model and Gross, Petrović and Stasi (2015) for generalizations and
implementation.

Results of goodness-of-fit tests. We perform an exact test of model fit for the p1
model with dyad-dependent reciprocation (the most general version) to the largest
connected component of the citation network of authors. The test is done by run-
ning the Markov chain from Gross, Petrović and Stasi (2015). After n = 100,000
steps, the resulting p-value is 0.007194245. This result indicates that the p1 model
does not fit the citation network of authors.

The lack of fit of the p1 model suggests that the network of citations may have
tendencies to be transitive and the dyads may not be independent. While counting
citations is a natural way to perform rankings, such a count—corresponding to the
directed degree sequence of the citation network—does not offer a good summary
statistic for the citation network data. Instead, we need to look for other more
complex measures of centrality, for example, those that are also able to capture
triadic or transitive effects.

Another comment is in order. The variants of the p1 model are naturally set up
to test the reciprocation effect: do authors reciprocate citations? That is, if author
i cites author j , is author j likely to cite a paper by author i? The lack of fit of the
model that captures the reciprocation effect means that the answer to this question
is “no,” however, it does not directly imply that there are no transitive effects of
other kinds that we are unable to test at the moment.

Similarly, we perform an exact test of model fit of the β model to the largest
connected component of the Coauthorship network A. The p-value from the
goodness-of-fit test obtained by running the Markov chain on n = 100,000 steps
is 0.997, indicating a pretty good fit. The dyads in the coauthorship network can
be assumed to be independent, and the network does not have any triadic closure
effects; that is, if author i wrote a paper with author j , and author j wrote a pa-
per with author k, then it is not necessary that author i has written a paper with
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author k. This result is somewhat surprising since experience suggests that col-
laborators of an author i may tend to collaborate with each other, including i. On
a closer look, perhaps it is less surprising: forgetting the structure of the original
data set and converting it to the underlying graph (by recording only the dyadic
relationships) results in independence and node degrees being a good summary of
the graph.

3. What lies beyond node degrees? As we saw above, the p1 model based
on node degrees does not fit the citation network and, hence, degree-based analyses
may be of suspect. It is well known that, in general, degree-based models may fail
to capture certain vital connectivity information about the network. In applications
such as the present one, we may be interested in the type of global connectedness
effectively captured by the cores decomposition of a graph introduced by Seidman
(1983) [see Karwa et al. (2016) for statistical considerations]. For the directed
citation network, we compute the k-core using the in-degree which measures the
number of times an author is cited. Intuitively, the k-core captures the innermost
core of “highly cited” authors. To be in the innermost core, it is not sufficient to
have the highest number of citations, but one must receive citations from authors
who are themselves cited by many.

To convert the citation counts between authors to a directed network of author
citations, we use varying threshold values c. A directed edge exists from node i to
node j if author i cites author j at least c times. We consider c = {1,2,3,4,5},
providing 5 different networks. Table 1 shows results of selecting the top 5 highly
cited authors based on their degree in the respective cores.

Compare the results of Table 1 to Column 3 of Table 2, where Ji and Jin iden-
tified the top 3 most cited authors, “Jianqing Fan,” “Hui Zou” and “Peter Hall,”
using the in-degree. When c ∈ {1,2,3,4} “Jianqing Fan” and “Hui Zou” appear
as the top 2 authors, and “Peter Hall” appears in the third place only when c = 3.
However, when c = 5, “Peter Hall” is the most cited author. Our goal here is to
simply illustrate the point that the results depend on the type of centrality measure
chosen and the threshold used to create the network.

As an illustration, Figure 1 shows the innermost core of the citation network of
authors when c = 4.

TABLE 1
Top 5 authors selected using the k-core decomposition with different values of c

1 2 3 4 5

Jianqing Fan Jianqing Fan Jianqing Fan Jianqing Fan Peter Hall
Hui Zou Hui Zou Hui Zou Hui Zou Hans-Georg Müller
Ming Yuan Peter Bühlmann Peter Hall Runze Li Raymond J Carroll
Peter Bühlmann Cun-Hui Zhang Runze Li Peter Hall Fang Yao
Runze Li Runze Li Raymond J Carroll Hans-Georg Müller Jianqing Fan
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TABLE 2
Top 3 authors that have k ∈ {1,2,3,4,5} or more collaborators (including themselves), based on

the hypergraph representation

1 2 3 4 5

Peter Hall Peter Hall Raymond J Carroll Raymond J Carroll Joseph G Ibrahim
Raymond J Carroll Raymond J Carroll Peter Hall Joseph G Ibrahim Raymond J Carroll
Jianqing Fan Jianqing Fan Jianqing Fan Hongtu Zhu Hongtu Zhu

The k-core decomposition of the coauthorship network is also instructive. For
this case, we perform a core decomposition of the Coauthorship network A. Fig-
ure 2 shows the innermost core of the coauthorship network. The innermost core
of the coauthorship network consists of two connected components and every node
has degree 9! In other words, the innermost core consists of 2 cliques of size 10.
On further exploration, it turns out that the two cliques correspond to two papers,
Bayarri et al. (2007) and Zhu et al. (2009), each with 10 authors. This example il-
lustrates that a network representation of the coauthorship data can be misleading:
it is not possible to distinguish between the cases of authors writing many joint
papers and many authors writing one.

4. Need for new models and representations. Both of the previous two sec-
tions motivate recording higher-order interactions from the data. In addition, Ta-

FIG. 1. The innermost core of the citation network where an edge exists if there are at least 4
citations.
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FIG. 2. The innermost core of Coauthorship network A.

ble 1 suggests the thresholding is not good as it loses information. There are several
ways to represent the data, two common structures being a network (undirected,
directed or bipartite) and a contingency table, each allowing for different analyses
to be carried out; that is, the type of model that can be fitted to the data depends on
the representation.

Contingency table representation. For I authors, J research areas and K jour-
nals, consider an I × I × J × K contingency table where the (i, i ′, j, k) entry
counts the number of times author i cites author i′ in research area j and journal
k. A similar representation can be obtained for the coauthorship network, where we
count the number of times author i and author j wrote a joint paper. These repre-
sentations preserve the citation and coauthorship count data. We can then collapse
the table to an I × I author-by-author table and fit log linear models to the ci-
tation counts. In essence, we seek to avoid thresholding, as in the generalized β

model discussed by Rinaldo, Petrović and Fienberg (2013) for weighted networks
represented in table form.

Hypergraph representation. Coauthorship networks may not be measuring what
they intend to measure; recall illustrative examples above. To prevent information
loss and model higher-order interactions, we represent the raw coauthorship data
via a hypergraph, which is a generalization of a graph. A random hypergraph is
a collection of random hyperedges which are occurrences of groups of nodes of
arbitrary size k. For example, a hyperedge (for simplicity, also called an edge)
of size k containing nodes i1, . . . , ik exists if authors i1, . . . , ik wrote a joint paper.
Figures 3, 4 and Table 2 highlight different aspects of the data that can be extracted
from the hypergraph representation.

Stasi et al. (2014) introduce β models for random hypergraphs. Lunagómez
et al. (2016) give a geometric representation of hypergraphs. Clearly, more com-
plex statistical models for random hypergraphs are necessary, as the degree-based
β model is sure to have similar shortcomings on hypergraphs as it did on graphs. In
addition, Figure 4 suggests placing heterogeneous weights on hypergraph degrees
with respect to edge size. Furthermore, we may wish to preserve edge multiplic-
ities representing multiple joint papers by the same groups in contingency table
form here as well.
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FIG. 3. The graph and hypergraph representation of a subnetwork of the Coauthorship network A.
The comparison clearly shows the loss of information in representing a hyperegde by edges in the
network.

FIG. 4. Histograms of hypergraph degrees with respect to edge size in the coauthorship hyper-
graph. The top 3 authors by hypergraph degree are shown.
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