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PREDICTING MELBOURNE AMBULANCE DEMAND USING
KERNEL WARPING1
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Predicting ambulance demand accurately in fine resolutions in space and
time is critical for ambulance fleet management and dynamic deployment.
Typical challenges include data sparsity at high resolutions and the need to
respect complex urban spatial domains. To provide spatial density predictions
for ambulance demand in Melbourne, Australia, as it varies over hourly in-
tervals, we propose a predictive spatio-temporal kernel warping method. To
predict for each hour, we build a kernel density estimator on a sparse set
of the most similar data from relevant past time periods (labeled data), but
warp these kernels to a larger set of past data irregardless of time periods
(point cloud). The point cloud represents the spatial structure and geograph-
ical characteristics of Melbourne, including complex boundaries, road net-
works and neighborhoods. Borrowing from manifold learning, kernel warp-
ing is performed through a graph Laplacian of the point cloud and can be in-
terpreted as a regularization toward, and a prior imposed for, spatial features.
Kernel bandwidth and degree of warping are efficiently estimated via cross-
validation, and can be made time- and/or location-specific. Our proposed
model gives significantly more accurate predictions compared to a current
industry practice, an unwarped kernel density estimation and a time-varying
Gaussian mixture model.

1. Introduction. A primary goal of emergency medical services (EMS) is
to minimize response times to life-threatening emergencies while keeping oper-
ational costs low. Accurate spatial-temporal ambulance demand predictions are
crucial to optimal operations management of base location, staff, fleet and deploy-
ment. These demand predictions are ideally needed at high temporal and spatial
granularities. The industry typically predicts for every hour and every 1 km2 re-
gion. We are motivated to predict this demand for the city of Melbourne, Australia.

There are several typical challenges to predicting ambulance demand:

• Ambulance demand is often exceedingly sparse at the temporal and spatial res-
olution required for prediction. There is zero demand in the vast majority of
1-km2 regions over a 1-hour period.

• This demand arises from complex urban geography. The city boundary is often
highly irregular. Ambulance demand can be very high (coastal and downtown)
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FIG. 1. Left: map of Melbourne [Google Maps (2015)]; right: spatial locations of all 696,975
Melbourne ambulance demand incidents from years 2011–2012 (in gray), and 38 demand incidents
for a typical 1-hour period (in black). We observe complex boundary and geographical features (e.g.,
highways, roads, satellite suburbs).

or very low (suburbs) along the boundary. Within this boundary, demand follows
closely the city’s infrastructure and terrain; there might be high demand along
central highways and zero demand within an internal lake.

• Ambulance demand exhibits spatial and temporal patterns. Weekly seasonality
is usually prominent [Channouf et al. (2007), Matteson et al. (2011)]; the indus-
try relies heavily on this seasonality to make predictions. Some studies have also
noted daily seasonality and short-term serial dependence at densely populated
regions [Zhou et al. (2015)].

• Ambulance demand data for large cities is often large scale. This presents com-
putational challenges, especially since predictions are needed very frequently.

It is particularly difficult to simultaneously resolve these challenges. Overcom-
ing sparsity requires considerable smoothing, while capturing complex spatio-
temporal patterns requires fine-resolution modeling. At high granularities, data
sparsity makes it difficult to detect spatio-temporal characteristics accurately. At
low granularities, differences across regions and times are not sufficiently captured
for optimal ambulance planning.

Figure 1 demonstrates these challenges in predicting ambulance demand for
Melbourne. We show on the right the locations of 696,975 demand incidents from
years 2011 and 2012 (in gray), and those of 38 demand incidents for a typical
1-hour period (in black). On average, 99.6% of the 1-km2 regions in Melbourne
receive zeros calls in any given hour. Comparing to a map of Melbourne on the
left [Google Maps (2015)], we observe a highly complex spatial boundary as Mel-
bourne encloses a large bay to its southwest. Demand is high near the bay, but
low on the outskirt suburbs. Demand is visibly higher at small satellite suburban
neighborhoods and along major highways radiating out from the city center. There
is lack of demand due to several reservoirs and a national park to the west and
northwest. Consistent with typical patterns, the demand exhibits strong weekly
seasonality.
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The EMS industry and previous studies have attempted to address some of these
challenges. The current industry practice uses a simple averaging formula. De-
mand in a 1-km2 spatial region over an hour is typically predicted by averaging
a small number of historical counts, from the same spatial region, over the corre-
sponding hours from previous weeks or years [Goldberg (2004)]. For instance, the
EMS of Charlotte-Mecklenburg, North Carolina, use a method called MEDIC, in
which the prediction is the average of twenty corresponding counts in the same
hour of the preceding four weeks for the past five years [Setzler, Saydam and
Park (2009)]. Averaging so few historical counts, which are mostly zeros, produces
noisy and flickering predictions, resulting in haphazard and inefficient deployment.

Much attention has been given to predicting the aggregate ambulance demand
as a temporal process using autoregressive moving average models [Channouf
et al. (2007)], factor models [Matteson et al. (2011)] and spectral analysis [Vile
et al. (2012)]. Few studies have modeled spatio-temporal ambulance demand well.
[Setzler, Saydam and Park (2009)] use artificial neural networks, but fail to im-
prove over the industry method. A recent study by Zhou et al. (2015) predicts
ambulance demand for Toronto, Canada, using a time-varying Gaussian mixture
model (GMM). This method is more accurate than the industry practice, but, as
the authors point out, extending it to incorporate spatial boundaries would be pro-
hibitively expensive. While it may not be essential for Toronto since the city is al-
most rectangular in shape, it becomes important for Melbourne; it is difficult for el-
lipsoidal Gaussian components to model demand well on the highly complex spa-
tial domain of Melbourne. Another study by Zhou and Matteson (2015) considers
a spatio-temporal weighted kernel density estimation (KDE) to predict Toronto’s
ambulance demand. It gives similarly accurate predictions as GMM (both much
better than industry), showing promise for KDE.

KDE has been used to analyze spatio-temporal data such as crime incidence
[Nakaya and Yano (2010)], disease spread [Zhang et al. (2011)] and data streams
[Aggarwal (2003)]. It allows for rapid identification of “hotspots” and their evolu-
tions in time and space. However, implementing a naive KDE is not satisfactory
for our application. The chosen bandwidth necessarily has to be quite large given
the data sparsity, smoothing inappropriately across boundary features and disre-
garding the underlying urban geography.

Few studies have focused on modeling spatial or spatio-temporal point pro-
cesses on complex spatial structures. Most studies assume a boundary defined a
priori (polygon or pixelated). If not, ad hoc methods based on the convex hull of
all observed points are typically used [Ripley and Rasson (1977)]. This invariably
results in a convex boundary that may be inaccurate where data is sparse. Even
with a boundary optimally defined, few methods are equipped to handle complex
boundary features. Ramsay (2002) proposes a finite window smoother with known
boundary conditions computed using an expensive finite element approach. Build-
ing on that, Wood, Bravington and Hedley (2008) model the boundary condition
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as a loop of wire and the point process as a soap film suspended from the bound-
ary wire. They represent this smoother as a penalized basis, compute it via multi-
grid, and select smoothness via generalized cross-validation. They acknowledge
the lack of an elegant solution when the boundary conditions are unknown. Apart
from boundary, other spatial characteristics, such as neighborhood structures and
road networks, are rarely incorporated in modeling. Woodworth et al. (2014) use
high-resolution housing data and satellite images to inform the support of den-
sity estimates for residential burglary, and obtain improved spatial-only density
estimates then without using external spatial information. We propose a method
that can efficiently capture and exploit a wide range of spatial characteristics with
or without using external spatial information. We can infer spatial characteristics
from the point process data when external spatial information is not readily avail-
able or directly relevant. We apply our method to perform spatio-temporal predic-
tion on sparse data.

We draw from theory and methods developed in manifold learning. Manifold
learning, a branch of machine learning, is concerned with estimating and ex-
ploiting the underlying structures of data. The assumption is that data in a high-
dimensional space resides on or near a lower-dimensional sub-manifold. In prac-
tice, we do not have access to this sub-manifold, but we can approximate it from
a point cloud, that is, a mass of historical data. The most common method is to
construct an adjacency graph of this point cloud and make use of the properties
and structures of this graph. This idea has led to many popular learning methods,
including isomap [Tenebaum, de Silva and Langford (2000)], local linear embed-
ding [Roweis and Saul (2000)], Hessian eigenmaps [Donoho and Grimes (2005)]
and Laplacian eigenmaps [Belkin and Niyogi (2003)] [see van der Maaten, Postma
and van den Herik (2009) for some review]. These methods were initially designed
for data representation or visualization, but have been adapted for semi-supervised
classification [Belkin and Niyogi (2004), Zhu et al. (2005), Zhou et al. (2003)] and
clustering [Ng, Jordan and Weiss (2001), Shi and Malik (2000)].

In particular, a variant of Laplacian eigenmaps, kernel warping, has been pro-
posed for semi-supervised classification [Belkin and Niyogi (2004), Sindhwani,
Niyogi and Belkin (2005), Smola and Kondor (2003)]. Using a small number of
labeled data and a larger number of labeled and unlabeled point cloud data, the
method classifies new examples by constructing kernels on the labeled data that
warp to the geometry of the point cloud. This geometry is represented by the adja-
cency graph of the point cloud. Smoothing orthogonal to this geometry is penalized
heavily, whereas smoothing along this geometry is not. This method is designed
for high-dimensional classification, and has good performance on text and image
data.

Drawing from this idea, we propose a novel method for modeling spatio-
temporal point processes against complex spatial structures and features. To pre-
dict ambulance demand for a future time period, we have a sparse set of historical
data that is very relevant for this prediction (labeled data). We fit a KDE on them,
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but warp the kernels to a larger set of historical data regardless of their relevance
to this predictive task (point cloud). This point cloud describes our belief about
the spatial structure on which the labeled data lies. It captures exterior and in-
terior boundaries without needing to explicitly define boundaries and boundary
conditions. It also incorporates a wide range of complex spatial similarities and
discontinuities, such as roads, city blocks and neighborhoods of varying shapes
and densities. Intuitively, this warping can be thought of as a regularization that
penalizes radical departure from and encourages flow of information along our in-
tuition of the geography. In a Bayesian sense, it can also be thought of as imposing
a prior based on how similar or different the point process is across different loca-
tions. Such a regularization or prior is especially beneficial when the labeled data
is sparse. We select the kernel bandwidth and the degree of warping efficiently
via cross-validation. Both of these parameters can be made time- and/or location-
specific.

We implement this method on ambulance demand data from Melbourne in years
2011 and 2012. Altogether there are 696,975 realized events. Each event contains
the time and location that the ambulance was dispatched to. The proposed ker-
nel warping model gives significantly more accurate predictions than previous ap-
proaches, including the MEDIC method as an industry practice, unwarped KDE
and GMM.

We develop the kernel warping model in Section 2. We construct an unwarped
KDE in Section 2.1, warp the kernels to the point cloud in Section 2.2, and al-
low for time- and location-specific warping in Section 2.3 for the Melbourne data.
Some details on computation are included in Section 2.4. We show the empirical
results for predicting Melbourne ambulance demand in Section 3, and conclude in
Section 4.

2. Model. We model Melbourne’s ambulance demand on a continuous spa-
tial domain S ⊆ R

2 and a discretized temporal domain of one-hour intervals
T = {1,2, . . .}. Let st,i be the location of the ith ambulance demand arising from
the t th time period, for i ∈ {1, . . . , nt }, where nt is the total number of ambu-
lances demanded in the t th period. Since a nonhomogeneous Poisson process
(NHPP) is a natural model for a spatial point process [Diggle (2003), Møller
and Waagepetersen (2004)], we assume {st,i : i = 1, . . . , nt } for each time pe-
riod t independently follow an NHPP over S , with positive intensity function
γt . We decompose the intensity function as γt (s) = δtft (s) for s ∈ S . Here, δt =∫
S γt (s) ds is the aggregate demand intensity over the spatial domain, and ft (·)

is the continuous spatial density of the demand at time t such that ft (s) > 0 and∫
S ft (s) ds = 1. Therefore, for each t , nt |γt ∼ Poisson(δt ) and st,i |γt , nt

i.i.d.∼ ft (·)
for i ∈ {1, . . . , nt }. The usual practice is to model {δt } and {ft } separately. As men-
tioned before, numerous studies have proposed sophisticated and accurate methods
for estimating {δt }. We thus focus on predicting the spatio-temporal demand den-
sity {ft }, which is more challenging and less studied.
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2.1. Spatio-temporal KDE. Suppose we want to predict Melbourne’s ambu-
lance demand for a future 1-hour period u. Given the prominent weekly season-
ality, the most relevant observations are from the corresponding hour of the week
for the past M weeks. They constitute the labeled data for this predictive task.
This approach is aligned with the industry practice, and is shown to work well in
Zhou et al. (2015). We choose the sliding window width M a priori. With a larger
M , we have more training data, but each training is slower and less adaptive to
recent changes in demand patterns (e.g., summer vs. winter). The industry and re-
cent studies have considered M between 4 and 8. For Melbourne, we set M = 8,
resulting in an average labeled data size of about 300 points (ranging from 100 to
450 for different periods). Let Tu = {u − 168m : m ∈ {1, . . . ,M}} denote the set of
labeled time periods, in which 168 is the number of 1-hour periods in a week.

Starting with a simple KDE on the labeled data, we predict, for any x ∈ S ,

(2.1) fu(x) = 1∑
t∈Tu

nt

∑
t∈Tu

nt∑
i=1

k(x|st,i ,H ).

Here, k is the chosen bivariate spatial kernel with bandwidth matrix H . We use the
bivariate Gaussian kernel centered at the label data with a covariance matrix of H ,
but the Epanechnikov kernel with bounded support could be used to provide com-
putational savings. We choose bandwidth H via the plug-in method [Wand and
Jones (1994)] or smoothed cross-validation [Duong and Hazelton (2005)]. When
data show large variations in density, using one fixed bandwidth may not be opti-
mal [Cacoullos (1966), Scott (1992)]. A bandwidth too large wipes out local fea-
tures where we have sufficient data; a bandwidth too small leads to spurious peaks
where data is sparse. In the case of Melbourne, data density varies substantially in
space (downtown vs. neighborhoods) and time (midnight vs. rush hours); we may
be motivated to consider a spatial- and/or time-varying H .

2.2. Kernel warping. We would like to warp each kernel k in equation (2.1) to
a larger set of point cloud data that describes the spatial boundary and characteris-
tics of Melbourne. We choose the point cloud data, construct an adjacency graph
on the point cloud, define the graph Laplacian matrix, and warp the kernel to this
Laplacian matrix. We discuss in detail each step.

Step 1 [Choosing the point cloud]: Typically in Laplacian eigenmap and kernel
warping applications, all labeled and unlabeled data are used as the point cloud.
In the context of spatial statistics and our application, there are several points of
consideration:

(a) Which points? We consider all observations in the near past, regardless of
the time period. If we use the same sliding window width of M = 8 previous
weeks, we are choosing from about 50,000 points.
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(b) How many points? There is a trade-off: using more points in the cloud leads
to better approximation of the geography but slower computation. Since we are in
a low-dimensional space of R2, we may not need a very large number of points to
depict the most salient boundary and spatial structures. In our application, we find
1000 spatial points represent Melbourne’s geography reasonably well.

(c) Points or mesh? Alternative to using past observations, we can also use past
data to define a pixelated spatial domain of Melbourne and use the included pixels
as the point cloud. Doing so, we lose some resolution and information on data den-
sity, but may gain computationally if it can reduce the number of point cloud data
significantly. A regularly spaced point cloud also induces a sparse, band-diagonal
graph Laplacian matrix (to be discussed later), leading to further savings.

(d) Representing roads? If roads are particularly important in the application,
we can select road intersections or midpoints of road segments for all or a subset
of roads as the point cloud.

(e) Global or local? We can have one global point cloud for the entire spatial
domain. We can also discretize the spatial domain into several regions with sepa-
rate local point clouds. Local point clouds can provide computational advantages
if they are smaller. They may also offer accuracy advantages if they depict finer-
grain characteristics or allow for customized degree of warping at each locale. We
discuss this further in Section 2.3.

In our application, we randomly sample 1000 historical observations as the
point cloud for each “component” (to be explained in Section 2.3). We denote
the set of point cloud data as {zi} for i ∈ {1, . . . ,Z}. See Figure 2(a) for an exam-
ple cloud of 1000 points over the entire city of Melbourne. For our application, we
find that predictive accuracy is not sensitive to the random sampling of the point
cloud data. If it were, a larger point cloud might be needed, or predictions might
be repeated and averaged over several point cloud samples.

FIG. 2. Examples of kernel warping: (a) the adjacency graph of a sample point cloud of size 1000;
three observations are circled; (b) and (c), warped kernels centered at the three observations with
degrees of deformation λ = 0.5 and 2, respectively.
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Step 2 [Constructing the adjacency graph]: We construct a graph with nodes
at each point in the point cloud and edges connecting points that are close. We
represent this graph using a symmetric, positive semidefinite adjacency matrix A.

(a) Which nodes to connect? Knowledge about the spatial domain (e.g., road
connectivity, inside a building vs. outside) or regularity of the point cloud (e.g.,
regular mesh) may inform a natural way to define how nodes should be connected.
Without such knowledge, we can connect nodes zi and zj if zi is among the n

nearest neighbors of zj or zj is among the n nearest neighbors of zi (symmetric
relation). This requires us to choose n. In our experience, n should be big enough
to ensure that the point cloud is sufficiently connected instead of being very frag-
mented, but small enough to emphasize local relationships. A second way is to
connect nodes if the (Euclidean) distance between them is smaller than a thresh-
old. This requires us to choose the threshold.

(b) Weighted edges? In the simplest case, we can set Aij = 1 if nodes zi and
zj are connected and 0 otherwise. Another idea suggested in Belkin and Niyogi
(2003) is to define weighted edges depending on the distance between points, that
is, Aij = exp{−‖zi − zj‖2/r} if zi and zj are connected and 0 otherwise. The au-
thors note that they do not have a principled way of choosing r ; we find it reason-
able to choose r empirically by fitting an exponential distribution on all distances
between connected nodes. They also note that in practice a binary adjacency graph
works well, and we agree.

In the Melbourne application, we use n = 5 nearest neighbors and binary
weights to construct A. Figure 2(a) shows the adjacency graph of a sample point
cloud of size 1000. Again, we find our predictive accuracy to be insensitive toward
any reasonable variations in these choices.

Step 3 [Constructing the Laplacian matrix]: The graph Laplacian matrix L is de-
fined to be L = D −A, in which D is the diagonal degree matrix, with its diagonal
entries being the column (or, equivalently, row) sum of A, that is, Dii = ∑

j Aij .
L is a symmetric, positive semidefinite matrix. If the graph has multiple connected
components, L can be rearranged into a block diagonal matrix, where each block is
the respective Laplacian matrix for each connected component. See Merris (1994)
for an introduction of the Laplacian matrix and its important properties.

Here is the intuition of the Laplacian matrix. The (discrete) point cloud adja-
cency graph is an empirical approximation to our target (continuous) manifold
of Melbourne geography. The (discrete) graph Laplacian matrix L is then an ap-
proximation to the (continuous) Laplace–Beltrami operator on this manifold. The
Laplace–Beltrami operator is a manifold generalization of the Laplace operator,
which is a linear second order differential operator on functions (in our case, ker-
nels). See more discussion on the Laplace–Beltrami operator in Belkin and Niyogi
(2005). This L induces a semi-norm on kernels which penalizes changes between
adjacent nodes. There is a close analogy to heat flow; the heat (partial differential)
equation has a Laplace operator in space. Intuitively, L guides how information
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(heat) spreads on the spatial structure (manifold approximated by graph) from any
initial KDE (initial heat distribution).

Step 4 [Warping the kernels]: We warp each kernel k from equation (2.1) to the
point cloud to generate a new warped kernel k̃. For any x ∈ S and any s in the set
of labeled data,

(2.2) k̃(x, s|H ) = k(x, s|H ) − kT
x (I + λLK)−1λLks,

in which kx = [k(x, z1|H ), . . . , k(x, zZ|H )] and ks = [k(s, z1|H ), . . . , k(s, zZ|
H )] are vectors of kernels evaluated at x or s and the point cloud data {zi}. Ma-
trix K = [k(zi , zj |H )]i,j∈{1,...,Z} is a symmetric matrix of kernels evaluated at all
pairs of point cloud data, and I is a Z by Z identity matrix. The parameter λ > 0
represents the degree of deformation. When λ = 0, we have k̃ = k. When λ → ∞,
k̃ approaches a positive constant on the point cloud (steady state heat distribution).

Equation (2.2) is obtained by warping the Reproducing Kernel Hilbert Space
(RKHS) associated with the chosen kernel. We modify the RKHS with a point-
cloud semi-norm λL. This deforms the kernel k along a finite-dimensional sub-
space given by the point cloud data. The modified RKHS is shown to be another
RKHS, that is, k̃ is a properly defined kernel. See Sindhwani, Niyogi and Belkin
(2005) and Belkin, Niyogi and Sindhwani (2006) for more details (they use the
point cloud semi-norm of λLp; we consider the simplified case where p = 1).

There are three interpretations of this type of kernel warping. The first is that
of heat flow as mentioned before. We allow information (heat) to spread along
the graph of the point cloud (approximately the manifold of Melbourne’s geogra-
phy). The second interpretation is a graph regularizer. Variations between adjacent
nodes in the graph are penalized, and thus violations of the spatial structure implied
by the point cloud are penalized. See Smola and Kondor (2003) and Bousquet,
Chapelle and Hein (2005) for more discussion. Last, in the Bayesian framework,
kernel warping can informally be thought of as imposing a data-dependent infor-
mative prior to describe our belief of the data geometry.

We replace the regular Gaussian kernel k in equation (2.1) with the new warped
kernel k̃ defined in (2.2) to predict the density of ambulance demand fu at a future
time period u. We set a priori the sliding window width M , the point cloud data
type/size, the number of nearest neighbors n and the weights used to construct the
Laplacian matrix. We estimate the Gaussian kernel bandwidth H and the degree
of deformation λ.

We show in Figures 2(b) and (c) examples of warping kernels. Three kernels of
bandwidth H = diag(2,2) are placed on three observations circled in Figure 2(a).
They are warped toward the point cloud in (a) with degree of deformation λ = 0.5
(b) and 2 (c). With a larger λ, the kernels conform to the spatial boundary and
characteristics to a greater extent.
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2.3. Spatio-temporal kernel warping. Melbourne’s ambulance demand shows
substantial density variations with patterns in time (midnight vs. rush hour) and in
space (downtown vs. neighborhoods). It may be beneficial to allow bandwidth H
and degree of deformation λ to vary with time and space. Ideally, we would like
to find, in time and space, pockets of the point process with similar characteristics,
and apply similar smoothing and deformation.

We discretize time according to our modeling aims, that is, into 1-hour time
periods. For each hour, we further discretize the spatial domain into a small num-
ber of regions, as motivated by the behavior of labeled data for that time period.
We call each subregion of each hour a component, and perform estimations and
predictions independently on each component. The spatial discretization splits a
global point cloud into local ones, cuts all edges connecting across regions, and
decomposes the Laplacian matrix into blocks. Labeled data are also matched into
components. We estimate a separate set of H and λ for each component by cross-
validation (details in Section 2.4).

We discretize spatially by clustering. For any given future time period, we clus-
ter on its labeled data (about 300 observations). We allow different numbers of
clusters and clustering configurations for each time period. In our application, this
gives more accurate predictions than imposing a universal clustering configuration
across time. We also obtain better results by clustering on labeled data rather than
clustering on the point cloud data (the point cloud is much more similar across
time than the labeled data). In the case of Melbourne, spatial characteristics across
time are different enough that the gain in personalized modeling exceeds the loss
in stablization offered by a common arrangement.

We choose to cluster using K-means based on Euclidean distance. K-means is
fast, clusters all points and gives even clusters. Even cluster sizes are desirable be-
cause a very small cluster does not provide enough labeled data to reliably estimate
parameters via cross-validation. To avoid this, we set a threshold minimum number
of points in any cluster. We set the threshold at 15 points, which in practice limits
the number of clusters to be below 8. If we fail to clear this threshold, we lower the
number of clusters. Density-based clustering algorithms such as DBSCAN [Ester
et al. (1996)] and shared nearest neighbors [Ertöz, Steinbach and Kumar (2003)]
do not classify all points, and do not allow easy specification of the number of
clusters. Graph-based clustering algorithms such as affinity propagation [Frey and
Dueck (2007)] and spectral clustering [Ng, Jordan and Weiss (2001)] do not clus-
ter on Euclidean distance and may be less intuitive for spatial point patterns. In our
case, hierarchical clustering gives very uneven cluster sizes.

For each time period, we binary search for the best number of clusters based on
validation likelihood. Increasing the number of clusters leads to, on the one hand,
an additional 1000 points to the cloud and the flexibility to customize parameters
locally, but, on the other hand, sparser labeled data for each cluster and reduced
stability in parameter estimation. It is an empirical question for each time period
whether we have enough labeled data to afford this increase in complexity. For
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Melbourne, we find the number of clusters to be largely proportional to the size of
labeled data.

2.4. Computation. We estimate the kernel bandwidth H and the degree of
deformation λ for each spatio-temporal component. To reduce the dimensionality,
we parametrize H to be a scalar multiple of the plug-in bandwidth Hpi obtained
if we fit an unwarped KDE for the same component; that is, we define H = αHpi ,
and estimate α. Alternatively, we can define a radial bandwidth H = diag(β,β),
reducing the Gaussian kernel to a radial basis function. We use H = αHpi because
this parametrization gives slightly better performance in our preliminary analysis.
To estimate a full H is more difficult because H needs to be positive semidefinite.

We choose H and λ for each component using 5-fold cross-validation. We par-
tition the training data into 5 equally sized subsamples. For each candidate param-
eter value, we jointly fit the model on 4 subsamples and validate data likelihood
on the remaining subsample. The process is repeated 5 times with each subsample
used exactly once for validation, and we compute the average of the 5 valida-
tion likelihoods. To find the parameter values that maximize this average valida-
tion likelihood, we implement a surrogate, derivative-free optimization procedure
called the stochastic radial basis function (RBF) method [Regis and Shoemaker
(2007, 2009)]. It is a fast algorithm for global optimization of computationally
expensive objective functions. Each iteration builds an the RBF model to approx-
imate the expensive function, selects subsequent candidate points and evaluates
them in parallel. We choose this approach because our objective function (likeli-
hood) evaluation is not instantaneous. It takes between 0.5 and 4 seconds, depend-
ing on the sizes of the labeled data and point cloud (Python code on a personal
computer). We also do not have simple derivative computations. In our experi-
ence, 100 such evaluations are sufficient to provide a good optimum, competitive
to those found by grid search, pattern search or evolutionary algorithms. However,
a wide range of optimization tools can be applied here.

In our application, we find a typical optimal α to be between 0.05 and 0.3. We
need a concentration of heat which is then spread or warped to the point cloud.
A typical optimal λ is between 0 and 2. Most time periods choose between 1 and
3 spatial components. We warm start the binary search for the number of clusters
based on the size of labeled data. The best configuration is usually found within 3
searches.

Given the prominent weekly seasonality, we believe that the corresponding pa-
rameter values are also similar from week to week. In fact, we believe that the na-
ture of deformation and smoothing does not vary significantly over several months,
and thus only estimate the parameters for a one-week cycle once every few months.
With the most recent weekly set of parameter values, we predict forward in an on-
line fashion with a sliding window of M = 8 weeks, making use of the most recent
8 weeks of data available. Each prediction is instantaneous.
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The most expensive part of the computation is evaluating kernels between all
pairs of point cloud data and taking the inverse of a large matrix. Several local point
clouds of reasonable sizes (<2000) are computationally more efficient than one
massive global point cloud. There are ways to optimize this computation, includ-
ing using right division instead of inversion, saving precomputed kernel evaluation
matrices and vectors, exploiting the sparse, banded-diagonal Laplacian matrix, us-
ing a tree-based algorithm for fast KDE computation [Gray and Moore (2003)],
and using a lookup table for Gaussian densities. The computation is also “em-
barrassingly parallelizable,” across validation likelihood evaluations and across
spatio-temporal components. Without using most of the above-mentioned opti-
mizations and using a point cloud size of 1000, it typically takes a small number
of hours to train on 8 weeks of data and predict for 4 weeks (672 hourly periods)
on a personal computer (Python).

3. Predicting ambulance demand for Melbourne. We would like to predict
ambulance demand in Melbourne for every 1-hour period in March 2011. There
are two stages to this computation. In the first stage, we estimate all parameters
for a weekly cycle. The parameters include the spatial clustering configuration for
each 1-hour period, as well as the parameters λ (degree of warping) and α (in
bandwidth H = αHpi) for each spatial component in each 1-hour period. This
estimation only needs to be performed very infrequently, and, in our case, once.
For this estimation, we use Melbourne ambulance demand data from 8 weeks in
January and February 2011. In the second stage, we use the estimated weekly set
of parameter values to predict future ambulance demand on a sliding window of 8
weeks for each 1-hour period in March 2011.

Figure 3 shows the predictive density estimated by kernel warping for two time
periods on March 2, 2011 (Wednesday). We have only about 150 labeled data to
predict for 2–3 am (a), and cross-validate to use only 1 spatial component. We
have almost 400 labeled data for 2–3 pm (b) and cross-validate to choose 5 spatial
components.

We consider two variations in estimation: (i) spatio-temporal kernel warping
(S-T param), in which we separately estimate parameters for each 1-hour period
and spatial region (via clustering, Section 2.3), and (ii) temporal kernel warping
(T param), in which we separately estimate parameters for each 1-hour period (no
spatial clustering). We show in Figure 4 the predictive densities produced by these
two approaches for the same time period. The densities look similar, with slightly
more details when we use spatio-temporal kernel warping (we cross-validate to
select 3 spatial clusters).

We compare the proposed kernel warping models to the following:

(a) The MEDIC method, which is an industry practice implemented in
Charlotte-Mecklenburg, NC (Section 1): We implement this method as far as we
have data. The cell count in a 1-km2 region and a 1-hour period is predicted by the
average of corresponding cell counts in the preceding 8 weeks.
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FIG. 3. Log predictive densities using spatio-temporal kernel warping for March 2, 2011 (Wednes-
day) at (a) 2–3 am (night), and (b) 2–3 pm (day). For time period (a), we have sparse data and
cross-validate to choose 1 spatial component. For time period (b), we have more data and choose 5
spatial components.

(b) Unwarped KDE, as in equation (2.1): The bandwidth H is chosen via
the plug-in method (PI) [Wand and Jones (1994)] and smoothed cross-validation
(SCV) [Duong and Hazelton (2005)]. This H is separately estimated for each time
period, but does not vary in space.

(c) Gaussian mixture model (GMM) [Zhou et al. (2015)], in which the means
and covariances of Gaussian components are fixed through time, and the mixture
weights vary in time: We also use labeled data from the last 8 weeks, and consider

FIG. 4. Log predictive densities for March 2, 2011 (Wednesday) at 10–11 am using (a) spatio-tem-
poral kernel warping (3 spatial clusters), and (b) temporal kernel warping. The density in (a) shows
slightly more details.
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FIG. 5. Log predictive densities using comparison methods for 2–3 pm on March 2, 2011 (Wednes-
day): (a) the MEDIC method (an industry practice); (b) unwarped KDE with bandwidth selected by
the plug-in method (PI); (c) time-varying Gaussian mixture model with 30 components. These den-
sities are to be compared to Figure 3(b), which is the prediction using kernel warping for the same
period.

15, 30 and 50 components. The computational expenses are a few times higher
than that of the kernel warping method.

Figure 5 shows the log predictive density using the MEDIC method, unwarped
KDE (PI) and GMM (30 components) for March 2, 2011 at 2–3 pm. These den-
sities are comparable with Figure 3(b), which shows the log predictive density for
the same period predicted by the proposed kernel warping. Even with 400 labeled
data, the MEDIC method gives exceedingly noisy predictions, while unwarped
KDE and GMM produce over-smoothed densities that do not adapt well to the
spatial features of Melbourne.

We use several performance metrics to compare the statistical predictive accu-
racies of different methods. First, we use average negative log score (LS) [Good
(1952)]. This metric is advocated for being a strictly proper scoring rule closely
related to Bayes factor and Bayes information criterion [Gneiting and Raftery
(2007)]. It is the average negative log likelihood of test data. For each test time
period u in the set of all test time periods Ttest,

LS(u) = 1

nu

nu∑
i=1

− log f̂u(s̃u,i),

in which {s̃u,i} are the test data and f̂u(·) is the predictive density for period u

obtained by various methods. For the MEDIC method, we floor the cell counts at
10−3 and divide over the total count in each period to obtain a nonzero discrete
predictive density (to avoid infinite LS). The result is not sensitive to reasonable
perturbation of the amount of padding we put.

Second, we compare accuracy in cell counts for every 1-km2 region and 1-hour
period. For the proposed kernel warping, unwarped KDE and GMM, we discretize
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TABLE 1
Mean predictive accuracies across all 1-hour periods in March 2011 of the proposed kernel

warping and competing methods. Kernel warping outperforms the competing methods

Prediction method LS RMSE RMSEB

Kernel warping S-T param 7.53 0.0500 0.0498
T param 7.56 0.0518 0.0514

(a) MEDIC 10.11 0.0589 0.0996
(b) Unwarped KDE PI 8.14 0.0562 0.0950

SCV 8.15 0.0562 0.0950
(c) GMM 15 comp 7.96 0.0562 0.0949

30 comp 7.87 0.0561 0.0948
50 comp 7.93 0.0561 0.0949

continuous predictions in space to each 1 km2, and convert to counts by multiply-
ing the total count for the period as predicted by the MEDIC method. We compute
the root-mean-square error, both within the smallest rectangle enclosing all data
(plotting window in Figures 1, 3–5) (RMSE) and within a pixelated data-driven
boundary of Melbourne B (RMSEB ). For each test time period u ∈ Ttest,

RMSE(u) =
√√√√ 1

C

C∑
c=1

(yu,c − ŷu,c)2,

where C is the number of 1 km2 cells in the rectangular observation window, and
yu,c and ŷu,c are the actual and predicted count for period u and cell c, respectively.
For RMSEB , we use cells c within the pixelated boundary B and C as the number
of 1 km2 cells within this boundary.

We show in Table 1 the mean predictive accuracies of various methods, aver-
aged across all test time periods Ttest (all 1-hour periods in March 2011). A smaller
LS, RMSE or RMSEB indicates better predictive accuracy. Both versions of kernel
warping have a significant advantage over the comparison methods in all perfor-
mance measures. Between the two versions of kernel warping, allowing parame-
ters to be location-specific (in addition to being time-specific) provides additional
benefits, even though a large number of time periods choose to use only 1 spa-
tial component. We show in Figure 6 the box-plots illustrating the variations of
some of these metrics across time periods. Kernel warping has not only the best
mean performance, but also the smallest variations across time periods. We fur-
ther perform the Diebold–Mariano test [Diebold and Mariano (1995)] on the 672
LS and RMSEB scores over all times in the test period. For each pair of compet-
ing methods and our method (S-T param or T param) in Table 1, we test the null
hypothesis that the two methods have the same predictive accuracy against the
alternative hypothesis that our method is more accurate. We reject the null hypoth-
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FIG. 6. Box-plots of predictive accuracies of kernel warping (S-T parameters), GMM (30 comp),
KDE (PI bandwidth) and the MEDIC method (an industry practice) over 672 test periods, as mea-
sured by average negative log score LS (left) and RMSEB (right). Small values indicate better per-
formance.

esis for all pairs of our vs. competing methods with exceedingly small p-values
(< 2×10−16), showing that our improvement in predictive accuracy is significant.

We show in Table 2 the impact of using point clouds of various sizes. Increasing
the size of the global point cloud (in T param) brings slight improvements in pre-
dictive accuracy and large increases in computational cost. Compared to that, we
recommend using the spatial-temporal kernel warping (S-T param), which breaks
the spatial region into several spatial components and samples point clouds locally.
It has similar performance as using a large global point cloud, but is much faster to
compute, as it is faster to invert three 1k × 1k matrices than to invert one 3k × 3k
matrix.

TABLE 2
Predictive accuracies using warped and unwarped KDE with a point cloud (unlabeled data) of

various sizes

Prediction method LS RMSEB

Kernel warping S-T param (1k each, avg 2.5k) 7.53 0.0498
T param 1k 7.56 0.0514
T param 2k 7.54 0.0514
T param 3k 7.52 0.0514

Unwarped KDE PI 8.14 0.0950
PI + 1k 7.95 0.0876
PI + 2k 7.87 0.0875
PI + 3k 7.84 0.0875
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We also see in Table 2 that adding randomly sampled unlabeled data to un-
warped KDE (PI + 1k, + 2k, + 3k) produces small benefits, diminishing as the
size of unlabeled data increases, while the extra computational effort is nontrivial.
With these additions, the unwarped KDE is still not competitive compared to ker-
nel warping. While using more data ought to provide an advantage, the unlabeled
data starts to overwhelm the labeled data. We lose some time-specific information
and predict quite similarly across all periods. There is no simple way to distinguish
between the labeled and unlabeled data in unwarped KDE. An attractive feature of
the warped KDE is that it allows for a way to incorporate unlabeled data to inform
the geometry of the data, while not diluting the set of labeled data most relevant to
the predictive task at hand.

4. Conclusions. Fine-resolution spatio-temporal ambulance demand predic-
tions are critical to optimal ambulance planning. Typical challenges include data
sparsity at the prediction resolution and incorporation of complex urban spatial
domains. These challenges are especially prominent in Melbourne. They create a
tension; overcoming sparsity requires considerable smoothing, while representing
complex spatial features requires fine-resolution modeling. Most current industry
practices and earlier studies are ill-equipped to address these challenges simulta-
neously. We propose a kernel warping method that smooths intelligently toward
geographical characteristics. We demonstrate that our proposed method predicts
ambulance demand in Melbourne more accurately than the state of the art in the
practice and research of ambulance demand prediction.

To predict ambulance demand for any hour, we use a spatio-temporal kernel
density estimator on the sparse set of most similarly labeled data, but warp these
kernels to a larger point cloud drawn from all historical observations regardless
of labels. We construct an adjacency graph on this point cloud to approximate
Melbourne’s spatial boundaries, neighborhoods and road networks in a data-driven
manner. Kernels on labeled data are warped to encourage flow along and penalize
flow orthogonal to this graph.

Kernel warping circumvents the need to define boundaries and boundary condi-
tions, which are often difficult in the practice of modeling point patterns on com-
plex spatial domains. It also captures and exploits finer-grain internal spatial struc-
tures other than boundary features, which can be prominent in various heteroge-
neous environments such as cities, buildings, mountains and forests. Kernel warp-
ing is not limited to density estimation. It can be adapted to model a wide range
of functions and surfaces. It can be used to perform a broad set of tasks including
prediction, classification, clustering and visualization. Inferences on uncertainty, if
desired, can be obtained by assessing cross-validation variance and warping ker-
nels to different samples of point clouds. There is much flexibility in designing the
point cloud and its Laplacian, and it can be customized to the needs of different
applications (e.g., exterior/interior boundaries, road/train network, etc.). We offer
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some discussions on these in the context of spatial and spatio-temporal point pat-
terns. We also offer efficient estimation of kernel bandwidth and degree of warp-
ing local to time periods and locations via cross-validation. The proposed method
is straightforward to implement and easy to experiment with. The tools we have
developed can be easily generalized to model a wide range of spatial or spatio-
temporal point processes on complex spatial domains.

Acknowledgments. The authors sincerely thank Ambulance Victoria for shar-
ing their data.
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