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MOLECULAR QTL DISCOVERY INCORPORATING GENOMIC
ANNOTATIONS USING BAYESIAN FALSE DISCOVERY RATE
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Mapping molecular QTLs has emerged as an important tool for under-
standing the genetic basis of cell functions. With the increasing availability
of functional genomic data, it is natural to incorporate genomic annotations
into QTL discovery. Discovering molecular QTLs is typically framed as a
multiple hypothesis testing problem and solved using false discovery rate
(FDR) control procedures. Currently, most existing statistical approaches rely
on obtaining p-values for each candidate locus through permutation-based
schemes, which are not only inconvenient for incorporating highly informa-
tive genomic annotations but also computationally inefficient. In this paper,
we discuss a novel statistical approach for integrative QTL discovery based
on the theoretical framework of Bayesian FDR control. We use a Bayesian
hierarchical model to naturally integrate genomic annotations into molecu-
lar QTL mapping and propose an empirical Bayes-based computational pro-
cedure to approximate the necessary posterior probabilities to achieve high
computational efficiency. Through theoretical arguments and simulation stud-
ies, we demonstrate that the proposed approach rigorously controls the de-
sired type I error rate and greatly improves the power of QTL discovery when
incorporating informative annotations. Finally, we demonstrate our approach
by analyzing the expression-genotype data from 44 human tissues generated
by the GTEx project. By integrating the simple annotation of SNP distance
to transcription start sites, we discover more genes that harbor expression-
associated SNPs in all 44 tissues, with an average increase of 1485 genes per
tissue.

1. Introduction. With the advancements in sequencing technology, mapping
quantitative trait loci (QTLs) with cellular phenotypes has emerged as a powerful
tool for understanding the genetic basis of cell functions. Recent QTL mapping
studies using RNA-seq, ChIP-seq, DNaseI-seq, ATAC-seq and DNA methylation
data have revealed that an abundance of genetic variants are associated with vari-
ous cellular phenotypes [Ardlie et al. (2015), Banovich et al. (2014), Degner et al.
(2012), Ding et al. (2014), McVicker et al. (2013)]. Subsequently, the discovery of
molecular QTLs has provided valuable insights for understanding the molecular
mechanisms of complex diseases, as demonstrated by Neto et al. (2013).
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Compared to traditional QTL mapping, a distinctive feature of molecular QTL
analysis is that tens of thousands of molecular phenotypes are simultaneously mea-
sured using high-throughput sequencing technology (e.g., genome-wide gene ex-
pression profiling by RNA-seq) in addition to high-density genotyping. Conse-
quently, it prevents direct applications of well-established statistical approaches
designed for traditional QTL mapping [Churchill and Doerge (1994), Doerge and
Churchill (1996), Neto et al. (2012)] and imposes a new type of statistical chal-
lenge. In this paper, we use the term QTL to refer to the genomic regions that
harbor trait-associated causal variants, and, following Veyrieras et al. (2008), we
refer to the actual causal variants as quantitative trait nucleotides (QTNs). In prac-
tice, the statistical analysis of molecular QTLs typically consists of two stages:
the primary goal of the first stage is to screen a large number of candidate loci
and identify QTLs, and we refer to this process as QTL discovery; in the second
stage, a fine-mapping analysis is performed to determine the potential QTNs in
each discovered QTL. Our primary focus in this paper is the statistical analysis for
QTL discovery. In addition to providing a list of candidate QTLs for fine-mapping
analysis, QTL discovery is also uniquely important for identifying relevant genes
and biological pathways for network and pathway analysis. In mapping cis expres-
sion quantitative trait loci, the candidate genomic regions are generally formed by
the coding and the neighboring regulatory regions of each target gene, and, in this
context, QTL discovery is also known as eGene discovery [Ardlie et al. (2015),
Lappalainen et al. (2013), Sul et al. (2015)].

QTL discovery is framed as a multiple hypothesis testing problem, for which
the null hypothesis asserts no QTN within each locus of interest. The standard (fre-
quentist) approach has been established in applications of cis-eQTL mapping and
can be straightforwardly generalized to other molecular QTL analyses [Ardlie et al.
(2015), Flutre et al. (2013), Lappalainen et al. (2013)]. The standard approach,
which represents the current state of the art in QTL discovery, first performs single
SNP association testing for all phenotype-SNP pairs. For each locus, the minimum
p-value from all member SNPs is then regarded as the locus-level test statistic and
is subsequently converted into a locus-level p-value for the hypothesis testing.
Because the null distribution of the locus-level test statistic (i.e., the minimum p-
value from single SNP testing) is generally unknown due to complicated patterns
of linkage disequilibrium (LD), extensive permutations are required to obtain the
locus-level p-values. Subsequently, false discovery rate (FDR) control procedures,
for example, Benjamini–Hochberg [Benjamini and Hochberg (1995)] and Storey’s
q-value procedures [Storey (2003)], are applied to account for multiple testing of
tens of thousands of loci at the genome-wide scale.

Although the frequentist procedure is statistically justified and widely applied,
there is no principled way to flexibly incorporate valuable genomic annotations.
With the increasing availability of functional genomic data [ENCODE Project
Consortium et al. (2012), Kundaje et al. (2015), Pique-Regi et al. (2011)], the sci-
entific community has accumulated substantial knowledge on the functional roles
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of individual genetic variants. Incorporating such prior knowledge into QTL dis-
covery and prioritizing the genomic loci that harbor well-annotated functional vari-
ants intuitively improve the statistical power for QTL discovery. Similarly, results
from existing QTL analyses can also provide valuable insights into the distribu-
tive patterns of causal QTNs. For example, almost all of the analyses in cis-eQTL
mapping confirm that associated casual SNPs tend to cluster around transcription
start sites (TSS) and that the abundance of signals rapidly decreases away from
TSS [Ardlie et al. (2015), Lappalainen et al. (2013), Wen, Luca and Pique-Regi
(2015)]. In light of this strong pattern, it appears natural to use SNP distance to
TSS (DTSS) as an annotation and up-weight the SNPs close to TSS in eQTL anal-
ysis a priori rather than treating every cis-SNP equally. However, to the best of our
knowledge, a principled approach that can effectively incorporate known genomic
annotations into the analysis of QTL discovery does not exist.

In this paper, we propose a Bayesian hierarchical model to integrate SNP-level
annotations into QTL mapping. Bayesian approaches have been shown to be ef-
fective and flexible in dealing with complex settings in traditional QTL mapping
[Ball (2001), Breitling et al. (2008), Sillanpää and Arjas (1999), Stephens and
Fisch (1998), Yi et al. (2005)]. Here, we propose an efficient computational frame-
work, named TORUS, to perform Bayesian multiple hypothesis testing for molec-
ular QTL discovery and study its statistical properties. Through simulations, we
demonstrate the superiority of the proposed approach over the state-of-the-art,
gold-standard approach in terms of both computational efficiency and power of
QTL discovery. Finally, we demonstrate our approach by analyzing eQTL data
from 44 human tissues that were recently released by the NIH GTEx project.

2. Methods. In this section, we describe our Bayesian hierarchical model
for integrative molecular QTL discovery and present the computational strategies
to perform the highly efficient Bayesian FDR control procedure. We implement
the proposed statistical methods in the software package TORUS (QTL Discov-
ery utilizing Genomic Annotations), which is freely available from https://github.
com/xqwen/torus.

2.1. Bayesian hierarchical model for QTL discovery. We consider a general
problem of QTL mapping at the genome-wide scale. In particular, we assume that
there are L genomic loci (in many cases, the loci are naturally formed by including
coding and regulatory regions of the target genes), each of which contains pl SNPs
for l = 1, . . . ,L. Without loss of generality, we consider a sample of n unrelated
individuals, and, for each locus l, we model the locus-specific quantitative trait
measurement yl of the sample using the following linear regression model:

(1) yl = μl1 +
pl∑

i=1

βli gli + el , el ∼ N
(
0, τ−1

l I
)
,

https://github.com/xqwen/torus
https://github.com/xqwen/torus
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where n-vectors gli , e represent the sample genotypes at genetic variant li and the
residual errors, respectively. (At present, we assume that yl is a univariate quanti-
tative trait, and we relax this assumption and extend the framework to multivariate
quantitative traits in Section 2.5.) Furthermore, we denote Gl := (gl1, . . . ,glpl

).
Note that the model allows multiple SNP associations within a given locus. The
regression coefficients μl and βli represent the intercept and the genetic effect of
each genetic variant, respectively, and τ−1

l denotes the residual error variance. Fol-
lowing Wen (2014), we further denote the latent binary association status of each
genetic variant li by γli := 1(βli �= 0) (i.e., γli is dichotomized from the corre-
sponding βli ), and γ l := (γl1, . . . , γlpl

).
Our prior specifications for the parameters μ,βli and τ are mostly standard

and follow directly from Marin and Robert (2007), and we leave the details to
Appendix A of the Supplementary Materials [Wen (2016)]. Most importantly, we
use the prior specification for γ l to incorporate variant-level genomic annotation
information. Specifically, we assume that the γli ’s are a priori independent and that

(2) log
[

Pr(γli = 1|η,dli )

Pr(γli = 0|η,dli )

]
= η0 +

m∑
j=1

ηjdlij ,

where we use dli := (dli1, . . . , dlim) to denote the variant-specific genomic fea-
tures, and the hyperparameter η := (η0, . . . , ηm), which characterizes the enrich-
ment level of each genomic feature in trait-associated genetic variants, is referred
to as the enrichment parameter. Finally, we use Dl := (dl1, . . . ,dlp ) to denote the
collection of the annotation data at locus l. Note that in the special case where
no genomic annotation is used in the analysis, the prior model (2) contains a sin-
gle parameter η0 that quantifies the prevalence of trait-associated genetic variants
among all candidate SNPs. We refer to this special case of the model as the base-
line model.

In molecular QTL mapping, it is sometimes desirable to explicitly account for
the relatedness of the samples and/or the polygenic effects on the quantitative trait
of interest. To this end, we simply modify the regression model (1) by adding a
random effect term, ul , that is,

yl = μl1 +
pl∑

i=1

βli gli + ul + el ,

(3)
ul ∼ N

(
0, θlτ

−1
l A

)
and el ∼ N

(
0, τ−1

l I
)
.

In particular, A represents the known kinship (correlation) matrix, which can be
efficiently pre-estimated from the available genotype data, and the unknown vari-
ance component parameter θl characterizes the magnitude of the random effect.
Here, we simply note that our main results based on the regression model (1) can
be straightforwardly extended to the model (3) by applying the recent results on
Bayesian model comparison, that is, the analytic computation of Bayes factors, in
linear mixed models [Wen (2015)].
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2.2. Multiple hypothesis testing and Bayesian FDR control. The problem of
QTL discovery is framed as a hypothesis testing problem. Specifically, we identify
locus l as a QTL if the null hypothesis asserting no trait-associated genetic variant
within the locus, that is,

H0 : γ l = 0,

is rejected. The problem of multiple hypothesis testing arises because we perform
simultaneous testing for tens of thousands of loci across the genome when mapping
molecular QTLs.

To take full advantage of our hierarchical model, we adopt a Bayesian FDR
control strategy [Müller et al. (2004), Newton et al. (2004)]. Briefly, the Bayesian
FDR control requires computing the posterior probability ul := Pr(γ l = 0|yl ,Gl)

to summarize the evidence for (or against) the null hypothesis for each locus l. The
null hypothesis is intuitively rejected if the corresponding ul is smaller than the
predefined threshold. Based on a predefined FDR control level α, a straightforward
algorithm [Newton et al. (2004)] can be applied to determine the induced rejection
threshold tα such that

(4) tα = arg max
t

( ∑
ul≤t ul

[∑l 1(ul ≤ t) ∨ 1] ≤ α

)
,

where the expression
∑

l 1(ul ≤ t) in the denominator represents the total number
of rejections at threshold t , and the expression

∑
ul≤t ul in the numerator rep-

resents the expected false rejections at threshold t . The Bayesian FDR control
procedure is naturally connected to its frequentist counterpart (Appendix B of the
Supplementary Materials [Wen (2016)]), with the primary difference being that the
Bayesian FDR is conditional on the observed data in hand whereas the frequentist
procedure computes FDR over hypothetically repeated experiments. Furthermore,
Müller et al. (2004) proved that the Bayesian procedure is theoretically optimal
in the sense that it minimizes the corresponding false nondiscovery rate (FNR,
a measure of type II error).

2.3. Approximate computation of posterior probability. By computing ul

based on the proposed Bayesian hierarchical model, the Bayesian FDR control
procedure naturally allows genomic annotations to be leveraged in QTL discov-
ery. However, the exact evaluation of ul requires integrating out all enrichment
parameters and exploring an enormous space of all possible association models
representing different values of γ l . This evaluation becomes a computationally
daunting challenge even for a single locus, let alone the genome-wide application
for tens of thousands of loci. To overcome the computational difficulty, we propose
applying two levels of approximation.

A critical intermediate step in evaluating ul is to compute the probability
Pr(γ l = 0|yl ,Gl ,η) for a given value of the enrichment parameter η. Specifically,



1624 X. WEN

we evaluate this quantity by

(5) Pr(γ l = 0|yl ,Gl,Dl,η) = Pr(γ l = 0|Dl ,η)∑
γ ′ Pr(γ l = γ ′|Dl ,η)BF(γ ′)

,

where BF(γ ) denotes the Bayes factor

BF(γ ) := Pr(yl|Gl ,γ l = γ )

Pr(yl|Gl ,γ l ≡ 0)

and represents the marginal likelihood for γ l = γ [by definition, BF(0) = 1]. Al-
though the calculation of BF(γ ) for any given γ can be achieved analytically for
a wide range of linear model systems [Wen (2014)], it is practically unfeasible to
enumerate all possible γ values when the number of SNPs within a locus is large
(for p SNPs in a locus, there are a total of 2p γ values to enumerate). Here, we
propose using the approximation

(6) Pr(γ l = 0|yl ,Gl,Dl,η) ≈ Pr(γ l = 0|Dl ,η)∑
‖γ ′‖≤K Pr(γ l = γ ′|Dl ,η)BF(γ ′)

,

where ‖γ ′‖ denotes the number of nonzero indicators in vector γ ′ (i.e., the 0-
norm of the γ ′ vector) and the subset {γ ′ : ‖γ ′‖ ≤ K} consists of only the models
with no more than K associated SNPs, and hence represents a (much) reduced
model space. We summarize the property of the proposed approximation (6) in the
following lemma.

LEMMA 1. The approximation (6) represents a conservative upper bound for
the posterior probability Pr(γ l = 0|yl ,Gl ,Dl,η).

The proof is trivial by noting the inequality

Pr(γ l = 0|Dl ,η)∑
‖γ ′‖≤K Pr(γ l = γ ′|Dl ,η)BF(γ ′)

≥ Pr(γ l = 0|Dl ,η)∑
γ ′ Pr(γ l = γ ′|Dl ,η)BF(γ ′)

.

Lemma 1 is critically important for ensuring that applying the approximation (6)
does not inflate type I errors for any given η value. Furthermore, we note that the
approximation is accurate if

(7)

∑
‖γ ′‖>K Pr(γ l = γ ′|Dl ,η)BF(γ ′)∑

‖γ ′‖ Pr(γ l = γ ′|Dl ,η)BF(γ ′)
→ 0,

that is, the posterior probability mass is concentrated on the space of association
models containing few QTNs (‖γ ′‖ ≤ K). To justify this approximation and select
approximate K in practice, we note the following observation.

OBSERVATION 1. For the vast majority of genomic loci in molecular QTL
mapping, often only one QTN can be detected with high probability.
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This observation has been made in many applications of molecular QTL map-
ping, for example, Wen, Luca and Pique-Regi (2015) report that in a cross-
population eQTL analysis, there are less than 7% of 11,838 integrated protein-
coding and linc-RNA genes that show evidence of harboring more than a single
QTN, which is likely a consequence of the combination of the true underlying bi-
ology, the noise level of the current experimental technology in measuring molec-
ular phenotype, and the limitation of sample sizes in current practice of molecular
QTL mapping. Based on this observation, we simply set K = 1 for the approxima-
tion (6) to achieve the best computational efficiency. Note that the approximation
becomes the most accurate when there is at most one causal SNP within a locus.
In this special case, the approximation has an analytic form, that is,

(8) Pr(γ l = 0|yl ,Gl,Dl,η) ≈ 1

1 + ∑p
k=1 eη′dlk BFlk

,

where BFlk denotes the Bayes factor for the kth SNP from the single SNP as-
sociation model and can be computed analytically from the corresponding single
SNP testing statistics [Servin and Stephens (2007), Wakefield (2009)]. One of the
most attractive advantages is that the full analysis now requires only summary-
level statistics rather than full individual-level genotype-phenotype data that can
be difficult to obtain due to privacy issues.

Importantly, note that the state-of-the-art frequentist approach based on the
locus-level test statistic of the minimum p-value from single-variate testing also
implicitly assumes K = 1 for the alternative model: as shown in De la Cruz et al.
(2010), the minimum p-value exhibits the best power if and only if the locus of
interest contains exactly one QTN.

Our second approximation involves using an empirical Bayes approach to eval-
uate ul by

(9) ûl := Pr(γ l = 0|yl ,Gl,Dl, η̂),

where η̂ denotes the maximum likelihood estimate of the enrichment parameter.
This approach essentially replaces the integration of η in the full Bayesian pro-
cedure by a more computationally efficient optimization procedure. To determine
the MLE of η, we derive an EM algorithm (details are given in Appendix C.1
of the Supplementary Materials [Wen (2016)]) by treating γ l’s as missing data
and naturally pooling information across all candidate loci. Briefly, in the E-step,
we compute the posterior inclusion probability (PIP) of each SNP in each locus
given the current estimate of η, and, in the M-step, we solve a classic convex op-
timization problem that is equivalent to fitting a logistic regression model using
the PIPs from the E-step as the response variable and annotations as predictors. In
the context of molecular QTL mapping, tens of thousands of simultaneous molec-
ular phenotype measurements can be regarded as a large size of approximately
independent samples for the inference of the enrichment parameter. (The justifi-
cation for the assumption of approximate independence is given in the Discussion
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section.) Consequently, the influence of any prior distribution on η is likely dimin-
ished, and its posterior distribution is expected to be highly peaked under such a
setting that is close to the ideal asymptotic setup. Therefore, we expect that the
empirical Bayes approach and the full Bayesian inference behave similarly with
respect to the inference of η, as demonstrated in Wen (2011).

The computational difficulty of the EM algorithm lies in the evaluation of
PIPs in the E-step, whose exact computation is intractable. The Monte Carlo EM
(MCEM) algorithm [Levine and Casella (2001)] is a possible solution designed
for such a scenario in the literature, in which the PIPs can be obtained by sampling
from an MCMC algorithm in each E-step. However, running the extensive MCMC
algorithm in each E-step is computationally expensive and is not ideal for dealing
with the molecular QTL data at the genome-wide scale.

Motivated by Observation 1, we again apply the approximation strategy that is
similar to (8) to compute the PIP for each SNP i at locus l, that is,

(10) Pr(γli = 1|yl ,Gl ,Dl,η) ≈ eη′dli BFli

1 + ∑p
k=1 eη′dlk BFlk

,

which enables the highly efficient implementation of the EM algorithm. We pro-
vide the detailed derivation of the approximation (10) in Appendix C.2 of the Sup-
plementary Materials [Wen (2016)]. The approximation (10) essentially focuses
on only a small subspace of all possible alternative models that contain at most
a single QTN. Intuitively, it yields accurate PIPs if locus l harbors either no or
exactly one QTN.

Based on Observation 1, we fully expect that the EM algorithm utilizing the ap-
proximation (10) in the E-step yields an accurate point estimate for the enrichment
parameter η in practical settings. Nevertheless, we also study the behavior of the
proposed EM algorithm under a more general setting without any restriction on the
number of genomic loci harboring multiple QTNs. We summarize our conclusion
in the following claim.

CLAIM 1. For the genomic loci that harbor multiple QTNs, the approximation
(10) shrinks the posterior inclusion probabilities of the causal SNPs toward 0.
Consequently, the SNP-level priors based on the EM estimates are biased toward
0 compared to the corresponding empirical Bayes estimates based on the exact
inference.

We provide theoretical justifications for Claim 1 in Appendix C.3 of the Sup-
plementary Materials [Wen (2016)].

In addition, assuming that the genetic effects of QTNs (i.e., the βli ’s) are ir-
relevant to the genomic annotations, we further show that by applying the ap-
proximation (10), the EM estimates of the enrichment parameters, η1, . . . , ηm, are
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unbiased, whereas the estimate of the intercept term, η0, is downward biased (Ap-
pendix C.3 of the Supplementary Materials [Wen (2016)]). We also perform nu-
merical experiments to validate this finding (Appendix C.4 and Figure 1 of the
Supplementary Materials [Wen (2016)]).

Taken together, our overall procedure approximates ul for Bayesian FDR con-
trol by

(11) ûl = 1

1 + ∑p
k=1 eη̂′dlk BFlk

,

which represents a conservative approximation of ul . The approximation is justi-
fied by the results of Lemma 1 and Claim 1, and it ensures that the desired FDR
level is rigorously controlled.

Although the approximation strategy apparently sacrifices power, particularly
for the loci harboring multiple QTNs, we expect good overall power in molecular
QTL discovery based on the prevailing empirical evidence that the vast majority
of the candidate loci contain no more than a single QTN (i.e., Observation 1). Fur-
thermore, we note that the explicit assumption of K = 1 is not more conservative
than the implicit assumption made by the state-of-the-art minimum p-value-based
approach. Moreover, the approximation enables highly efficient computation for
extremely large volumes of molecular QTL data. More importantly, it provides a
principled approach to evaluate and incorporate genomic annotations into the dis-
covery procedure, which can greatly boost the statistical power. Nevertheless, we
provide a natural extension in Section 2.4 to relax the assumption of K = 1 per
locus.

2.4. Extension to allow multiple QTNs per locus. In this section, we outline
a practical strategy to allow multiple QTNs per locus in our computational pro-
cedure. The key idea is to segment each candidate genomic locus into roughly
independent linkage disequilibrium (LD) blocks and instead assume K ≤ 1 per
LD block. Within each LD block, the genetic variants are typically highly cor-
related. Consequently, even if multiple independent association signals coexist
among tightly linked genetic variants, they are practically not identifiable. It is
therefore reasonable to assume at most a single QTN per LD block.

Suppose that locus l is partitioned into M disjoint LD blocks, and we denote the
partition by {γ l,[k] : k = 1,2, . . . ,M}. We show (in Appendix D of the Supplemen-
tary Materials [Wen (2016)]) that the posterior probability, Pr(γ l|yl ,Gl,Dl,η),
can be approximated by

(12) Pr(γ l|yl ,Gl,Dl,η) ≈
M∏

k=1

Pr(γ l,[k]|yl ,Gl,[k],Dl,[k],η).
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Briefly, this is because our priors are independent across SNPs, and, in addition, it
can be shown that

BF(γ l) ≈
M∏

k=1

BF(γ l,[k])

based on the analytic result from Wen (2014).
In the EM algorithm for estimating η̂, the approximation (8) allows directly

adopting the proposed computational strategy by treating each LD block as the unit
for analysis. To compute the approximate false discovery probability for locus l,
we again apply (12) by noting

(13) Pr(γ l = 0|yl ,Gl,Dl, η̂) ≈
M∏

k=1

Pr(γ l,[k] = 0|yl ,Gl,[k],Dl,[k], η̂).

A working receipt for segmenting genomic regions into LD blocks has been
proposed and made available by Berisa and Pickrell (2016). For the European pop-
ulation, their algorithm segments the human autosomal genome into 1700 roughly
independent LD blocks with an average size of 1.6 Mb. The size of the LD block
is indeed very similar to the size of a single candidate genomic locus interrogated
in typical molecular QTL mapping. For this reason, we do not further segment the
candidate loci in the applications discussed in this paper.

2.5. Extension to multivariate quantitative traits. Thus far, our description of
the proposed method has focused on univariate quantitative traits, for example,
gene expressions and DNA methylation measurements. Our framework can be
straightforwardly extended to applications in which the quantitative trait is mea-
sured by multivariate variables, for example, in the case of using ATAC-seq data
to quantify chromatin accessibility. To accommodate multivariate quantitative trait
data, we simply replace the model (1) by a multivariate linear regression model,
which naturally accounts for the correlations between multiple components of the
trait. In the example of ATAC-seq data, the response variable for each individual
at each locus can simply be described by a row vector with each entry represent-
ing the sequencing read counts from a predefined genomic window. To perform
the Bayesian FDR control, it only requires adjusting the single SNP association
Bayes factor according to the modified multivariate linear regression model, and
such results are available in the literature [Wen (2014)].

2.6. Extension to QTL data composing multiple heterogeneous groups. Molec-
ular QTL data collected from multiple heterogeneous sources have become in-
creasingly available [Ardlie et al. (2015), Barreiro et al. (2012), Maranville et al.
(2011), Wen, Luca and Pique-Regi (2015)]. Joint analysis of QTL data across
multiple heterogeneous groups not only improves the power of identifying consis-
tent QTL signals across groups [Flutre et al. (2013), Wen, Luca and Pique-Regi
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(2015)] but also helps to correctly map group-specific QTL signals [Barreiro et al.
(2012), Flutre et al. (2013), Maranville et al. (2011)]. Utilizing the previous sta-
tistical results from computing Bayes factors from heterogeneous subgroups [Wen
and Stephens (2014)], the proposed approach can be straightforwardly applied in
those scenarios for QTL discovery while integrating genomic annotations.

3. Simulation study. We perform a series of realistic simulation studies to
demonstrate the power, robustness and computational efficiency of the proposed
statistical procedure in molecular QTL discovery.

3.1. QTL discovery without annotation. In the first simulation, we generate
genome-wide eQTL data sets assuming no influence from any genomic feature.
Our goal is to evaluate the performance of the proposed Bayesian procedure un-
der the baseline scenario and to compare it with the commonly applied standard
permutation-based approach.

We select 11,761 protein coding and linc-RNA genes from the GEUVADIS
project [Lappalainen et al. (2013)] and the genotype data from 343 European in-
dividuals. For each gene, we randomly select 50 cis-SNPs with a minor allele
frequency of ≥0.05. With probability 1 − π0, we randomly assign 1 to 3 eQTNs.
Given the eQTNs for each gene, we simulate the expression levels using a multiple
regression model (Appendix E of the Supplementary Materials [Wen (2016)]). We
generate 20 data sets for each π0 value and vary the value of π0 from 0.1 to 0.9.

Without annotation information, the Bayesian hierarchical model is reduced to
a simple form with a single parameter in the logistic prior, which assumes a pri-
ori each candidate SNP independently and equally likely to be the causal eQTL.
For comparison, we analyze the simulated data sets using the software package
eGENE-MVN [Sul et al. (2015)]. This package implements the gold-standard QTL
discovery method that uses the minimum single SNP association p-value in a lo-
cus as the test statistic; however, it finds the corresponding locus-level p-value in
a considerably more efficient manner. After obtaining the locus-level p-values, we
perform FDR control and identify QTLs using Storey’s q-value method.

The simulation results (Table 1) indicate that both TORUS and the gold-
standard approach control FDR at the desired level and that their powers are very
similar across all π0 levels. As discussed in Section 2.3, because both methods, ex-
plicitly or implicitly, assume K = 1 for the alternative scenario, it is expected that
they are both overly conservative when π0 is low (in such scenarios, the proposed
Bayesian approach appears to be more conservative than the frequentist approach);
when π0 is large, the “one causal SNP per locus” assumption becomes closer to
the truth, and the realized false discovery rates achieve the desired control level for
both methods (in such cases, the frequentist approach appears to be more conser-
vative than the proposed Bayesian approach).

In addition, to examine the robustness of the proposed approach, we reanalyze
the simulated data but include the annotation of SNP distance to TSS (details de-
scribed in simulation study II). As expected, the enrichment analysis indicates little
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TABLE 1
Comparison of TORUS and the gold-standard minimum p-value-based QTL discovery procedure

without genomic annotations using simulated eQTL data. The realized FDR and power are
computed by averaging over the analysis results of 20 simulated QTL data sets at the genome-wide

scale. Both methods control the desired FDR level at 5% in all settings. The standard method
achieves slightly higher power when the proportion of candidate loci being QTLs (i.e., 1 − π0) is

high, whereas the proposed Bayesian procedure yields slightly better power when the proportion is
low. In all cases, however, the powers are comparable. In addition, we perform the proposed

approach using SNP distance to TSS as an annotation, and the results remain virtually identical, as
expected

TORUS without annotation Minimum p-value method

π0 FDR Power FDR Power

0.10 0.010 0.842 0.024 0.864
0.33 0.028 0.807 0.038 0.810
0.50 0.038 0.801 0.040 0.789
0.67 0.045 0.767 0.047 0.743
0.90 0.049 0.739 0.049 0.701

impact of the annotation to the eQTLs in the simulated data set (due to our simu-
lation scheme), and the results for eQTL discovery remain virtually identical.

Most importantly, our computational time benchmark shows that the proposed
Bayesian method is considerably more efficient: to analyze a single simulated data
set on a Linux box with an 8-core Intel Xeon 2.13 GHz CPU, the average running
time for the Bayesian method is approximately 2 minutes 25 seconds (with 12
parallel processing threads); in comparison, eGENE-MVN requires approximately
3 hours and 45 minutes (also with 12 parallel threads) for the same computational
task.

3.2. QTL discovery with annotation. Our second simulation study attempts to
mimic a commonly observed phenomenon in cis-eQTL mapping: eQTL signals
tend to cluster around transcription start sites of the corresponding target genes
and rapidly decrease away from TSS. We use the same set of 11,761 genes from
the GUEVADIS project but include all SNPs within a 1 Mb radius from the TSS of
each gene. On average, there are 5856 SNPs per gene (median of 5892). We do not
impose any restrictions on the minor allele frequencies of the cis-SNPs and take all
the genotypes directly from the GUEVADIS project. During the simulation, causal
eQTL SNPs are randomly assigned by a probability computed from a continuous
function of SNP distance to TSS (DTSS, measured in kb and denoted by d), that
is,

(14) p(d) = μe−λ|d|,
where λ controls the rate of decay in the expected number of causal eQTL SNPs
away from TSS and μ determines the overall expected number of cis-eQTLs. We
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experiment with two different λ values, λ = 0.02 and λ = 0.1, corresponding to
relatively modest and fast rates of decay, respectively. We then set the μ values
to keep the overall expected number of causal eQTL SNPs comparable across
the schemes. Note that our simulation function (14) is not compatible with the
functional form of our logistic prior (2).

For each simulation setting, we generate 20 data sets and analyze each data set
with and without incorporating DTSS information. We do not run the minimum
p-value-based approach on these considerably larger data sets due to the high
computational cost. Nevertheless, we fully expect its performance to be similar
to that of the proposed Bayesian approach ignoring DTSS information based on
our evaluation in the first simulation study. When utilizing DTSS information, we
follow the approaches used in Degner et al. (2012) and Veyrieras et al. (2008) to
dissect the genome into variable sizes of distance bins. In general, we use smaller
sized bins in the close vicinity of TSS and larger sized bins away from TSS. The
details on the binning of SNPs are presented in Appendix F of the Supplementary
Materials [Wen (2016)].

Our results indicate that by estimating the enrichment parameters, the Bayesian
approach effectively characterizes the impact of the DTSS on the eQTL abun-
dance. The estimation of the eQTL signal decay rates with respect to TSS is quite
accurate (Figure 1), although our estimation model is very different than the data
generative model. We also find that the baseline prevalence [which corresponds
to the parameter μ in (14)] is slightly underestimated, which results in the esti-
mates of the SNP-level priors and the FDR control being overly conservative. This
result is likely because of the combination of our approximation strategy and the
relatively small sample size. Utilizing the highly informative quantitative priors
substantially improves the power of eQTL discovery (Table 2). For the modest de-
cay rate, incorporating DTSS in eQTL discovery results in a 15% (or 7 percentage
point) power gain, whereas in the fast decay case, we find that there is a 25% (or 10
percentage point) increase in power, which results in correctly discovering ∼1000
more eQTLs/eGenes on average.

4. Real data application: Analysis of GTEx eQTL data. We analyze the
eQTL data sets from the GTEx project (release version 6), which consist of geno-
type and expression phenotype data from 44 human tissues. The sample sizes in
this data release vary from 70 (uterus) to 361 (muscle skeletal). The genotype
and expression data have been subjected to the standard quality control protocols
performed by the GTEx consortium. We download the summary-level statistics,
β̂, se(β̂), for each gene-SNP pair computed by the software package MatrixEQTL
[Shabalin (2012)] directly from the GTEx portal. The GTEx portal also provides
a list of eQTLs/eGenes for each tissue obtained by the gold-standard minimum
p-value approach using permutation and Storey’s q-value procedure.

We first run the proposed Bayesian method at the baseline without using any
annotations to identify eQTLs at the FDR 0.05 level, and the result is shown in
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FIG. 1. TORUS estimates of eQTL signal decay rates with respect to DTSS in simulations. Panels A
and B plot the estimates by the EM algorithm for the modest and fast decay rates, respectively.
Each bar in the plot represents a distance bin. To determine the height of the bar, we compute the
prior association probability of a SNP located in the corresponding distance bin by plugging in the
MLEs (averaged over 20 simulated data sets) using equation (2). We then normalize the resulting
probabilities with respect to the center bin such that the center bar always has a weight of 1. For
visualization purposes, we choose to highlight the 100 kb region centered around TSS. The solid
lines in both panels denote the true decay rate according to the generating functions. It is clear that
the enrichment estimates from the EM algorithm capture the overall patterns of the decay effect quite
accurately.
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TABLE 2
Comparison of QTL discovery with and without incorporating genomic annotations using simulated
eQTL data. We simulate the eQTL data sets such that the majority of QTN signals decay according
to the function p(d). The annotation model uses the SNP distance to TSS as annotations, whereas

the baseline model does not. For both the modest and rapid decay functions, we observe a
substantial power gain by incorporating relevant annotations into the QTL discovery

Baseline model Annotation model

Decay function FDR Power FDR Power

p(d) = 0.005e−0.02|d| 0.006 0.468 0.009 0.538
p(d) = 0.02e−0.1|d| 0.010 0.406 0.009 0.509

Figure 2(a). Compared with the permutation result, it displays a pattern that is very
similar to what we observed in the first simulation study: at the baseline level, the
Bayesian method appears to be optimal when the detectable QTL signals are overly
low, whereas when the detectable signals are high, it performs slightly worse than
the gold-standard approach.

We then include the SNP DTSS annotations into the hierarchical model and re-
analyze the data using the proposed QTL discovery procedure. We find that the
eQTL discovery is uniformly improved: in each single tissue, incorporating DTSS
yields more eQTLs than using either the baseline model or the gold-standard per-
mutation approach. On average, we discover 1475 more eQTLs/eGenes per tissue

FIG. 2. eQTL discovery from GTEx data by TORUS. We plot the number of eQTLs discovered by
TORUS versus the minimum p-value approach in each tissue. Each point represents a single tissue.
Panels A and B present the TORUS results in the baseline and by incorporating DTSS annotations,
respectively. The pattern observed in panel A is very similar to what we observed in the first simula-
tion study. With the incorporation of DTSS annotations, TORUS discovers more eQTLs in all tissues.
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compared with the gold-standard approach when incorporating DTSS information
in the hierarchical model. Most importantly, we find great concordance between
the eQTLs/eGenes discovered: on average, 93% of the eQTLs discovered by the
gold-standard permutation procedure are also identified by TORUS.

Computationally, both analyses by TORUS complete within 1 hour of running
time for a single tissue. On a distributed computing cluster, the full analysis for all
44 tissues takes less than 12 hours.

5. Discussion. In this article, we have introduced a powerful statistical ap-
proach for discovering molecular QTLs using high-throughput sequencing data
and dense genotype data. Through a combination of theoretical derivations, sim-
ulation studies and real applications, we have demonstrated that (i) our proposed
novel approach rigorously controls predefined false discovery rates in QTL dis-
covery; (ii) by naturally integrating highly informative genomic annotation, the
proposed approach consistently exhibits superior power compared with the current
gold-standard approaches; and (iii) our implementation of the proposed statistical
methods exhibits superb computational efficiency and is several hundreds times
faster than the standard approach by avoiding extensive permutations.

The proposed Bayesian hierarchical model naturally integrates genomic an-
notations into QTL mapping in an elegant probabilistic framework. Under this
framework, Bayesian FDR control becomes a natural choice for solving the aris-
ing multiple hypothesis testing problem. In comparison, it is less straightforward
to employ a p-value-based approach while taking full advantage of informative
information from genomic annotations, if not impossible.

One of our main statistical contributions in this paper is the proposed analytic
approximation framework for efficient evaluations of posterior probabilities re-
quired by the Bayesian FDR control procedure. Traditionally, the complexity of
the computation has been a major obstacle that prevents the use of Bayesian FDR
control in large-scale genomic applications. As we have shown in the paper, the
exact Bayesian inference is intractable, and the sampling-based numerical solu-
tions, for example, MCMC or Monte Carlo EM algorithms, documented in the
computational statistics literature also do not scale up to the genome-wide appli-
cations of molecular QTL mapping. Our solution of using analytic approximations
strikes a desired balance between the statistical and computational efficiency: the
proposed algorithm scales well with genome-wide molecular QTL data and rigor-
ously controls the desired level of FDR; most importantly, in practice, we observe
that incorporating relevant genomic information through the proposed procedure
significantly outweighs the price for loss of statistical efficiency in pursing a con-
servative approximation for ul .

The approximate independence among molecular phenotypes is a critical as-
sumption that we have made for multiple testing in molecular QTL discovery as
well as for the enrichment parameter estimation in the EM algorithm. In reality, di-
rectly measured molecular phenotypes (e.g., expression levels of different genes)



BAYESIAN FDR CONTROL FOR INTEGRATIVE QTL DISCOVERY 1635

are often interacting through biological pathways or networks, and are hence corre-
lated. Similarly, batch effects can also artificially introduce a dependence structure
among simultaneously measured molecular phenotypes. In both cases, the corre-
lations can be effectively accounted for by techniques of latent factor modeling
[Carvalho et al. (2008), Leek and Storey (2007)]. Primarily aimed to control for
undesired batch effects, it is now a standard practice that molecular phenotypes
are preprocessed by latent factor controlling procedures such as factor analysis and
surrogate variable analysis. As a by-product, such methods can lead to a significant
reduction in the (global) correlations among the processed/transformed molecular
phenotypes. It then becomes reasonable to assume the approximate independence
of the (processed) molecular phenotypes used in the QTL mapping. In our simula-
tions and examples shown in this paper, we use the software package PEER [Stegle
et al. (2012)], an implementation of the factor analysis model, to regress out latent
factors and observed controlled variables and take the residuals for the subsequent
cis-eQTL mapping. Finally, we acknowledge that small clusters of correlated phe-
notypes may still be present even after the preprocessing procedure. In the EM
algorithm, the existence of such a local correlation structure essentially reduces
the independent instances of the sharing of the enrichment parameters. However,
given the overall large number of molecular phenotypes in a typical genome-wide
experiment and the lack of a global correlation structure, we expect that the esti-
mation efficiency for the enrichment parameters is still sufficiently high.

The SNP distance to TSS is probably the most convenient genomic annotation.
Nevertheless, we have demonstrated that the proper use of DTSS helps to resolve a
long-standing dilemma in cis-eQTL mapping: the choice of the cis-region length.
It is well known that most cis-eQTL signals are clustered around TSS and become
sporadic away from it. This finding appears to suggest that one should focus on a
relatively narrow cis region (e.g., ∼100 kb) to reduce the multiple testing burden
and discover more eGenes. However, such an approach will inevitably miss some
distant yet strong signals, and the accumulative loss of signals across all genes
can be severe. In our proposed approach, we select a rather large cis region and
use the enrichment analysis to assess a prior weight of each SNP by their DTSS.
Consequently, neighboring SNPs of TSS are up-weighted, and distant SNPs are
relatively down-weighted. This weighting naturally solves the dilemma: the focus
is on close-by SNPs, but strong distant signals can still overcome the prior weight-
ing penalty and be uncovered.

In practice, we also note that the accuracy of the annotations can have a pro-
found impact on QTL discovery. Within our proposed inference framework, the
inaccuracy of the annotations intuitively leads to some undesired shrinkage of the
enrichment estimates for corresponding features toward 0. Consequently, the poor
quality of the annotations diminishes the benefit of the integrative QTL mapping
(although there should be no inflation of type I errors). In our future work, we aim
to extend our current framework to account for potential imprecision/uncertainties
in genomic annotations.
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Finally, we want to emphasize that, in our view, QTL discovery is not the end-
point of the molecular QTL analysis. Rather, it primarily serves as a screening
procedure to prioritize a subset of candidate loci that are highly likely to harbor
causal trait-associated variants—a strategy that is well demonstrated and widely
applied in genome-wide association studies (GWAS). It is natural to follow up with
a fine-mapping analysis on the identified molecular QTLs. The fine-mapping anal-
ysis is typically framed as a (Bayesian) variable selection problem [Wen (2014)]
and serves two purposes: first, it narrows the candidates of causal SNPs (e.g., by
constructing a credible set for each causal SNP); second, it identifies potentially
multiple independent association signals. Our QTL discovery approach naturally
connects to the downstream (Bayesian) multi-SNP fine-mapping analysis by sup-
plying the necessary SNP-level priors for fine-mapping analysis based on the prior
model (2) and the point estimate of the enrichment parameter.

6. Supplementary material and software distribution. The GTEx
summary-level statistics can be downloaded from the GTEx portal (http://www.
gtexportal.org/home/). The simulation scripts and the software package TORUS
(including source code) can be downloaded from https://github.com/xqwen/torus/
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Appendices (DOI: 10.1214/16-AOAS952SUPP; .pdf). Appendices referenced
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