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Soil erosion and sediment transport into waterways and the ocean can
adversely affect water clarity, leading to the deterioration of marine ecosys-
tems such as the iconic Great Barrier Reef (GBR) in Australia. Quantifying a
sediment load and its associated uncertainty is an important task in delineat-
ing how changes in management practices can contribute to improvements in
water quality, and therefore continued sustainability of the GBR. However,
monitoring data are spatially (and often temporally) sparse, making load es-
timation complicated, particularly when there are lengthy periods between
sampling or during peak flow periods of major events when samples cannot
be safely taken.

We develop a spatio-temporal statistical model that is mechanistically mo-
tivated by a process-based deterministic model called Dynamic SedNet. The
model is developed within a Bayesian hierarchical modelling framework that
uses dimension reduction to accommodate seasonal and spatial patterns to
assimilate monitored sediment concentration and flow data with output from
Dynamic SedNet. The approach is applied in the Upper Burdekin catchment
in Queensland, Australia, where we obtain daily estimates of sediment con-
centrations, stream discharge volumes and sediment loads at 411 spatial lo-
cations across 20 years. Our approach provides a method for assimilating
both monitoring data and modelled output, providing a statistically rigorous
method for quantifying uncertainty through space and time that was previ-
ously unavailable through process-based models.

1. Introduction. The Great Barrier Reef (GBR) off the northeastern coast of
Queensland, Australia, is the largest reef system in the world, with an ecosys-
tem spanning an area of 350,000 km2, containing 3000 individual reefs having a
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combined area of 24,000 km2. Listed as a World Heritage Site, the GBR is an Aus-
tralian icon that adds billions of dollars to the Australian economy through tourism,
commercial fishing and agriculture, among other industries [Furnas (2003)]. The
GBR catchment area is extensive (∼430,000 km2) and diverse, covering dry and
wet tropical landscapes with a variety of agricultural uses (including forests, graz-
ing, horticulture and sugarcane) [Brodie et al. (2010)]. As noted by De’ath et al.
(2012), both global and local disturbances affect the health of the reef. One re-
gional factor is increased suspended sediment in the water column leading to
reduced water clarity and a decline in coral biodiversity and seagrass condition.
There are several ways to transport suspended sediment to the reef, one of which
is from soil erosion induced by overland flow [see Bartley et al. (2014) and the
references therein]. Sediment discharge from rivers flowing into the GBR lagoon
can have an adverse effect on the marine ecosystem [Brodie et al. (2011), Fabricius
et al. (2014)]. There is evidence suggesting that the amount of sediment from over-
land flow has increased over the last 150 years due to rapid agricultural expan-
sion and clearing [Furnas (2003), McCulloch et al. (2003)]. The Australian and
Queensland governments, through the Reef Water Quality Protection Plan (2013),
call for a 20% reduction in sediment discharged into the GBR lagoon by 2020. To
achieve this, methods for quantifying sediment loads entering into the lagoon with
a high level of confidence are required to determine the main sources of erosion
and whether changes in land management practices are effective for remediation
[Bartley et al. (2010), Brodie et al. (2012), Wilkinson et al. (2013)].

Load quantification methods are well documented and summarised within
the literature [Cooper and Watts (2002), Letcher et al. (2002)], ranging from
empirically-based approaches to more complex, physically-based models. Popu-
lar data-driven methods include ratio estimators and linear interpolation schemes
[Littlewood and Marsh (2005)]. Whilst such methods offer a simple solution, they
cannot quantify the uncertainties associated with concentration and flow rates, nor
make use of the vast knowledge base that exists in the catchment modelling com-
munity around the physical processes governing load generation. Rating curve
methods provide a mechanism for estimating the concentration of a contami-
nant (e.g., sediment) given flows, while accommodating uncertainties associated
with measurement error in flow and concentration in a regression-based frame-
work [Cohn (1995), Cohn et al. (1992), Walling and Webb (1985)]. Various ex-
tensions to these approaches have led to improvements in the estimation of the
load and the explicit incorporation of uncertainty through Monte Carlo simulation
[Crawford (1991)], bootstrapping [Rustomji and Wilkinson (2008)], semiparamet-
ric approaches incorporating uncertainty associated with the hydrological process
[Kuhnert et al. (2012), Wang, Kuhnert and Henderson (2011)] and Bayesian meth-
ods [Le Coz et al. (2014), Moyeed and Clarke (2005), Reitan and Petersen-Øverleir
(2011)]. Yet these approaches are all site based and do not allow estimates to bor-
row strength across multiple sites in space through time. They also do not incorpo-
rate hydrological process uncertainty, with exception to the previously mentioned
methods of Kuhnert et al. (2012), Wang, Kuhnert and Henderson (2011).
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There exists a number of popular physically based process models used for
quantifying loads. In contrast to the statistical approaches outlined above, these
models are deterministic in nature and generally require additional statistical tools
to quantify errors and uncertainties. For a thorough review of sediment transport
models, we refer the reader to Aksoy and Kavvas (2005). Over the last decade
in Australia, the catchment modelling community has developed a number of
process-based models that can be used for estimating sediment loads specifically
suited to the Australian landscape. The two main models employed in this arena
are SedNet and Dynamic SedNet (D-SedNet), with the latter model being imple-
mented through the Source software modelling platform [Armour, Hateley and
Pitt (2009), Wilkinson et al. (2014)]. The strength of these catchment models lies
in providing an understanding of the links between the processes that generate
runoff, erosion and the sediment load. However, the output of such models may
not always agree with observed flow and sediment concentrations seen in field
monitoring. For example, Wilkinson et al. (2014) state that their model may under-
predict loads following drought years. Moreover, measures of uncertainty are not
readily available within this modelling framework. Two of the more popular ap-
proaches for assessing uncertainty in hydrological modelling are the Parameter
ESTimation (PEST) tool [e.g., Doherty and Johnston (2003)] and the generalised
likelihood uncertainty estimation (GLUE) [e.g., Beven and Freer (2001)]. PEST
focuses on estimation through the regularization of the parameter space, seeking
to minimise uncertainty in the parameters. However, the approach makes the sim-
plifying assumptions that model outputs are a linear function of model parameters
and differentiability with respect to the parameters [Doherty and Hunt (2009)].
Applications of PEST also often rely on calibrating a model to some objective
function defined by the user. GLUE focuses on specification of a “less formal
likelihood.” However, it has recently been strongly criticised for inconsistent and
paradoxical results in models with a complex error structure [Mantovan and Todini
(2006)].

A powerful alternative modelling framework for the quantification of uncer-
tainty is the Bayesian paradigm. Unlike frameworks like GLUE, Bayesian statis-
tics has a rigorous probabilistic basis, and has broad appeal in the environmen-
tal sciences [Clark (2005)], not just in hydrology. Examples of Bayesian stud-
ies in the context of hydrological modelling include pollutant load models in Liu
et al. (2008), Chen et al. (2012), and sediment models as described in Schmelter,
Hooten and Stevens (2011) and Pagendam et al. (2014). In particular, Bayesian hi-
erarchical modelling (BHM) provides a framework for assimilating process-based
model output with monitoring data, whilst acknowledging errors and uncertainties
in both information sources [Berliner (1996), Cressie and Wikle (2011), Wikle and
Berliner (2007)]. Specific examples of this approach include the following: Wu,
Clark and Vose (2010) who blended monitoring data of temperature, precipitation,
soil moisture and streamflow with the output of the GR4J model for streamflow
[Perrin, Michel and Andréassian (2003)]; and Pagendam et al. (2014) who utilised
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FIG. 1. Map of the Upper Burdekin catchment with 411 spatial sites of interest with D-SedNet out-
put corresponding to the 411 drainage regions. The insert map in the upper right shows the entire
Burdekin catchment (dark) in relation to the rest of Australia. Pink stars indicate 8 locations with
both concentration and flow monitoring data (BL indicates Blue Range, RR indicates Running River,
KB indicates Keelbottom River, SR indicates Star River, CR indicates Clarke River, BR indicates
Basalt River, GF indicates Gainsford, SC indicates Sellheim). The yellow square shows 1 site with
only flow monitoring data (LL indicates Lucy Lake). Green diamonds indicate 5 locations with only
concentration monitoring data (LC indicates Lolworth Creek, MC indicates Maryvale Creek, CC in-
dicates Camel Creek, GC indicates Grey Creek, DR indicates Dry River). The black line indicates the
rest of the Burdekin River from the end-of-catchment Sellheim site through the Burdekin catchment
to the Great Barrier Reef (blue) lagoon.

the BHM framework by blending observations of flow and sediment concentration
at a site within the Burdekin catchment on the GBR with the SIMHYD rainfall-
runoff model [Chiew, Peel and Western (2002)] and a mechanistically-motivated
contaminant generation model [Kuhnert et al. (2012), Wang, Kuhnert and Hender-
son (2011)].

The goal of this manuscript is to develop a methodology that quantifies sed-
iment loads while incorporating multiple sources of information and accounting
for spatial and multiscale temporal dependencies. This paper continues the work
of Pagendam et al. (2014) by modelling sediment loads quantification at 411 sites
over 20 years in the Upper Burdekin through the BHM framework (see Figure 1).
The difficulties overcome by Pagendam et al. (2014), such as missing data, nonsta-
tionarity of the process, high dimensionality and extreme events, are compounded
by modelling sediment loads through space and time. This becomes especially
apparent in the sparse monitoring data which are not missing at random. Process-
based model output can help inform the true state of nature at locations and times
without monitoring data, but such “data” will also have added uncertainty. Ideally,
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multiple process-based model output runs would occur to help reduce uncertainty,
but due to various issues (such as financial or computational time), as in our case,
only one model run was available. Therefore, to inform the underlying true sed-
iment load, we fuse flow and concentration monitoring data with the respected
outputs arising from one run of the process-based model. Due to the variable na-
ture of flow and concentration arising from extreme events, our model also needs to
accommodate nonstationarity in space and in time. Furthermore, stream-network
systems such as the Upper Burdekin can exhibit multiscale temporal behaviour
that extends beyond a simple autoregressive structure. Thus, a novel component
in our model is the reduced rank formulation that uses a basis expansion in both
space and time. This has the added benefit of alleviating the curse of dimensional-
ity common in such spatio-temporal processes.

The remainder of the paper proceeds as follows. Section 2 describes the com-
puter model output and monitoring data used in estimating sediment loads in the
Upper Burdekin catchment. Section 3 introduces the specifics of the model, in-
cluding transformations of the data, implementation of mechanistic information
and adaptations of the Bayesian hierarchical modelling framework. Section 4 ap-
plies the methodology developed to the Upper Burdekin catchment. We conclude
with a discussion in Section 5 and make recommendations on how this method-
ology can be used to inform decision-making by managers to assist catchment
remediation.

2. Description of the data. Cohn (1995) defines a sediment load L as the
mass of sediment transported past a location over a specified time period; that is,
for a given time interval [t1, t2], L = ∫ t2

t1
c(t)q(t) dt , where c(t) represents sedi-

ment concentration (measured as mass per unit volume) and q(t) represents flow
(measured as volume per unit time). As the load L cannot be measured directly,
we estimate it through discrete measurements of the continuous-time processes for
concentration c(t) and stream flow q(t). Since the load is computed as an integral
and the observations are measured discretely, the computation is approximated
by utilising the total daily flow vi and the average daily concentration ĉi , with
L ≈ ∑n

i=1 vi ĉi . Both the continuous and discrete-time representations of the load
cannot be calculated if missing values are present for either the concentration or
the flow. Estimating a load is therefore reliant on modelling these quantities where
gaps exist in monitoring data, which is why process-based models have emerged
as popular tools for modelling sediment loads. Ideally, the estimated load should
be based on all available information. BHMs can be considered to achieve this in
a statistically rigorous framework.

The Burdekin catchment, located in northeastern Australia, spans an area of
approximately 130,000 km2 and discharges the largest annual sediment load into
the GBR lagoon [Bartley et al. (2014)]. The primary land use within the Burdekin
catchment is cattle grazing, which accounts for 95% of land use [Furnas (2003)].
We focus on the Upper Burdekin sub-catchment, one of 6 sub-catchments in the
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Burdekin, which comprises an area of approximately 36,000 km2 (see Figure 1).
We utilised daily data over a 20 year period from 1 July, 1988, through 30 June,
2008. For our purposes, we ignore leap days, and define a year as consisting of 365
days. Furthermore, our years are based on the Australian financial year (1 July–30
June) that coincides with the reporting of loads [Reef Water Quality Protection
Plan, 2013. This time period corresponds to computer model output for the Bur-
dekin D-SedNet model.

2.1. The burdekin D-SedNet model. The Queensland government has invested
heavily in the development of D-SedNet within the Source modelling framework
for estimating loads from GBR catchments. In the work presented herein, we make
use of one such D-SedNet model run for the Upper Burdekin catchment using daily
observations. The model makes use of spatial grids of daily rainfall and potential
evapotranspiration (interpolated from weather station information) to predict dif-
ferent sources of streamflow (e.g., runoff versus baseflow) using the SIMHYD
rainfall runoff model [Wilkinson et al. (2013), Wilkinson et al. (2014)]. Surface
runoff is then used in conjunction with constituent generation models to predict
sediment loads derived from hillslope, gully and bank erosion. D-SedNet mod-
els each of these erosion sources through processes associated with the landscape
and specific erosion rate properties. For example, the hillslope erosion genera-
tion model uses a spatial Revised Universal Soil Loss Equation (RUSLE) model
[Renard et al. (1997)] that accounts for the spatial properties, such as slope length
and gradient, erosion control practices, erodability of the soil and vegetation cover.
The gully erosion generation model uses similar spatial properties, including the
proportion of area and depth of gullies associated with the stream network con-
tributing area, cross-sectional area, gully density, bulk density of the soil, and silt
and clay proportions of the gully soil, among other factors. D-SedNet models sed-
iment generated from bank erosion through bank risk factors while accounting for
floodplain deposition and channel deposition or remobilisation. Bank risk factors
include the presence and effectiveness of riparian vegetation and erodibility of the
bank soil. Generated loads are transferred with runoff to the stream network, where
loads and flows are accessible, thus allowing calculation of concentrations. For the
mathematical details of the D-SedNet model, we refer the reader to Wilkinson et al.
(2014).

2.2. Monitoring in the upper burdekin catchment. In general, the spatial cov-
erage of monitoring sites across GBR catchments is sparse, with potentially sub-
stantial variability in monitoring frequency. Flow data are measured at fixed gaug-
ing stations, with measurements typically recorded every 10–15 minutes, which
can be used to compute a daily flow volume. Sediment concentration is measured
much more infrequently and focuses on high-flow events where the majority of
the mass transport takes place. At present, monitoring concentration and flow at
regular intervals over a spatially dense network is economically and logistically
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FIG. 2. Time series plots of the D-SedNet model output (red line) and observations (transparent
black points) for the Sellheim site for (a) concentration in mg/L, and (b) flow in m3/s.

infeasible. Monitoring locations are therefore chosen according to ease of access
and the cost associated with monitoring either using automatic loggers or manual
sampling. Figure 1 shows a river network for the Upper Burdekin sub-catchment
consisting of 411 links, connected by nodes where water flows from one stretch
of water to another. As highlighted by Figure 1, monitoring was performed at nine
links for flow and thirteen links for concentration. Only eight monitoring sites had
both flow and concentration [Bainbridge et al. (2014)]. Flow monitoring data were
available for the majority of the time period of interest, but concentration moni-
toring data were available primarily from 2004 through 2008. Figure 2 shows the
available daily monitoring data for sediment concentration and flow for the end-of-
catchment site, the Sellheim site. Additional figures for sites with monitored flow
or concentration are found in the online supplementary material [Gladish et al.
(2016)]. Furthermore, the number of available days with monitoring data are found
in Table 1. Note that sediment concentration has much fewer total monitored days
(176) compared to flow (41,682). Furthermore, 41,551 days were monitored for
flow only, 45 for concentration, and 131 for both concentration and flow.

3. Methods. In developing our model, we account for spatial variability and
temporal variability on both yearly and daily scales. To achieve this, we draw upon
the approach developed by Oleson and Wikle (2013) and develop a two-stage di-
mension reduction approach of both the temporal and spatial domains. Specifi-
cally, we assimilate monitoring data with D-SedNet output through two data mod-
els, both of which are conditioned on the underlying “true” process. This accom-
modates the sparse nature of monitoring as highlighted in Section 2 through “in-
filling” of missing monitoring observations while still accounting for uncertainty
associated at unmonitored sites and days. We then project this process onto a latent
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TABLE 1
Number of days for sites where at least either concentration or flow was monitored, with the total

number of monitored days across all sites. Each site has a maximum 7300 possible days of
monitoring

Site Concentration Flow

Sellheim 45 7042
Star River 10 779
Keelbottom Creek 36 5125
Running River 7 6478
Blue Range 10 7300
Gainsford 10 1486
Basalt River 7 7059
Clarke River 14 379
Camel Creek 4 0
Dry River 6 0
Grey Creek 9 0
Lolworth Creek 17 0
Maryvale Creek 1 0
Lake Lucy 0 6034

Total 176 41,682

spatial process through a spectral seasonal decomposition with in-season varying
error structure. This spatial process is then projected onto another spectral pro-
cess through a spatial decomposition while influenced by covariates. This second
hidden process is then modelled dynamically. The following sections outline the
specifics of our approach which are summarised in Table 2.

3.1. Data model. We utilise two data sources to inform the underlying latent
process: (i) the monitoring data (field observations); and (ii) the D-SedNet model
output. Note, as the scale of variability in flow and concentration data increases
greatly as one travels downstream due to the accumulation of water and sediment
from upstream tributaries, we rescale the monitoring data and D-SedNet model
output by the terminal node of the stream network (herein referred to as the Sell-
heim site) over the entire study period. We further apply a Box–Cox transformation
[Box and Cox (1964)] to accommodate positively skewed data resulting from this
rescaling. Box–Cox-like transformations have been successfully used to model
similar processes [e.g., see Sansó and Guenni (1999); Cressie and Wikle (2011),
page 380]. More formally, we define the Box–Cox transformation as

z(si; tj,k) = ((z∗(si; tj,k) + ρ2)
ρ1 − 1)

ρ1
,

where z∗(si; tj,k) represents the data (either flow or concentration rescaled with
respect to Sellheim) at spatial location (i = 1, . . . , n) and day tj,k ≡ (k − 1)T + j
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TABLE 2
Specification of the data, process and parameters models of the Bayesian hierarchical model. Note,

qε(j), rε(j), qγ (l), rγ (l), qη(l), rη(l), λ0, σ 2
λ , μ0, �0, μM and �M are prespecified

hyperparameters. Note further that Hobs
ik is an incidence matrix for the field observations. The

variance hyperparameters qε(j) and rε(j) for j = 1, . . . , T , qγ (l) and rγ (l) for l = 1, . . . , p, and
qη(l) and rη(l) for l = 1, . . . , q are all set at 0.1. The mean hyperparameters λ0, μ0 and μM are

all set at 0. The hyperparameters σ 2
λ , �0 and �M are set at 100, 100I and 100I, respectively

Stage Model

Data model: Zobs
ik = Hobs

ik Yik + eobs
ik , eobs

ik ∼ Gau(0, σ 2
obsI),

Zsrc
ik = Yik + esrc

ik , esrc
ik ∼ Gau(0,�src

ik ),
Process model: Yik = �αik + εik,εik ∼ Gau(0,�ε),

α̃k = �βk + λ ⊗ Xk + γ k,γ k ∼ Gau(0,�γ ),
βk = Mβk−1 + ηk,ηk ∼ Gau(0,�η),

Parameter model: σ 2
ε (j) ∼ IG(qε(j), rε(j)), j = 1, . . . , T ,

σ 2
γ (l) ∼ IG(qγ (l), rγ (l)), l = 1, . . . , p,

σ 2
η (l) ∼ IG(qη(l), rη(l)), l = 1, . . . , q,

λ ∼ Gau(λ0, σ 2
λ I),

β0 ∼ Gau(μ0,�0),
m ≡ diag(M) ∼ Gau(μM,�M),
σ 2

obs is estimated from the data and fixed for both flow and concentration,
�src

ik is estimated from the data and fixed for both flow and concentration.

(j = 1, . . . , T and k = 1, . . . ,K), where Ds is the spatial domain of the stream
network, i is an index over sites, j is an index over days, and k is an index over
years. For our purposes, T = 365, as we ignore leap days, and K = 20. Further,
ρ1 is a power transformation parameter and ρ2 is a shift parameter set a priori. We
estimate ρ1 empirically for concentration and flow based on the profile likelihood
of the D-SedNet output over all sites and times. Additionally, ρ2 is set at half the
minimum nonzero value of z∗(si; tj,k) over all sites and times.

We define zd
ijk ≡ zd(si; tj,k) as the transformed data (either flow or concen-

tration) for d ∈ {obs, src}, where obs corresponds to the monitoring data and src
corresponds to the D-SedNet model output. We then define Zd

ik as the vector of
length md

ik with elements zd
ijk , where md

ik is the number of days with data for loca-

tion i, year k. Note that Zobs
ik will be sparse (often with mobs

ik ≡ 0), while Zsrc
ik will

have no missing values (with msrc
ik ≡ T ). The general data models can be written

as

Zobs
ik = Hobs

ik Yik + eobs
ik , eobs

ik ∼ Gau
(
0, σ 2

obsI
)
,

(1)
Zsrc

ik = Yik + esrc
ik , esrc

ik ∼ Gau
(
0,�src

ik

)
,

where Yik ≡ (Yi1k, . . . , YiT k)
′ is the T -dimensional vector corresponding to the la-

tent process, Hobs
ik is an incidence (zero/one) matrix accounting for potential miss-
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ing data in the monitoring data, and σ 2
obsI and �src

ik are covariance matrices corre-
sponding to deviations between the true underlying latent process and each of the
two types of data. We specify the structure of �src

ik in equation (1) differently for
the concentration and flow models. For flow, �src

ik ≡ σ 2
srcI, and, for concentration,

�src
ik is a time-varying diagonal matrix with different variances for each element of

the vector Zsrc
ik (details of which are given in Section 3.5).

3.2. Seasonal process model. We use a reduced rank approach to model the
latent process as a function of the spectra of the spatio-temporal dynamics for
flow and concentration. Specifically, we model the dynamics of these processes
as a projection onto spectral basis functions by means of a truncated Karhunen–
Loève (K–L) expansion of the D-SedNet model output, with the dynamics in the
latent processes modelled through the random spectral coefficients [see Cressie
and Wikle (2011), Section 7.2.6]. Since the hydrological processes under investi-
gation follow a seasonal pattern, we first use a spectral representation of the dy-
namics within years that is common across all sites. The resulting seasonal spectral
expansion coefficients vary across space and can be treated as a latent spatial pro-
cess, and can be modelled in a reduced rank setting by undertaking a second trun-
cated K–L expansion of the spatial processes. This two-tiered dimension reduction
approach is based on the methodology adopted by Oleson and Wikle (2013), and
precise details of our implementation are provided in Section 3.8. Under this ap-
proach, we model Yik as

(2) Yik = �αik + εik,

where � is a T × p matrix of seasonal (yearly) spectral basis functions, αik ≡
(αik(1), . . . , αik(p))′ is a p-dimensional vector of expansion coefficients, p is the
number of basis vectors retained when truncating the K–L expansion, and εik is
a zero-mean Gaussian error process independent of αik . For our purposes, we let
εik ∼ Gau(0,�ε), where �ε ≡ diag(σ 2

ε,1, . . . , σ
2
ε,T ). Critically, this error structure

accommodates heteroskedasticity in the error process over the course of a year,
allowing for larger errors in the highly dynamic wet season compared to the more
stable dry season.

3.3. Spatial process model. As pointed out by Oleson and Wikle (2013), the
resulting αik values are a multivariate spatial field of expansion coefficients over
K years. As such, we reformulate the αik process at year k by constructing a p ×n

matrix Ak whose columns are αik ; that is,

Ak = (α1k, . . . ,αnk).

We then define α̃k as the vectorisation of the transpose of Ak , α̃k ≡ vec(A′
k). The

np-dimensional vector α̃k is a multivariate spatio-temporal process. Following
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Oleson and Wikle (2013), we project this process onto a second rank-reduced ba-
sis function expansion (by means of another truncated K–L expansion). We model
the yearly dynamics in these spatial fields of spectral coefficients as

(3) α̃k = �βk + λ ⊗ Xk + γ k,

where βk is a q-dimensional latent random effects process. In this expression, q is
the number of basis functions retained through the truncation of the K–L expansion
and � is a np×q matrix of multivariate spatial basis functions. The formulation in
equation (3) allows for the inclusion of exogenous explanatory variables that may
have some relationship to the latent hydrological process (Yik). In this expression,
Xk is an n-dimensional vector of (potentially spatial) exogenous variables at year
k and λ is a vector of coefficients of length p whose lth component λl corresponds
to the lth spatial basis function. We further assume the error process γ k is zero-
mean with γ k ∼ Gau(0,�γ ), and independent of βk and λ. By using spatial basis
functions �, we assume that �βk captures the spatial variability in α̃k and, fur-
thermore, that �βk captures the codependency between the components of αik .
Consequently, we use a diagonal error structure for γ k with individual errors for
each spatial field, whereby �γ = diag(σ 2

γ (1), . . . , σ 2
γ (p)) ⊗ In. Critically, through

using spatial basis functions, we are able to model the spatial dependence of the
process in a reduced rank setting, avoiding the computational costs associated with
high dimensionality.

3.4. Process model dynamics. The underlying dynamics of α̃k are propagated
through a first-order Markov process

βk = M (βk−1; θ;ηk),

which evolves the coefficients βk according to some function M . This expression
depends on the coefficients of the previous time βk−1, some underlying error pro-
cess ηk and parameters θ . For our purposes, we follow the formulation of Oleson
and Wikle (2013) and utilise a first-order linear autoregressive structure, but we
note that more complex formulations [such as the generalised quadratic nonlin-
ear framework outlined by Wikle and Hooten (2010)] are also possible candidate
models. Specifically, we follow the formulation, for k = 1, . . . ,K ,

βk = Mβk−1 + ηk,

where ηk ∼ Gau(0,�η), M is a q × q propagator matrix, and �η is a covariance
matrix associated with the autoregressive model. We make the further simplifying
assumptions that M and �η are both diagonal matrices, though a general vector
autoregressive structure could be used as well. We specify m ≡ diag(M) and σ 2

η (l)

as element (l, l) of the matrix �η. The initial dynamics are specified by β0 ∼
Gau(μ0,�0), where μ0 and �0 are prespecified hyperparameters.
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3.5. Parameter model. The parameter model provides an avenue for includ-
ing prior information (from previous studies or expert opinion) about parameters
into the current study through prior distributions. In our analyses, we use conju-
gate prior distributions in order to use Gibbs sampling from the full conditional
distributions [Geman and Geman (1984)]. The conjugate priors used in this study
were as follows:

σ 2
ε (j) ∼ IG

(
qε(j), rε(j)

)
, j = 1, . . . , T ,

σ 2
γ (l) ∼ IG

(
qγ (l), rγ (l)

)
, l = 1, . . . , p,

λ ∼ Gau
(
λ0, σ

2
λ I

)
,

m ∼ Gau(μM,�M),

σ 2
η (l) ∼ IG

(
qη(l), rη(l)

)
, l = 1, . . . , q,

where qε(j),rε(j), qγ (l), rγ (l), λ0, σ 2
λ , μM , �M , qη(l) and rη(l) are all prespeci-

fied hyperparameters.

3.6. Data model variance specification. Due to potential nonidentifiability,
some parameters need to be fixed. With sparse monitoring data, it is unlikely that
the model will inform σ 2

obs. However, we can elicit this value using previous work.
Further, we also assume the data model variance from D-SedNet, �src

ik , is set a
priori. We compute the measurement error variance for flow observations, σ 2

obs,Q,
by first obtaining deviations between gaugings and flow rating curves [similar in
approach to Tomkins (2014)] on the transformed scale. Note that the rescaling and
Box–Cox transformations that were applied to the data (outlined in Section 3.1) re-
sulted in relatively homoscedastic deviations on the transformed scale, which made
our use of a single variance parameter across sites possible. For the error variance
for D-SedNet modelled flow, �

src,Q
ik ≡ σ 2

src,QI, we use a similar approach in esti-

mating σ 2
src,Q, but using the deviations between gaugings and the corresponding

modelled flow at the location and time that the gauging was recorded to estimate
this parameter.

The measurement error variance in sediment concentration, σ 2
obs,C , is estimated

using a set of sediment concentration monitoring data that is supplementary to the
concentration data used in the rest of the analysis. These data were collected in
adjacent sub-catchments on the Belyando, Burdekin, Cape and Suttor Rivers [see
Bainbridge et al. (2014)]. At each of these sites three samples were collected at
each of three different locations: the right bank, the left bank and the middle of the
stream. A random effects linear model of the form

zijk = μ + αi + βij + εijk

was then fit, where zijk represented the transformed observed concentration at river
i, location j (i.e., right, left and middle), and sample k, μ is the grand mean, αi
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is a random effect for river i, βij is a random effect for location j within river i,
and εijk ∼ Gau(0, σ 2

obs,C) is the residual. The estimate of the residual error vari-
ance from the analysis was then used for σ 2

obs,C and quantifies the unexplained
variability that is exhibited in sediment concentration samples in the field.

Last, we estimated the error variance for sediment concentration �src,C
ik using

our estimate of the error variance of D-SedNet flow output (σ 2
src,Q) and the deter-

ministic relationship Cnat
src = Lnat

src/Q
nat
src , where Cnat

src is the daily concentration, Lnat
src

is the daily load, and Qnat
src is the daily flow volume (all from D-SedNet and all on

the natural scale). We then employ the delta method to approximate the elements
of �src,C

ik using the transformed daily outputs from D-SedNet:

Var(Csrc) ≈
(

∂Csrc

∂Qsrc

)2
Var(Qsrc),

where Csrc, Lsrc and Qsrc are the daily concentration, load and flow volume from
D-SedNet on the transformed scale. As discussed above, the variance in D-SedNet
flow has been quantified on a transformed scale, following a rescaling of the data
and a subsequent Box–Cox transformation. It is easy to verify that

∂Csrc

∂Qsrc
= −(

Lsrcρ
Q
3 ρC

3
((

ρ
Q
1 Qsrc + 1

)1/ρ
Q
1 − ρ

Q
2

)−1 + ρC
2

)(ρC
1 −1)

× −Lsrcρ
Q
3 ρC

3
((

ρ
Q
1 Qsrc + 1

)1/ρ
Q
1 − ρ

Q
2

)−2

× (
ρ

Q
1 Qsrc + 1

)(1/ρ
Q
1 −1)

,

where ρ
Q
1 , ρ

Q
2 , ρC

1 and ρC
2 represent the Box–Cox parameters used for flow

(Q) and concentration (C), respectively, and ρ
Q
3 and ρC

3 are parameters used in

the end-of-catchment rescaling discussed in Section 3.1 (i.e., Qsrc = ρ
Q
3 Qnat

src and
Csrc = ρC

3 Cnat
src ). In practice, the delta method potentially results in some elements

of �src,C
ik lower than σ 2

obs,C , indicating that there was less uncertainty in D-SedNet
output than in observations. We note that 99% of the time this occurs, D-SedNet
estimates flow at less than 1 m3/s, indicating zero to extremely low flow. Because
of this and based on expert opinion, we assume that the variance of outputs from
the D-SedNet model would never be lower than the variance of observations since
measurements are considered more reliable than model output. Therefore, we set
�src,C

ik to σ 2
obs,C on days at sites where this occurred.

3.7. Covariate specification. We include one covariate for both the concentra-
tion and flow models. For concentration, we use C-Factor, a value that is a function
of vegetative ground cover. C-factor is an input variable typically used in USLE
models, such as the hillslope erosion model described in Section 2.1 [Renard et al.
(1997)], and has an inverse relationship with cover. Furthermore, C-factor is a spa-
tial covariate that varies by financial year. In the current application, C-factor was
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used as a predictor of hillslope erosion in open grazing land to estimate sediment
generation. Specifically, C-factor is defined as in Rosewell (1993) as

C-factor = exp
(−0.799 − 0.0474 cover+0.000449 cover2

− 0.0000052 cover3)
.

We include a measure related to vegetative cover, due to the fact that studies
show it to be a key driving factor in sediment transportation for the concentration
model [e.g., Bartley et al. (2010)], and the annual mean Pacific Decadal Oscillation
(PDO), a climate variable that potentially impacts rainfall runoff, and hence flow
[Lough, Lewis and Cantin (2015)]. Details of these covariates are found in the sup-
plementary material [Gladish et al. (2016)]. We note that, although we utilise cover
and PDO, alternative exogenous covariates could be used as well as inclusion of
multiple covariates for either flow or concentration.

3.8. Basis function specification. As outlined in the process model, our ap-
proach relies upon dimension reduction of a high-dimensional spatio-temporal
modelling problem by projecting the latent processes onto a set of basis functions.
Whilst a variety of such basis functions could be employed, we utilise Empirical
Orthogonal Functions (EOFs) because of: (i) their successful application in a vari-
ety of spatio-temporal modelling problems [recent examples include Brynjarsdóttir
and Berliner (2014), Gladish and Wikle (2014), Graf et al. (2014), Wu, Holan and
Wikle (2013)]; and (ii) the truncated K–L expansion results in an approximation
of the original process with the lowest possible mean square error [Cressie and
Wikle (2011), Section 5.3]. The Karhunen–Loève expansion implemented here is
for stochastic processes over a discrete spatial or temporal domain so that obtaining
the basis functions is as simple as performing an eigenvalue decomposition on the
empirical covariance matrix. For the first K–L expansion performed in the tempo-
ral domain, the EOFs for flow and concentration are based on output obtained from
the D-SedNet model. This allows the underlying latent process to adopt the spec-
tral properties of the D-SedNet model. We follow the same procedure as Oleson
and Wikle (2013), and outline the details here.

To obtain � for either concentration or flow, we calculate the seasonal empirical
covariance matrix �̂, where

�̂ = 1

nK − 1

K∑
k=1

n∑
i=1

(
Zsrc

ik − Z
)(

Zsrc
ik − Z

)′
,

where n is the number of spatial locations, K is the number of years, Zsrc
ik is defined

as in Section 3.1, and Z ≡ 1
nK

∑K
k=1

∑n
i=1 Zsrc

ik . Based on this expression, �̂ rep-
resents the empirical covariance matrix averaged over all 411 links in the stream
network and over the K years the model was run. The first p eigenvectors of �̂
then form the columns of the T × p matrix � , where p ∈ {1, . . . , T } is chosen as
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the smallest integer for which argminp

∑p
i=1 λ�

i /
∑T

i=1 λ�
i ≥ κ , where λ�

1 , . . . , λ�
T

are the eigenvalues of �̂ in descending order and κ ∈ [0,1] is user specified to ac-
count for a set percentage of the variability in the output when truncating the K–L
expansion.

We estimate � by first estimating α̂ik ≡ � ′Zsrc
ik , restructuring as in equation (3)

to obtain ̂̃αk . We then determine �̂α̃ by

�̂α̃ = 1

K − 1

K∑
k=1

(̂̃αk − α̃)(̂̃αk − α̃)′,

where α̃ ≡ 1
K

∑K
k=1

̂̃αk . The first q eigenvectors of �̂α̃ then form the column vec-
tors of the np × q matrix �. The truncation point q is then chosen similarly as
for p.

4. Application to the Upper Burdekin. We apply the methodology devel-
oped in Section 3 to the 20 financial years (FY) of data in the Upper Burdekin
catchment (see Section 2). Specifically, using daily D-SedNet output and moni-
toring data from 1 July, 1988, to 30 June, 2008, the approach is applied on 7300
days over 411 sites (Figure 1). This resulted in 3,000,300 parameters of the latent
process of interest, Yijk for both flow and concentration. These can then be used
to obtain estimates of sediment loads with a measure of uncertainty. Due to the
number of parameters of interest, we predominantly focus on a select set of years
and Sellheim, the end-of-catchment site.

4.1. Upper burdekin implementation. D-SedNet was initially run over the
stream node-network shown in Figure 1 and described in Section 2.1, generating
one D-SedNet output set for concentration and flow. Using the resulting daily sed-
iment concentration and flow, we utilise the Box–Cox transformation described in
Section 3.1. Since sediment concentration and flow from the D-SedNet output both
contain zero values, we set the shift parameter ρ2 at half the minimum nonzero
value, being ρC

2 = 5.59×10−17 for concentration and ρ
Q
2 = 1.51×10−12 for flow.

The value of ρ1 is chosen from the region that maximised the profile log-likelihood
from the D-SedNet output for flow and concentration. We found ρ1 = 0.1 suitable
for both flow and concentration.

We first construct EOFs described in Section 3.8 for both concentration and
flow to account for 80% of the variability in the D-SedNet output. EOFs for the
seasonal � and spatial � representations of concentration are based on p = 13
and q = 11 components, respectively. EOFs for flow considered p = 8 and q = 6
components. Remaining EOFs accounted for less than 1% of the total variability
in either the seasonal or spatial decompositions for both concentration and flow,
and their exclusion was considered to have a negligible effect on the results.

We next set the data model variances using the methodology outlined in Sec-
tion 3.5. For the concentration formulation, we set the monitoring data model vari-
ance σ 2

obs,C = 0.0443, and the D-SedNet variance �src,C
ik has values that range
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from 0.0443 to 1249.879, with 95% of the values lying between 0.427 and 162.842.
These values reflect variability in our confidence in D-SedNet model output and
monitoring data at different stages of stream flow. For the flow model formulation,
we set the monitoring data variance σ 2

obs,C = 0.0443, and the D-SedNet variance
σ 2

src,Q = 13.414.
In order to sample from the posterior distribution, we implemented a Markov

Chain Monte Carlo (MCMC) algorithm using Gibbs sampling of the full con-
ditional distributions described in the Appendix. We ran three separate MCMC
chains with different initial values for the parameters for 10,000 iterations, discard-
ing the first 1000 as burn-in. All three chains converged to the same distribution
quickly. Convergence was assessed by visual inspection with no evidence of lack
of convergence from all 3 chains. We further thinned our chains by storing every
10th iteration to assist with the digital storage of the results. Storing every 10th it-
eration of all parameters sampled in the MCMC resulted in 163.82 gigabytes. The
algorithm was implemented in R [R Core Team (2015)] and took approximately
72 hours to run on a single Dual Xeon 8-core CPU with 16 GB of RAM. We make
a special note that sampling Yik and αik was particularly slow due to the number
of parameters for Yik and the np ×np covariance matrix for α̃k . We note that con-
siderable speedup could be achieved using an alternative programming language.

4.2. Posterior distribution results. The dynamics of Yik are modelled in the
latent spectral space through the EOF decomposition. We refer the reader to the
online supplementary material for the posterior distribution results of the parame-
ters associated with the decomposition [Gladish et al. (2016)].

4.2.1. Covariate results. The posterior values for the covariate components
are presented in the online supplementary material [Gladish et al. (2016)]. For C-
factor, all of the components are significantly different from zero, while, for PDO,
all but one are significantly different. This indicates C-factor and PDO significantly
influence concentration and flow, respectively. However, since we model the co-
variates in the spectral space, care must be taken in the interpretation. As λ influ-
ences the latent process Yik through the seasonal EOFs � , the covariate will affect
each day of the financial year differently. Therefore, we illustrate the influence of
the covariate by averaging over the financial year. Note that Xik

∑p
l=1 ψj(l)λl is

the contribution of λ to Yijk , where Xik is the ith component of Xk , ψj(l) is the
j, lth element of the matrix � , λl is the lth component of λ, and Yijk is the j th day
of the latent process Yik . Define Ỹik ≡ (1/T )

∑T
j

∑p
l=1 ψj(l)λl . Using samples of

λ from the posterior distribution, Ỹik has a mean value 12.529 with a 95% credi-
ble interval (11.279,13.692) for concentration. For flow, Ỹik has a mean value of
0.547 with a 95% credible interval (0.448,0.644); that is, our approach shows ev-
idence that increasing C-factor (and hence decreasing cover) and increasing PDO
increase concentration and flow, respectively. It is important to note that this does
not give an indication on the magnitude of Yik .
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4.2.2. Latent process results. Of primary interest to this analysis is the poste-
rior distribution of Yik , which assimilates monitoring data and D-SedNet output
together with mechanistic information from the spectral parametrization. We show
the results for the 1990/1991 financial year, during which there was no monitoring
for concentration at Sellheim and a major rain depression associated with a cyclone
crossed the Upper Burdekin, and the 2006/2007 financial year, in which monitor-
ing data for concentration was more consistent at Sellheim and followed years of
drought (Figure 3). At days where there are observations, the 95% credible inter-
val is relatively tight compared to days without observations. Moreover, while the
posterior mean for both flow and concentration tend to weight observations higher
than D-SedNet output at locations with observations, we do see a blending of the
two data sources together. Furthermore, we notice that there is more uncertainty
in these predictions from December through to February, which coincides with
the Australian wet season. Another interesting feature of Figures 3(c) and (d) is
observed in December 2006, where D-SedNet estimates a large event with higher
concentration, but the posterior estimate does not. Note that the D-SedNet output
lies within the 95% credible interval during this time. Another interesting feature
of the model is seen in Figures 3(e) and (f), where the posterior mean favours the
monitored data more than the D-SedNet model output. This is reasonable, con-
sidering there is more certainty associated with σ 2

obs,Q than with σ 2
src,Q. This is

particularly interesting given that Yik is also informed by the process-based model
through the seasonal basis decomposition �.

4.2.3. Sediment load results. Using estimates of Yik from the posterior distri-
butions for both flow and concentration, we obtain an estimate of sediment load
as described in Section 2. Figure 4 shows sediment load by day for the financial
years 1990/1991 (top left) and 2006/2007 (top right) at the Sellheim site, where
the posterior estimates of sediment load are in blue with 95% credible intervals
in grey, and the estimated sediment load from D-SedNet output are in red for ref-
erence. The credible interval for the 2006/2007 financial year is much narrower
when compared to the 1990/1991 financial year, and can be attributed to the lack
of observations collected for concentration at the Sellheim site. We note that FY
1990/1991 was abnormal in the sense that multiple major rain events occurred,
including Tropical Cyclone Joy.

For reporting purposes, catchment managers are often interested in estimates
of sediment loads with a measure of uncertainty on a yearly basis. We aggregate
the posterior estimates from our methodology by financial year. The bottom plot
in Figure 4 shows the annual load (black closed circle) and 95% (black segments)
that were constructed for each aggregated to financial year. The D-SedNet model
estimate is overlaid with a red cross. The load estimated for the FY 1990/1991
shows a wide credible interval surrounding the estimate of 11.58 megatonnnes
(Mt), which appears to be accompanied by large annual flow creating this large
event. The estimated sediment load from D-SedNet, although much lower at 6.37
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FIG. 3. Posterior distribution results for the Sellheim site for FYs 1990/1991 and 2006/2007. The
posterior mean is in blue, 95% credible interval in grey, D-SedNet output in red and observations as
black points. Plots (a) and (b) show the Box–Cox transformed concentration. Plots (c) and (d) show
the natural scale concentration (in mg/L). Plots (e) and (f) show the Box–Cox transformed flow. Plots
(g) and (h) show the natural scale flow (in m3/s). Plots (a), (c), (e) and (g) show the posterior results
for 1990/1991. Plots (b), (d), (f) and (h) show the posterior results for 2006/2007.

Mt, resides within the 95% credible interval. For the majority of the years, the
estimated load from D-SedNet is within the estimated posterior distribution. How-
ever, a few years exhibit loads estimates from D-SedNet output that are noticeably
outside the interval. Furthermore, the estimated load using our methodology tends
to be higher than that of the D-SedNet output, which agrees with Wilkinson et al.
(2014).

In addition to the temporal patterns, estimates (with uncertainties) can be ob-
tained across all 411 sites as well as seen in Figure 5. The left column of Figure 5
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FIG. 4. Estimates of sediment load per day (tonnes/day) for FY 1990/1991 (top left) and FY
2006/2007 (top right) for the Sellheim site. The posterior results for load are in blue with 95%
credible intervals in grey. The estimate of load from the D-SedNet output is in red. The bottom plot
shows annual sediment load (bottom left) estimates from the posterior distribution per financial year
with a comparison of estimated total flow (bottom right). The black point indicates posterior mean
with lines indicating 95% credible interval from the posterior estimate. The red X are the sediment
load estimates from the D-SedNet model.

shows the estimated loads on 26 December, 1990 (the day Tropical Cyclone Joy
made landfall near Townsville, Queensland), for the entire Upper Burdekin with
95% credible intervals. As expected, we see higher estimates of load forming along
the Burdekin River, particularly as water accumulates towards the Sellheim site.
The right-hand column of Figure 5 shows the aggregated sediment load to the
1990/1991 financial year over the entire Upper Burdekin. While the results for the
1990/1991 financial year look similar to that of the estimated loads for 26 Decem-
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FIG. 5. Posterior estimates of sediment load (tonnes/day) for 26 December, 1990, per site in the
left column, and total sediment load for the 1990/1991 financial year in the right column (mega-
tonnes/year). The top row shows the posterior mean. The second row shows the lower bound, and the
bottom row the upper bound of the 95% credible interval.

ber, 1990, an interesting feature of the yearly aggregate shows some estimates of
higher loads in the western portion of the Upper Burdekin.

Due to the sparse nature of the monitoring data, output generated from the D-
SedNet model is critical to interpolate sediment concentration and flow, which
provide an estimate of sediment loads. However, at sites and days where no mon-



1610 D. W. GLADISH ET AL.

FIG. 6. The coefficient of variation of the posterior estimates of sediment loads (tonnes/day) for
sites and days with (a) unmonitored concentration and flow, (b) monitored flow only, (c) monitored
concentration only, and (d) monitored flow and concentration.

itoring data exists, the posterior distribution shows greater uncertainty for either
flow or concentration and the estimated sediment loads. Land managers may be in-
terested in determining how uncertainty in sediment loads can be reduced through
additional monitoring data. One simple measure for comparing monitored sites
against unmonitored sites is the coefficient of variation, which is a ratio of the stan-
dard deviation and the mean. We present the coefficient of variation resulting from
the posterior standard deviation and mean of the daily estimated sediment loads.
Figure 6 shows 4 boxplots of the coefficient of variation for days and sites of (a)
unmonitored concentration and flow, (b) monitored flow with unmonitored con-
centration, (c) monitored concentration with unmonitored flow, and (d) monitored
flow and concentration. While we cannot say the four are significantly different
from each other, we can see a clear decreasing trend in the coefficient of variation
when monitoring occurs versus when monitoring does not occur. Of particular note
is the considerable decrease in the coefficient of variation when concentration is
monitored, and when both concentration and flow are monitored.

4.3. Model verification. To determine the goodness of fit of the model, we
evaluate the model when leaving out all monitored observations and D-SedNet
output at Sellheim. We then determine the posterior distribution at Sellheim given
data used for the model; that is, we find [Ysel,k|Zobs

ik ,Zsrc
ik ], for k = 1, . . . ,K and

i indexing all spatial locations included in the model with sel representing the
index at Sellheim. We use the same model setup as previously defined, includ-
ing the same seasonal and spatial EOFs � and � for concentration and flow,
respectively. Figure 7 shows the posterior mean and 95% credible intervals for
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TABLE 3
The mean width of the 95% credible intervals for the posterior distribution when the model is run
with and without monitoring observations and D-SedNet output at Sellheim during the 1990/1991

and 2006/2007 Financial Years

1990/1991 2006/2007

With data Without data With data Without data

Concentration 10.637 14.281 10.069 16.468
Flow 0.982 7.504 0.981 7.228

the posterior distribution of Sellheim for FYs 1990/1991 and 2006/2007, as well
as overlaying the available monitoring data and D-SedNet output not used. The
plots of Figure 7 show wider credible intervals for concentration and flow when
compared to Figure 3. This is expected, particularly given that the variance associ-
ated with the monitoring data is considerably smaller than the variance associated
with D-SedNet. To illustrate these differences more clearly, we have computed
the mean width of the 95% credible intervals for concentration and flow during
FYs 1990/1991 and 2006/2007 which are found in Table 3. Overall, 93.66% of
the D-SedNet concentration output lies within the 95% credible interval, 93.01%
of D-SedNet flow, 86.67% of monitored concentration and 83.72% of monitored
flow. While not capturing 95% of the process model output or monitoring, we note
that we do not consider the additional variation of the data model.

From these results, we can conclude that our model does fit reasonably well.
The D-SedNet output predominantly lies within the 95% credible interval in both
FYs, while flow monitoring data does not appear successful for the 1990/1991
financial year and very successful for the 2006/2007 financial year. We do note
that 1990/1991 was an abnormal year with regards to flow. Further, we note that
the model does reasonably well in an average year, but becomes complicated under
abnormal conditions. This does seem reasonable with regard to extreme events, but
does highlight the importance of monitoring, especially in the presence of abnor-
mal events. We make special note that the posterior results of Yik are sensitive to
choices of the empirically specified variances, which highlights the need estimate
these variances from any available sources of data.

5. Discussion. We presented a spatio-temporal model for quantifying sedi-
ment loads in the Upper Burdekin catchment. Our approach allowed for modelling
of sediment concentration and daily discharge volume that can be used to quantify
sediment loads with a measure of uncertainty while accounting for spatio-temporal
dependencies. The approach we developed is critical to achieving a more accurate
estimate of loads that can assist in the prioritisation of areas within the catchment
that (i) exhibit high sediment loads and could be targeted for improved manage-
ment, (ii) can be used to help detect and evaluate improvements to water quality
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FIG. 7. Posterior distribution results for the Sellheim site for FYs 1990/1991 and 2006/2007 with-
out use of monitoring data or D-SedNet output from Sellheim for all 20 years in the model. The
posterior mean is in blue and the 95% credible interval in grey. For reference, the D-SedNet output
is overlayed in red and monitoring data as black points. Plots (a) and (b) show the Box–Cox trans-
formed concentration for FYs 1990/1991 and 2006/2007, respectively. Plots (c) and (d) show the
Box–Cox transformed flow for FYs 1990/1991 and 2006/2007, respectively.

following improved land management, and (iii) identify where monitoring data
are lacking and investment in gauges or water quality samplers could be benefi-
cial. Critically, our methodology allows for blending of process model output with
monitored data, allowing for estimates in the presence of sparse monitoring.

Due to the “big data” nature of the problem with high dimensionality in both
space and time, it is difficult to capture the underlying dynamical structure. Mod-
elling in a reduced rank setting is critical to capturing the spatial and temporal
dependencies. The methodology utilised a two-tiered reduced rank approach by
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expanding and modifying the methods developed by Oleson and Wikle (2013).
We modelled the underlying dynamics of the spatio-temporal process through a
basis function expansion for both seasonal and spatial structure. The expansion
coefficients were then modelled through an autoregressive structure, propagating
one time-step ahead on a yearly scale. In doing so, we improved computational
efficiency by avoiding modelling the dynamics of the process in the large full-rank
dimensional space. Additionally, this method of dimension reduction allows for
mulitscale temporal load quantification, which is of interest to land managers.

The use of multiple data sources was a critical strength of the methodology.
Though we included only two sources (monitoring data and D-SedNet model out-
put), we could easily have allowed additional data models. For example, remotely
sensed spectral properties of the water in these rivers could also be included as a
separate data model conditioned on the underlying latent process Yik . Through the
two data models employed in this work, observations and computer model output
are both used to make inferences about the underlying true sediment concentration
and flow whilst accounting for their associated uncertainties. At a given location
and time, this also allowed for one data source to “in-fill” where the other was
missing and inform us about the state of the underlying latent process.

Estimates produced for the Upper Burdekin catchment agreed on many occa-
sions with the estimated annual sediment load from the D-SedNet model; that is,
D-SedNet modelled loads resided in the credible interval of the estimated annual
load from our model, as demonstrated by the Sellheim site. Disagreement between
outputs from the D-SedNet model and the posterior estimate of annual sediment
load is noted for later years in the period modelled after 2004. This agreed with
Wilkinson et al. (2014), where D-SedNet modelled output underestimated a load
after a drought year. Notably, our methodology showed less uncertainty during the
period after 2004. This coincided with the period during which monitoring oc-
curred more frequently. We make special note that the goal of our model was not
to correct D-SedNet, but rather use D-SedNet as a way of infilling unmonitored
days and sites. If the goal was to correct the process-based D-SedNet model, then
one could include a bias term in the D-SedNet Data Model similar to Salazar et al.
(2011). However, this is challenging in our application due to sparsity of the data
and complexity of the latent process.

Our methodology also showed the importance of monitoring flow and concen-
tration. The amount of uncertainty tended to be lower at sites where monitoring
occurred for both concentration and flow, as noted by the lower coefficient of vari-
ation at these sites during days that had recorded flow and concentration. While
it is not economically feasible to monitor the entire Upper Burdekin, our results
suggested that more monitoring would be beneficial at reducing uncertainty, partic-
ularly with monitoring sediment concentration or a suitably correlated surrogate.
One possible surrogate for concentration could be turbidity, which may be more
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cost effective to measure, and that was considered in the single site analysis of
Pagendam et al. (2014). Alternative sampling methods that are economically fea-
sible could also be considered. Additionally, our methodology could guide future
research in determining how frequently monitoring should occur to achieve an ac-
ceptable reduction of uncertainty at various temporal aggregation levels including
monthly, seasonally and yearly.

While our model does a good job of estimating uncertainty of sediment loads
while accounting for spatial and temporal dependencies, we do see scope for im-
provement in future work. For example, we have not presented forecasting results,
as we have found the seasonal variation in flows to be too variable in the Up-
per Burdekin. In the current modelling framework our approach had a tendency
to oversmooth forecasted estimates of the flow, concentration and the subsequent
load.

As noted in our results, our methodology is able to quantify sediment load with
uncertainty at different time scales and locations. The result provides valuable in-
formation, previously unavailable to catchment managers for assessing sediment
load generation within the catchment and making decisions at the desired temporal
scale (e.g., daily, monthly, yearly). Furthermore, the approach presented here pro-
vides a measure of uncertainty at various time scales. As such, our methodology
provides a flexible and powerful framework for estimating sediment loads with a
measure of uncertainty in large catchment models.
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SUPPLEMENTARY MATERIAL

Supplement to “Spatio-temporal assimilation of modelled catchment loads
with monitoring data in the Great Barrier Reef” (DOI: 10.1214/16-
AOAS950SUPP; .pdf). The supplementary material contains additional informa-
tion related to the development and results of our model. We present figures for
the available monitoring data described in Section 2. Additional posterior results
not discussed in Section 4 are shown, including results for the dynamic parameters
and covariate coefficients. Lastly, the details of the Markov Chain Monte Carlo
algorithm are included.
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