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DISCUSSION OF
“FIBER DIRECTION ESTIMATION IN DIFFUSION MRI”

BY ARMIN SCHWARTZMAN

University of California, San Diego

1. Introduction. The paper by Wong, Lee, Paul and Peng offers a telling ex-
ample of experimentalist vs. statistical thinking. While the experimentalists in the
imaging world proposed to solve the problem of identifiability of the multi-tensor
model by making more measurements at higher spatial resolution and at multiple
magnetic gradient strengths, Wong et al. asked if estimation was still possible in the
usual experimental setting and offered a different solution. By choosing the right
parametrization, they have shown that, while the full multi-tensor model cannot be
estimated, the diffusion directions can. If the goal of the analysis is tractography,
then this is sufficient.

The paper is comprehensive, taking the analysis all the way from the mea-
sured diffusion directions to fiber tracking. Estimation of the diffusion directions
is followed by spatial smoothing to improve accuracy. Clustering is used so that
smoothing is only applied within fibers where the angle between neighboring vox-
els is small. This helps the fiber tracking algorithm better survive the difficult fiber
crossing regions.

Because the objects of the analysis are diffusion directions, it is of interest to
connect the work by Wong et al. to the existing body of knowledge of directional
statistics. In the rest of this comment, I explore how directional statistics may shed
some additional light on the problem.

2. The multi-tensor model. A key idea in the paper is that, while the full
multi-tensor model is unidentifiable, the tensor eigenvectors are not. The identi-
fiability problem is hard to spot at first because the multi-tensor model [equation
(1) in Wong et al.] looks very much like a mixture of Gaussians. Gaussian mix-
ture models are generally identifiable unless there is degeneracy in the parameters.
The model is deceiving, however, because the argument vector u is constrained
to have unit norm. In fact, if the displacement of water molecules is modeled as a
Gaussian mixture distribution, then the signal model in equation (1) is proportional
to the Fourier transform of this distribution, restricted to a sphere of constant ra-
dius in frequency space [Mori (2007)]. The manipulation by Scherrer and Warfield
(2010) (described by Wong et al. in Section 3.1) indicates that it is possible to mod-
ify the diffusion tensors in the original Gaussian mixture together with the mixture
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weights in such a way that the values of the Fourier transform on the sphere remain
constant.

Because the restriction of the Fourier transform does not discard directional
information, diffusion directions can still be estimated. To reduce the number of
parameters, Wong et al. choose the axially symmetric tensor model in their equa-
tion (2). To understand this model, it is illustrative to consider the molecule dis-
placement distribution that gives rise to it. This is a Gaussian mixture where each
component j has covariance matrix proportional to Dj = αj mj mT

j + ξj I. Using
the binomial inverse theorem for matrices to invert Dj , the exponent in the corre-
sponding Gaussian density of the displacement x ∈ R

3 is proportional to

−xTD−1
j x = −xT
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Making the change of variable x = ru where r = |x| and |u| = 1, it follows that,
given r , u has a distribution on the unit sphere with positive exponent

κj

(
uTmj

)2

for some κj > 0 (proportional to r2). In other words, the direction of the molecu-
lar displacement for each tensor follows a Watson distribution with mean mj and
concentration parameter κj [Watson (1965); Schwartzman et al. (2008)]. The dis-
tribution of diffusion directions in the axially symmetric multi-tensor model is thus
a Watson mixture on the sphere.

3. Averaging of diffusion directions. Viewing the distribution of diffusion
directions as a Watson mixture helps guide the following steps, for example, that
of smoothing directions among neighboring voxels. While the Watson mixture
model above describes the distribution of diffusion directions within a voxel, it may
also describe the distribution of diffusion directions between neighboring voxels.
After all, the division of the brain into voxels is an arbitrary artifact of the imaging
technique and the anatomical structures in the brain span scales both smaller and
larger than a voxel.

From this point of view, we may model diffusion directions belonging to the
same fiber in neighboring voxels as draws from a single component of the Watson
mixture. It is sensible to define the average direction as the maximum likelihood
estimator of the mean vector in that component. This estimator, from the form of
the Watson density and using Wong et al.’s notation in their equation (6), can be
written as

arg max
v∈M
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.

The optimization problem above is similar to that in equation (6) of Wong et al. and
is also a Karcher mean, but it uses the orthogonal projection distance d⊥(u,v) =
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[1 − (uTv)2]1/2 instead of the arc distance d∗(u,v) = arccos(|uTv|) chosen by the
authors.

Numerically, this may not have a large effect if the directional distribution is
well concentrated around the mean. If θ = d∗(u,v), then d⊥(u,v) = sin θ , and
the two are approximately the same if θ is small. Moreover, the arc distance has
an appealing interpretation in terms of angle. However, the choice of distance has
an effect computationally. While the minimization problem posed by Wong et al.
requires an algorithmic solution based on geodesic coordinates and an elaborate
accompanying theoretical justification, the quadratic minimization above based on
the Watson distribution has a direct solution. In fact, the problem translates to

arg max
v∈M

vT
[

T∑
i=1

wi

(
m̂im̂T

i

)2

]
v,

whose solution is simply the eigenvector corresponding to the largest eigenvalue of
the weighted empirical covariance matrix in the large parentheses [Watson (1965);
Schwartzman et al. (2008)]. This direct solution may help simplify and shorten
computation time in Wong et al.’s Algorithm S1 (Step 6) and Algorithm S4 (Steps 7
and 10), which may be substantial over hundreds of thousands of voxels. It may
also simplify Theorem 2.

4. Fiber tracking. Another advantage of the Watson average is that it comes
with a measure of uncertainty, called angle dispersion in Schwartzman et al.
(2008). This would help quantify the uncertainty in the tractography algorithm,
which Wong et al. did not include, and even lead to a Kalman filter type of trac-
tography that takes into account this uncertainty in the estimation. This may be an
interesting direction for follow-up work.
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