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DISCUSSION OF
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BY JIAN KANG1 AND LEXIN LI2

University of Michiga and University of California, Berkeley

We would like to congratulate the authors for their excellent and stimulating
work. The proposed statistical methods address a series of important issues in the
analysis of diffusion magnetic resonance imaging (dMRI) data. Their work will
surely be the subject of much application and elaboration in the future.

Our discussion focuses mainly on three aspects: (1) the multiple tensor direc-
tion model, (2) the kernel smoothing method of multiple directions and (3) the
fiber tracking algorithm. For each aspect, we begin with a brief summary of the
contributions of the paper, then raise some questions and point out some potential
alternatives and extensions.

1. Multiple tensor direction model. It is challenging to estimate multiple
tensor matrices within a voxel using dMRI data, in that most existing multi-tensor
models suffer the nonidentifiability issue. The multiple tensor direction model pro-
posed in this paper focuses on a direct estimation of multiple directions within a
voxel, which avoids the complications of estimating multiple tensor matrices. The
proposed model is shown to be identifiable, is easy to interpret, and is to facilitate
detection of crossing fiber tracts.

We raise two questions regarding this model. First, how does this model deal
with label switching? According to model (2) of the paper, we write

S̄(u;γ ) = S0
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j=1

τj exp
{
bαj

(
uTmj

)2}
,

where γ = (γ T
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2 ,γ T
3 , . . . ,γ T

J )T, γ j = (τj , αj ,mT
j )T, for j = 1, . . . , J . Now

consider γ̃ = (γ T
2 ,γ T

1 ,γ T
3 , . . . ,γ T

J )T and that γ 1 �= γ 2. Then it is clear that γ �= γ̃ ,
but S̄(u;γ ) = S̄(u; γ̃ ). We are curious how to get around this label switching issue
to maintain model identifiability.

Second, the authors have developed an approximation to the log-likelihood on
tessellations and used a grid search to obtain the maximum likelihood estimates
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TABLE 1
Average mean square errors for estimating (αj , τj ,mj ) when fixing σ and S0 at different values for

the three simulated cases. The results are based on 120 data replications

J α τ m

True parameter settings with (σ,S0) = (0.5,10)

Case 1 J = 1 α1 = 3.75 τ1 = 0.779 m1 = (1,0,0)T

Case 2 J = 1 α1 = 3.75 τ1 = 0.779 m1 = (0,1,0)T

Case 3 J = 2 α1 = 3.75 τ1 = 0.779 m1 = (1,0,0)T

α2 = 3.75 τ2 = 0.779 m2 = (0,1,0)T

Average mean square errors (MSE ×10−3)

α τ m α τ m

Fix (σ,S0) = (0.5,10)

Case 1 20.2 (27.7) 0.1 (0.2) 11.6 (21.3)

Case 2 19.1 (25.6) 0.1 (0.2) 12.5 (23.4)

Case 3 308.9 (413.1) 0.2 (0.2) 0.8 (0.6)

Fix (σ,S0) = (0.75,10) Fix (σ,S0) = (0.25,10)

Case 1 65.8 (64.1) 0.2 (0.2) 0.9 (1.4) 36.1 (41.7) 0.2 (0.2) 86.3 (53.7)
Case 2 73.2 (87.9) 0.2 (0.3) 1.0 (2.1) 38.2 (42.1) 0.2 (0.2) 78.9 (53.5)
Case 3 545.4 (637.3) 0.2 (0.3) 0.9 (0.7) 345.1 (425.3) 0.2 (0.3) 0.8 (0.6)

Fix (σ,S0) = (0.5,5) Fix (σ,S0) = (0.5,15)

Case 1 2731.0 (241.1) 48.9 (0.0) 0.5 (0.5) 23.1 (30.6) 67.2 (4.2) 48.6 (44.2)
Case 2 2731.2 (241.4) 48.9 (0.0) 0.5 (0.4) 20.0 (28.9) 67.4 (4.3) 49.0 (45.3)
Case 3 717.1 (488.6) 136.3 (6.4) 1.1 (1.0) 345.3 (428.0) 19.6 (1.5) 0.9 (0.5)

Fix (σ,S0) = (0.75,5) Fix (σ,S0) = (0.25,15)

Case 1 2342.5 (226.2) 48.9 (0.0) 0.5 (0.4) 41.1 (43.5) 69.4 (4.5) 97.7 (74.5)
Case 2 2351.3 (236.1) 48.9 (0.0) 0.5 (0.4) 39.4 (47.5) 69.1 (3.7) 103.2 (75.1)
Case 3 522.2 (480.5) 134.9 (6.8) 1.2 (1.0) 329.4 (523.4) 19.6 (1.6) 0.8 (0.5)

for {(αj ,mj )
T}Jj=1. The resulting optimization can be done in a parallel fashion,

but depends on two unknown parameters S0 and σ . The authors have suggested
to use an independent data set to estimate these two parameters. We are curious
how sensitive the proposed method is to the estimates of S0 and σ , and if one can
directly estimate S0 and σ using the same set of data. Toward that end, we per-
formed a simple simulation using the code provided by the authors. We simulated
data from the proposed model with σ = 0.5, S0 = 10, αj = 3.75 and τj = 0.779
for all j = 1, . . . , J . We considered three cases, where cases 1 and 2 are single-
direction in that J = 1 and m equals (1,0,0)T and (0,1,0)T, respectively, whereas
case 3 is multi-direction in that J = 2, m1 = (1,0,0)T and m2 = (0,1,0)T. In the
estimation procedure, we assumed J is known, and fixed σ and S0 at different
values, such that σ = 0.25,0.5,0.75 and S0 = 5,10,15. Table 1 summarizes the
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resulting estimates of (α, τ,m) based on 120 data replications. We see from the
table that the average mean square errors for estimating α and τ both increase
when σ and S0 are not set at the true values. It is especially so when the signal-
to-noise ratio, S0/σ , is set at a small value, corresponding to rows 2 to 4 of the
first column of the table. On the other hand, the error for estimating m decreases
for the single direction cases. Does this imply the feasibility of estimating σ and
S0 using the same set of data directly? In addition, it is worth noting that, for the
multi-direction case, the estimates of directions are stable to the changes of σ and
S0, consistently producing small errors, which shows robustness of the proposed
method for multiple directions.

2. Kernel smoothing of multiple directions. An overarching challenge in
biomedical imaging analysis is how to borrow information and strength across
neighboring voxels or even distant regions. By taking into account the complex
spatial dependency structure of imaging data, it is to increase the power of signal
detection and to improve the efficiency of parameter estimation. The same chal-
lenge arises in modeling spatially distributed tensor directions, and it can be even
more difficult when the multiple tensor directions appear in the same locations.
This paper is among the first to address the challenge by utilizing a combination
of kernel smoothing and clustering of tensor directions. The associated theoreti-
cal properties are also established, which is a timely contribution to the field of
nonparametric statistics in the non-Euclidean space.

For the proposed kernel smoothing, we have a few questions. First, the theoreti-
cal justification was based upon a simplification that treats the estimated diffusion
directions as if they were observed. Such a simplification may not well capture
the uncertainty introduced in the estimation process. We are curious if the same
properties can be established by incorporating the variation of the estimated dif-
fusion directions. Second, the theoretical justification has been developed only for
smoothing along a single fiber tract. It is unclear whether it can be extended to
multiple fibers in a straightforward fashion. Third, cross-validation (CV) has been
employed in this paper to determine the kernel bandwidth. It is noteworthy that, for
the multi-fiber scenario, CV could be computationally intensive. Is there any fast
and simple alternative, such as the solve-the-equation-plug-in method [Jones, Mar-
ron and Sheather (1996), Raykar and Duraiswami (2006)] for the kernel density
estimation, that can be developed in this context?

In addition to kernel smoothing, a potential alternative is to apply the smoothing
spline techniques to the diffusion direction data. The key step would be to construct
a set of spatially varying basis function taking values on the tensor direction space,
and to develop a modeling strategy for multiple tensors occurring in the same
location. A marked point process in tensor direction space can be used in that it
can assign a random probability measure on the tensor shapes and the number
of tensors. It is interesting to further explore this direction and compare the two
smoothing techniques.
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3. Fiber tracking. It is known that most existing deterministic fiber tracking
methods are sensitive to the tensor estimation, and they typically assume one single
direction in each voxel. By contrast, the proposed fiber tracking algorithm is more
robust and practically useful for handling multiple directions within one voxel.

The proposed algorithm hinges on a number of tuning parameters, for instance,
the threshold for separation angles and the number of neighboring voxels to search.
It is important to understand how sensitive the fiber tracking estimation is to those
parameters. From an application perspective, any rule of thumb for specifying
those parameters under different scenarios would be practically useful. It would
also be informative to compare the proposed tracking algorithm to the Bayesian
method of Friman, Farnebäck and Westin (2006), which naturally incorporates the
uncertainty to construct the fiber tracts.

Furthermore, a Bayesian hierarchical model for fiber tracking offers a poten-
tially useful alternative. Such a model would consist of three levels of hierarchy.
At the first level, a nonparametric prior model, such as a Gaussian process on a
one-dimensional manifold, needs to be developed for multiple fiber tracts over a
three-dimensional space. At the second level, given the fiber tracts, a generative
model for the voxel-specific multiple tensor directions needs to be constructed. At
the third level, the sampling distribution of the dMRI data is to be constructed.
The multi-tensor direction model proposed in this paper can be employed for this
purpose. This Bayesian hierarchical model is useful in that it provides a direct sta-
tistical inferential capability on the fiber tracts based on the observed dMRI data
under a unified modeling framework. On the other hand, the complexity of the
hierarchical model poses numerous challenges, including theoretical investigation
of large support of the prior model and posterior consistency on the fiber tract
estimation, as well as practical consideration, for instance, development of an ap-
propriate posterior computational algorithm. Future research is warranted for this
line of work.
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