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QUANTIFYING THE SPATIAL INEQUALITY AND TEMPORAL
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Maternal smoking is well known to adversely affect birth outcomes, and
there is considerable spatial variation in the rates of maternal smoking in the
city of Glasgow, Scotland. This spatial variation is a partial driver of health
inequalities between rich and poor communities, and it is of interest to deter-
mine the extent to which these inequalities have changed over time. There-
fore in this paper we develop a Bayesian hierarchical model for estimating the
spatio-temporal pattern in smoking incidence across Glasgow between 2000
and 2013, which can identify the changing geographical extent of clusters
of areas exhibiting elevated maternal smoking incidences that partially drive
health inequalities. Additionally, we provide freely available software via the
R package CARBayesST to allow others to implement the model we have
developed. The study period includes the introduction of a ban on smoking
in public places in 2006, and the results show an average decline of around
11% in maternal smoking rates over the study period.

1. Introduction. The detrimental effect of maternal smoking on birth out-
comes is well known [see Wang et al. (2002) and Cnattingius (2004)], with epi-
demiological evidence linking it to increased rates of still birth and small-for-
gestational-age babies. Tappin et al. (2010) estimate that over 20% of pregnant
mothers in Scotland smoked in 2005, although this was far from uniform across
the country with self-reported rates varying geographically between 3% and 53%.
Also in Scotland, Gray et al. (2009) estimate that maternal smoking accounted
for 38% of the spatial inequality in stillbirths and 31% of the inequality in in-
fant deaths. The harmful effects of smoking on these and other health outcomes
led to the introduction of The Smoking, Health and Social Care (Scotland) Act
2005, which banned smoking in any enclosed public space in Scotland from the
26 March 2006. The ban followed soon after the first national ban of this type in
Ireland in March 2004, and now bans exist in many countries including Australia,
Brazil, Canada and South Korea. Numerous research has found links between these
bans and improved public health, with Mackay et al. (2012) reporting a significant
association between the Scottish ban and small-for-gestational-age babies. How-
ever, Mackay et al. (2012) note that assessing the impact of a ban is nontrivial be-
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cause there was widespread advertising of the ban before its introduction, resulting
in an anticipatory effect as people changed their behaviours before the deadline.

Therefore, this paper investigates the changing spatio-temporal dynamics of ma-
ternal smoking in Scotland between 2000 and 2013, which is an era that included
the ban in March 2006. We focus on the city of Glasgow because it has a high
smoking incidence, a large inequality in health between rich and poor, and one of
the poorest health records in Europe [the “Glasgow Effect,” Bauld et al. (2005),
Gray and Leyland (2009), Gray et al. (2012)]. Specifically, we address the fol-
lowing questions: (i) what is the overall temporal trend in the maternal smoking
incidence in Glasgow between 2000 and 2013; (ii) how has the magnitude of the
spatial inequality in maternal smoking incidence changed between 2000 and 2013;
(iii) where were the clusters of areas with high maternal smoking incidences in
2000 that partially drive these inequalities, and which of them have seen a reduc-
tion in incidences by 2013; and (iv) what impact does socioeconomic deprivation
have on maternal smoking rates? Answering these questions provides key public
policy information on the extent to which maternal smoking is driving health in-
equalities, and whether these inequalities have gotten wider or narrower over the
14 years considered in this study. The identification of clusters of high incidence
areas also allows future health resources to be targeted appropriately at areas in
greatest need of reducing maternal smoking levels.

A range of models have been developed for estimating spatio-temporal pat-
terns in areal unit data [see Knorr-Held (2000) and Lawson (2009), Chapter 12],
while scan statistics have been proposed for cluster detection [see Kulldorff et al.
(2005)]. However, these approaches have fundamentally different goals, as the for-
mer estimates a smoothed spatio-temporal incidence surface, while the latter only
identifies a small number of high incidence clusters. Charras-Garrido et al. (2013)
propose a two-stage approach in a purely spatial setting for achieving both goals,
which applies a clustering algorithm to the incidence surface estimated from a
spatial smoothing model. However, identifying clusters (i.e., step changes in inci-
dence between neighbouring areas) from a spatially smoothed surface is inherently
problematic, and Anderson, Lee and Dean (2014) show this does not lead to good
cluster recovery. Alternatively, Forbes et al. (2013), Gangnon and Clayton (2000),
Green and Richardson (2002), Knorr-Held and Raßer (2000), Wakefield and Kim
(2013) and Anderson, Lee and Dean (2014) propose integrated approaches in a
purely spatial context. The identification of clusters of areas exhibiting elevated
incidence compared to their geographical neighbours would seem to violate the
common assumption of a single global level of spatial smoothness (autocorrela-
tion), as some pairs of neighbouring areas will have similar values while those
on the edge of a cluster will not. Choi et al. (2011), Lawson et al. (2012) and Li
et al. (2012) have extended clustering-type models to the spatio-temporal domain,
but only focus on detecting shared latent structures and unusual temporal trends,
and an integrated modelling framework for spatio-temporal estimation and cluster
detection is yet to be proposed.
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Therefore, this paper has two key contributions. First, we fill the methodological
gap described above by proposing a novel modelling approach for cluster detec-
tion and spatio-temporal estimation that can quantify the changing nature of health
inequalities. The model is able to detect clusters dynamically so that cluster mem-
bership can evolve over time. Inference is based on Markov chain Monte Carlo
(MCMC) simulation, and, unlike the majority of existing models in this field, we
provide software for others to use via the R package CARBayesST. Second, we
provide the first in-depth investigation into the changing dynamics of the spatial
inequalities in maternal smoking incidence in Scotland, in an era that included
government legislation aimed at reducing smoking levels. The data are presented
in Section 2, while our methodological and software contribution is outlined in
Section 3. Section 4 quantifies the performance of our methodology by simulation,
while the results of the data analysis are presented in Section 5. Finally, Section 6
concludes the paper.

2. Data and existing spatio-temporal models.

2.1. Data description. The study region is the Greater Glasgow and Clyde
Health board displayed in Figure 1, which contains the city of Glasgow and has
a population of around 1 million. The region is split into N = 271 Intermediate
Geographies (IG), which have an average population of around 4000 people. The
study period is from 2000 until 2013, and the data we model are available from

FIG. 1. The study region of the Greater Glasgow and Clyde Health Board (shaded region) overlaid
on a Google map.
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FIG. 2. The spatial patterns in the raw smoking incidence for Greater Glasgow for 4 time periods
(blacker means higher incidence), namely, 2000–2002, 2003–2005, 2007–2009 and 2011–2013. The
white lines depict high incidence clusters in 2000–2002.

Statistics.Gov.Scot (http://statistics.gov.scot). The data are self-reported current
smoking status (smoker/nonsmoker), recorded at each pregnant woman’s first an-
tenatal visit to the hospital. The number of pregnant women (mit ) and the number
of those that smoke (vit ) are available over the i = 1, . . . ,N IGs as yearly three-
year rolling totals centred between 2001 and 2012, resulting in t = 1, . . . , T = 12
time periods. For example, (vi1,mi1) respectively denote the number of pregnant
women that smoke and the number of pregnant women in the ith IG between 2000
and 2002. Finally, socioeconomic deprivation is likely to have a large effect on
maternal smoking rates, and here we represent it by two proxy measures: (i) the
proportion of the working age population who are in receipt of Job Seekers Al-
lowance (JSA), a benefit paid to people who are unemployed in the UK; and (ii)
the natural log of the median property price in each IG. A natural log transfor-
mation is applied to the latter, as exploratory analyses suggested it was a better
predictor of maternal smoking.

Figure 2 summarises the spatio-temporal pattern in the three-yearly incidences
pit = vit /mit by presenting the spatial pattern for the first (2000–2002), last
(2011–2013) and two intervening (2003–2005 and 2007–2009) time periods. The
figure shows a noticeable decline in smoking incidence amongst pregnant women
overall during the study period, as the median incidence across Glasgow in 2000–

http://statistics.gov.scot
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2002 was 29.3%, which dropped to a low point of 11.7% in 2007–2009, before
increasing back to 15.5% in 2011–2013. The maps also show clear evidence of spa-
tial clusters in 2000–2002 exhibiting higher smoking incidences than their neigh-
bours, with examples including Port Glasgow in the west, Drumchapel in the north
and Nitshill in the south (outlined by white dots in the figure). These high incidence
clusters in 2000–2002 typically exhibit a much reduced incidence by the end of the
study period (2011–2013).

2.2. Spatio-temporal models for areal unit data. There is an active develop-
ment of spatio-temporal models for areal unit data, with examples including Knorr-
Held (2000), Lawson (2009) (Chapter 12), Ugarte et al. (2012) and Rushworth, Lee
and Mitchell (2014). The most common modelling approaches either utilise a main
effects and interaction decomposition such as Knorr-Held (2000) or an autoregres-
sive structure such as Rushworth, Lee and Mitchell (2014), and variants of both
are compared against the model proposed here. Data augmentation techniques are
used to estimate the unobserved yearly numbers of pregnant women that smoke,
yit , and pregnant women, nit , from the available three-year rolling totals (vit ,mit ),
and details are given in Section 3. The main effects and interaction model we con-
sider here on the yearly scale is similar to that proposed by Knorr-Held (2000) and
is given by

yit ∼ Binomial(nit , θit ),

ln
(

θit

1 − θit

)
= x�

it β + φi + δt + γit ,

φi |φ−i ,W, τ 2
φ, ρφ ∼ N

(
ρφ

∑N
j=1 wijφj

ρφ

∑N
j=1 wij + 1 − ρφ

,
τ 2
φ

ρφ

∑N
j=1 wij + 1 − ρφ

)
,(2.1)

δt |δ−t ,D, τ 2
δ , ρδ ∼ N

(
ρδ
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s=1 dtsδs

ρδ

∑T
s=1 dts + 1 − ρδ

,
τ 2
δ

ρδ

∑T
s=1 dts + 1 − ρδ

)
,

γit |τ 2
γ ∼ N

(
0, τ 2

γ

)
,

where θit is the estimated probability of smoking in the ith IG and t th year,
which depends on terms including a vector of p covariates (including an inter-
cept term) denoted by xit . The remaining terms in the linear predictor include
φ = (φ1, . . . , φN) and δ = (δ1, . . . , δT ), which are the overall spatial and temporal
trends in the estimated probability {θit }. Both are modelled by the conditional au-
toregressive (CAR) prior proposed by Leroux, Lei and Breslow (2000), which is
able to capture dependence structures ranging from independence (ρφ = ρδ = 0)
through to strong autocorrelation (ρφ = ρδ = 1). The dependence is represented
by binary spatial and temporal neighbourhood matrices WN×N and DT ×T , re-
spectively, where wij = 1 if areal units (i, j) share a common border and is
zero otherwise, while dst = 1 if the time periods are one unit apart (that is,
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|s − t | = 1) and zero otherwise. These additive main effects give the model a sep-
arable spatio-temporal structure, and this separability assumption is relaxed by
adding a set of independent and identically distributed spatio-temporal interaction
terms γ = (γ11, . . . , γNT ) to the model. Other specifications for γ are possible; for
details see Knorr-Held (2000). The second model we use as a comparator is the
autoregressive decomposition described by Rushworth, Lee and Mitchell (2014)
and given by

yit ∼ Binomial(nit , θit ),

ln
(

θit

1 − θit

)
= x�

it β + φit ,

(2.2)
φ1 ∼ N

(
0, τ 2Q(W, ρ)−1)

,

φt |φt−1 ∼ N
(
ξφt−1, τ

2Q(W, ρ)−1)
for t = 2, . . . , T .

Here the spatial surface at time t , φt = (φ1t , . . . , φNt ), evolves over time
via a first order autoregressive process, whose precision matrix Q(W, ρ) =
ρ[diag(W1) − W] + (1 − ρ)I corresponds to the CAR prior proposed by Leroux,
Lei and Breslow (2000). Here (1, I) are a vector of ones and the identity matrix,
respectively. For both models weakly informative inverse-gamma, uniform and
Gaussian priors are specified for the variance, dependence and regression parame-
ters, that is,

τ 2
φ, τ 2

δ , τ 2
γ , τ 2 ∼ Inverse-Gamma(1,0.01),

ρφ, ρδ, ρ, ξ ∼ Uniform(0,1),

β ∼ N(0,1000I),

where I is the p × p identity matrix.

3. Methodology. This section proposes a novel Bayesian spatio-temporal lo-
calised smoothing model for identifying clusters of elevated probability areas (Sec-
tion 3.1), outlines the data augmentation strategy to account for the temporally
overlapping nature of the data (Section 3.2), and describes the accompanying soft-
ware that has been developed (Section 3.3). Inference for this model is based on
MCMC simulation.

3.1. Proposed model. We initially describe the proposed model without the
data augmentation because the overlapping nature of the data is specific to our
maternal smoking application. Letting (yit , nit ) denote the number of pregnant
women that smoke and the number of pregnant women, respectively, in the ith IG
and t th year, we propose the following likelihood model:

yit ∼ Binomial(nit , θit ),
(3.1)

ln
(

θit

1 − θit

)
= x�

it β + λZit
+ φit .
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As before, a weakly informative multivariate Gaussian prior is assigned to β .
The logit probability surface is modelled by a linear combination of covariates
x�
it β and two sets of latent effects, where {φit } are correlated and evolve smoothly

in space and time, while {λZit
} is a piecewise constant intercept term. Thus, af-

ter adjusting for covariate effects spatially and temporally, adjacent probabilities
(θit , θjs) will be autocorrelated if λZit

= λZjs
, but could exhibit very different val-

ues (a step change) if λZit
�= λZjs

. This formulation can thus be seen as a localised
smoother, where the {θit } surface can exhibit areas of spatio-temporal smooth-
ness separated by distinct step changes, the latter allowing spatially or temporally
neighbouring areas to have very different probabilities of maternal smoking. Thus,
the piecewise constant intercept term {λZit

} can identify clusters of IGs with un-
usually high (or low) probabilities of maternal smoking because if a group of adja-
cent IGs have a different λZit

value than their geographical neighbours, then they
are likely to have markedly different estimated smoking probabilities.

The piecewise constant intercept term comprises at most G distinct levels
(λ1, . . . , λG), which are ordered via the prior

λj ∼ Uniform(λj−1, λj+1) for j = 1, . . . ,G,

where λ0 = −∞ and λG+1 = ∞. This order constraint ensures that λ1 < λ2 <

· · · < λG, which helps mitigate against the label-switching problem common in
mixture models. The assignment of data point (i, t) to one of the G intercept terms
is controlled by the indicator variable Zit ∈ {1, . . . ,G}, and we note that the set of
all NT indicators {Zit } does not have to cover the set {1, . . . ,G}, meaning that G

is the maximum number of different intercept terms in the model. In the extreme
case that Zit = k for all (i, t) for some value k, then the model reduces to a special
case of the global smoothing model proposed by Rushworth, Lee and Mitchell
(2014).

Here we fix the maximum number of intercept terms G in the model rather
than estimating it using a reversible jump McMC algorithm similar to that used
by Knorr-Held and Raßer (2000), partly because such algorithms can be slow to
converge and exhibit poor mixing. Additionally, it is unlikely that G would be
well identified in our setting because different values of G could result in identical
{Zit } parameter sets. For example, the set Zit = 1 if t < 4 and Zit = 2 if t ≥ 4 for
modelling a region-wide temporal step change at time 4 could be obtained from
all values of G ≥ 2. This occurs because G is the maximum and not the actual
number of intercept terms in the model, which we note is not the case in the model
of Knorr-Held and Raßer (2000), where G represents the actual number of clusters
in the model.

Our choice of prior f (Z), where Z = {Zit |i = 1, . . . ,N, t = 1, . . . , T }, is
guided by two considerations. First, one may expect the probability of maternal
smoking to evolve smoothly over time, which suggests a temporally autocorrelated
prior such as a Markov model. We do not assume Z is spatially autocorrelated be-
cause {λZit

} captures a localised structure not captured by the spatially smooth
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{φit }. Additionally, Figure 2 shows that high incidence areas appear on opposite
sides of Greater Glasgow that are spatially disconnected. The second consideration
when constructing a prior for Z is that G is the maximum number of different in-
tercept terms in the model, and thus we specify a value of G that is larger than the
expected number of intercept terms required and use a penalty prior to encourage
each Zit towards the middle class. This middle class is G∗ = (G + 1)/2 if G is
odd and G∗ = G/2 if G is even, and this penalty ensures that Zit is only estimated
to be in one of the extreme classes if supported by the data. This penalty-based ap-
proach can be viewed as a discrete random variable analogue of ridge regression
or penalised splines [Eilers and Marx (1996)], where in the latter too many basis
functions are specified and the corresponding coefficients are smoothed towards
each other. These two considerations suggest the following Markov decomposi-
tion:

(3.2) f (Z) =
N∏

i=1

[
f (Zi1)

T∏
t=2

f (Zit |Zit−1)

]
,

where the individual components are given by

f (Zit |Zit−1) = exp(−δ[(Zit − Zit−1)
2 + (Zit − G∗)2])∑G

r=1 exp(−δ[(r − Zit−1)2 + (r − G∗)2]) for t = 2, . . . , T ,

f (Zi1) = exp(−δ(Zi1 − G∗)2)∑G
r=1 exp(−δ(r − G∗)2)

,(3.3)

δ ∼ Uniform(1,M = 100).

Temporal autocorrelation in Z is induced by the (Zit − Zit−1)
2 component of

the penalty, while the (Zit −G∗)2 component penalises Zit towards the middle risk
class G∗. The size of this penalty, and hence the amount of smoothing imparted
on Z, is controlled by δ, which is assigned a uniform prior on a large range. To
ensure some smoothing is imposed as G is larger than necessary, we set the lower
limit of the prior for δ equal to one corresponding to exponential decay. A num-
ber of variations were investigated when developing this model, such as separate
coefficients for the two penalty components, only having one of the two penalty
components and using an L1 rather than an L2 penalty, but all performed poorer
in initial simulations than the model proposed here.

The smoothing component φit models spatially and temporally autocorrelated
variation in the logit of the probability surface {θit }, via the multivariate autore-
gressive process:

φ1 ∼ N
(
0, τ 2Q(W)_)

,
(3.4)

φt |φt−1 ∼ N
(
ξφt−1, τ

2Q(W)_)
for t = 2, . . . , T ,

where φt = (φ1t , . . . , φNt ). The joint distribution for φ corresponding to (3.4)
is a zero-mean Gaussian Markov Random field with precision matrix Q(W)∗ =
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C ⊗ Q(W), where C is a T × T first order autoregressive matrix. As before,
weakly informative Inverse-Gamma(1,0.01) and Uniform(0,1) priors are spec-
ified for (τ 2, ξ), respectively. The only difference from (2.2) is that ρ = 1, en-
forcing strong spatial smoothing on φt so that any step changes in the surface are
captured by {λZit

}. We note that if ρ was estimated, it could be zero, resulting in
both (φit , λZit

) being independent in space and thus competing for the same vari-
ation in the data. In implementing this model φ = (φ1, . . . ,φT ) are mean centred
within the MCMC algorithm separately for data points with distinct {λZit

} values
so that λj represents the mean logit probability for all data points in the j th inter-
cept group. Thus, the posterior median of Z represents a grouping of the data into
at most G groups, and is the mechanism by which clusters are identified.

3.2. Data augmentation. The model described above is not directly applica-
ble to the maternal smoking data because the yearly data (yit , nit ) are not avail-
able. Instead, three-year running totals (vit = yit−1 + yit + yit+1,mit = nit−1 +
nit + nit+1) for t = 2, . . . , T − 1 are available for each IG, leading to the integer
linear inverse problems Eyi = vi and Eni = mi for each IG. Here the unknown
yearly data are denoted by yi = (yi1, . . . , yiT )T ×1 and ni = (ni1, . . . , niT )T ×1,
while the known three-year totals are denoted by vi = (vi2, . . . , viT −1)T −2×1 and
mi = (mi2, . . . ,miT −1)T −2×1, respectively. The constraint matrix E is given by

E =

⎡
⎢⎢⎢⎣

1 1 1 0 0 . . . 0
0 1 1 1 0 . . . 0

...
...

0 . . . 0 0 1 1 1

⎤
⎥⎥⎥⎦

T −2×T

Ẽ =
⎡
⎣e1

E
eT

⎤
⎦

T ×T

.

However, if one specifies (yi1, yiT , ni1, niT ), then the remaining yearly data
can be recovered via the equations yi = Ẽ−1ṽi and ni = Ẽ−1m̃i , where ṽi =
(yi1,vi , yiT ), m̃i = (ni1,mi , niT ), e1 = (1,0, . . . ,0) and eT = (0, . . . ,0,1). Data
augmentation is thus used to update (yi1, yiT , ni1, niT ) at each iteration of the
MCMC algorithm, with the sampled (yi ,ni) further required to meet the binomial
constraints 0 ≤ yit ≤ nit for all (i, t).

3.3. Software. The R [R Core Team (2013)] package CARBayesST has been
developed in conjunction with this paper and can be downloaded from http://cran.r-
project.org/. It can fit the localised smoothing model given by (3.1)–(3.4) as well
as models (2.1) and (2.2). All these models can be applied to binomial (logistic
link) and Poisson (log link) data, with a selection also being available for Gaussian
data, making it widely useable beyond the specific application considered here. As
the data augmentation outlined above is specific to this application, code to im-
plement model (3.1)–(3.4) with data augmentation is available upon request from
the first author. However, an example of using CARBayesST on simulated data is
presented in Section 2 of the supplementary material [Lee and Lawson (2016)].

http://cran.r-project.org/
http://cran.r-project.org/
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4. Model assessment via simulation. This section presents a simulation
study, which assesses the performance of the clustering model proposed here
across different values of G. The study generates and models yearly data without
data augmentation, and an additional study exploring the model with data augmen-
tation is presented in Section 3 of the supplementary material accompanying this
paper [Lee and Lawson (2016)].

4.1. Data generation and study design. Simulated smoking incidence data are
generated from binomial distributions for the N = 271 IGs and T = 14 time peri-
ods considered in the real study. The population sizes nit are varied in this study
to assess their impact on model performance. The logit probability surface is gen-
erated from a multivariate Gaussian distribution, with a piecewise constant mean
(for clustering) and a spatially and temporally smooth variance matrix. The latter
induces smooth spatio-temporal variation into the logit probability surface within
a cluster, and is defined by a combination of a spatial exponential correlation func-
tion and a temporal first order autoregressive process. Clusters are induced into
these data by the piecewise constant mean function, and we consider two different
base templates:

• Template A is a constant vector corresponding to a probability of 0.25, and cor-
responds to generating no clusters in the spatio-temporal probability surface.

• Template B is a clustered surface with three levels, low probability of 0.07,
medium probability of 0.25 and high probability of 0.46, which are similar to
the real data. The spatial pattern in this cluster structure mimics the real data in
the first time period, and is displayed in Section 4 of the supplementary material
[Lee and Lawson (2016)]. IGs with a raw proportion less than 0.1 in the real data
are in the low probability cluster, those with a raw proportion greater than 0.4
are in the high proportion group and those in between are in the middle group.

These two templates are combined to create 9 separate scenarios. Scenarios 1
to 3 are based on Template A with no clustering, and test whether the models falsely
identify clusters when none are present. Scenarios 4 to 6 are based on Template B,
and have the same cluster structure for all time periods. Finally, scenarios 7 to 9
correspond to temporally varying cluster structures, with Template B applying in
the first 5 time periods, Template A in the next 5 and then finally Template B ap-
plies again for the last 4 time periods. In all three cases the number of pregnant
women in each IG are 50, 100 and 200, respectively. Example realisations from
both simulation templates under each value of nit are displayed in Section 4 of the
supplementary material [Lee and Lawson (2016)].

Two hundred data sets are generated under each of the 9 scenarios, and the
model proposed here is applied to each data set with G = 4,5,6,7 (the true values
of G are 1 for Template A and 3 for Template B). We compare the performance of
our clustering model to models (2.1), denoted Model K, and (2.2), denoted Model
R, commonly used in the literature. Inference for each model is based on 20,000
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McMC samples, which were generated following a burn-in period of 20,000 sam-
ples. Convergence was visually assessed to have been reached after 20,000 samples
by viewing trace plots of sample parameters for a number of simulated data sets.

Model performance is summarised using two main metrics, the root mean
square error (RMSE) of the estimated probability surface and the Rand index
[Rand (1971)] of the estimated cluster structure. RMSE is computed as RMSE =√

1
NT

∑T
t=1

∑N
i=1(θit − θ̂it )2, where θ̂it is the posterior median for θit . The Rand

Index quantifies a model’s ability to correctly identify the true cluster structure in
the data, and measures the proportion of agreement between the true and estimated
cluster structures from each model, with a value of one indicating the structures
are identical. The cluster structure estimated by the model proposed here is sum-
marised by the posterior median of {Zit }. In contrast, Model K and Model R do
not have inbuilt clustering mechanisms, so we implement the posterior classifi-
cation approach described in Charras-Garrido, Abrial and de Goer (2012), which
applies a Gaussian mixture model to the posterior median probability surface to
obtain the estimated cluster structure. Additionally, we also present the coverage
probabilities of the 95% uncertainty intervals for the clustering indicators {Zit }.

4.2. Results. The results of this study are displayed in Table 1, where the top
panel displays the RMSE, the middle panel displays the Rand index, and the bot-
tom panel displays the coverage probabilities. In all cases the median values over
the 200 simulated data sets are presented. The table shows a number of key mes-
sages. First, the clustering model proposed here is not sensitive to the choice of
the maximum number of clusters G, as all results are largely consistent over G.
For example, the median (over the 200 simulated data sets) Rand index varies by
at most 0.014, while the median RMSE varies by at most 0.008. Second, the clus-
tering model has consistently excellent cluster identification, as the median Rand
index ranges between 0.969 and 1 across all scenarios and values of G. Third, this
excellent clustering is at odds with that observed by applying a posterior classi-
fication approach to the fitted proportions estimated from Model K and Model R.
These models illustrate good clustering performance if there are true clusters in the
data (scenarios 4–9), showing comparable results to the clustering model proposed
here. However, if there are no clusters in the data (scenarios 1 to 3), then these mod-
els identify clusters that are not present (they identify 2 or 3 clusters on average),
as they have median Rand indexes between 0.504 and 0.599. This suggests that
a posterior classification approach should not be used for cluster detection in this
context due to the identification of false positives. Fourth, the clustering model pro-
posed here produces comparable or better probability estimates {θ̂it } (as measured
by RMSE) than Model K and Model R in all scenarios, with the improvement be-
ing most pronounced in scenarios 7 to 9. Finally, the coverage probabilities for the
clustering indicators {Zit } are all above 90%, and typically are more conservative
than the nominal 95% level.
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TABLE 1
Results of the simulation study. The top panel displays the root mean square error (RMSE) for the

estimated probability surface, the middle panel displays the Rand index and the bottom panel
displays the coverage probabilities for {Zit }. The first three rows relate to a probability surface with

no clusters, the second three to a surface with temporally consistent clusters, and the last three to
temporally inconsistent clusters. The localised model (with G = 4,5,6,7) is compared to (2.1),

denoted Model K, and (2.2), denoted Model R

Localised mode

Scenario Clustering nit G = 4 G = 5 G = 6 G = 7 Model K Model R

RMSE
1 None 50 0.008 0.008 0.008 0.008 0.008 0.007
2 None 100 0.007 0.007 0.007 0.007 0.007 0.006
3 None 200 0.006 0.006 0.006 0.006 0.006 0.006

4 Consistent 50 0.020 0.019 0.019 0.019 0.018 0.032
5 Consistent 100 0.019 0.012 0.016 0.011 0.013 0.026
6 Consistent 200 0.008 0.007 0.007 0.007 0.010 0.021

7 Inconsistent 50 0.027 0.026 0.026 0.026 0.044 0.040
8 Inconsistent 100 0.014 0.013 0.014 0.014 0.036 0.032
9 Inconsistent 200 0.007 0.007 0.007 0.007 0.028 0.025

Rand
1 None 50 1.000 1.000 1.000 1.000 0.566 0.597
2 None 100 1.000 1.000 1.000 1.000 0.559 0.565
3 None 200 1.000 1.000 1.000 1.000 0.539 0.540

4 Consistent 50 0.985 0.987 0.987 0.988 1.000 0.973
5 Consistent 100 0.983 0.996 0.987 0.997 1.000 0.988
6 Consistent 200 0.998 0.999 0.999 0.999 1.000 0.797

7 Inconsistent 50 0.969 0.970 0.970 0.970 0.950 0.967
8 Inconsistent 100 0.993 0.994 0.992 0.992 0.989 0.993
9 Inconsistent 200 0.999 0.998 0.998 0.956 0.999 1.000

Coverage of Zit

1 None 50 1.000 1.000 1.000 1.000 – –
2 None 100 1.000 1.000 1.000 1.000 – –
3 None 200 1.000 1.000 1.000 1.000 – –

4 Consistent 50 0.965 0.980 0.986 0.989 – –
5 Consistent 100 0.931 0.952 0.955 0.969 – –
6 Consistent 200 0.928 0.915 0.911 0.885 – –

7 Inconsistent 50 0.999 0.999 0.999 0.999 – –
8 Inconsistent 100 0.991 0.990 0.982 0.976 – –
9 Inconsistent 200 0.964 0.943 0.934 0.916 – –
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5. Results of the Glasgow maternal smoking study. Three models were ap-
plied to the Glasgow maternal smoking data, the locailsed spatio-temporal smooth-
ing model proposed in Section 3 with values of G between 4 and 7, as well as
Model K and Model R outlined by (2.1) and (2.2), respectively. In all cases the
data augmentation strategy outlined in Section 3.2 was applied to obtain inference
on the yearly probability surfaces {θit } from the available three-year rolling totals.
Inference in all cases was based on 25,000 MCMC samples generated from 5 par-
allel Markov chains that were burnt-in until convergence, the latter being assessed
by examining trace plots of sample parameters. The supplementary material [Lee
and Lawson (2016)] summarises the hyperparameters in the model (Section 5) as
well as providing sensitivity analyses (Section 6) to the choice of some prior dis-
tributions.

5.1. Model fit. The overall fit of each model to the data is summarised in Ta-
ble 2, which displays results with and without the socio-economic deprivation co-
variates. The table displays the Watanabe–Akaike information criterion [WAIC,
Watanabe (2010)], as well as an estimate of the effective number of parameters
(P.W). The table shows that varying G between 4 and 7 in the localised smoothing
model results in almost no difference in model fit, with WAIC differing by at most
15 out of a total of around 18,600. The localised smoothing model fits the data
better than Model K and Model R with or without covariates, with differences of
around 665 for Model K and between 58 and 135 for Model R. Model R is close
to a simplification of the localised smoothing model without the piecewise con-
stant intercept term, and the inclusion of the latter has reduced the random effects
({φit }) variance τ 2 from around 0.279 to 0.206. Finally, we note that the inclusion
of the covariates has not changed the overall fit of the localised smoothing model
greatly, but has reduced the effective number of parameters due to a reduction in
the random effects variance τ 2 from 0.206 to 0.109.

TABLE 2
Watanabe–Akaike information criteria (WAIC) and the effective number of parameters (P.W)

for each model

No covariates Covariates

Model WAIC P.W WAIC P.W

Model localised: G = 4 18,587 1379 18,610 1281
Model localised: G = 5 18,596 1380 18,606 1276
Model localised: G = 6 18,602 1385 18,606 1281
Model localised: G = 7 18,591 1390 18,610 1277
Model K 19,270 1599 19,269 1617
Model R 18,737 1389 18,666 1262
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FIG. 3. The figure shows boxplots of the spatial distribution of estimated smoking probabilities
by year from the localised smoothing model with G = 4 with and without covariates. The dashed
line marks the time of the smoking ban and the numbers are spatial standard deviations in smoking
probabilities.

5.2. Covariate effects. Both the socioeconomic deprivation covariates exhib-
ited substantial effects on maternal smoking rates, with the following odds ratios
and 95% credible intervals for a one standard deviation increase in the percentage
of people claiming JSA (sd = 2.45) and the natural log of median property price
(sd = 0.50): JSA—1.46 (1.41,1.52); log price—0.73 (0.70,0.76). These results
relate to the localised smoothing model with G = 4, but results from the other
models are almost identical. Thus, both results suggest that an increase in an areas
level of socioeconomic deprivation results in a substantial increase in the odds of
maternal smoking.

5.3. Temporal trend and spatial inequalities. The temporal trend in maternal
smoking probabilities is displayed in Figure 3, which shows boxplots of the esti-
mated probabilities across all IGs for each year. The dashed line denotes the time
of the smoking ban, while the numbers at the top of the figure are spatial standard
deviation quantifying the level of spatial inequality in estimated smoking proba-
bilities. The results are presented for the localised smoothing model (with G = 4)
with and without covariates because Table 2 shows it fits the data better than Model
K or Model R. The results using other values of G are almost identical, having a
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mean absolute difference of 0.004 on the probability scale. The figure shows clear
evidence of an overall decline in smoking probabilities during the 14 years, with
estimated reductions of 0.115 and 0.118 in the median smoking probabilities be-
tween 2000 and 2013 for the models without and with covariates, respectively.
This suggests that in an era encompassing the smoking ban (March 2006) there
was a reduction in maternal smoking probabilities by just below 12% on aver-
age in Glasgow, although the figure does not show a clear step change reduction
between 2005 and 2006. Furthermore, these results do not show a monotonic de-
cline and instead show some year-to-year variation, which may be due to random
variation or the need to estimate the yearly data within the model using data aug-
mentation. Reductions in the spatial inequality in estimated smoking probabilities
show similar patterns, with the standard deviation falling by around 0.04 (a 35%
reduction) between 2000 and 2013, which is broadly consistent to including or
excluding covariates from the model.

5.4. Localised spatio-temporal structure. The piecewise constant intercept
terms in the localised smoothing model allow spatially or temporally neighbour-
ing data points to have very different estimated smoking probabilities, and thus a
group of adjacent data points with a different intercept value from their neighbours
could be viewed as a cluster with excessively high (or low) smoking probabili-
ties. The model was fitted with the maximum number of different intercept terms
G = 4, . . . ,7, and in all cases only 3 different intercept terms were identified. The
allocation of these three intercept terms to the NT data points was also consis-
tent across G, with Rand index values that measure cluster agreement ranging
between 0.98 and 0.99 (1 corresponds to complete agreement). For the model with
no covariates the three different groups comprise low, medium and high maternal
smoking groups, with average probabilities of 0.064, 0.172 and 0.413, respectively.
Around 9% of IGs are in the high probability group in 2000 (based on the posterior
median), which reduces to less than 1% in 2013.

Figure 4 displays the probability that each IG is in the high probability cluster in
2000, 2006 and 2013, where the left column relates to a model with no covariates,
while the right panel is high unexplained values after adjusting for socioeconomic
deprivation. Without adjusting for deprivation, the largest and most temporally
preserving cluster of high probability IGs is the Nitshill/Pollockshaws part of the
city, which is just north west of Giffnock (see Figure 1). This cluster reduces in size
by 2013, but is about the only group of IGs that retain any substantial probability
of being in the high probability group. The remaining clusters in 2000 include Port
Glasgow in the west (see Figure 1) and Drumchapel in the mid-north (just below
Bearsden in Figure 1), but both exhibit reduced probabilities of maternal smoking
in 2013, and have posterior medians for {Zit } corresponding to being in the middle
intercept group along with almost all of the other IGs. The right column of Figure 4
shows IGs that retain relatively high maternal smoking rates after removing the
effects of socioeconomic deprivation, and some are in common with the left panel
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FIG. 4. The probability of being in the high probability intercept group in 2000, 2006 and 2013.
The left and right panels respectively relate to the model without and with the covariates.

such as Cambslang (far southeast, east of Giffnock, see Figure 1), while others
such as rural Renfrewshire (large black region) are not. In common with the left
column, the majority of these areas exhibit reduced incidence by 2013, which is in
keeping with the overall decline in maternal smoking observed in Figure 3.

6. Discussion. This paper has presented a new study investigating the chang-
ing temporal dynamics of small-area variation and inequality in maternal smok-
ing during pregnancy in Glasgow, Scotland, during an era that included a ban on
smoking in enclosed public spaces. To identify these dynamics, we have presented
a novel localised smoothing model that is one of the first to simultaneously un-
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dertake both cluster identification and spatio-temporal risk estimation in this epi-
demiological context. The model can be implemented by others using the CAR-
BayesST package in the statitistical software R for both binomial and Poisson
data models, making it widely applicable beyond the specific application consid-
ered here. A simulation study has shown the model performs consistently well
across a range of scenarios, both in terms of cluster identification and risk estima-
tion, and outperforms two commonly used competitor models.

The results from the Glasgow maternal smoking study show that overall smok-
ing incidence in Glasgow has reduced by around 12%, being around 26% on aver-
age in 2000 and reducing to 14% in 2013. This is very similar to the results found
in the literature, with, for example, Passmore et al. (2015) reporting a reduction in
maternal smoking rates from 17% in 2000 to 11% in 2011 in Australia. Reductions
in maternal smoking have also been seen in much earlier time periods, with, for
example, Silveira et al. (2016) reporting a reduction from 36% in 1982 to 21% by
2011 in Brazil.

The reduction observed here coincides with a ban on smoking in 2006, although
there does not appear to be a step change reduction in that year. This may be due
to the anticipatory effect as described by Mackay et al. (2012), whereby people
change their behaviours in advance of the ban in order to prepare for it. Alterna-
tively, the available data were 3-year rolling totals, so the yearly data had to be es-
timated within the model using data augmentation, leading to greater uncertainty.
Thus, while one cannot definitively say the observed reduction in maternal smok-
ing is due to the ban as opposed to other factors such as more stringent controls
on cigarette packaging and availability, the ban has coincided with a reduction in
smoking rates over the 14 year study period which will have a knock-on effect in
improving public health.

Our study also found strong relationships between maternal smoking rates and
socioeconomic deprivation, the latter measured by average property price and
the proportion of working age people claiming unemployment benefits. This re-
lationship agrees with the existing literature [(Silveira et al. (2016), Williamson
et al. (1989)], and a review by Kramer et al. (2000) shows that increased rates of
cigarette smoking among poor communities is partially responsible for the socioe-
conomic disparities in poor pregnancy outcomes such as preterm birth. Addition-
ally, Passmore et al. (2015) show a significant relationship between socioeconomic
deprivation and smoking cessation during pregnancy, with those that smoke before
pregnancy being more likely to quit during pregnancy if they are from affluent
backgrounds. These effects recur across the world and in different time periods,
and show that socioeconomic deprivation remains a key driver in maternal smok-
ing prevalences.

The level of spatial inequality in maternal smoking incidence across Glasgow
has also reduced over the study period, with the standard deviation in estimated
smoking probability reducing from 0.114 in 2000 to 0.071 in 2013. This reduc-
tion results mainly from high smoking incidence areas reducing their levels, as
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the maximum estimated smoking incidence has reduced from 61.8% to 38.1%,
whereas the minimum estimated level has only changed from 4.4% to 2.5%. This
reduction in the high incidence areas is also observed from the number of IGs
estimated to be in the high incidence cluster (summarised in Figure 4), which is
around 9% of IGs in 2000 but less than 1% in 2013. Thus, the city has become
more equal in terms of smoking incidence over the 14 year study period, which
has reduced the level of health inequality and should make for a fairer society in
future health terms. For example, the spatial standard deviation in the standardised
morbidity ratio for hospitalisation due to respiratory disease in the general popu-
lation across Glasgow has reduced from 0.332 at the start of the study period to
0.305 at the end. However, whilst most areas have reduced their maternal smoking
rates over the course of the study, the Nitshill/Pollockshaws part of the city still
shows evidence of raised levels in 2013, and this would thus be an area for public
health professionals to investigate further to understand why the reductions seen
elsewhere have not happened in this area.

This paper presents a number of natural avenues for future work. On the pub-
lic health side one would wish to investigate whether the reductions in maternal
smoking incidences observed here have filtered through to similar improvements
in birth outcomes, as well as whether the pattern in maternal smoking rates are
mirrored by reductions in rates for the entire population. From a statistical view-
point, it would be interesting to extend the clustering model so that the values of
the piecewise constant intercept terms {Zit } were determined by covariates such
as socioeconomic deprivation using an approach similar to Gormley and Murphy
(2008).
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SUPPLEMENTARY MATERIAL

Supplement A: Additional results and data analysis (DOI: 10.1214/16-
AOAS941SUPP; .pdf). Section 2 illustrates the use of the (non-data augmented)
proposed model via the CARBayesST package on simulated data. Section 3 pro-
vides an additional simulation study that assesses the efficacy of the model with
data augmentation. Section 4 presents example realisations of the simulated data.
Section 5 presents posterior summaries of the hyperparameters from the Glasgow
study, while Section 6 presents additional sensitivity analyses.

Supplement B: Additional files for running the proposed model on simu-
lated data (DOI: 10.1214/16-AOAS941SUPP; .zip). R code and data for running
the model proposed in Section 3 on simulated data.

http://dx.doi.org/10.1214/16-AOAS941SUPP
http://dx.doi.org/10.1214/16-AOAS941SUPP
http://dx.doi.org/10.1214/16-AOAS941SUPP
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