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CORRECTION OF BIFURCATED RIVER FLOW MEASUREMENTS
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In this paper, we consider an estimation problem arising in the measure-
ment of bifurcated flow of the Teesta, a trans-boundary river flowing through
India and Bangladesh. The location of measurement is an Indian Barrage,
where a part of the flow is diverted from the main stream to a canal. The flows
through the two channels are regulated by different control structures and are
measured indirectly from the height of the water level and the dimensions
of the control structures. The computational formula for the measurement
involves a hydrological constant used as a multiplier. Empirical findings indi-
cate that incorrect multipliers are currently used in the computational formula
for the two channels. For implementing any water sharing treaty between the
two countries, the measurements need to be brought to a common scale. For
this purpose, we present a model with carefully considered assumptions to
estimate the correction factor. The model permits diagnostic tests for valida-
tion of the assumptions. We provide a nonparametric and consistent estimator
of the desired factor.

Analysis of historical flow data shows that a main stream flow measured as
100 cumec would be measured as 76 cumec if it is diverted through the canal.
Adjustment of emerging measurements through this finding would help the
governments of India and Bangladesh to effectively implement and monitor
any water sharing agreement.

1. Introduction. Sharing of water of a trans-boundary river has been an is-
sue of concern for neighbouring states for many centuries [Vidal (2010), Solomon
(2010)]. A major dispute of current interest concerns the river Teesta, a major
trans-boundary river shared by India and Bangladesh. The river originates from
the eastern Himalayas in the Indian state of Sikkim, flows through the Indian state
of West Bengal and crosses the international border to enter Bangladesh, before
merging with the river Brahmaputra in Bangladesh. The Teesta, which supports
the ecology of its vast basin and provides key support to agriculture, is regarded as
the lifeline of a number of districts of India and Bangladesh [Rudra (2012)]. Shar-
ing of the flow of the Teesta, particularly during the lean season, has been a matter
of major and long-standing contention between India and Bangladesh. In the re-
cent past, there have been some indications that an accord on water sharing may
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FIG. 1. Map of the Teesta basin with locations of barrages and the international border [source:
Rudra (2012) with permission].

materialize soon [India Today (2015)]. The anticipated Teesta accord is regarded
as one of the key bilateral issues with possible impact on peace and prosperity in
the South Asian region [Moudgil (2015), Jha (2015)].

Both countries have set up different control structures for utilizing Teesta’s wa-
ter in their territories. The most significant structure in India is a barrage located at
Gajaldoba in West Bengal, upstream of the international border. At this location,
the flow is bifurcated into two channels: a diversion canal (Teesta Mahananda Link
Canal or TMLC) and the main stream flowing into Bangladesh (see Figure 1). The
obstruction of the flow has led to the formation of a pond upstream of the barrage,
which is much smaller than typical reservoirs associated with dams. The water
level of the pond is held constant by operating the lock gates of the above two
channels. Thus, the incoming upstream flow at any instant may be regarded as
the sum of the flows passing through the above two channels. The Government
of Bangladesh seeks to utilize the flow of the river through another barrage and
canal system centered at Duani, downstream of the border. Greater flow through
the international border would permit greater diversion of flow at Duani. Control
of the flow at Gajaldoba is crucial to the sharing of the river water between India
and Bangladesh since there is no further diversion structure between this barrage
and the international border.

The flow of the Teesta through the main stream at Gajaldoba has been recorded
since the beginning of the year 1993. The flow through the TMLC has also been
recorded since the end of 1997, when the canal became operational. The flow,
measured in cubic meters per second (cumec), is recorded several times a day and
subsequently averaged over a cycle of approximately 10 days (i.e., the first 10 days
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FIG. 2. Plots of average upstream flow at the Teesta Barrage at Gajaldoba in different ten-day
periods of the period November to March. The thick and thin curves correspond to the period January
1993 to March 1997, and the period January 1998 to December 2011, respectively.

of a calendar month, the following 10 days and the remaining days of that month).
In the sequel, we refer to these pre-determined periods as “ten-day periods.” The
work reported here is based on the flow data for the period 1993–2011 obtained by
courtesy of the Department of Irrigation of the Government of West Bengal and
the Central Water Commission of the Government of India.

The sum of the flows through the main stream and through the canal is regarded
as the measured upstream flow. Figure 2 shows the average upstream flows dur-
ing the periods 1993–1997 and 1998–2011 for the 15 ten-day cycles of the leanest
months, namely, November to March. In order to maintain confidentiality of the
quantum of actual flow, as required by the Ministry of Water Resources, Govern-
ment of India, we have rescaled all the averages in such a way that the minimum
value of the rescaled flow during 1998–2011 is 100 units. It is observed from Fig-
ure 2 that the average upstream flow in the time period 1998–2011 (thin curve) is
much smaller than the corresponding flow in the period 1993–1997 (thick curve).

This large discrepancy cannot be explained by actual differences in flow dur-
ing the two periods. The lean season flow is generated mostly by snow-melt and
groundwater discharge in the upper reaches of the river, which is not very sensitive
to year-to-year variation in the precipitation. However, there can be another expla-
nation. The upstream flow during the period 1993–1997 consists entirely of the
flow through the main stream, while a substantial part of the upstream flow for the
period 1998–2011 comes from the flow through the TMLC. If, for some reason,
there was any difference in the mechanisms of measurement of the two branches
of flow, then that could be a reason behind this discrepancy.

At Gajaldoba, the flows through the two channels are measured indirectly. The
total flow in a channel is regarded as the sum of flows through all the rectangular
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gates in that channel. The discharge through a particular gate is computed from the
Villemonte formula [Jain (2001), Subramanya (2013)]:

Q
(
h1.5

1 − h1.5
2

)0.385
,

where h1 and h2 are the upstream and downstream water surface elevations, re-
spectively, above the base of the gate. It is h2 that is adjusted by operating the gate.
The hydrological constant Q is computed from an empirically determined formula
that depends on h1, the dimensions of the gate and the acceleration due to gravity.
The multiplier Q is different for different lock gates. In particular, one multiplier
is used for all the main stream gates (of identical size) and another one is used for
the canal gates (having identical dimensions but different from the main stream
gates). These multipliers are empirically determined from controlled experiments
prior to the installation of these gates at the site. Therefore, there is a possibility
that the multipliers are not perfectly tuned to the operating environment. If this is
the case, there would be an error in the measurements in the sense that all mea-
surements would be distorted by an unknown multiplying factor, and this factor
may not be the same for the main stream and the canal. The resulting error in the
upstream flow, obtained by aggregation of the two measured flows, would depend
on how much water is diverted through the canal. Diversion only began in 1998.
This change, together with the distortions through multipliers, appears to be the
reason behind the discrepancy observed in Figure 2.

Removal of this apparent distortion is important for proper implementation of
decisions on water management, and also for eliminating any potential source of
misunderstanding about that implementation. Such a misunderstanding is particu-
larly undesirable in the context of the long history of dispute over sharing of the
flow of this trans-boundary river [Menon (2015)].

A possible way of removing the distortion is to estimate each multiplier afresh
through a controlled on-site experiment. In this experiment, the flows should be
measured directly and compared with the estimates obtained through the existing
indirect method. However, this experiment may involve much time and cost, and
disrupt the regular task of managing the flow. An alternative solution based on
existing data would be very useful.

It should be noted that, if one only has access to the possibly distorted mea-
surements of flows through the two channels, then the two multipliers mentioned
above are not individually identifiable. For the purpose of decision-making, how-
ever, knowing the correct ratio of the multipliers for the main stream and the canal
flows is more important than knowing the multipliers themselves. The “absolute
truth” corresponding to these measured flows may not be of much use unless they
tally with the measurements made at the Bangladesh side of the border. Therefore,
flows through both the channels at Gajaldoba need to be calibrated with measure-
ments at the Bangladesh side. Once the flows through the two channels at the
barrage at Gajaldoba are brought to a common scale of measurement, one can cal-
ibrate that common scale with the measurement of upstream flow at Duani, the
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barrage at Bangladesh. This latter exercise can be done by using any one of the
several methods of calibration of paired measurements that exist in the literature.
Therefore, we restrict ourselves to the problem of matching the measurements of
flow through the canal gates and the main stream gates by estimating the ratio of
multipliers from historical data.

In the next section, we develop a model for the diversion mechanism on the
basis of a careful study of the nature and the origin of the data. However, we do
not presume any functional form of the underlying distribution. This brings us
to a territory where there is no existing method of inference. In Section 3, we
introduce a class of estimators for the correction factor, establish its consistency
regardless of the underlying distribution and propose diagnostic tests for the model
assumption. In Section 4, we use two specific estimators belonging to the proposed
class to adjust the measurements of the bifurcated flow of the Teesta river at the
Gajaldoba Barrage. We provide some concluding remarks in Section 5. The proof
of the theoretical results and simulation studies of the small sample performances
of the diagnostic tests and the two estimators are available as online supplementary
material [Jana, Sengupta and Rudra (2016)].

2. Model specification.

2.1. Problem formulation. Let us denote the upstream flow through the river,
flow through the canal and flow through the main stream as Z, X and Y , respec-
tively. The quantity Z is unobserved, while the flows X and Y , regarded as random
variables, are measured with distortion, as follows:

Z = X + Y,

XM = θ1X,(2.1)

YM = θ2Y,

where XM and YM are measured values of X and Y , respectively, and θ1 and θ2

are unknown but fixed positive parameters. In particular, we can write the actual
flow of the canal (X) and its measurements (XM) as

X = ∑
j

X(j) = QX

∑
j

(
h1.5

1X(j) − h1.5
2X(j)

)0.385
,

(2.2)
XM = ∑

j

XM(j) = θ1QX

∑
j

(
h1.5

1X(j) − h1.5
2X(j)

)0.385
,

where QX is the “correct” multiplier for the gates of the canal, θ1QX is the multi-
plier used in the calculation of flow, h1X(j) and h2X(j) are the gate-specific water
elevations at the upstream and downstream sides of the gates, and the sum is over
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all the gates. Likewise, for the main stream, we have

Y = ∑
j

Y(j) = QY

∑
j

(
h1.5

1Y (j) − h1.5
2Y (j)

)0.385
,

(2.3)
YM = ∑

j

YM(j) = θ2QY

∑
j

(
h1.5

1Y (j) − h1.5
2Y (j)

)0.385
,

where QY is the “correct” multiplier for the gates of the main stream, θ2QY is the
multiplier actually used, h1Y (j) and h2Y (j) are the gate-specific water elevations at
the upstream and downstream sides of the main stream gates, and the sum is over
all the gates. The values of the multipliers used in the equation of XM and YM may
be wrong, that is, θ1 and θ2 may not be equal to 1. The parameters θ1 and θ2 are
not identifiable from the data on XM and YM alone. For matching XM and YM , we
set our goal as estimating the ratio of the multipliers, θ0 = θ1/θ2. We call this ratio
a “correction factor” since XM/θ0 and YM are in the same scale of measurement,
both being distorted by the factor of θ2 from their respective true values.

Devising a suitable correction factor for matching measurements of flow
through two channels is a form of calibration. However, we deliberately avoid
using this term in our problem because it is somewhat different from the problem
commonly referred to as “calibration” in statistical literature. In the latter prob-
lem, which is also known as “inverse regression,” one variable is regarded as a
function of the other variable coupled with additive or multiplicative random error.
The task is to predict the original variable from its function using paired measure-
ments. See Osborne (1991) and Greenwell (2014) for overviews of the techniques
for inverse regression. These methods are not applicable to the present problem,
where the actual flows X and Y are not necessarily functions of one another even
in an approximate sense.

In contrast with usual models for calibration, we do not use any case-specific
random error (additive and multiplicative) in model (2.1). In the absence of paired
data of X and XM (or Y and YM ), such an error model would be difficult to handle.
Instead, we opt for a simple model that might be amenable to a tractable solution
to the real problem at hand.

If one assumes a specific form of the bivariate distribution of X and Y , then the
problem of estimating θ0 reduces to a standard problem of parametric estimation.
However, the multipliers θ1 and θ2 are confounded with the scale parameters of X

and Y , respectively. Consequently, θ0 is confounded with the ratio of the scale pa-
rameters of X and Y . Therefore, even if the distributional form is correctly chosen,
the parameter θ0 may not be identifiable. The model needs to be strengthened with
some additional assumption if θ0 is to be inferred from the data.

2.2. A strengthened model. The upstream flow of the Teesta river at Gajaldoba
is governed mostly by natural processes. There are a number of small dams on
the river and its tributaries in the upper reaches. These are exclusively meant for
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generating hydro-power. The holding capacities of these dams are relatively small.
The disruption of natural flow caused by these dams are expected to have negligible
impact on the average flow calculated over a period of ten days at Gajaldoba.
Therefore, it is reasonable to assume that the “upstream flow” (Z) in model (2.1)
is a natural phenomenon.

The target for the ratio of the canal flow and the main stream flow (XM/YM )
is decided several days ahead of the actual diversion. (It emerges from discussion
with the project engineers that the standard operating procedure is to set a target
for XM/YM , rather than that for XM .) During the lean season, the basis for the
decision is generally the requirement of water for irrigation for the particular ten-
day period, and the expected availability of the upstream flow for the relevant time
of the year as anticipated from historical data. During the monsoon season, the
demand of water for irrigation is less, and there is considerable leakage of water
into the canal. In the remaining part of the year, the requirement for irrigation is
practically the only determining factor for the proportion of diversion. Therefore,
for a given ten-day period during that part of the year, it would not be unrealistic
to assume that the ratio XM/YM (and, consequently, the proportion U = X/Z)
is determined by human need independently of the upstream flow Z, which is
determined by natural phenomena.

As explained in Section 1, there are 36 “ten-day periods” in each year. We strat-
ify the data by these periods, so that each year contributes a data point within a
stratum, and estimate parameters by using the data from the relevant strata, where
the independence of XM/YM and Z is likely to hold.

In view of these considerations, we now formulate a more detailed version of
the basic model (2.1). Let the number of strata be m. Suppose, for i = 1, . . . ,m, the
pairs (XMij

, YMij
), j = 1, . . . , ni , denote the ni observations from the ith stratum,

governed by the model

XMij
= θ1Xij = θ1ZijUij ,

(2.4)
YMij

= θ2Yij = θ2Zij (1 − Uij ), j = 1, . . . , ni, i = 1, . . . ,m,

for unspecified positive constants θ1 and θ2, where Zi1,Zi2, . . . ,Zini
are unob-

served samples from the distribution Fi defined over [0,∞), Ui1,Ui2, . . . ,Uini

are unobserved samples from the distribution Gi defined over [0,1], i = 1, . . . ,m,
and all the sets of unobserved samples are independent of one another. Here, Zij

and Uij are the upstream flow and the fraction of diversion, respectively, in the
ith ten-day period of the j th year, j = 1, . . . , ni and i = 1, . . . ,m. Their random-
ness, represented through the distributions Fi and Gi , arises from the variation of
these quantities from year to year. The observables of the model, (XMij

, YMij
),

j = 1, . . . , ni , i = 1, . . . ,m are distorted versions of the actual flows through
the canal and the main stream [(Xij and Yij ), respectively, for j = 1, . . . , ni ,
i = 1, . . . ,m], and θ1 and θ2 are the unknown parameters representing the respec-
tive distortion factors of flow measurements in the two channels. The parameter of
interest is θ0 = θ1/θ2.
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3. Methodology.

3.1. Derivation of the estimator. While it is possible to assume some paramet-
ric forms of Fi and Gi and estimate θ0 along with the ensuing nuisance parame-
ters, such additional assumptions can only restrict the scope of applicability of the
model. Estimation under a presumed distributional model could lead to bias in the
estimator of θ0 in case the assumed distribution is inappropriate. Instead, we look
for an estimator that does not have to depend on a distributional assumption. This
may be achieved by exploiting the independence between Z and U in model (2.4).
While the assumption of independence is justified from the context of the applica-
tion, the validity of this assumption may be checked through appropriate diagnostic
tests, which we discuss in Section 3.3.

It may be recalled that the principle of independence between two random vari-
ables has been used in the past as the basis of inference in other situations also.
A prominent example is the problem of blind source separation, where one seeks
to separate the contributions of different sources in multiple linear mixtures (e.g.,
identifying different audio sources from signals recorded through one or more mi-
crophones), by making use of the assumption that the sources are independent
[Comon (1994), Yu, Hu and Xu (2014)]. The problem of whitening of noise in
signal processing involves filtering with parameters chosen to ensure uncorrelat-
edness/independence of the output time series [Levy (2008)]. Uncorrelatedness
between linear estimators and linear zero function is sought to be ensured in es-
timation of parameters in a linear model [Sengupta and Jammalamadaka (2003)].
In Principal Components Analysis (PCA) also, one seeks to identify a Principal
component (PC) that is uncorrelated with the PCs already identified [Anderson
(2003)]. Thus, independence/uncorrelatedness has been an important criterion for
statistical decision-making.

In the present situation, we can use a summary measure of dependence, and
estimate θ0 by a number which brings that measure close to the value it takes
in the case of independence. Let Dn be an empirical measure of dependence,
computed from paired samples of size n. We assume that values of Dn close to
zero indicate lack of dependence, and values far away from zero indicate strong
dependence. We also assume that the measure does not change when either the
first number or the second one in the paired data values are multiplied with a
common positive scale factor. The two common distribution free measures of de-
pendence, Spearman’s rho and Kendall’s tau (see Examples 1 and 2 below), sat-
isfy these two properties. Suppose, for θ ∈ � ⊆ R

+ and i = 1, . . . ,m, the quan-
tity dini

(θ) denotes the value of Dni
when the latter is computed by regarding

((V ∗
i1(θ),W ∗

i1(θ)), . . . , (V ∗
ini

(θ),W ∗
ini

(θ))) as the underlying data, where

V ∗
ij (θ) = XMij

+ θYMij
and

(3.1)

W ∗
ij (θ) = XMij

XMij
+ θYMij

, j = 1(1)ni, i = 1(1)m.
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Note that the assumed scale-invariance of Dn implies that the value of dini
(θ)

would remain unchanged if one uses ((Vi1(θ),Wi1(θ)), . . . , (Vini
(θ),Wini

(θ))) as
the data, where

Vij (θ) = V ∗
ij (θ)

θ1
= Zij

θ0

(
θ0 + (θ − θ0)(1 − Uij )

)
, and,

(3.2)

Wij (θ) = W ∗
ij (θ) = θ0Uij

θ0 + (θ − θ0)(1 − Uij )
, j = 1(1)ni, i = 1(1)m.

When θ = θ0, the above “data” reduces to ((Zi1,Ui1), . . . , (Zini
,Uini

)), which are
pairwise independent random variables. The next lemma shows that this simplifi-
cation happens only if θ = θ0.

LEMMA 3.1. Let the pairs (Vi1(θ),Wi1(θ)), . . . , (Vini
(θ),Wini

(θ)) be de-
fined as in (3.2) and (Zi1,Ui1), . . . , (Zini

,Uini
) be samples from a bivariate dis-

tribution Hi for i = 1, . . . ,m. If there exists θ = θ∗ for which Vij (θ
∗) and Wij (θ

∗)
are independent for all i = 1, . . . ,m, then this θ∗ is unique.

Independence of the Zij ’s and the Uij ’s implies that d2
ini

(θ) should be small
for values of θ near the true value θ0. This property should hold for each stratum.
Accordingly, we define an estimator of θ0 as

(3.3) θ̂ = arg min
θ∈�

m∑
i=1

d2
ini

(θ).

Use of various measures of dependence in (3.3) would produce different estima-
tors. This class of estimators can be studied together.

Now let us consider some examples. Assume that {(Vk,Wk) : k = 1, . . . , n} is a
set of paired random samples of size n drawn from the joint distribution of (V ,W).

EXAMPLE 1. Spearman’s rank correlation coefficient, rho [Spearman (1904)],
between V and W is defined as

(3.4) DSn

(
(V1,W1), . . . , (Vn,Wn)

) = 1 − 6
∑n

k=1 S2
k

n(n2 − 1)
,

where Sk is the difference between the ranks of Vk and Wk , k = 1, . . . , n.

EXAMPLE 2. Kendall’s rank correlation coefficient, tau [Kendall (1938)], be-
tween V and W is defined as

(3.5) DKn

(
(V1,W1), . . . , (Vn,Wn)

) =
n∑

k=1

n∑
l=1

Sk,l

n(n − 1)
,

where

Sk,l = sgn(Vl − Vk) sgn(Wl − Wk), k, l = 1, . . . , n,
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and

sgn(u) =

⎧⎪⎪⎨
⎪⎪⎩

−1, if u < 0,

0, if u = 0,

1, if u > 0.

3.2. Consistency of the estimator. Let the observations (XMij
, YMij

), j =
1, . . . , ni , i = 1, . . . ,m follow the model (2.4). For i = 1, . . . ,m, let Hiθ be
the bivariate distribution of V (θ) = (Z/θ0)(θ0 + (θ − θ0)(1 − U)) and W(θ) =
(θ0U)/(θ0 + (θ − θ0)(1 − U)), where Z ∼ Fi and U ∼ Gi are independent. Let H
be the space of all bivariate distribution functions that are continuous almost every-
where, equipped with the metric ρ induced by the supremum norm. Let D :H→R

be a measure of dependence such that D(H) = 0 whenever H is the product of its
marginal distributions. Let Dn(Z,U) be a sample version of D(H) computed from
the samples (Z1,U1), . . . , (Zn,Un) of H , the samples being represented through
the vectors Z = (Z1, . . . ,Zn)

T and U = (U1, . . . ,Un)
T . Let this function be scale

invariant, that is, Dn(aZ, bU) = Dn(Z,U) for any positive a and b. With Z and U
defined as above, let us denote by V(θ) and W(θ) the vectors with elements

Vi(θ) = Zi

θ0

(
θ0 + (θ − θ0)(1 − Ui)

)
and

(3.6)

Wi(θ) = θ0Ui

θ0 + (θ − θ0)(1 − Ui)
, i = 1(1)n.

We now list a number of conditions for proving the consistency of θ̂ .

A. The set � is compact.
B. The dependence measure satisfies the following conditions:

(i) D :H→R is continuous with respect to the metric space (H, ρ).
(ii) D is bounded, D(Hiθ0) = 0 and D(Hiθ ) �= 0, ∀θ ∈ �\{θ0}, for i =

1, . . . ,m.
C. The function Dn :R2n →R satisfies the following conditions:

(i) The statistic Dn(Z,U) can be written as anD(H(n)) − bn, where H(n) is
the bivariate empirical distribution function based on the data (Z,U), and
an and bn are real sequences such that an → 1 and bn → 0 as n → ∞.

(ii) For i = 1, . . . ,m, whenever (Z,U) are samples from Hiθ0 , there is Bn such
that Bn = Op(1) and the following inequality holds for all θ, θ ′ ∈ �, al-
most surely in Hiθ0 :

∣∣Dn

(
V(θ),W(θ)

) − Dn

(
V

(
θ ′),W

(
θ ′))∣∣ ≤ Bn

∣∣θ − θ ′∣∣.
D. For i = 1, . . . ,m, the distributions Fi and Gi are absolutely continuous with

respect to the Lebesgue measure.
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THEOREM 3.2. Let the estimator θ̂ defined by (3.3) be based on data arising
from the measurement model (2.4). Let Conditions A, B, C and D hold. Further,
let

(3.7)
ni

n
→ ξi, for some ξi ∈ (0,1), i = 1, . . . ,m,

as n = ∑m
i=1 ni → ∞. Then

θ̂
P−→ θ0.

Theorem 3.2 establishes consistency of the general class of estimators (3.3) based
on different measures of dependence, which satisfy Conditions B and C. By veri-
fying these conditions for the two examples mentioned in Section 3.1, we establish
in the Supplementary Material [Jana, Sengupta and Rudra (2016)] the consistency
of the estimators

θ̂S = arg min
θ∈�

m∑
i=1

D2
Sni

((
Vi1(θ),Wi1(θ)

)
, . . . ,

(
Vini

(θ),Wini
(θ)

))
,(3.8)

θ̂K = arg min
θ∈�

m∑
i=1

D2
Kni

((
Vi1(θ),Wi1(θ)

)
, . . . ,

(
Vini

(θ),Wini
(θ)

))
,(3.9)

where DSni
and DKni

have the forms as in (3.4) and (3.5), respectively.

3.3. Diagnostic test for the assumption of independence. The proposed
methodology depends crucially on the assumption of independence of the aggre-
gate Zij and the proportion Uij in model (2.4), both being unobservable. However,
they can be written in terms of the observables XMij and YMij as

Zij = Vij (θ0),

Uij = Wij (θ0),

where Vij (θ0) and Wij (θ0) are as defined in (3.2). The violation of the assumption
of independence of Zij and Uij may occur in two ways:

HA
1 : there is no θ for which Vij (θ) and Wij (θ) are independent, and

HB
1 : there exists a θ∗ such that Vij (θ

∗) and Wij (θ
∗) are independent, but

θ∗ �= θ0.

The scenario HA
1 means that the observables XMij and YMij are such that it

is not possible to find a θ that makes the pair of statistics XMij + θYMij and
XMij/(XMij + θYMij ) independent. Therefore, these observables cannot possibly
be synthesized through model (2.4) with independent Zij and Uij .

The scenario HB
1 means that there is a θ∗ such that XMij + θ∗YMij (or

XMij/θ
∗ + YMij ) and XMij/(XMij + θ∗YMij ) are independent, but the distri-

butions of (XMij
/θ∗ + YMij

) and (XMij
/θ0 + YMij

) are not identical. Here,
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(XMij
/θ0 + YMij

) would be the apparent quantum of flow of the river as mea-
sured through the lock gates of the main stream if the entire flow is allowed to
pass through the main stream. There is record of this flow for a few years when the
canal had not been operational. The scenario HB

1 would then mean that, with θ∗
chosen to make (XMij /θ

∗ + YMij ) and XMij/(XMij + θ∗YMij ) independent, the
distribution of (XMij

/θ∗ +YMij
) is not what it should be, as known from historical

records of an appropriate time.
The scenarios HA

1 and HB
1 may be regarded as alternative hypotheses, where

the corresponding null hypotheses are

HA
0 : there exists a θ∗ such that Vij (θ

∗) and Wij (θ
∗) are independent,

HB
0 : Vij (θ0) and Wij (θ0) are independent (i.e., θ∗ = θ0).

Note that the hypotheses HB
0 and HB

1 constitute a partition of HA
0 . In other words,

HB
0 is nested in HA

0 . Since these hypotheses are to be tested for a diagnostic pur-
pose, it is their nonrejection that would indicate the appropriateness of the pre-
sumed model (so that the proposed estimator makes sense). It transpires that the
hypothesis HA

0 has to be tested first. If it cannot be rejected, one has to proceed
by assuming that it is true. The hypothesis HA

0 implies, through Lemma 3.1, that
either HB

0 is true or HB
1 is true for a unique θ∗. If HB

0 cannot be rejected in favor
of HB

1 , then one is left with the assumption that HB
0 is true. The latter hypothesis

is equivalent to the assumption of independence between Zij and Uij .
We would provide a testing procedure for each of the testing problems men-

tioned above.

Test of HA
0 vs. HA

1 . The null hypothesis HA
0 can be tested against the

alternative HA
1 by checking the independence between Vij (θ

∗) and Wij (θ
∗),

where θ∗ = θ̂ , the minimizer of a chosen squared measure of dependence
(e.g., θ̂S or θ̂K ). Any standard nonparametric test for independence [see Hájek,
Šidák and Sen (1999), page 126] may be adapted to this problem as fol-
lows. For example, for i = 1, . . . ,m, let ρi be Spearman’s rho statistic for
the data (Vi1(θ̂S),Wi1(θ̂S)), . . . , (Vini

(θ̂S),Wini
(θ̂S)), where θ̂S is as defined

in (3.8). Let Ti = ρi/
√

Var(ρi), where Var(ρi) = 1
(ni−1)

, be the standardized

version of the statistic under HA
0 . For testing HA

0 against the general alter-
native HA

1 , we use the pooled statistic T = 1√
m

∑m
1 Ti . The asymptotic null

distribution of this statistic should be standard normal. As another example,
we can replace ρi by the Kendall’s tau statistic τi computed from the data
(Vi1(θ̂K),Wi1(θ̂K)), . . . , (Vini

(θ̂K),Wini
(θ̂K)), where θ̂K is as defined in (3.9),

and scale the statistic by the square-root of V (τi) = 2(2ni+5)
9ni(ni−1)

. The pooled test
statistic would have the same form and the same distribution as above [Kendall
(1938)].
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Test of HB
0 vs. HB

1 . As noted earlier, if the hypothesis HA
0 is assumed to

be true and θ∗ is the value of the parameter that makes (XMij
/θ∗ + YMij

) and
XMij

/(XMij
+ θ∗YMij

) independent, then the hypothesis HB
0 is equivalent to the

equality of the distributions of (XMij
/θ∗ +YMij

) and (XMij
/θ0 +YMij

). The latter
quantity represents the total flow if all of it is measured through the lock gates of
the main stream. The total flow had indeed been passed through the main stream
and measured during the period 1993–1997 (when only the main stream gates of
the river had been operational). We denote this benchmark data by Y ′

Mi1
, . . . , Y ′

Min′
i

,

i = 1, . . . ,m, where n′
i is the number of years during the above period for which

main stream flow data for the ith ten-day cycle are available. For every i, each
of the quantities Y ′

Mi1
, . . . , Y ′

Min′
i

have the same distribution as (XMij
/θ0 + YMij

).

As for the distribution of (XMij
/θ∗ + YMij

), one can estimate θ∗ by the value

of θ that minimizes a squared empirical measure of dependence (e.g., θ̂S and
θ̂K ). Therefore, testing for HB

0 reduces to a set of two sample problems—one
for each stratum. Specifically, if θ̂S is used, then the first sample for the ith stra-
tum would consist of (XMi1/θ̂S +YMi1), . . . , (XMini

/θ̂S +YMini
), while the second

sample in the same stratum would be Y ′
Mi1

, . . . , Y ′
Mi,n′

i

. For each stratum, one can

use the Wilcoxon signed rank test after standardizing it appropriately [Hollander
and Wolfe (1999), page 108]. In order to make the test usable for modest sam-
ple size, we take the sum of these standardized test statistics across the m strata,
and standardize the sum by the pooled standard deviation,

√
m. This pooled and

standardized test statistic should be approximately standard normal under HB
0 .

A preliminary simulation study of small sample properties of this test statis-
tic (not reported here) revealed no problem with normality but a bit of excessive
variability. This problem may be solved by a scale adjustment to the test statistic
through Bootstrap resampling. Specifically, the resampling may be done indepen-
dently within each stratum by drawing random paired samples with replacement
from the available paired data, the sample size being the same as that of the orig-
inal data. Resampling from the benchmark data set may be done similarly. The
sample standard deviation of the test statistics obtained from these resamples can
then be used to standardize the test statistic obtained from the original data.

In view of the nested nature of the two null hypotheses, the test of HA
0 should be

followed by the test of HB
0 , and rejection at either stage would indicate inappropri-

ateness of the model (2.4). Further, in accordance with the Bonferroni inequality,
probabilities of α/2 may be allocated to each of the tests in order to achieve the
overall significance level α for the combination of two tests [Miller (1981)].

3.4. Simulation of performance. A simulation study of the performance of the
tests was conducted by generating data from parametric models representing the
alternative hypotheses HA

1 and HB
1 . The results show that the power of the nested
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tests, for sample size comparable to the data analyzed in the next section, is ade-
quate whenever the empirical bias of the estimator is large. Additional simulations
show that the efficiencies of the estimators θ̂S and θ̂K are somewhat insensitive to
the number of strata when the sample size per stratum is held fixed, but improve
with decreased number of strata when the total sample size is held fixed. Another
simulation study reveals near-unbiasedness of a bootstrap estimator of standard
error obtained by independent resampling with replacement from each stratum.
The details of the studies are available in the online supplementary material [Jana,
Sengupta and Rudra (2016)].

4. Analysis of Teesta river flow data. As mentioned in Section 1, the data
collected at the Gajaldoba barrage consists of measurements of flow through the
main stream (YM ) during the period 1993 to 2011, averaged over ten-day periods,
and similar data for flow through the canal (XM ) during 1998 to 2011.

There are thirty-six ten-day periods in a calendar year, as explained in Section 1,
which may be treated as different strata. As explained in Section 2, we have to
exclude from our analysis the strata corresponding to the rainy season (June to
September) and the lean season. The driest of the ten-day periods happens to be the
first ten-day period of February when the average aggregate flow (i.e., the sum of
observed flows through the canal and the main stream) reaches its minimum value.
We exclude all the strata for which the average aggregate flow is less than 150%
of this minimum level. We also exclude the first ten-day period of October since
the average aggregate flow in that stratum is more than the flow during the first
ten-day period of the rainy season. These considerations leave us with 12 strata:
three ten-day periods from each of the months of April, May and November, the
last two ten-day periods of October and the first ten-day period of December. It is
expected that, during these periods, the proportion of diversion had been decided
independently of the amount of upstream flow. We would check this assumption
empirically also.

The main data set consists of measurements of canal flow and main stream flow
during the twelve chosen ten-day periods of the calendar years 1998–2011. Thus,
there are up to 14 observations per stratum, though there are a few missing obser-
vations. For the purpose of model diagnostics, we also use the data for the above
strata during the calendar years 1993–1997 when the canal was not operational and
measurements of flow through the main stream represented the total flow. For this
period, the sample size per stratum was 5, except for one stratum, where a single
observation was missing.

The problem of assessing a correct multiplier for adjusting the two sets of flow
measurements amounts to estimation of the parameter θ0 from these data under the
measurement model (2.4).

We begin the analysis by performing the diagnostic tests proposed in Section 3.3
on the above data in order to check the validity of the model (2.4). Rescaling of the
second test statistic (see Section 3.3) is done on the basis of 500 bootstrap samples,
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TABLE 1
Estimates of θ0 by using (3.8) and (3.9), together with

the bootstrap estimate of the standard error and
bootstrap confidence interval

θ̂S θ̂K

Estimates 0.76 0.76
Bootstrap S.E. 0.0713 0.0729
Bootstrap 95% C.I. (0.64,0.92) (0.63,0.91)

as in the simulations. The p-values for the test of HA
0 against HA

1 , corresponding
to the estimators (3.8) and (3.9), happen to be 0.21 and 0.31, respectively. The p-
values for the test of HB

0 against HB
1 , corresponding to the estimators (3.8) and

(3.9), turn out to be 0.73 and 0.71. These finding indicate the validity of the model
(2.4) for the Teesta riverflow data. We shall later present the result of an additional
graphical check.

The values of the proposed estimators (3.8) and (3.9) are reported in Table 1.
The table also shows standard errors and 95% confidence intervals, computed from
nonparametric bootstrap estimates based on 1000 resamples. Here the bootstrap-
ping for bivariate data is done within each stratum with replacement, the sample
size being the same as the stratum size.

The two estimates have similar values, indicating that a measured flow of one
cumec through the main stream gates is about 76% of a measured flow of one
cumec through the canal gates. Further, the bootstrap confidence interval corre-
sponding to each estimate excludes the value 1. Thus, the correction factor is sig-
nificantly smaller than 1. This conclusion is important in the context of decision-
making. Unless the measurements from the canal and the main stream gates are
brought to a common scale, there would never be a proper control over the flow.

The dashed curve in Figure 3 is the plot of the adjusted upstream flow during
the lean season of 1998–2011 [i.e., sum of flow through the main stream (YM )
and the corrected flow though the canal (XM/θ̂ )] obtained by using the estimators
(3.8) or (3.9). This curve is close to the average upstream flow in the time period
1993–1997 (solid thick curve). This finding also indicates that the two estimators
under the chosen model, which provide for calibration through a single multiplier,
lead to reasonable adjustment.

5. Concluding remarks. In this article, we have introduced a class of non-
parametric estimators for the purpose of correcting the bifurcated components of
an aggregate flow, assuming that there is a true correction factor. The method de-
veloped here may apply generally to other situations where an aggregate quantity is
split into two channels and then measured in different ways, necessitating correc-
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FIG. 3. Plots of average upstream flow at the Teesta Barrage at Gajaldoba in different ten-day
periods of the period November to March. The solid thick curve corresponds to the period January
1993 to March 1997. The solid thin curve corresponds to the unadjusted flow during the period
January 1998 to December 2011. The dashed curve is the adjusted flow for the latter period, obtained
by using estimators (3.8) or (3.9).

tion of the measurements of the parts. For example, in diagnostic and therapeutic
medicine, a ray of light is used to determine the optical properties of living tissue.
The tissue surface receives short pulses of light (Z) emitted from a small source,
through a laser beam or optical fiber. Amounts of absorption (X) and scattering
(Y ) are observed over a period of time for studying the relationship between ab-
sorption and scattering coefficients of the tissue [Cheong, Prahl and Welch (1990),
Patterson, Chance and Wilson (1989)]. The amounts of absorption and scattering
are estimated by different approximation formulae so that their estimated values,
XM and YM , may differ from X and Y , respectively. Correction may be needed
here [Section 4.2 of Wilson and Patterson (2008)]. The proportion of light ab-
sorbed (X/Z) is a property of the tissue, while the amount of incident light (Z) de-
pends on external factors such as intensity and distance of the light source. These
two quantities should be independent, as long as the frequency of light does not
change. Another instance of bifurcation arises while determining light absorption
in a system of particles for characterizing different transmission media, such as
highly scattering particles, colloids and composite materials, by using measure-
ments of transmittance and reflectance [see Duncle and Bevans (1956) and Tassan
and Ferrari (2002)].

Apart from the two measures considered here (Kendall’s tau and Spearman’s
rho), one could possibly use other well-known measures of dependence such as the
product moment correlation and distance correlation [Székely, Rizzo and Bakirov
(2007)]. However, consistency of the corresponding estimator is not guaranteed.
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In particular, Condition B(i) is not satisfied by the product moment correlation,
and we could not prove Condition C(ii) in the case of distance correlation. The
estimates of the correction factor based on these two measures of dependence,
for the data set on Teesta flow through the canal and the main stream at Gajaldoba,
happen to be 0.79 and 0.75, respectively. These numbers are in line with the finding
of Section 2 of the online supplementary materials.

Since the discrepancy among the different point estimates of the correction fac-
tor obtained through the estimators (3.8) and (3.9) is small, either one can be used.
The simulation study shows that the two estimators have comparable performance.
For the data at hand, the 95% confidence interval corresponding to each estimate
excludes the value 1. This situation calls for action. The government may consider
the costs and benefits of conducting a controlled experiment in case the need for
better accuracy is felt. The present analysis, including Figure 3, shows that adjust-
ment through either of the proposed methods would be a better option than not
adjusting at all.

The simple methods of correction presented in this article may be extended
to the situation where an additive quantity is multifurcated into more than two
components, which are measured with different degrees of fixed and multiplicative
distortion. This type of problem may arise in analyzing trifurcated flow of a river
through a barrage with two canals. A case in point is the recent operationalization
of a new canal (Teesta Jaldhaka Main Canal or TJMC) at the Teesta Barrage at
Gajaldoba. This research problem may be considered in the future.

Acknowledgments. The inference problem considered in this paper arose
from an assignment received by the third author from the Government of West
Bengal in November 2011. The data used for the analysis of Section 4 was received
in the context of that assignment from the Department of Irrigation, Government of
West Bengal, with permission from the Central Water Commission, Government
of India. The authors thank the two agencies for providing the data. The authors
also thank the two referees, the Associate Editor and the Editor for their critical
comments that led to substantive improvement of the paper.

SUPPLEMENTARY MATERIAL

Supplement to “Correction of bifurcated river flow measurements from
historical data: Paving the way for the Teesta water sharing treaty” (DOI:
10.1214/16-AOAS958SUPP; .pdf). Section 1 of the Supplementary Material con-
tains technical proofs of the theoretical results. Section 2 describes results of the
simulation. Section 3 shows the computation of the Cramer Rao Lower Bound
used in these simulations.

REFERENCES

ANDERSON, T. W. (2003). An Introduction to Multivariate Statistical Analysis, 3rd ed. Wiley, Hobo-
ken, NJ. MR1990662

http://dx.doi.org/10.1214/16-AOAS958SUPP
http://www.ams.org/mathscinet-getitem?mr=1990662


1774 K. JANA, D. SENGUPTA AND K. RUDRA

CHEONG, W. F., PRAHL, S. A. and WELCH, A. J. (1990). A review of the optical properties of
biological tissues. IEEE J. Quantum Electron. 26 2166–2185.

COMON, P. (1994). Independent component analysis, a new concept? Signal Process. 36 287–314.
DUNCLE, R. V. and BEVANS, J. T. (1956). An approximate analysis of the solar reflectance and

tranmittance of a snow cover. J. Meteor. 13 212–216.
GREENWELL, B. M. (2014). Topics in Statistical Calibration. Ph.D. thesis, Air Force Institute of

Technology. MR3218115
HÁJEK, J., ŠIDÁK, Z. and SEN, P. K. (1999). Theory of Rank Tests, 2nd ed. Probability and Math-

ematical Statistics. Academic Press, San Diego, CA. MR1680991
HOLLANDER, M. and WOLFE, D. A. (1999). Nonparametric Statistical Methods, 2nd ed. Wiley,

New York. MR1666064
INDIA TODAY (2015). Mamata Banerjee raises Teesta issue with Sheikh Hasina, assures a break-

through. India Today, Feb 25.
JAIN, S. C. (2001). Open-Channel Flow. Wiley, New York.
JANA, K., SENGUPTA, D. and RUDRA, K. (2016). Supplement to “Correction of bifurcated river

flow measurements from historical data: Paving the way for the Teesta water sharing treaty.”
DOI:10.1214/16-AOAS958SUPP.

JHA, R. K. (2015). India-Bangladesh politics over Teesta river water sharing. South Asia Monitor,
Jan 27.

KENDALL, M. G. (1938). A new measure of rank correlation. Biometrika 30 81–93.
LEVY, B. C. (2008). Principles of Signal Detection and Parameter Estimation, 1st ed. Springer, New

York.
MENON, M. S. (2015). Time to look at Teesta. The Indian Express, Aug 13.
MILLER, R. G. JR. (1981). Simultaneous Statistical Inference, 2nd ed. Springer, New York.

MR0612319
MOUDGIL, M. (2015). South Asian water wars: An improbability. World Policy Insti., Sep 14. Avail-

able at http://www.worldpolicy.org/blog/2015/09/14/south-asian-water-wars-improbability.
OSBORNE, C. (1991). Statistical calibration: A review. Int. Stat. Rev. 59 309–336.
PATTERSON, M. S., CHANCE, B. and WILSON, B. C. (1989). Time resolved reflectance and trans-

mittance for the non-invasive measurement of tissue optical properties. Appl. Opt. 28 2331–2336.
RUDRA, K. (2012). Atlas of Changing River Courses in West Bengal. Sea Explorers’ Institute,

Kolkata.
SENGUPTA, D. and JAMMALAMADAKA, S. R. (2003). Linear Models: An Integrated Approach.

Series on Multivariate Analysis 6. World Scientific, River Edge, NJ. MR1993512
SOLOMON, S. (2010). Water: The Epic Struggle for Wealth, Power and Civilization. Harper Collins,

New York.
SPEARMAN, C. (1904). The proof and measurement of association between two things. Am. J. Psy-

chol. 15 72–101.
SUBRAMANYA, K. (2013). Engineering Hydrology, 4th ed. Tata McGraw Hill Education, New

Delhi.
SZÉKELY, G. J., RIZZO, M. L. and BAKIROV, N. K. (2007). Measuring and testing dependence by

correlation of distances. Ann. Statist. 35 2769–2794. MR2382665
TASSAN, S. and FERRARI, G. M. (2002). A sensitivity analysis of the transmittance–reflectance

method for measuring light absorption by aquatic particles. J. Plankton Res. 24 757–774.
VIDAL, J. (2010). How water raises the political temperature between countries. The Guardian, June

25.
WILSON, B. C. and PATTERSON, M. S. (2008). The physics, biophysics and technology of photo-

dynamic therapy. Phys. Med. Biol. 53 61–106.

http://www.ams.org/mathscinet-getitem?mr=3218115
http://www.ams.org/mathscinet-getitem?mr=1680991
http://www.ams.org/mathscinet-getitem?mr=1666064
http://dx.doi.org/10.1214/16-AOAS958SUPP
http://www.ams.org/mathscinet-getitem?mr=0612319
http://www.worldpolicy.org/blog/2015/09/14/south-asian-water-wars-improbability
http://www.ams.org/mathscinet-getitem?mr=1993512
http://www.ams.org/mathscinet-getitem?mr=2382665


CORRECTION OF BIFURCATED RIVER FLOW MEASUREMENTS 1775

YU, X., HU, X. and XU, J. (2014). Blind Source Separation: Theory and Applications, 1st ed. Wiley,
New York.

K. JANA

D. SENGUPTA

APPLIED STATISTICS UNIT

INDIAN STATISTICAL INSTITUTE

KOLKATA 700108
WEST BENGAL

INDIA

E-MAIL: kaushikjana11@gmail.com
sdebasis@isical.ac.in

K. RUDRA

WEST BENGAL POLLUTION CONTROL BOARD

PARIBESH BHAVAN

10A, BLOCK LA
SECTOR III, SALTLAKE CITY

KOLKATA 700098
WEST BENGAL

INDIA

E-MAIL: rudra.kalyan@gmail.com

mailto:kaushikjana11@gmail.com
mailto:sdebasis@isical.ac.in
mailto:rudra.kalyan@gmail.com

	Introduction
	Model speciﬁcation
	Problem formulation
	A strengthened model

	Methodology
	Derivation of the estimator
	Consistency of the estimator
	Diagnostic test for the assumption of independence
	Test of H0A vs. H1A
	Test of H0B vs. H1B

	Simulation of performance

	Analysis of Teesta river ﬂow data
	Concluding remarks
	Acknowledgments
	Supplementary Material
	References
	Author's Addresses

