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STRUCTURED SUBCOMPOSITION SELECTION IN REGRESSION
AND ITS APPLICATION TO MICROBIOME DATA ANALYSIS1
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Compositional data arise naturally in many practical problems and the
analysis of such data presents many statistical challenges, especially in high
dimensions. In this article, we consider the problem of subcomposition se-
lection in regression with compositional covariates, where the relationships
among the covariates can be represented by a tree with leaf nodes correspond-
ing to covariates. Assuming that the tree structure is available as prior knowl-
edge, we adopt a symmetric version of the linear log contrast model, and
propose a tree-guided regularization method for this structured subcomposi-
tion selection. Our method is based on a novel penalty function that incorpo-
rates the tree structure information node-by-node, encouraging the selection
of subcompositions at subtree levels. We show that this optimization problem
can be formulated as a generalized lasso problem, the solution of which can
be computed efficiently using existing algorithms. An application to a human
gut microbiome study and simulations are presented to compare the perfor-
mance of the proposed method with an l1 regularization method where the
tree structure information is not utilized.

1. Introduction. Compositional data arise in many disciplines such as geol-
ogy (geochemical elements), economy (income or expenditure distribution), and
ecology (abundances of different species), just to name a few. A compositional
data point, or composition for short, can be represented by a positive real vec-
tor with as many components as considered. The special and intrinsic feature of
compositional data is that the components of a composition are naturally subject
to a unit-sum constraint [Aitchison (1986)]. This paper is concerned with regres-
sion problems where the covariates are compositional data. Our work is motivated
from a data set generated from a human gut microbiome study [Wu et al. (2011)],
where the authors explored the relationship between Body Mass Index (BMI) of
an individual and the composition of the gut microbiome this person carries (see
Section 3 for details).

The human microbiome is the collection of microorganisms that live inside and
on the human body. It plays a major role in health and disease in humans, and is
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sometimes referred to as our forgotten organ. To determine the types and abun-
dances of bacteria, the 16S ribosomal RNA (rRNA) gene targeted sequencing is
commonly used in microbiome studies. After sequencing, the raw sequences are
often clustered into operational taxonomic units (OTUs) at the species level. Each
OTU can then be assigned to a taxonomic identity by comparing it to a reference
16S rRNA database. In addition, a phylogenetic tree can be constructed based on
the distances between the OTUs. See Navas-Molina et al. (2013) for more details.
Because the sampling depths can vary across different samples, a normalization
step is often adopted in practice to convert abundances into proportions. Such nor-
malized data are (1) compositional, since for each sample the relative abundances
must sum to one, and (2) high-dimensional, since the number of OTUs is large
compared to the number of subjects in the study.

Let Y ∈ R denote the response variable (e.g., BMI) and X = (X1, . . . ,Xp)� ∈
R

p the composition of p components (e.g., OTUs). Note that observations of X
lie in the (p − 1)-dimensional simplex:

S
p−1 =

{
(x1, . . . , xp)� ∈ R

p : x1 > 0, . . . , xp > 0,

p∑
j=1

xj = 1

}
.

To remove the unit-sum constraint and then apply classical statistical methods,
Aitchison (1986) suggested transforming the composition X in S

p−1 to a vector in
R

p−1, by a log ratio transformation,

log
(

Xj

Xp

)
= log(Xj ) − log(Xp), j = 1, . . . , p − 1.

In this paper, we consider the linear log contrast model of Aitchison and Bacon-
Shone (1984)

(1.1) Y =
p−1∑
j=1

αj log
(

Xj

Xp

)
+ ε,

where α1, . . . , αp−1 are regression coefficients, and the error term ε has mean zero
and constant variance. Here, we assume implicitly that the composition X contains
all regression information about the response Y , and thus the actual amount of the
mixture of the p components is irrelevant. Let αp = −∑p−1

j=1 αj . We can write
(1.1) as

(1.2) Y =
p∑

j=1

αj log(Xj ) + ε,

p∑
j=1

αj = 0,

that is, the mean response, E(Y | X), is a linear contrast of X in the log scale.
Extracting useful information from high-dimensional data is an important focus

of recent statistical research and practice, and for this task penalized loss function
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minimization has been shown to be very effective. A popular example is the pe-
nalization of the l2 loss in the usual linear model by the l1 norm of the parameter
vector, known as the lasso [Tibshirani (1996)]. Recently, Lin et al. (2014) pro-
posed a lasso-type procedure for simultaneous component selection and parameter
estimation in model (1.2). They assumed that the model is sparse in the sense that
many of the coefficients αj are zero. To see how their method works, we first
introduce some notation and definitions.

For a nonempty subset S ⊆ {1, . . . , p}, define

XS
j = Xj∑

l∈S Xl

, j ∈ S

and

L(S) = ∑
j∈S

αj log
(
XS

j

)
.

We call {XS
j , j ∈ S}, or S for short, a subcomposition formed from the full com-

position {1, . . . , p}. If
∑

j∈S αj = 0, we call L(S) a linear contrast of S (in the
log scale). Under model (1.2), a subcomposition S is said to be inactive if the
expected response E(Y | X) depends only on the subcomposition Sc, the comple-
ment of S ; S is said to be active if the expected response E(Y | X) depends on
S through a linear contrast L(S). Note that when the cardinality of S , denoted by
|S|, is 1, {XS

j , j ∈ S} = {1} and L(S) = 0, hence S is inactive. Loosely speaking,
a subcomposition is a subset of components (e.g., a group of bacterial taxa).

Let A = {j : αj �= 0}. Then, under model (1.2),
∑

j∈A αj = 0 and E(Y | X) =∑
j∈A αj log(XA

j ). By definition, A is active as long as |A| > 1. In other words,
what the lasso (or component selection in general) actually targets is a single
subcomposition composed of selected components. The reason is that the linear
log contrast model is different from the standard linear model. For illustration,
we consider a toy example, in which p = 8 and the mean function has the form
E(Y | X) = log(X1) − log(X2) + log(X3) − log(X4). Then the set consisting of
{5,6,7,8} is inactive, the set consisting of {1,2,3,4} is active, and the latter can
be partitioned into two active subcompositions, {1,2} and {3,4}. Clearly, the lasso
can pick up {1,2,3,4}, but it cannot tell whether or not the two subcompositions
formed from it are active. In human microbiome studies, an important objective is
to identify groups of bacterial species present in a body habitat (e.g., the gut) that
are predictive of a phenotype (e.g., BMI) [Knights et al. (2011)]. The lasso only
provides an approximate solution (i.e., a single group) for this purpose, a practical
disadvantage.

Since a composition carries only relative information, subcompositions, which
preserve ratio relationships, are natural objects of investigation in compositional
data analysis. Indeed, subcompositional analysis has a long history, for example,
in geology, and is a major theme of Aitchison (1986). It turns out that in the re-
gression setting, the counterpart of component selection should be subcomposition
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selection. In this paper, we assume that there is a partition of the full composition
{1, . . . , p} into K + 1 ≥ 2 nonoverlapping subcompositions Sk , k = 1, . . . ,K + 1,
such that |Sk| > 1 for k = 1, . . . ,K , and

E(Y | X) =
K∑

k=1

∑
j∈Sk

αj (k) log
(
X

Sk

j

)
,

(1.3) ∑
j∈Sk

αj (k) = 0, j = 1, . . . ,K,

that is, the subcomposition SK+1 is inactive, and the expected response depends
on K subcompositions formed from a nonoverlapping partition of Sc

K+1. To iden-
tify subcompositions (say, groups of bacterial species) that are predictive of an
outcome (say, BMI), we need to infer K , the number of linear contrasts, and the
corresponding coefficients within subcompositions.

The problem of subcomposition selection is challenging. First, the total number
of all possible partitions of the full composition, which is the pth Bell number
[Rota (1964)], is much larger than that of all possible subsets of components, and
hence it is computationally infeasible, even for a moderate p, to enumerate over
all possible least squares regressions for identifying the best partition. Second, in
some situations, the partition of Sc

K+1 is not unique, and hence it is impossible
to identify a particular set of subcompositions. In the above toy example, the ac-
tive subcomposition {1,2,3,4} can be divided into two active subcompositions in
two ways: (i) {1,2} and {3,4}, and (ii) {1,4} and {2,3}. There seems to be little
to distinguish between (i) and (ii) in terms of goodness-of-fit. For the first issue,
it is desirable to develop a regularization method for subcomposition selection,
analogous to the lasso for variable selection. For the second issue, if there is prior
knowledge on possible subcompositions that one may wish to see selected jointly,
then we can perform knowledge-based subcomposition selection. This is the case
in our motivating example in which a phylogenetic tree that encodes the relation-
ships among the species is available. Each node of the tree, which corresponds to a
subcomposition of species, potentially represents a bacterial lineage of biological
importance. Note that microbial community changes can occur at different levels
of granularity, and finding microbial signatures at multiple granularities can both
provide much insight into the underlying biology and improve prediction. For ex-
ample, many studies have suggested that changes at smaller phylogenetic lineages
(at the bottom of the tree) than phyla (at the top of the tree) are more relevant to
obesity [Turnbaugh et al. (2008), Zhang et al. (2009, 2010), Fleissner et al. (2010)].
Generally, when the tree structure is unknown a priori, it can be learned from (se-
quence) data using hierarchical agglomerative clustering or other more sophisti-
cated methods. Although next generation sequencing has allowed the rapid growth
in the field of microbial ecology and the number of finished and ongoing studies,
there is a serious dearth of principled statistical methods that take into account
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special and inherent characteristics of microbiome data. In this paper, we look at
the problem from the viewpoint of feature selection and contribute to the field by
proposing a regularization method for selecting subcompositions that accounts for
both the compositional nature of the data and the tree structure among the bacte-
rial taxa. We then apply it to identify a few bacterial lineages that are predictive of
BMI. Our method encourages the selection of subcompositions represented by tree
nodes, and thus belongs to the class of methods that allow the identified features
to reflect the structural information [see, e.g., Garcia et al. (2014), Jenatton, Au-
dibert and Bach (2011), Jenatton et al. (2011), Kim and Xing (2009, 2012), Yuan
and Lin (2006), Zhao, Rocha and Yu (2009)]. However, there are two major differ-
ences. First, we use the linear log contrast model instead of the traditional linear
model, and treat subcompositions rather than individual components as features.
Second, because of the distinction in the model, our methodology is more similar
to the lasso than to group-lasso-type methods. Indeed, the optimization problem
can be formulated as a generalized lasso problem [Tibshirani and Taylor (2011)],
the solution of which can be computed efficiently using existing algorithms. In
other words, the selection of subcompositions (say, groups of microbial taxa) can
be achieved somewhat surprisingly through a simple lasso-type procedure. In Sec-
tion 2.1, we introduce another symmetric version of the linear log contrast model.
In Section 2.2, we propose a tree-structured regularization method for subcompo-
sition selection. Computation and tuning are discussed in Section 2.3. An appli-
cation to a gut microbiome data set and simulations are presented in Sections 3
and 4, respectively. Concluding remarks are made in Section 5.

2. Methodology.

2.1. Another equivalent model. To avoid imposing the zero-sum constraint ex-
plicitly on the coefficients, we define the centered log ratio transformation

Zj = log(Xj ) − 1

p

p∑
l=1

log(Xl), j = 1, . . . , p,

and consider the following model:

(2.1) Y =
p∑

j=1

βjZj + ε.

Define

ZS
j = log

(
XS

j

) − 1

|S|
∑
l∈S

log
(
XS

l

)
, j ∈ S.

We assume that

(2.2) E(Y | Z) =
p∑

j=1

βjZj =
K∑

k=1

∑
j∈Sk

βj (k)Z
Sk

j ,
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where Z = (Z1, . . . ,Zp)�. Note that for each k ∈ {1, . . . ,K}, the coefficients
βj (k) in (2.2) are identifiable up to a common additive constant, due to the fact
that

∑
j∈Sk

Z
Sk

j = 0. It is thus the relative, rather than absolute, value of βj (k) that
matters. This in turn implies that linear contrasts of β1(k), . . . , β|Sk |(k), such as
β∗

j (k) = βj (k) − ∑
l∈Sk

βl(k)/|Sk|, j = 1, . . . , |Sk|, are estimable.

Let β∗
j = βj − ∑p

l=1 βl/p, j = 1, . . . , p. Then

(2.3) E(Y | Z) =
p∑

j=1

β∗
j log(Xj ) =

K∑
k=1

∑
j∈Sk

β∗
j (k) log

(
X

Sk

j

)
.

Hence, model (1.2) with (1.4) and model (2.1) with (2.2) are equivalent by setting
αj = β∗

j and αj (k) = β∗
j (k). Both models appear to be natural with penalization,

but as we will see, the latter also turns out to be computationally convenient.
It is standard to check the inactivity of a subcomposition or a subset of com-

ponents, since the corresponding hypothesis is a linear hypothesis within a lin-
ear model. As a result, one way to identify Sc

K+1 is to incorporate the test into
a subset search procedure, for example, a stepwise backward or forward search.
However, best subset selection is not only computationally intensive but may also
be unsatisfactory in terms of stability [Breiman (1995)]. Alternatively, regulariza-
tion methods, such as the lasso [Lin et al. (2014)], provide a direct estimate of
Sc

K+1, and are applicable in high dimensions. Subcomposition selection, on the
other hand, seeks not only Sc

K+1, but also subcompositions formed from it, re-
moving possible redundancy in it. To understand this, we note that, by (2.3), E(Y |
Z) = ∑

j∈Sc
K+1

β̃j log(X
Sc

K+1
j ) for some β̃j such that

∑
j∈Sc

K+1
β̃j = 0. Hence, for

component selection, the true number of free parameters is p − |SK+1| − 1. On
the other hand, the true number of free parameters for subcomposition selection
is p − |SK+1| − K , due to K constraints

∑
j∈Sk

β∗
j (k) = 0, k = 1, . . . ,K . There-

fore, subcomposition selection should yield better performance than component
selection when K > 1.

2.2. Tree-structured subcomposition selection. As mentioned in the Introduc-
tion, the problem of subcomposition selection is computationally intensive, and
moreover, its solution may not be unique. One way to deal with these issues is
to restrict our attention to a smaller set of solutions. Since subcompositions rep-
resent subsets of components, we are interested in identifying subcompositions
composed of closely related components. In this paper, we use a tree to repre-
sent the closeness or homogeneity among components. We elaborate on this in the
following.

Suppose that the relationships among the p components can be represented as
a tree T with the set of nodes V . In this tree, there are p leaf nodes, one for each
component, and there are |V| − p internal nodes indicating groups of components
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FIG. 1. Two binary trees, each with four leaf nodes and three internal nodes. In either tree, each
node is associated with a subset of components.

at different levels. In the context of microbiome data, the evolutionary relationships
among OTUs is encoded by a phylogenetic tree, where leaf nodes correspond to
OTUs and internal nodes represent bacterial taxa at multiple taxonomic levels.
Figure 1 shows two binary trees, each with four leaf nodes and three internal nodes.
While an unbalanced tree, like the one shown in Figure 1(a), has some long paths
and some short ones, a balanced tree, like the one shown in Figure 1(b), has all leaf
nodes at the same depth. Throughout, we assume that the tree structure is available
as prior knowledge.

Let vroot denote the root node of T . For each node v ∈ V , let Tv denote the sub-
tree rooted at v. Clearly, for an internal node v near the bottom of T , the compo-
nents that correspond to the leaf nodes of Tv are highly homogenous, whereas for
v near vroot, the components associated with Tv are relatively more heterogenous.
Consider now an arbitrary subcomposition. Because balanced trees are extremely
rare, it is very likely that the components of this subcomposition are heterogenous.
To encourage the selection of homogenous subcompositions (e.g., bacterial lin-
eages near the bottom of the phylogenetic tree), we develop a novel tree-structured
regularization method as follows.

Let ej be the p-dimensional vector whose j th element is 1 and other elements
are 0, for j = 1, . . . , p. For each node v ∈ V , we define

f v = ∑
j∈Lv

ej ,

where Lv ⊆ {1, . . . , p} is the set of indices of the components that correspond to
the leaf nodes of Tv . Denote by L the set of leaf nodes and I the set of internal
nodes of T . For each v ∈ I , f v represents a tree-node-based group of components.
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Let β∗ = (β∗
1 , . . . , β∗

p)�. Our tree-guided regularization penalty is defined as

(2.4)

J ∗(
β∗;λ1, λ2

) = λ1
∑
v∈L

∣∣f �
v β∗∣∣ + λ2

∑
v∈I

∣∣f �
v β∗∣∣

= λ1

p∑
j=1

∣∣β∗
j

∣∣ + λ2
∑
v∈I

∣∣f �
v β∗∣∣.

If f �
v β∗ = 0 for some leaf node v ∈ L, then the corresponding component is re-

moved from the model. On the other hand, if f �
v β∗ = 0 for some internal node

v ∈ I , then a partition occurs at v. As we move from leaf nodes to the root, the
first time f �

v β∗ = 0 happens at an internal node v, this defines a subcomposition.
Therefore, the first term in (2.4) is for component selection, while the second term
is for subcomposition selection that induces homogeneity at the subtree level. Note
that it is the singularity of the l1 norm that results in the selection of components
and subcompositions.

We now return to the toy example. For illustration, we assume that each com-
ponent corresponds to an OTU, and a phylogenetic tree over the eight OTUs is
available. We also assume that the first four OTUs are biologically important, and
the subcomposition {1,2,3,4} is associated with a subtree shown in Figure 1(b). If
β∗

j = 0 for all j > 4, then the subcomposition {5,6,7,8} is correctly set to be inac-
tive. We then concentrate on the subcomposition {1,2,3,4} and the corresponding
subtree. If, in addition, f �

v β∗ = 0 for all three internal nodes v of this subtree, then
{1,2,3,4} is partitioned into {1,2} and {3,4}. As we mentioned before, an alter-
native partition of {1, 2, 3, 4} is given by {1,4} and {2,3}. However, this partition
is unlikely, especially when λ2 is large, because the penalty on it is much larger
than that for the former one. Also, the first partition yields two bacterial taxa, and
hence is biologically more interpretable than the second one.

Suppose we have a sample of n observations {(xi1, . . . , xip)�, yi} for i =
1, . . . , n. To select subcompositions and estimate parameters simultaneously, we
consider the convex optimization problem:

(2.5) minimize
β∈Rp

1

2n
‖y − Zβ‖2

2 + J ∗(
β∗;λ1, λ2

)
,

where y = (y1, . . . , yn)
� ∈ R

n,Z = (zij ) ∈ R
n×p,β = (β1, . . . , βp)�, and ‖ · ‖2

denotes the usual l2 norm. We call our method Tree-guided Automatic Subcom-
position Selection Operator (TASSO). When λ2 = 0, TASSO reduces to the lasso
method for component selection [Lin et al. (2014)]. Throughout the paper, TASSO
is reserved for λ2 > 0 to remind ourselves that it incorporates the tree information.

2.3. Computation and tuning. Denote by P1 the centering matrix of size p.
Since β∗ = P1β and f �

vroot
β∗ = 0, we can write

(2.6) J ∗(
β∗;λ1, λ2

) = J (β;λ1, λ2) = λ1

p∑
j=1

∣∣ẽ�
j β

∣∣ + λ2
∑
v∈I1

∣∣f̃ �
v β

∣∣,



STRUCTURED SUBCOMPOSITION SELECTION 779

where ẽj = P1ej , f̃ v = P1f v , and I1 = I \ {vroot}. Let P2 = (P1f v, v ∈ I1)
� ∈

R
|I1|×p . In matrix notation,

(2.7) J (β;λ1, λ2) = λ1‖P1β‖1 + λ2‖P2β‖1,

where ‖ · ‖1 denotes the l1 norm. The penalty matrix P1 is independent of the tree
structure. For example, when p = 4,

P1 =

⎛
⎜⎜⎜⎝

1 − 1/4 −1/4 −1/4 −1/4
−1/4 1 − 1/4 −1/4 −1/4
−1/4 −1/4 1 − 1/4 −1/4
−1/4 −1/4 −1/4 1 − 1/4

⎞
⎟⎟⎟⎠ ∈ R

4×4.

By construction, P2 depends on the tree topology. For the tree in Figure 1(a),

P2 =
(

1 − 2/4 1 − 2/4 −2/4 −2/4
1 − 3/4 1 − 3/4 1 − 3/4 −3/4

)
∈ R

2×4,

and for the tree in Figure 1(b),

P2 =
(

1 − 2/4 1 − 2/4 −2/4 −2/4
−2/4 −2/4 1 − 2/4 1 − 2/4

)
∈ R

2×4.

Let λ = λ1 + λ2 and α = λ2/(λ1 + λ2). We can further write

λ1‖P1β‖1 + λ2‖P2β‖1 = λ
{
(1 − α)‖P1β‖1 + α‖P2β‖1

} = λ
∥∥D̃(α)β

∥∥
1,

where D̃(α) = {(1−α)P1, αP�
2 }� ∈R

(|V|−1)×p. We then arrive at the optimization
problem:

(2.8) minimize
β∈Rp

1

2n
‖y − Zβ‖2

2 + λ
∥∥D̃(α)β

∥∥
1.

Thus, for each α, we need to solve a generalized lasso problem [Tibshirani and
Taylor (2011)]. Note, however, that the zero-sum constraint on rows of Z makes the
elements of β not identifiable. Since the penalty term depends only on the relative
values of the coefficients, one can choose the j th component as the reference, that
is, set βj = 0, and solve the resulting problem. Nevertheless, this strategy has an
undesirable aspect: the numerical solution depends on the choice of j . Following
Lin et al. (2014), an alternative approach is to impose a zero-sum constraint on the
coefficients, and then solve a constrained optimization problem. However, because
D̃(α) depends on the tree structure, it is difficult to develop an efficient algorithm,
unless α = 0.

Since the zero-sum constraint implies the exact collinearity among the columns
of Z, a natural way of coping with perfectly correlated covariates is to use an l2 or
ridge penalty [Hoerl and Kennard (1981)]. We thus consider a modified criterion:

(2.9) minimize
β∈Rp

1

2n
‖y − Zβ‖2

2 + λ
∥∥D̃(α)β

∥∥
1 + γ

2n
‖β‖2

2,

where γ > 0 is the ridge parameter.
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Let ỹ = (y,0, . . . ,0) ∈ R
n+p and Z̃(γ ) = (Z�,

√
γ Ip)� ∈ R

(n+p)×p, where Ip

is the p × p identity matrix. We now write (2.9) as

(2.10) minimize
β∈Rp

1

2n

∥∥ỹ − Z̃(γ )β
∥∥2

2 + λ
∥∥D̃(α)β

∥∥
1.

For each pair of α and γ , this is a standard generalized lasso problem on augmented
data. To this end, we can use the dual path algorithm that is efficiently implemented
in the genlasso R package. We denote the solution for β by β(α,λ, γ ).

To select the tuning parameters, we propose to use an information criterion.
Define

(2.11) IC(α,λ, γ ) = log
{
RSS(α,λ, γ )

} + κ × DF(α,λ, γ ),

where RSS(α,λ, γ ) = ‖y − Zβ(α,λ, γ )‖2
2, κ is a complexity factor, and DF(α,

λ, γ ) denotes the effective number of parameters in β(α,λ, γ ), which is an esti-
mate of the degrees of freedom of the fit. Three popular choices of κ are κ = 2,
κ = log(n), and κ = log{log(n)}× log(n). The corresponding criteria are known as
Akaike information criterion [AIC, Akaike (1998)], Bayesian information criterion
[BIC, Schwarz (1978)], and generalized information criterion [GIC, Fan and Tang
(2013)], respectively. For each (α, γ ), we select λ by minimizing IC(α,λ, γ ) along
the path. In this paper, we concentrate on two instances of our method, namely,
α = 0 (the lasso) and α = 0.5 (TASSO). Furthermore, for each method, we ex-
plore three values of γ : 10−6,10−4, and 10−2, and choose γ to be the one that
gives the smallest criterion value.

We note that the results generally depend on the specific criterion used. An
alternative to information criteria is the cross-validation approach. However, cross
validation is computationally more intensive. Furthermore, its performance is often
similar to that of AIC.

3. Gut microbiome data. The human gut carries a vast and diverse micro-
bial ecosystem that is essential for human health [Gill et al. (2006)]. For exam-
ple, studies have shown that the gut microbiome is likely to be implicated in the
etiopathogenesis of obesity [Turnbaugh et al. (2006), Ley (2010)]. In this section,
we apply our method to a human gut microbiome study conducted at the Univer-
sity of Pennsylvania [Wu et al. (2011)], in which both gut microbiome data and
clinical measurements were available. Our goal is to predict obesity based on the
gut microbiome composition. Specifically, we are interested in identifying a few
bacterial lineages that are predictive of BMI, a widely accepted index of obesity
and overweight.

Stool samples of 98 healthy volunteers were collected in this study, and bac-
terial DNA was extracted and then analyzed by the 454/Roche pyrosequencing
of 16S rRNA gene segments of the V1–V2 region. The pyrosequences were pro-
cessed by the QIIME pipeline [Caporaso et al. (2010)] with the default parameters.
The counts for more than 17,000 species-level OTUs were obtained. One way of
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reducing the number of OTUs is to combine them at the genus level. However, for
this data set more than 25% of the total OTU counts would be discarded, which
is likely to result in a biased analysis. Since we have available a phylogenetic tree
of all the OTUs, an alternative is to create a nontrivial set of OTUs by agglom-
erating closely related OTUs using, for example, the single-linkage clustering: all
leaf nodes of the tree separated by a cophenetic distance smaller than some thresh-
old will be agglomerated into one OTU [McMurdie and Holmes (2013)]. In our
analysis, we used the threshold 0.5. For each merged group of OTUs, we chose
the OTU with the highest abundance to represent it. Moreover, we excluded the
uncommon OTUs that occurred in less than 5 of the samples, leaving 62 OTUs.
The new phylogenetic tree T is shown in Figure 2.

Since the number of sequencing reads varied drastically across samples and
should not play a key role in predicting BMI [Lin et al. (2014)], we applied the cen-
tered log ratio transformation after replacing zero counts by the maximum round-
ing error 0.5 [Aitchison (1986), Section 11.5]. The final data set was composed of a
matrix Z ∈ R

98×62 of log contrasts, a phylogenetic tree T , and a vector y ∈ R
98 of

BMI values. Table 1 shows a summary of the selected models for the lasso (α = 0)
and TASSO (α = 0.5). We can see that for the lasso, AIC selected a subcomposi-
tion of 13 components, and was the only criterion that worked, while for TASSO,
AIC, and BIC picked the same model with five two-component subcompositions,
and GIC selected only one subcomposition of size two.

To obtain stable selection results, we generated 1000 random subsamples con-
taining 80% of the data, and used the AIC criterion to select the model. As il-
lustrated in the Introduction, the lasso selects only a single subcomposition of se-
lected components. To make feasible the comparison between our method and the
lasso, we concentrated on subcompositions of size two, that is, component pairs,
that appeared in at least 900 of the models. In other words, if a model included a
subcomposition of size 3, then it automatically included three subcompositions of
size 2. The results are reported in Table 2. We can see that 4 out of

(13
2

)
and 4 out of

5 component pairs, respectively, for the lasso and TASSO, had selection probabili-
ties greater than 0.9. However, in terms of log contrasts there was a redundant pair
for the lasso, namely, Z36 − Z60 = (Z27 − Z36) − (Z27 − Z60). For each method,
we then refit a linear log contrast model based on the top four component pairs.
The results are summarized in Table 3. We see that the use of the tree structure
doubled the (adjusted) R2 value. Note that, although TASSO identified only pairs
of OTUs on the full data (see Table 1), it selected subcompositions of different size
when applied to random subsamples.

For the three nonredundant log contrasts selected by the lasso, none of their
regression coefficients was significant at the 0.05 level. However, two of the four
log contrasts selected by TASSO, Z26 − Z27 and Z59 − Z60, had their coefficients
highly significant at the 0.01 level. The four components, Z26,Z27,Z59 and Z60,
belonged to the phylum Firmicutes. Specifically, Z26 and Z27 were members of
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FIG. 2. Gut microbiome data. The phylogenetic tree T . In this tree, there are 62 leaf nodes, labeled
as 1, . . . ,62, one for each OTU, and there are 61 internal nodes (labels not shown) representing
microbial taxa at different levels.

TABLE 1
Gut microbiome data. A summary of the selected models from different criteria

Criterion Method Subcompositions

AIC lasso {Z6,Z10,Z11,Z18,Z19,Z20,Z27,Z32,Z36,Z46,Z51,Z59,Z60}
TASSO {Z11,Z12}, {Z19,Z20}, {Z26,Z27}, {Z32,Z36}, {Z59,Z60}

BIC lasso ∅

TASSO {Z11,Z12}, {Z19,Z20}, {Z26,Z27}, {Z32,Z36}, {Z59,Z60}
GIC lasso ∅

TASSO {Z59,Z60}
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TABLE 2
Gut microbiome data. Selection frequencies by AIC

based on 1000 random draws of 80% of the data

Component pair Count

lasso {Z11,Z27} 901
{Z27,Z36} 903
{Z27,Z60} 951
{Z36,Z60} 903

TASSO {Z11,Z12} 907
{Z19,Z20} 948
{Z26,Z27} 946
{Z59,Z60} 973

the Veillonellaceae family, and were unclassified at the genus level, while Z59
and Z60 were members of the Erysipelotrichaceae family, with Z60 being unclas-
sified at the genus level. Wu et al. (2011) showed that the Veillonellaceae was
positively correlated to BMI, and Zhang et al. (2009) reported that higher propor-
tions of the Erysipelotrichaceae were identified in morbidly obese individuals. The
Erysipelotrichaceae has also been shown by several independent studies to alter in
abundance in response to changes in the amount of dietary fat. For example, a
bloom occurred for an uncultured member of this family, after inducing obesity in
mice by feeding them a “Western” diet [Turnbaugh et al. (2008), Fleissner et al.
(2010)], and four clades of this family were reported to react differently to high-
fat and low-fat diets [Zhang et al. (2010)]. Although the exact role of these two
bacterial families in host energy metabolism is still obscure, and deserves further
research, these studies suggested that changes at much smaller phylogenetic lin-
eages than phyla are more relevant to obesity, and our method is potentially useful
in this regard. In the literature, several methods have been proposed to analyze the
above data set, and they fall roughly into two categories. The first category ad-
dresses the compositional nature of microbiome data; see for example, Lin et al.
(2014). The second category accounts for the phylogenetic tree over bacterial taxa;
see, for example, Chen et al. (2013). As pointed out by Li (2015), methods for an-
alyzing microbiome data must take into account the compositional nature of the

TABLE 3
Gut microbiome data. Model fits based on the top four component pairs

Log contrasts R2 Adjusted R2

lasso Z11 − Z27,Z27 − Z36,Z27 − Z60 0.14 0.11
TASSO Z11 − Z12,Z19 − Z20,Z26 − Z27,Z59 − Z60 0.26 0.23
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data. Also, how to incorporate the phylogenetic tree information is an interesting
research question. Here, we provide a somewhat unified solution in the regression
setting: our method satisfies the subcompositional coherence principle, and is able
to select subcompositions automatically at subtree levels.

4. Simulations. In this section, we conducted a simulation study to examine
the performance of the proposed method. To mimic the type of tree structure that
we might see in real problems, we used the phylogenetic tree T from the gut mi-
crobiome data described in the previous section, which has p = 62 leaf nodes. We
then generated the compositional data matrix X = (xij ) ∈ R

n×p and the response
vector y = (y1, . . . , yn)

� ∈ R
n with n = 100 as follows. First, we simulated a data

matrix W = (wij ) ∈ R
n×p from a multivariate normal distribution with mean vec-

tor μ = (μ1, . . . ,μp)� ∈ R
p and covariance matrix � = (�ij ) ∈ R

p×p . We then
transformed W to X by setting xij = exp(wij )/

∑p
l=1 exp(wil). Each row of X has

a logistic normal distribution. To allow component proportions to differ by orders
of magnitude, as was the case for the gut microbiome data, we set μj = log(p/2)

for j = 1, . . . ,5 and μj = 0 otherwise. To describe different levels of correlations
among the components, we took �ij = ρ|i−j | with ρ = 0.2 or 0.5. Finally, we ap-
plied the centered log ratio transformation zij = log(xij ) − ∑p

l=1 log(xil)/p, and
simulated the responses yi from the model

yi =
p∑

j=1

zijβ
∗
j + εi,

where εi are independent and normally distributed with mean zero and variance
σ 2, with σ = 0.5 or 1. To specify the coefficient vector β∗ = (β∗

1 , . . . , β∗
p)� ∈ R

p ,
we considered three cases:

(I) β∗ = (1,−1,0,0.8,−0.8,0,0,−1.5,−0.5,2,0, . . . ,0)�,

(II) β∗ = (1,−1,0.8,−0.8,0,0,0,−1.5,−0.5,2,0, . . . ,0)�,

and

(III) β∗ = (1,−0.8,0.6,0,0,0,0,−1.5,−0.5,1.2,0, . . . ,0)�.

Case (I) implies three subcompositions, {1,2}, {4,5}, and {8,9,10}, all consis-
tent with the tree structure. Case (II) also implies three subcompositions {1,2},
{3,4}, and {8,9,10}. However, {3,4} is not associated with an internal node.
Case (III) determines one single subcomposition {1,2,3,8,9,10}, and so requires
only component selection. In summary, the structure of the phylogenetic tree T

perfectly matches the subcompositions in case (I), partly matches the subcompo-
sitions in case (II), and is completely misleading in case (III).

To evaluate the performance, we used the following measures: (1) the l2 loss
‖β̂∗ − β∗‖2, where β̂∗ = P1β̂ , (2) the relative model error ‖Z(β̂∗ − β∗)‖2

2/(nσ 2),
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(3) the true positive rate, (4) the false positive rate, (5) the effective number of
parameters, that is, the estimated degrees of freedom, and (6) the number of sub-
compositions. For each configuration in each case, we simulated 200 data sets.
The results are summarized in Tables 4 and 5. Several conclusions can be made as
follows.

First, the BIC criterion generally performed better than AIC and GIC. For the
lasso (α = 0), AIC over-selected components, and for TASSO (α = 0.5), AIC
over-selected subcompositions. While GIC competed well with BIC for TASSO,
it performed poorly for the lasso when ρ = 0.5 and σ = 1, with a very low true
positive rate. Second, TASSO performed consistently better than the lasso in terms
of the l2 loss and the relative model error. As expected, the use of tree information
in case (I) substantially enhanced the performance. The improvement in case (II)
when the tree structure partly matches the subcompositions, indicates that TASSO
enjoyed a certain degree of robustness relative to possibly misspecified subcom-
positions. One explanation for the success of TASSO in case (III) was that the cost
of falsely selecting subcompositions was compensated by the parsimonious use
of degrees of freedom. As we can see, TASSO appeared to have a smaller effec-
tive number of parameters than the lasso did, as was especially the case for BIC.
A possible reason is that, like the elastic net method of coupling l1 and l2 regular-
izations [Zou and Hastie (2005)], TASSO has two penalty terms, a lasso penalty
plus a tree-guided penalty, and this second penalty alleviates the instability of the
lasso. Finally, as we increased σ from 0.5 to 1, the performance of both methods
deteriorated.

5. Discussion. Next generation sequencing (e.g., 454 pyrosequencing and Il-
lumina shotgun sequencing), which is becoming cheaper and faster, has allowed
much larger surveys of microbial communities, with more reads in total. However,
our statistical methods for extracting useful information from microbiome stud-
ies have not been developed as quickly as experimental techniques. In particular,
there is a serious dearth of principled tools that can account for special and inher-
ent features of microbiome data. In this paper, we have considered the problem
of subcomposition selection in regression problems with high-dimensional and
compositional covariates. Rather than searching through all possible solutions, we
have considered a setting where the relationships between the components can be
represented as a tree, and proposed a structured regularization method to select
subcompositions at subtree levels. We have demonstrated the superiority of our
method over the lasso (which actually selects a single subcomposition of selected
components) through an application to a human gut microbiome study and simu-
lations. In particular, unlike with the lasso, our method identified subcompositions
(composed of members of the families Veillonellaceae and Erysipelotrichaceae)
that are likely to play important roles in obesity.

It is known that data from experiments with mixtures are compositional, due to
the constraint on components composing the mixture. To reduce the effect of multi-
collinearity in the analysis of mixture experiments, St. John (1984) suggested the
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TABLE 4
Means and standard deviations (in parentheses) of the l2 loss, relative model error (RME), true

positive rate (TPR), false positive rate (FPR), effective number of parameters (ENP), and number of
subcompositions (NSC), based on 200 replications, are reported when ρ = 0.2

l2 loss RME TPR FPR ENP NSC

Case (I)

σ = 0.5 AIC lasso 0.39 (0.14) 0.38 (0.26) 1.00 (0.02) 0.57 (0.22) 36.60 (12.66) 1.00 (0.00)
TASSO 0.31 (0.13) 0.26 (0.17) 1.00 (0.00) 0.45 (0.29) 29.56 (16.44) 6.49 (3.44)

BIC lasso 0.33 (0.11) 0.34 (0.39) 1.00 (0.02) 0.16 (0.07) 13.04 (3.90) 1.00 (0.00)
TASSO 0.24 (0.06) 0.18 (0.09) 1.00 (0.00) 0.05 (0.04) 6.76 (2.54) 4.89 (1.84)

GIC lasso 0.38 (0.12) 0.43 (0.41) 1.00 (0.02) 0.11 (0.04) 10.28 (2.36) 1.00 (0.00)
TASSO 0.26 (0.07) 0.22 (0.11) 1.00 (0.00) 0.02 (0.02) 5.23 (1.21) 3.85 (1.00)

σ = 1 AIC lasso 0.77 (0.25) 0.36 (0.14) 1.00 (0.02) 0.57 (0.22) 36.53 (12.75) 1.00 (0.00)
TASSO 0.61 (0.25) 0.25 (0.16) 1.00 (0.00) 0.44 (0.29) 29.04 (16.26) 6.29 (3.27)

BIC lasso 0.66 (0.15) 0.32 (0.13) 0.99 (0.04) 0.16 (0.07) 12.94 (3.93) 1.00 (0.00)
TASSO 0.48 (0.12) 0.18 (0.09) 1.00 (0.00) 0.05 (0.04) 6.69 (2.54) 4.83 (1.73)

GIC lasso 0.75 (0.19) 0.41 (0.19) 0.99 (0.06) 0.12 (0.04) 10.13 (2.39) 1.00 (0.00)
TASSO 0.53 (0.14) 0.22 (0.11) 1.00 (0.02) 0.02 (0.02) 5.22 (1.32) 3.86 (1.04)

Case (II)

σ = 0.5 AIC lasso 0.39 (0.12) 0.36 (0.14) 1 (0) 0.57 (0.22) 36.63 (12.49) 1.00 (0.00)
TASSO 0.34 (0.13) 0.30 (0.16) 1 (0) 0.53 (0.26) 34.03 (14.99) 5.80 (3.34)

BIC lasso 0.34 (0.08) 0.33 (0.13) 1 (0) 0.16 (0.06) 12.84 (3.66) 1.00 (0.00)
TASSO 0.29 (0.07) 0.24 (0.10) 1 (0) 0.09 (0.06) 9.12 (3.47) 5.42 (2.17)

GIC lasso 0.38 (0.09) 0.40 (0.16) 1 (0) 0.11 (0.04) 10.54 (2.44) 1.00 (0.00)
TASSO 0.32 (0.08) 0.30 (0.13) 1 (0) 0.06 (0.03) 7.19 (1.96) 4.38 (1.58)

σ = 1 AIC lasso 0.77 (0.24) 0.36 (0.14) 1.00 (0.02) 0.57 (0.22) 36.63 (12.50) 1.00 (0.00)
TASSO 0.69 (0.25) 0.30 (0.16) 1.00 (0.00) 0.53 (0.27) 34.28 (15.16) 5.69 (3.33)

BIC lasso 0.69 (0.16) 0.33 (0.13) 1.00 (0.03) 0.16 (0.06) 12.82 (3.67) 1.00 (0.00)
TASSO 0.57 (0.14) 0.24 (0.10) 1.00 (0.00) 0.09 (0.06) 9.11 (3.52) 5.45 (2.08)

GIC lasso 0.78 (0.20) 0.42 (0.19) 0.99 (0.06) 0.11 (0.04) 10.33 (2.41) 1.00 (0.00)
TASSO 0.63 (0.17) 0.30 (0.15) 1.00 (0.04) 0.06 (0.03) 7.12 (1.98) 4.35 (1.55)

Case (III)

σ = 0.5 AIC lasso 0.37 (0.15) 0.35 (0.27) 1.00 (0.01) 0.52 (0.24) 33.98 (13.58) 1.00 (0.00)
TASSO 0.35 (0.13) 0.31 (0.15) 1.00 (0.00) 0.52 (0.26) 34.26 (14.74) 5.75 (2.90)

BIC lasso 0.31 (0.11) 0.31 (0.45) 1.00 (0.03) 0.11 (0.06) 11.08 (3.37) 1.00 (0.00)
TASSO 0.25 (0.06) 0.23 (0.10) 1.00 (0.00) 0.10 (0.06) 10.55 (3.35) 3.78 (2.11)

GIC lasso 0.35 (0.12) 0.40 (0.49) 1.00 (0.03) 0.07 (0.04) 8.79 (2.34) 1.00 (0.00)
TASSO 0.27 (0.07) 0.27 (0.11) 1.00 (0.00) 0.07 (0.03) 8.84 (1.87) 2.65 (1.55)

σ = 1 AIC lasso 0.74 (0.26) 0.34 (0.16) 1.00 (0.02) 0.52 (0.24) 34.02 (13.61) 1.00 (0.00)
TASSO 0.68 (0.27) 0.30 (0.16) 0.99 (0.04) 0.51 (0.26) 33.28 (14.53) 6.06 (2.91)

BIC lasso 0.62 (0.16) 0.29 (0.16) 0.99 (0.05) 0.11 (0.06) 10.93 (3.40) 1.00 (0.00)
TASSO 0.51 (0.13) 0.23 (0.11) 0.97 (0.08) 0.10 (0.06) 10.55 (3.25) 3.99 (2.08)

GIC lasso 0.72 (0.21) 0.40 (0.24) 0.97 (0.08) 0.06 (0.04) 8.43 (2.37) 1.00 (0.00)
TASSO 0.55 (0.14) 0.28 (0.13) 0.97 (0.09) 0.07 (0.03) 8.64 (1.93) 2.67 (1.48)
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TABLE 5
Means and standard deviations (in parentheses) of the l2 loss, relative model error (RME), true

positive rate (TPR), false positive rate (FPR), effective number of parameters (ENP), and number of
subcompositions (NSC), based on 200 replications, are reported when ρ = 0.5

l2 loss RME TPR FPR ENP NSC

Case (I)

σ = 0.5 AIC lasso 0.47 (0.16) 0.37 (0.14) 1 (0) 0.59 (0.21) 37.35 (11.81) 1.00 (0.00)
TASSO 0.39 (0.16) 0.27 (0.17) 1 (0) 0.46 (0.28) 30.07 (16.15) 5.76 (2.93)

BIC lasso 0.43 (0.11) 0.35 (0.14) 1 (0) 0.20 (0.08) 15.39 (4.35) 1.00 (0.00)
TASSO 0.30 (0.08) 0.19 (0.09) 1 (0) 0.05 (0.04) 6.78 (2.50) 4.55 (1.68)

GIC lasso 0.52 (0.13) 0.48 (0.21) 1 (0) 0.14 (0.05) 11.80 (2.90) 1.00 (0.00)
TASSO 0.33 (0.09) 0.22 (0.11) 1 (0) 0.03 (0.02) 5.45 (1.42) 3.80 (1.14)

σ = 1 AIC lasso 0.94 (0.32) 0.37 (0.14) 1.00 (0.03) 0.58 (0.21) 37.21 (11.94) 1.00 (0.00)
TASSO 0.77 (0.32) 0.27 (0.16) 1.00 (0.02) 0.45 (0.28) 29.40 (16.14) 5.85 (2.87)

BIC lasso 0.88 (0.24) 0.36 (0.16) 0.97 (0.09) 0.19 (0.08) 14.93 (4.41) 1.00 (0.00)
TASSO 0.60 (0.16) 0.18 (0.09) 0.99 (0.05) 0.05 (0.05) 6.85 (2.73) 4.51 (1.65)

GIC lasso 1.10 (0.34) 0.57 (0.35) 0.88 (0.20) 0.12 (0.05) 10.32 (3.52) 1.00 (0.00)
TASSO 0.66 (0.19) 0.23 (0.12) 0.98 (0.07) 0.02 (0.02) 5.23 (1.42) 3.71 (1.09)

Case (II)

σ = 0.5 AIC lasso 0.49 (0.16) 0.39 (0.15) 1 (0) 0.62 (0.20) 39.26 (11.58) 1.00 (0.00)
TASSO 0.43 (0.15) 0.30 (0.15) 1 (0) 0.53 (0.25) 34.36 (14.16) 5.21 (2.84)

BIC lasso 0.47 (0.12) 0.36 (0.14) 1 (0) 0.21 (0.08) 16.03 (4.59) 1.00 (0.00)
TASSO 0.37 (0.09) 0.24 (0.10) 1 (0) 0.10 (0.07) 9.70 (4.16) 5.20 (2.18)

GIC lasso 0.56 (0.14) 0.49 (0.21) 1 (0) 0.15 (0.05) 12.52 (2.93) 1.00 (0.00)
TASSO 0.41 (0.11) 0.30 (0.14) 1 (0) 0.05 (0.04) 7.12 (2.05) 4.18 (1.50)

σ = 1 AIC lasso 0.99 (0.33) 0.39 (0.15) 1.00 (0.02) 0.62 (0.20) 39.10 (11.69) 1.00 (0.00)
TASSO 0.86 (0.31) 0.31 (0.15) 1.00 (0.00) 0.53 (0.25) 34.23 (14.42) 5.27 (2.83)

BIC lasso 0.99 (0.31) 0.41 (0.24) 0.92 (0.18) 0.19 (0.09) 14.68 (5.29) 1.00 (0.00)
TASSO 0.74 (0.19) 0.25 (0.11) 0.99 (0.06) 0.10 (0.07) 9.37 (4.23) 4.96 (2.06)

GIC lasso 1.27 (0.39) 0.67 (0.39) 0.76 (0.27) 0.11 (0.05) 9.37 (3.70) 1.00 (0.00)
TASSO 0.85 (0.25) 0.33 (0.17) 0.95 (0.11) 0.05 (0.03) 6.62 (2.11) 3.99 (1.39)

Case (III)

σ = 0.5 AIC lasso 0.49 (0.24) 0.57 (2.01) 0.99 (0.06) 0.56 (0.23) 36.40 (13.10) 1.00 (0.00)
TASSO 0.43 (0.16) 0.32 (0.16) 1.00 (0.00) 0.52 (0.26) 34.01 (14.57) 5.22 (2.58)

BIC lasso 0.44 (0.20) 0.64 (3.11) 0.99 (0.08) 0.15 (0.08) 13.27 (4.36) 1.00 (0.00)
TASSO 0.32 (0.08) 0.22 (0.09) 1.00 (0.00) 0.09 (0.06) 10.27 (3.46) 3.36 (1.85)

GIC lasso 0.52 (0.23) 0.82 (3.84) 0.99 (0.10) 0.10 (0.05) 10.33 (2.81) 1.00 (0.07)
TASSO 0.34 (0.08) 0.26 (0.11) 1.00 (0.00) 0.06 (0.04) 8.63 (1.97) 2.43 (1.39)

σ = 1 AIC lasso 0.94 (0.35) 0.39 (0.36) 0.99 (0.05) 0.56 (0.24) 36.23 (13.21) 1.00 (0.00)
TASSO 0.83 (0.31) 0.30 (0.15) 0.99 (0.05) 0.50 (0.25) 32.81 (14.22) 5.43 (2.47)

BIC lasso 0.90 (0.27) 0.41 (0.59) 0.91 (0.15) 0.12 (0.07) 11.14 (4.53) 1.00 (0.00)
TASSO 0.63 (0.16) 0.22 (0.10) 0.97 (0.07) 0.09 (0.05) 9.86 (3.05) 3.38 (1.81)

GIC lasso 1.11 (0.30) 0.61 (0.76) 0.78 (0.20) 0.05 (0.04) 6.91 (3.06) 1.00 (0.07)
TASSO 0.68 (0.17) 0.26 (0.11) 0.97 (0.08) 0.06 (0.03) 8.30 (1.91) 2.42 (1.40)
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use of ordinary ridge regression estimator as a means for stabilizing the coefficient
estimates in the fitted model. In this paper, we take an alternative strategy by us-
ing variable transformation. Specifically, we adopt the linear log contrast model
instead of the linear model, and focus on the selection of subcompositions. Since
the linear log contrast model guarantees the subcompositional coherence and our
tree-guided regularization penalty preserves this property, the proposed procedure
satisfies the subcompositional coherence principle.

To analyze compositional data, alternative transformations to the log transfor-
mation are available, such as the square-root transformation [Scealy and Welsh
(2011)] and the relative power transformation [Scealy et al. (2015)]. Nevertheless,
each of these transformations has its own merits and drawbacks. We choose the log
transformation mainly because the resulting linear log contrast model preserves the
subcompositional coherence principle and facilitates the selection of subcomposi-
tions.

Recently, Garcia et al. (2014) proposed a regularization approach for identifying
important regressor groups, subgroups, and individuals, and they applied it to a
microbiome data set. Their method was mathematically and statistically sound,
but it was for regression analysis with regular (yet not compositional) covariates.
Specifically, in the application, the compositional nature of the microbiome data
was not accounted for. As we mentioned in the Introduction, taking into account
the unit-sum constraint makes our method very different from that of Garcia et al.
(2014) and others in the literature.

Note that our goal here is to select subcompositions at subtree levels (i.e., groups
of bacterial taxa at different taxonomic levels). Related to the present work is Shi,
Zhang and Li (2016), who considered the problem of selecting subcompositions
at a fixed taxonomic level (e.g., groups of species under a given genus or phylum).
Assuming that a grouping of bacterial taxa is available, the work of Shi, Zhang
and Li (2016) is a direct extension of Lin et al. (2014). However, our extension
in methodology is original: our method is based on a novel penalty function that
incorporates the topology of the phylogenetic tree node-by-node, thus encourages
the selection of subcompositions at subtree levels. In practice, classifying the mi-
crobes into different taxonomies, from phylum to species level, necessitates the
existence of a reference database that is often incomplete, because the vast major-
ity of microbes have not yet been formally described. In contrast, a phylogenetic
tree can always be learned from molecular sequences.

In this paper, the observed compositional covariates are assumed to lie in a
strictly positive simplex. One reason is that we cannot take logarithms of zero in the
linear log contrast model. In the absence of a one-to-one monotonic transformation
between the real line and its nonnegative subset, the problem of zeros might not be
satisfactorily resolved, and solutions generally depend on the frequency and nature
of the zeros. There are two types of zeros: sampling zeros and structural zeros.
In this paper, we assume implicitly that the zero does not denote the part that
is completely absent but rather denotes that part that no quantifiable proportion
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could be recorded to the accuracy or rounding of the measurement process. In
this case, replacing zero counts by the maximum rounding error is a commonly
used strategy in the literature [Aitchison (1986), Lin et al. (2014)]. Clearly, new
statistical methods are needed to model “sparse” compositional data that contain
many zeros and to differentiate between sampling zeros and structural zeros [Li
(2015)].

The properties of the generalized lasso apply to our method, because the latter
can be encapsulated by the former; see, for example, Lee, Sun and Taylor (2015).
Throughout this paper, we have assumed that the tree structure is available as prior
knowledge. It is a topic of our future research to explore ways to estimate tree
structures completely based on data. Alternatively, it is of interest to study the
theoretical behavior of our method when the prior information is not completely
accurate or even erroneous. Finally, our method takes advantage of the tree topol-
ogy, but not branch lengths. Since the tree-guided regularization penalty contains
internal-node-based terms, one possible way of accounting for branch lengths is to
first summarize such information at the internal node (i.e., subtree) level, and then
incorporate the summary statistics into our penalty as weights.
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