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The maternal mortality ratio (MMR) is defined as the number of ma-
ternal deaths in a population per 100,000 live births. Country-specific MMR
estimates are published on a regular basis by the United Nations Maternal
Mortality Estimation Inter-agency Group (UN MMEIG) to track progress in
reducing maternal deaths and were used to evaluate regional and national per-
formance related to Millennium Development Goal (MDG) 5, which called
for a 75% reduction in the MMR between 1990 and 2015.

Until 2014, the UN MMEIG used a multilevel regression model for pro-
ducing estimates for countries without sufficient data from vital registration
systems. While this model worked well in the past to assess MMR levels
for countries with limited data, it was deemed unsatisfactory for final MDG
5 reporting for countries where longer time series of observations had be-
come available because, by construction, estimated trends in the MMR were
covariate-driven only and did not necessarily track data-driven trends.

We developed a Bayesian maternal mortality estimation model, which ex-
tends upon the UN MMEIG multilevel regression model. The new model
assesses data-driven trends through the inclusion of an ARIMA time series
model that captures accelerations and decelerations in the rate of change
in the MMR. Varying reporting and data quality issues are accounted for
in source-specific data models. The revised model provides data-driven es-
timates of MMR levels and trends and was used for MDG 5 reporting for all
countries.

1. Introduction. A maternal death is “the death of a woman while pregnant
or within 42 days of termination of pregnancy, irrespective of the duration and
site of the pregnancy, from any cause related to or aggravated by the pregnancy
or its management but not from accidental or incidental causes,” as defined in the
International Statistical Classification of Diseases and Related Health Problems,
Tenth Revision (ICD-10) [World Health Organization (2010)]. In this definition,
which we adhere to in this paper, a maternal death may be due to a direct obstetric
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cause (resulting from complications during pregnancy, delivery, and postpartum
period) or an indirect cause, which refers to maternal deaths that result from exist-
ing diseases or diseases that developed during pregnancy which were aggravated
by physiological effects of pregnancy.

The number of maternal deaths in a population is the product of two factors: the
risk of mortality associated with a single pregnancy, and the number of pregnan-
cies or births that are experienced by women of reproductive age. The maternal
mortality ratio (MMR) is defined as the number of maternal deaths in a population
per 100,000 live births; thus, it depicts the risk of a maternal death relative to the
number of live births.

Country-specific estimates of the MMR are used to track progress in reduc-
ing maternal mortality and were used to evaluate regional and national perfor-
mance related to Millennium Development Goal (MDG) 5, which called for a
75% reduction in the MMR between 1990 and 2015. Estimates are constructed
and published by the UN Maternal Mortality Estimation Inter-agency Group (UN
MMEIG). Monitoring country-level trends in maternal mortality is challenging for
many developing countries because they lack high quality vital registration (VR)
data systems, which enable countries to record deaths, and causes of death, that oc-
cur in their populations. Instead, intermittent national surveys are the main source
of data for estimating the MMR in developing countries, and these surveys have
various data quality issues, including small sample sizes and reliance on respon-
dent recall of past events. Given the data limitations for estimating the MMR for
countries without high quality vital registration systems, the MMEIG developed a
statistical model to obtain maternal mortality estimates. In the UN MMEIG 2014
publication [WHO et al. (2014)], a multilevel regression model formed the basis of
the maternal mortality estimates for countries without high-quality vital registra-
tion systems, whereby country-specific estimates followed from country-specific
random intercepts and country-specific covariates, with global regression coeffi-
cients [Wilmoth et al. (2012)]. While that model has proven to work well to assess
MMR levels for countries with limited data, its main limitation was that the model
specification resulted in country-specific trend estimates that were determined by
the country-specific covariates only, as opposed to trends in a country’s maternal
mortality data. Hence, the resulting country-specific MMR estimates did not nec-
essarily reflect trends in a country’s maternal mortality data. To assess countries’
achievement regarding progress since 1990, an improved model was deemed nec-
essary to produce estimates in the final year of MDG 5 reporting.

In this paper, we present a Bayesian maternal mortality estimation model, re-
ferred to as the BMat model, which extends upon the UN MMEIG multilevel re-
gression model to improve upon its main limitation: BMat combines the rate of
change implied by the UN MMEIG multilevel regression model with an ARIMA
time series model to capture data-driven changes in country-specific MMRs. In
BMat varying data quality is accounted for in source-specific data models, which
reduces bias while also facilitating the inclusion of multiple data sources for a
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given country. The revised model provides data-driven estimates of MMR levels
and trends, is reasonably well calibrated, and can be used for all countries, regard-
less of data availability and quality. The BMat model has been accepted by the
UN MMEIG for producing the MMR estimates for MDG 5 reporting [WHO et al.
(2015)].

This paper is organized as follows: we first provide an overview of the data
sources that are available for measuring maternal mortality and summarize the ap-
proach to estimating the MMR that was used by the MMEIG in 2014. We then de-
scribe the BMat model and highlight the main differences with the MMEIG 2014
model. In the results section, we present estimates of the MMR for both models to
illustrate the main types of differences that arise. Last, we present findings related
to the performance of the new approach in validation exercises and conclude with
a discussion of limitations and future research areas.

2. Data: UN MMEIG maternal mortality database. The UN MMEIG 2014
database was used in this paper as input to the BMat model to obtain results which
are directly comparable to the MMEIG 2014 estimates produced with the previous
model. The UN MMEIG 2015 database and corresponding BMat estimates for
countries, regions, and the world are available at www.who.int/reproductivehealth/
publications/monitoring/maternal-mortality-2015/en/.

2.1. Maternal mortality data sources. The UN MMEIG 2014 database con-
tains information related to maternal mortality from vital registration (VR) sys-
tems, special inquiries, surveillance systems, household surveys, and censuses. For
all data sources which collect information related to maternal deaths as well as all-
cause deaths to women aged 15–49, the observed proportion of maternal deaths
(PM) among all-cause deaths was taken as the preferred summary for use in esti-
mating maternal mortality. The PM is generally preferred over observed maternal
deaths or other summary outcomes because it is less affected by underreporting
of the all-cause deaths: potential underreporting of all-cause deaths would affect
the numerator and the denominator of the PM proportionately as long as causes
of death are not underreported differentially. Therefore, in processing maternal
mortality-related data, observed PMs took priority over observed maternal deaths.
For all observed PMs, corresponding PM-based observations of the MMR were
obtained by multiplying the PM by UN estimates for the ratio of all-cause deaths
to births to obtain the ratio of maternal deaths relative to births.

National vital registration systems record the number of deaths to women of
reproductive ages, as well as the cause associated with each death using ICD
coding. Based on the all-cause and maternal deaths, the PM can be constructed.
An illustration of observed PMs from VR systems, based on annual numbers of
deaths, is given in Figure 1 for Japan and El Salvador in the first column, with
the corresponding PM-based observations of the MMR added in the second col-
umn. Under ideal circumstances, when all deaths are captured and all causes are

http://www.who.int/reproductivehealth/publications/monitoring/maternal-mortality-2015/en/
http://www.who.int/reproductivehealth/publications/monitoring/maternal-mortality-2015/en/
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FIG. 1. Data series and estimates of the PM (proportion of all-cause deaths that are maternal)
and the MMR (number of maternal deaths per 100,000 live births) for Japan, El Salvador, India,
Bolivia, Zimbabwe, and Papua New Guinea. BMat estimates are illustrated by the solid red lines and
80% confidence intervals are shown by the red shaded areas. The UN MMEIG 2014 estimates are
illustrated with the green lines. Reported (unadjusted) and adjusted observations are displayed. The
vertical line with each adjusted observation indicates the approximate 80% confidence interval for
the PM or MMR associated with that observation, based on point estimates for reporting adjustments
and total error variance.
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FIG. 1. (Continued).
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accurately classified, VR systems provide perfect information on the number of
maternal deaths within the country. However, even if routine registration of deaths
is in place, maternal deaths may be reported incorrectly if deaths are unregistered
or misclassified, where misclassification of deaths refers to incorrect coding in vi-
tal registration systems, due either to error in the medical certification of cause of
death or error in applying the correct ICD code. In addition to misclassification is-
sues, the VR-based PM may also differ from the true PM because of the inclusion
of late maternal deaths, which are deaths that take place after 42 days but within
one year of termination of pregnancy (usually a small fraction of maternal and late
maternal deaths combined). While our interest lies in maternal deaths, late mater-
nal deaths were included in VR-based PMs in the MMEIG 2014 estimation round
to maintain consistency between ICD-9 and ICD-10 coding of maternal deaths—
the exclusion of late maternal deaths is not possible based on ICD-9 coding.2

To provide a more rigorous assessment of maternal deaths, specialized studies
are carried out to investigate whether there are nonreported or misclassified ma-
ternal deaths and, in some instances, whether there are unregistered deaths. The
result of such a study is illustrated in Figure 1 for Japan in 2005, with the observed
PM plotted in purple. This investigation of the classification of deaths (the accu-
racy of the reported causes of deaths) in 2005 found that the VR system in Japan
underreported maternal deaths by 35% for that year due to misclassification and/or
underreporting of maternal deaths. Similarly, for El Salvador, a study around 2006
suggested that the PM was about twice as high as compared to the VR-based PM.
The high levels of misclassification in VR systems as discussed for Japan and El
Salvador are common and typically on the order of 50% [Wilmoth et al. (2012)],
and need to be accounted for when constructing estimates of maternal mortality.

In many countries, a vital registration system is either not in place or is not
nationally representative. For estimating maternal mortality, other available data
sources include data from surveillance systems, surveys, and censuses. For exam-
ple, in India, a Sample Registration System is in place to monitor mortality, where
a representative sample of households are monitored for vital events such as births
and deaths. In this system, information on cause-specific mortality is collected
through Verbal Autopsy (VA) whereby trained physicians (and/or software) cate-
gorize deaths by cause based on symptoms associated with recorded deaths, which
are provided by household members of the deceased. Data from these systems can
be used to calculate PMs for use in modeled estimates (see Figure 1).

Household surveys and censuses that collect information on deaths may collect
information related to pregnancy-related deaths, if, for a death to a woman of re-
productive age, respondents are asked whether the deceased women died during
pregnancy or shortly thereafter. Pregnancy-related deaths are the combination of

2For the MMEIG 2015 estimates, late maternal deaths were excluded from the ICD-10 coded
observations. See Alkema et al. (2016).
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maternal deaths and deaths during pregnancy that are due to incidental and ac-
cidental causes unrelated to the pregnancy. If the survey or census also collects
data on deaths occurring among women of reproductive age, one can compute the
pregnancy-related PM, which is the ratio of pregnancy-related deaths to all-cause
deaths. The Demographic Health Survey (DHS) program commonly collects this
information, as do censuses. Example observations of pregnancy-related PMs (and
PM-derived MMRs) from censuses are illustrated for Bolivia and Zimbabwe in
Figure 1, and DHS observations are available for the same countries, as well as
for El Salvador. In El Salvador, the DHS data points are much higher than the VR
data points, which may be explained by the inclusion of pregnancy-related deaths
in the DHS records, misclassification in the VR, or some other reason(s) including
sampling errors and nonsampling errors (e.g., due to how the questionnaire was ad-
ministered in the DHS, which may be substantial). Finally, some studies provide
an observed (pregnancy-related) MMR as opposed to an observed (pregnancy-
related) PM if information on births and maternal deaths is collected. For such
observations, the observed (pregnancy-related) PMs are obtained by multiplying
the observed MMR by the ratio of UN estimates of births to all-cause deaths.

2.2. Summary of data availability and data quality issues. The overview of
data available by source from 1985 to 2013 (from the the 2014 MMEIG maternal
mortality database) is given in Table 1, summarized in terms of observations (the
number of annual records for VR data and the number of studies for other data
sources) and country-years of information. The majority of observations and ob-
served country-years are from VR systems. The other three source types, which
are specialized studies, miscellaneous studies reporting on maternal mortality, and
miscellaneous studies reporting on pregnancy-related mortality (including DHSs),
each provide around 5 to 7% of the total number of observations. The number of
country-years provided by miscellaneous studies reporting on pregnancy-related
mortality is much larger at 30% because the majority of observation from this
source type refer to multi-year periods.

Data availability varies greatly across countries, as illustrated for the selected
countries in Figure 1: while data are available for the countries discussed so far,

TABLE 1
Overview of data availability by study type based on the 2014 MMEIG database. Observations refer

to the number of annual records for VR data and the number of studies for other data sources

Specialized Misc. studies— Misc. studies—
Study type VR studies maternal pregn. related

# observations (% out of 2216 total) 1824 (82%) 113 (5%) 122 (6%) 157 (7%)
# country-years (% out of 3152 total) 1824 (58%) 239 (8%) 144 (5%) 945 (30%)
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TABLE 2
Overview of data availability by country based on the 2014 MMEIG database. Observations refer to

the number of annual records for VR data and the number of studies for other data sources

Total number of observations 0 1 2 3–5 >5

Number of countries (% out of 183 countries ) 20 (11%) 22 (12%) 14 (8%) 30 (16%) 97 (53%)

no observations are available for Papua New Guinea. The overview of data avail-
ability by country is given in Table 2. Of the 183 countries for which the UN
MMEIG constructs MMR estimates, no data are available for 20 countries, and for
22 countries, only one data point is available.

Estimating maternal mortality is challenging because of limited data availabil-
ity for many countries and, moreover, because of reporting and data quality issues
for the observations that are available. First, many data inputs differ systematically
from our outcome of interest, as explained in the previous section and summarized
in Table 3. Information regarding the extent of systematic over- or underreporting
of maternal mortality is limited. Second, observations tend to be subject to substan-
tial random error, including stochastic or sampling error because maternal deaths
are generally rare events, as well as random errors introduced in the data collec-
tion and processing procedure. This is illustrated in Figure 1 for the observations
in the selected countries: the adjusted observations are based on a transformation
of the reported observation to account for reporting issues mentioned in Table 3,
and the vertical lines indicate the approximate 80% confidence interval for the true

TABLE 3
Overview of data sources that are included in the maternal mortality model and the reporting issues
that are associated with the reported outcomes for each source type and that have been addressed in

the MMR model

Data source type Reporting issues that are addressed in MMR
modeling

Vital registration (VR) • Misclassification of maternal deaths
• Inclusion of late maternal deaths

Specialized studies • None

Other miscellaneous data sources reporting on
maternal mortality

• Underreporting of maternal deaths

Other miscellaneous data sources reporting on
pregnancy-related mortality

• Underreporting of pregnancy-related deaths
• Over-reporting of maternal deaths due to the

inclusion of pregnancy-related deaths that are
not maternal
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PM and MMR based on uncertainty due to stochastic, sampling, and/or random
errors (explained further in Section 3). The confidence intervals indicate that the
uncertainty associated with the observations is large.

3. Constructing maternal mortality estimates. Given the limited data avail-
ability and issues associated with the reporting of maternal mortality, modeling of
maternal mortality is required for producing estimates based on the available data
sources. In this section, we discuss the BMat modeling approach that we devel-
oped for estimating the MMR and MDG 5 reporting. The goal was to construct
estimates based on all available data and additional information on data quality
issues. The new modeling approach extends upon the MMEIG 2014 estimation
approach. Hence, we first summarize the MMEIG 2014 estimation approach to in-
troduce the main ideas that form the basis of the new model. Based on discussions
of limitations of the 2014 approach that we seek to improve upon, we introduce
and explain in detail the BMat model. We start with general notation and notes re-
lated to the database and data preprocessing that are applicable to both the MMEIG
2014 and BMat approach.

Notation. In the model description in this section, lowercase Greek letters refer
to unknown parameters and uppercase Greek letters to variables which are func-
tions of unknown parameters (modeled estimates). Roman letters refer to variables
that are known or fixed, including data (lowercase) and estimates provided by other
UN sources or the literature (upper case).

�c,t1,t2 denotes the main quantity to be estimated, which is the number of ma-
ternal deaths for country c for any period [t1, t2), with �c,t ≡ �c,t,t+1, the number
of maternal deaths in country c in calendar year t . �c,t denotes the final outcome
of interest, the MMR for the respective country-year.

UN country-year estimates for births, all-cause deaths, and AIDS deaths to
women of reproductive ages are denoted by B,D, and D(AIDS), respectively, with
subscripts consistent with subscripts for �, for example, Dc,t1,t2 refers to the num-
ber of all-cause deaths in country c in period [t1, t2) and Dc,t ≡ Dc,t,t+1. The UN
estimates for births are taken from the UN World Population Prospects [United
Nations Population Division (2013)]. All-cause mortality information is provided
by WHO [World Health Organization (2014)], and the AIDS deaths are obtained
from UNAIDS [UNAIDS (2013)].

Observations were combined across countries and indexed by i = 1,2, . . . ,N ;
c[i] refers to the country of the observation, h[i] to the exact start date of the
observation period, e[i] to its exact end date, and t[i] refers to the calendar year
of the midpoint of the observation period. When a single subscript i is used with
modeled or UN estimates of demographic variables, the variable represents the
country-period of the ith observation, for example, �i ≡ �c[i],h[i],e[i] and Di ≡
Dc[i],h[i],e[i].
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Maternal mortality database and data preprocessing. Data were obtained
from the MMEIG maternal mortality database. Recorded information for the ith
record in the database includes information about the study population and study
period, as well as the definition of the deaths (maternal or pregnancy-related) and
any available information on the number of maternal or pregnancy-related deaths
mi , all-cause deaths di , the births associated with the sample population of women
of reproductive ages for the study period bi , and/or direct observations of the
(maternal or pregnancy-related) PM yi = mi/di or MMR mi/bi . All records in
the database are processed to obtain an observed PM yi for each record i. For
most records, the PM was calculated directly from the available information on
the number of maternal or pregnancy-related deaths mi and all-cause deaths di ;
yi = mi/di . An exception to this rule was made for specialized studies (in par-
ticular, inquiries) that include an investigation into all-cause deaths in addition
to maternal deaths. For such studies, the observed number of maternal deaths mi

is considered to be the best available information on maternal mortality, and the
PM data input associated with the study is given by yi = mi/Di . For observations
where the PM cannot be calculated directly, UN estimates of the number of births
and deaths in the study period in the country were used to obtain the corresponding
PM. For example, if record i reported only the MMR mi/bi , then the correspond-
ing PM used as a data input was obtained as follows: yi = mi/bi · Bi/Di , where
Bi and Di are the UN estimates for births and all-cause deaths in the study period
in the country.

3.1. MMEIG 2014 model.

3.1.1. Summary. The MMEIG maternal mortality estimation methods and
data sources used are described in detail elsewhere [Wilmoth et al. (2012), WHO
et al. (2014)]. Here we summarize the approach, focusing on the main setup which
is the starting point of the BMat model.

In the UN MMEIG 2014 approach, estimates were published for 5-year peri-
ods. For constructing estimates, countries were classified into groups A, B, and
C based on data availability. For countries in group A, high-quality VR records
were available for a sufficient number of years such that the VR-based PM data,
adjusted for misclassification issues as introduced in the previous section, could be
used directly to construct maternal mortality estimates.

For countries in group C, no data were available, while for countries in group
B, data were available but deemed insufficient with respect to availability and/or
associated biases and error variances to be used directly to obtain estimates. For
countries in group B and C, a model was used to obtain estimates, in which mater-
nal deaths were modeled as the sum of non-AIDS maternal deaths �

(non-AIDS)
c,t and

AIDS maternal deaths D
(AIDS&Mat)
c,t :

�c,t = �
(non-AIDS)
c,t + D

(AIDS&Mat)
c,t .
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AIDS maternal deaths are deaths of HIV positive women who die because of the
aggravating effect of pregnancy on HIV, and are thus considered as indirect ma-
ternal deaths. The non-AIDS maternal deaths refer to maternal deaths due to di-
rect or non-HIV/AIDS-related indirect causes. Given the substantial impact of the
HIV/AIDS epidemic on mortality in many countries, in particular, in sub-Saharan
Africa, the number of AIDS maternal deaths was modeled separately to be able to
capture the trends in maternal mortality associated with the epidemic.

3.1.2. Modeling AIDS maternal deaths. The AIDS maternal deaths
D

(AIDS&Mat)
c,t were modeled as follows [Wilmoth et al. (2012)]:

D
(AIDS&Mat)
c,t = D

(AIDS)
c,t P

(AIDS&Preg|AIDS)
c,t P (AIDS&Mat|AIDS&Preg),(1)

where number of AIDS deaths D
(AIDS)
c,t is obtained from UNAIDS [UNAIDS

(2013)], P
(AIDS&Preg|AIDS)
c,t refers to the proportion of AIDS deaths that occurs

during the maternal risk period, and finally P (AIDS&Mat|AIDS&Preg) is the propor-
tion of AIDS deaths among women during the maternal risk period that qualify as
maternal because of some causal relationship with the pregnancy, delivery, or post-
partum period. The proportion of AIDS deaths that occur during the maternal risk
period P

(AIDS&Preg|AIDS)
c,t was obtained from the general fertility rate x

(GFR)
c,t (ob-

tained from UN estimates), the relative risk R of dying from AIDS for a pregnant
versus nonpregnant woman and the average woman-years lived in the maternal
risk period per live birth F :

P
(AIDS&Preg|AIDS)
c,t = F · R · x(GFR)

c,t

1 + F · (R − 1) · x(GFR)
c,t

.

Values were assigned to the unknown parameters based on a combination of lit-
erature review and expert opinion [WHO et al. (2014)], with R = 0.3 (R is less
than one because HIV-positive women who become pregnant are generally of
better health than the general population of nonpregnant HIV-positive women),
P (AIDS&Mat|AIDS&Preg) = 0.3, and F = 1.

3.1.3. Modeling non-AIDS maternal deaths. To obtain estimates of non-AIDS
maternal deaths, a multilevel regression model was developed. After considering
various model specifications, the MMEIG 2014 model used as a dependent vari-
able the non-AIDS PM �

(non-AIDS)
c,t /D

(non-AIDS)
c,t , which is the proportion of non-

AIDS maternal deaths among the total number of non-AIDS deaths of women of
reproductive ages D

(non-AIDS)
c,t . The mean response in the multilevel model is mod-

eled with three covariates with fixed coefficients and a random country intercept:

log(�
(non-AIDS)
c,t /D

(non-AIDS)
c,t )

(2)
= αc − β1 log

(
x

(GDP)
c,t

) + β2 log
(
x

(GFR)
c,t

) − β3x
(SAB)
c,t ,
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with covariates GDP x
(GDP)
c,t , the general fertility rate x

(GFR)
c,t , and the percentage

of births with a skilled attendant present x
(SAB)
c,t [WHO et al. (2014)], and random

country intercept αc. Country intercepts are modeled hierarchically:

αc|αr[c], σ 2
country ∼ N

(
αr[c], σ 2

country
)
, αr ∼ N

(
αworld, σ

2
region

)
,(3)

with regional and global intercepts αr and αworld, and across-country and across-
region variances σ 2

country and σ 2
region. Regions are determined according to the

global categories used by the UN Statistics Division in reporting on progress to-
ward achievement of the MDGs, with some minor modifications; see supplement
Table A [Wilmoth et al. (2012)]. Of interest to highlight here is that the rate of
change in the non-AIDS MMR is determined by rates of change in covariates and
global regression coefficients.

In the MMEIG 2014 approach, the multilevel model was fitted to all available
data worldwide (including from group A) using the following data model:

log
(
y∗
i

)|�(non-AIDS)
i , σ 2 ∼ N

(
log

(
�

(non-AIDS)
i /D

(non-AIDS)
i

)
, σ 2)

,

where σ 2 is the unknown error variance, assumed to be the same for all observa-
tions, and y∗

i refers to the ith adjusted non-AIDS PM observation in the data set.
y∗
i is a transformed version of the original observation yi , y∗

i = f (yi). The trans-
formation f (·) depends on the data source and characteristics and includes, where
appropriate, (i) the addition of maternal deaths that are missing because of under-
reporting, (ii) the removal of the AIDS deaths from the numerator and the denom-
inator, and (iii) the removal of pregnancy-related deaths which are not maternal.
The types of adjustments involved are discussed in more detail in Section 3.2.4
as part of the BMat model specification. In the MMEIG 2014 approach, point es-
timates of the MMR were obtained based on prefixed settings of the adjustment
parameters, and the uncertainty assessment was based on a Monte Carlo proce-
dure whereby model estimates were obtained based on different combinations of
adjustment parameters.

3.1.4. MMEIG 2014 model limitations. MMEIG 2014 estimates are shown in
Figure 1 for the selected countries. The exact adjusted data points (the y∗

i ’s) are not
shown in Figure 1 to improve figure legibility but are similar to the adjusted version
of the raw data points that are shown in the figure. In Figure 1, Japan is the only
group A country. For this country, the MMEIG 2014 MMR estimates are given by
the period-based adjusted VR data. Papua New Guinea does not have any maternal
mortality data and is in group C; its modeled estimates are based on covariates,
the regional intercept, and the inputs to the AIDS maternal deaths model. The
other countries in the figure are in group B, including El Salvador, because data
availability and/or quality was not sufficient to use the data directly for estimating
the MMR. Estimates for all group B countries were obtained from the multilevel
model and the AIDS model. For El Salvador, India, and Bolivia, the number of
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AIDS maternal deaths are negligible and the MMEIG 2014 estimates are given
by the multilevel regression model, which suggests decreasing MMRs in all three
countries. In Zimbabwe, the number of maternal AIDS deaths is not negligible and
included in the MMEIG estimates. As a result, the MMEIG estimates indicate an
increase around the year 2000 which is due to the addition of AIDS indirect deaths.

The comparison of adjusted data and MMR estimates for the countries in Fig-
ure 1 highlights the main limitations of the MMEIG 2014 approach. First, the
rate of change in the (non-AIDS) MMR for countries in group B follows from
equation (2), and is thus determined by rates of change in covariates and global
regression coefficients, which can result in inaccurate estimates of trends. Among
the example countries in group B, we find that the estimates represent the observed
trend in India well, but are less reflective of the observed trends in adjusted data
points for El Salvador, Bolivia, and Zimbabwe. The estimate for the MMR in the
1990s is higher than the level suggested by the data in Bolivia and Zimbabwe,
and lower than the data suggest in El Salvador. Second, when fitting the multilevel
model, all adjusted observations are treated equally regardless of data quality and
uncertainty associated with the observation. This is not appropriate given the great
variation in error variance associated with the different observations. The uncer-
tainty is illustrated in Figure 1 in the form of 1-single-observation-based confi-
dence intervals for the unknown MMR for the study period (explained in more
detail in Section 3.2.6). In El Salvador, a recent specialized study provides more
information about the MMR than any of the survey-based entries, yet all obser-
vations are weighted equally and the model estimates are not necessarily able to
capture the level suggested by the high-quality study.

In summary, the MMEIG 2014 estimation approach for group B does not pro-
vide sufficient insights into observed trends in countries with longer time series
of observations because estimated trends are covariate-driven and not informed by
trends in country-specific data, and because all (adjusted) observations are treated
equally in model fitting.

3.2. The Bayesian maternal estimation model (BMat).

3.2.1. Summary. We developed a revised maternal mortality estimation ap-
proach which improves upon the MMEIG modeling approach. The main setup is
summarized as follows:

(I) Maternal deaths are modeled for each country-year as the sum of non-
AIDS and AIDS maternal deaths, �c,t = �

(non-AIDS)
c,t + D

(AIDS&Mat)
c,t , with AIDS

maternal deaths given by the MMEIG 2014 approach, as explained in Sec-
tion 3.1.2.

(II) The number of non-AIDS maternal deaths �
(non-AIDS)
c,t = �̃

(non-AIDS)
c,t ·ϑc,t ,

which is the product of the expected number of non-AIDS maternal deaths
�̃

(non-AIDS)
c,t , given by the MMEIG 2014 multilevel regression model [equation (2)],
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and a country-year-specific multiplier ϑc,t , which is modeled with an ARIMA time
series model.

(III) Data models (the likelihood function used) take into account varying data
quality in the form of reporting issues and varying stochastic and sampling vari-
ance. A usability measure of VR data is introduced to distinguish between VR data
of varying quality.

The revised model is fitted in a Bayesian framework and referred to as BMat
(a Bayesian maternal mortality estimation model). BMat is able to track high-
quality data very closely, to handle countries that move from survey-based data
sources in earlier time periods to newly scaled-up VR in later time periods, and to
combine information from data and covariates for countries with limited data while
producing covariate-driven estimates for countries without data. The flexibility of
the BMat model eliminates the need for grouping countries: one model is used for
all countries, regardless of data sources available.

The model for the non-AIDS maternal deaths (point II) and the database and
data models used (point III) are explained in more detail in the remainder of this
section. The complete maternal mortality model is given in the Appendix.

3.2.2. Modeling non-AIDS maternal deaths. The non-AIDS maternal deaths
are modeled as follows for all countries:

�
(non-AIDS)
c,t = �̃

(non-AIDS)
c,t · ϑc,t ,(4)

where �̃
(non-AIDS)
c,t refers to the “expected” non-AIDS deaths and ϑc,t is a country-

year-specific multiplier. The expected non-AIDS deaths �̃
(non-AIDS)
c,t are obtained

through the MMEIG 2014 multilevel model [equation (2)]; we assume that the
regression model for the non-AIDS PM provides the expected non-AIDS maternal
deaths:

log
(
�̃

(non-AIDS)
c,t

) = log
(
D

(non-AIDS)
c,t

) + αc − β1 log
(
x

(GDP)
c,t

)
+ β2 log

(
x

(GFR)
c,t

) − β3x
(SAB)
c,t ,

with country-specific intercept αc and covariates GDP, GFR, and SAB (minus
signs are added to the GDP and SAB term such that we expect all β’s to be posi-
tive).

The country-year-specific multiplier ϑc,t in equation (4) allows for data-driven
deviations from the regression-model-implied levels and trends in non-AIDS
deaths. For ease of interpretation and to motivate the modeling choice for the mul-
tiplier, we divide both sides of equation (4) by the number of births to express
equality in terms of the non-AIDS MMR �

(non-AIDS)
c,t , and then obtain the annual-

ized continuous rate of reduction (ARR) in the non-AIDS MMR:

�
(non-AIDS)
c,t = �̃

(non-AIDS)
c,t · ϑc,t , ⇒

(5)
�

′(non-AIDS)
c,t = �̃

′(non-AIDS)
c,t + ϑ ′

c,t ,
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where �̃
(non-AIDS)
c,t = �̃

(non-AIDS)
c,t /Bc,t refers to the expected non-AIDS MMR,

and the addition of ′ denotes the ARR of the indicator, that is, �
′(non-AIDS)
c,t =

− log(�
(non-AIDS)
c,t+1 /�

(non-AIDS)
c,t ) and ϑ ′

c,t = − log(ϑc,t+1/ϑc,t ). Based on equa-
tion (5), we can interpret ϑ ′

c,t as a distortion term that is added to the ARR of
the non-AIDS MMR. Hence ϑ ′

c,t reflects the difference between the observed and
covariate-based expected ARR. If a country goes through a period of scale-up of
maternal care which results in faster declines than expected based on the covari-
ates, then ϑ ′

c,t > 0, while ϑ ′
c,t < 0 during periods where investments in maternal

care are lacking and rates of decline are lower than expected. Given that the co-
variates capture the main expected change in the non-AIDS MMR, we expect that
the distortions ϑ ′

c,t fluctuate around zero and may be positively autocorrelated.
This motivates the choice of a stationary autoregressive moving average process
(ARMA) process for ϑ ′

c,t . We assume that ϑ ′
c,t follows an ARMA(1,1) process,

which is specified as follows:

ϑ ′
c,t = φϑ ′

c,t−1 − θεc,t−1 + εc,t ,

εc,t ∼ N
(
0, σ 2

c

)
,

with autoregressive parameter φ, moving average parameter θ , and the variance of
the innovation terms given by σ 2

c . The variance of the innovation terms is country-
specific to capture variability across countries with respect to fluctuations in their
rates of change. The variances are estimated using a hierarchical model to aid the
estimation for countries with limited data, as follows:

σc = σ(ε) · (1 + λc),

λc ∼ TN(−1,2)

(
0, σ 2

λ

)
,

where σ(ε) represents the most likely estimate of the standard deviation of the in-
novation terms for ϑ ′, λc the country-specific multiplier of the standard deviation.
TN(A,B)(a, b2) represents a truncated normal distribution with mean a and vari-
ance b2, truncated to lie between A and B such that λc is a draw from a truncated
normal distribution, truncated between −1 and 2, and σ 2

λ represents the across-
country variability in the multipliers of the global standard deviation. Priors for
the ARMA parameters are chosen to guarantee stationarity and causality of the
process and, moreover, to allow for positive autocorrelation at any time lag. The
initial conditions for ϑ ′

c,t follow from the stationary distribution of the process.
This distribution and the priors are given in the Appendix.

An ARMA(1,1) model for ϑ ′
c,t implies that log(ϑc,t ) is an autoregressive in-

tegrated moving average ARIMA(1,1,1) process with an unspecified level. We
fix ϑc,1990 = 1 to make the model in equation (4) identifiable. With this choice,
�

(non-AIDS)
c,1990 = �̃

(non-AIDS)
c,1990 such that the regression model determines the level of

the non-AIDS MMR in the year 1990. Sensitivity analyses whereby the base year
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FIG. 2. Illustration of BMat model setup for Bolivia. Left: MMR (maternal deaths per 100,000
live births) data and estimates (see Figure 1 for more details). The dashed curve represents the
“covariate-based” MMR, obtained from a model fit where the distortions are set to zero. Right:
Annual rate of reduction in the non-AIDS MMR.

was changed to a different year, including 2000 and 2010, suggested that the choice
has little effect on the point estimates but may change the uncertainty assessment
for countries with no or very limited data, with uncertainty increasing for years
further removed from the base year. Given the demand for data-driven estimates,
in particular so for the most recent years, we decided to fix the base year in 1990
as opposed to a more recent year.

The model setup is illustrated in Figure 2 for Bolivia. AIDS MMR deaths are
negligible in Bolivia, and thus the MMR is approximately equal to the non-AIDS
MMR. The covariate-based ARR estimates for the non-AIDS MMR (pink dashed
line) follow from the multilevel regression model and suggest that the MMR de-
creased from 1985 to 2015. However, the data points suggest that the MMR de-
clined less rapidly in the 1980s and 1990s than estimated by the covariates. Hence,
in the BMat model, the estimate for the ARR distortion term ϑ ′

c,t (gray dashed
line) is negative for that period and the estimate for the (final) ARR is lower than
the covariate-based estimate to capture the slower decline. This results in final
BMat MMR estimates (red) that capture the trend as suggested by the data. When
projecting past the most recent study period, the ARR distortion ϑ ′

c,t converges to
zero, and hence the estimated final ARR converges to the rate of change implied
by the regression model. In other words, when projecting beyond a country’s data,
the rate of change will converge toward the covariate-implied rate of change, as
seen in the projected ARR for Bolivia.

3.2.3. VR data: Usability, classification and inclusion criteria, and preprocess-
ing. The data inclusion criteria in BMat follow the MMEIG 2014 inclusion crite-
ria except for VR data. For VR data, we consider the usability of the observations
for model inclusion, as well as in the VR data model. For VR observation i, its
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usability ui is defined as the fraction of all-cause deaths in the country-year for
which causes have been assessed in the VR. It is the product of the completeness
of the VR and the percentage of deaths with a well-defined cause:

ui = P
(complete)
i · (

1 − p
(ill)
i

)
,

where p
(ill)
i refers to the proportion of VR deaths with ill-defined causes (as

reported) and P
(complete)
i refers to the estimated completeness of the VR, the

proportion of all-cause deaths which were captured in the VR: P
(complete)
i =

min{1, di/Di}, where di refers to the number of all-cause deaths observed in the
VR system in the respective country-year.

Based on the assessment of usability and VR data availability, we categorize VR
data as type I, II, or III. A VR observation for country c in year t is classified to be
of type I if its usability ui > 80% and if the observation belongs to a continuous
string (with no more than a 1-year gap in between) of at least 3 VR observations
in the respective country with usability above 60%. With this classification, type I
VR data is considered to be of high VR quality because of its high usability and be-
cause of its occurrence in a window of high usability VR data, suggesting that the
vital registration system is well established. A VR observation is classified to be
of type II if its usability ui is between 60 and 80% and if the observation belongs
to a continuous string (with no more than a 1-year gap in between) of at least 3 VR
observations with usability above 60%. While VR observations from type II may
provide information about maternal mortality, they are considered less reliable that
type I observations because of the low usability of the VR data. Finally, type III
refers to miscellaneous data from vital registration and mortality reporting systems
for which we generally cannot assess data quality. All remaining VR observations
are excluded from the analysis. VR data are also excluded in periods with special-
ized studies to avoid double-counting of information because specialized studies
are often conducted as extensions of existing VR data systems.

In some included VR country-years, the observed number of maternal deaths
mi is zero. Such a data entry cannot be used directly because the log(yi) is not
defined. Instead, the country-year is combined with surrounding years; the PMs
and reference years for the observations for surrounding years are recalculated to
include the all-cause deaths of the year with zero maternal deaths, and the country-
year with zero maternal deaths is excluded.

3.2.4. Data models. For yi , the observed proportion of maternal or pregnancy-
related deaths among all-cause deaths, we assume that for all data sources

log(yi)|�i, γi ∼ N

(
log

(
�i/γi

Di

)
, σ 2

i

)
,(6)

where �i refers to the true maternal or pregnancy-related deaths for study period
i, γi the underreporting parameter, Di to the all-cause deaths, and σ 2

i to the error
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variance of the ith observation. γi and σ 2
i will be discussed for each source type

separately. The expression for �i depends on whether information on maternal or
pregnancy-related deaths was collected:

�i =
{
�i, definition i is maternal,

�
(non-AIDS)
i /ωc[i] + D

(AIDS&Preg)
i , definition i is pregnancy-related.

The pregnancy-related AIDS deaths D
(AIDS&Preg)
i = D

(AIDS)
c[i],t[i]P

(AIDS&Preg|AIDS)
c[i],t[i]

were discussed in Section 3.1.2. Parameter ωc is the definition-adjustment param-
eter for country c, which refers to the proportion of pregnancy-related non-AIDS
deaths that are maternal in country c. Past UN analyses suggested that around 90%
of non-AIDS pregnancy-related death can be classified as maternal deaths in coun-
tries in sub-Saharan Africa, compared to around 85% in countries in other regions
[Wilmoth et al. (2012)]. Similar to the MMEIG 2014 adjustment, this information
was used in the BMat model to specify a prior distribution on ωc’s:

ωc ∼
⎧⎨⎩TN(0,1)

(
0.9,0.052)

, for sub-Saharan Africa,

TN(0,1)

(
0.85,0.052)

, for other regions.

Specialized studies. For specialized studies, underreporting parameter γi = 1 be-
cause no underreporting is expected. Error variance σ 2

i = s2
i , which is the stochas-

tic variance associated with the ith inquiry. This variance is approximated using
a Binomial sampling model for the total number of maternal deaths and the delta
method, with the maximum outcome set at 0.5.

VR data. The VR type I, II, and III categorization and usability measures were
used in the analysis of the VR underreporting adjustment γi . When developing the
BMat model, we explored various approaches to model this adjustment factor, for
example, based on time series models as described in Chao and Alkema (2014).
While we plan to further explore such approaches in future research, for the current
BMat model, we adhered to the main steps taken in the MMEIG 2014 approach
to obtain VR adjustments, and calculated an initial VR underreporting adjustment
gc,t for all VR observations. These initial adjustments were used directly for type
I data. We extended the MMEIG 2014 approach by (i) allowing for the possibility
of larger adjustments for type II and III VR data, and (ii) incorporating additional
uncertainty related to the adjustment in the total error variance for VR data of all
types.

The initial adjustments were obtained as follows (based on the MMEIG ap-
proach unless noted otherwise): for any country c with type I and/or II data, as
well as data from specialized studies, an initial estimate gc,t is calculated from the
available information for all years t , while, for all other country-years, the initial
estimate gc,t = 1.5, which corresponds to the specification of underreporting used
in the MMEIG 2014 estimates. For countries with specialized studies, gc,t during
periods with such studies was given by the ratio of the PM in the specialized study
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to the VR-based PM for the study period. Linear interpolation was performed for
years in between observed VR multipliers. For forward (or backward) extrapola-
tion in the MMEIG 2014 approach, the VR multiplier was assumed to increase
or decrease linearly from the most recent (and oldest) gc,t to 1.5 in 5 years. In
BMat, the VR multiplier was kept constant at the level of the most (or least) recent
observed VR multiplier to avoid the introduction of spurious trends when lacking
information on true trends in misclassification. The only exception was made in
back extrapolations if the least recent VR multiplier value was below 1.5, in which
case the MMEIG approach of an extrapolation to 1.5 in 5 years was used, such
that the addition of a recent specialized study that suggests misclassification lower
than 1.5 does not reduce the MMR for the entire past for countries without addi-
tional studies. If the least recent study suggests an adjustment level which is higher
than 1.5, then this level is used throughout in backward extrapolations because it
is deemed less likely that the misclassification was better in the past as compared
to more recent years.

In summary, for a country c without type I/II VR data which overlaps with
specialized studies, initial adjustment gc,t = 1.5 for all t . For a country c with
specialized studies indexed by j = 1,2, . . . , J that overlap with type I/II VR data,
where study j refers to calendar years [t start

j , tend
j ], gc,t is calculated as follows:

gc,t =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

rj , for t ∈ [
t start
j , tend

j

]
, j = 1,2, . . . , J,

rj + rj+1 − rj

t start
j+1 − tend

j

· (
t − tend

j

)
, for tend

j < t < t start
j+1,

j = 1,2, . . . , J − 1,

r1, for t < t start
1 if r1 ≥ 1.5,

1.5 + r1 − 1.5

5
· (

t − (
t start
1 − 5

))
, for

(
t start
1 − 5

) ≤ t < t start
1

if r1 < 1.5,

1.5, for t <
(
t start
1 − 5

)
if r1 < 1.5,

rJ , for t > tend
j ,

where rj refers to the ratio of the PM in the specialized study to the VR-based PM
for the study period.

For all country-years of type I, the final adjustment is equal to the initial adjust-
ment, γc,t = gc,t . For lower-quality VR data from types II and III, γc,t is assigned
a prior distribution to allow for the possibility that the adjustment is greater than
the initial estimate. The lower bound for γc,t is given by the initial estimate gc,t ,

and its upper bound g
(upper)
c,t is given by

g
(upper)
c,t =

{
gc,t + (3 − gc,t ) · (0.8 − uc,t )/0.2, for VR-II with gc,t < 3,

3, otherwise,
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such that g
(upper)
c,t decreases from 3 to gc,t as uc,t increases from 60 to 80% (from

lowest quality type II to type I). The prior p(γc,t ) was set up such that the possi-
bility of a greater outcome decreases as the quality (usability) of type II VR data
improves, using a mixture of a uniform distribution with support on (gc,t , g

(upper)
c,t )

and point mass on gc,t :

p(γc,t ) = Pr(γc,t 
= gc,t ) ·
1
(gc,t ,g

(upper)
c,t )

(γc,t )

g
(upper)
c,t − gc,t

+ Pr(γc,t = gc,t ) · δ(γc,t − gc,t ),

where δ(·) denotes the Dirac delta function and Pr(γc,t = gc,t ) =
gc,t−min{1,gc,t−0.5}

g
(upper)
c,t −min{1,gc,t−0.5} , such that point mass P(γc,t = gc,t ) increases to 1 as g

(upper)
c,t

decreases to gc,t with improved usability.
For all VR country-years, total error variance s2

i in equation (6) includes the
stochastic variability in the VR-based PM as well as the uncertainty in the VR mis-
classification adjustment γc[i],t[i] (beyond the additional uncertainty in the point
estimate of the adjustment for type II and III data). The total variance is obtained
through a Monte Carlo simulation of VR-deaths m

(h)
i for draws h = 1,2, . . . ,H ,

with

log
(
γ̃

(h)
c,t

) ∼ N
(
log(gc,t ),0.252)

,

m
(h)
i ∼ Bin

(
di, yi/gc[i],t[i] · γ̃ (h)

c[i],t[i]
)
,

in which we assume that the true adjustment factor γ̃
(h)
c,t is roughly within 60 to

160% of gc,t , and we obtain a draw m
(h)
i based on estimated true PM yi/gc,t and

adjustment γ̃
(h)
c,t . The inclusion of the additional uncertainty associated with the

VR adjustment γ is motivated by the great variability in observed misclassification
adjustments [Chao and Alkema (2014)]. The error variance for the log(PM) is
approximated with the delta method, and a maximum of 0.5 for the total error σi

is used for type I data.

Data from other sources. For data from other sources, in line with MMEIG
2014, the underreporting parameter γi = 1.1 to account for 10% underreporting
[Wilmoth et al. (2012)]. The error variance

σ 2
i = s2

i + σ 2
(DHS) · 1DHS(i) + σ 2

(not-DHS) · (
1 − 1DHS(i)

)
,

with sampling error variance s2
i and a nonsampling error variance term σ 2

(DHS) for

observations from DHS with 1DHS(i) = 1, and σ 2
(not-DHS) for other sources. Diffuse

priors are used for the nonsampling variance parameters. The sampling error si
was calculated for all data entries with available microdata using the jackknife
repeated replication procedure, which is the standard method used by the DHS
to generate standard errors for complex statistics such as mortality and fertility
rates [ICF International Inc. (2014)]. For other sources where sampling errors are
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not available, we set the sampling error equal to the maximum of 0.25 and the
maximum sampling error observed within the country (if any).

3.2.5. Computation. A Markov Chain Monte Carlo (MCMC) algorithm was
employed to sample from the posterior distribution of the parameters with the use
of the software JAGS [Plummer (2003)]. Six parallel chains were run with a total
of 65,000 iterations in each chain. Of these, the first 5000 iterations in each chain
were discarded as burn-in and every 120th iteration after was retained. The result-
ing chains contained 3000 samples each. Standard diagnostic checks (using trace
plots and the Gelman and Rubin diagnostic [Gelman and Rubin (1992)]) were used
to check convergence.

3.2.6. Communicating uncertainty. Estimates of relevant quantities are given
by the posterior medians, while 80% credible intervals (CIs) were constructed from
the 10th and 90th percentiles of the posterior samples. Given the inherent uncer-
tainty in MMR estimates, 80% CIs are presented by the UN MMEIG instead of
the more conventional 95% ones.

To communicate what information one observation yi provides about �i , and
thus about the true PM or MMR, based on equation (6), we first constructed ap-
proximate 80% confidence intervals for �i/(γiDi), given by exp(log(yi)±z0.9σ̂i),
where σ̂ 2

i refers to calculated total variance for observations from VR and special-
ized studies, and the combination of sampling error and the posterior median of the
nonsampling error variance for observations from other sources. We then trans-
formed these confidence intervals to the required reporting scale (PM or MMR)
using posterior median estimates γ̂i and ω̂c of adjustment parameters γi and ωc.

3.2.7. Model validation. Model performance was assessed through two out-
of-sample validation exercises. In the first exercise, 20% of the observations were
left out at random. In the second exercise, we left out approximately 20% of
the most recent data, here corresponding to all data in or after 2007: fitting the
BMat model to this training set resulted in point estimates and CIs that would
have been constructed in 2007 based on the proposed method. To validate model
performance, we calculated various validation measures based on the left-out ob-
servations. The considered measures were based on prediction errors for the MMR
(as opposed to the PM to improve interpretation of findings), where an error refers
to the difference between the left-out observation and the median of its posterior
predictive distribution based on the training set, as well as coverage of 80% pre-
diction intervals (to quantify the calibration of the prediction intervals). For the
second validation exercise, as in similar past studies on the estimation of child
mortality [Alkema and New (2014)], we also compared the estimates and CIs for
the MMR obtained from the training set to the estimates from the full data set to
check the predictive performance of the model.
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For the left-out observations, errors in the observed MMR are defined as ei =
(yi − ỹi)Di/Bi , where ỹi denotes the posterior median of the predictive distribu-
tion for a left-out observed PM yi based on the training set, and relative errors are
given by ei/(ỹiDi/Bi) · 100%. Coverage is given by 1/N

∑
1[yi ≥ li] · 1[yi ≤ ri],

where N denotes the total number of left-out observations considered, and li and
ri the lower and upper bounds of the 80% predictions intervals for the ith obser-
vation. “Updated” estimates, denoted by �̂c,t for country c in year t , refer to the
median MMR estimates obtained from the full data set. The error in the estimate
based on the training sample is defined as êc,t = �̂c,t − �̂

(2007)
c,t , where �̂

(2007)
c,t

refers to the posterior median estimate based on the training sample as constructed
in 2007, while relative error is defined as êc,t /�̂c,t · 100%. Coverage was calcu-
lated in a similar matter as for the left-out observations, based on the lower and
upper bound of the 80% CIs for the MMR obtained from the training set. Results
are reported for t = 2007.

4. Results.

4.1. BMat MMR estimates. The BMat estimates are shown for the selected
countries in Figure 1. MMEIG 2014 estimates are shown in the same figure.

BMat estimates are generally consistent with the MMEIG 2014 estimates for
former group A countries, but small differences exist. In MMEIG 2014, estimates
for group A countries are given by the adjusted VR data for 5-year periods. The
BMat model estimates may differ because BMat estimates are constructed for 1-
year periods, the BMat model allows for smoothing of the stochastic fluctuations in
individual data points, and, in the BMat model, the VR adjustment is kept constant
in forward and in (most) backward extrapolations (as opposed to the convergence
to 1.5 as used in the MMEIG 2014 estimates). In addition, BMat takes into ac-
count different levels of uncertainty. Data from specialized studies tend to have
a much smaller error variance compared to VR data. Hence, in the model, BMat
estimates tend to be close to observations from specialized studies and estimates
tend to be more certain for periods with such studies. For Japan, the only group A
country in Figure 1, these differences result in slightly updated MMR estimates,
but differences since 1990 are small.

Former Group B countries are those countries with lower quality VR data and/or
data from other sources. In MMEIG 2014, these data points informed only the es-
timation of the level of maternal mortality in the country but not the trend; trend
estimates were driven by the covariates. By introducing the country-year-specific
ARIMA(1,1,1) multiplier, BMat estimates can capture data-driven trends, as ex-
plained for Bolivia in the previous section. For the other group B countries in Fig-
ure 1, the BMat and MMEIG 2014 estimates are similar for India but differ for El
Salvador and Zimbabwe, where BMat estimates deviate from the covariate-based
estimates where data are available and in disagreement with the covariate-based
trend. For El Salvador, the BMat estimates capture the MMR level as indicated by
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the specialized study around 2006. The VR data in El Salvador is of type II, with
initial adjustment given by 2.3 and upper bound g

(upper)
c,t greater than 2.3 because

usability varies between 60 and 65% during the study period. The BMat estimates
differ from the covariate-based MMEIG 2014 estimates in the earlier period be-
cause of the adjusted VR data as well as data from another source (DHS). For
Zimbabwe, the modeled estimates for 2006 correspond to the MMR as recorded
in the specialized study. The estimates for earlier years differ from the MMEIG
estimates because data suggest lower MMR levels.

For former group C countries, with no data available, the BMat model contin-
ues to produce covariate-based estimates which are similar to the MMEIG 2014
estimates, as illustrated in Figure 1 for Papua New Guinea.

PM and MMR data and estimates for all countries are given in the supplemen-
tary figure [Alkema et al. (2017)].

4.2. Validation results. Validation results are presented separately for devel-
oped and developing countries (according to the categorization used for MDG
reporting) because results may differ between those two groups. Model valida-
tion results based on the left-out observations are shown in Table 4. Median errors
and median relative errors are generally close to zero, except when leaving out
recent data in developing countries: the median error in the MMR is 6.5 deaths

TABLE 4
Validation results based on left-out observations for developed and developing countries. The

outcome measures are as follows: median error (ME), absolute error (MAE), relative error (MRE),
and absolute relative error (MARE) for the MMR (per 100,000 live births), as well as the % of

left-out observations below and above the 80% prediction interval (PI) based on the training set.
Results for exercise II refer to the most recent left-out observation in each country. Results are
provided for the BMat model as well as a simplified model in which the country-year-specific

multipliers νc,t are set to one

Error in MMR Relative error (%) Outside 80% PI

Model Category
# of left-out
observations ME MAE MRE MARE % Below % Above

Exercise I: appr. 20% of observations were excluded at random
BMat Developed 187 0.4 1.9 3.5 23.7 9.1 5.9

Developing 248 1.6 8.3 2.3 16.8 4.4 6.9

Simplified Developed 187 0.6 2.4 6.6 33.3 17.6 13.4
model Developing 248 0.5 12.1 1.2 24.8 12.9 13.7

Exercise II: all observations in and after 2007 were excluded
BMat Developed 43 0.2 1.5 2.5 30.0 11.6 4.7

Developing 80 6.5 17.1 15.2 31.0 7.5 11.2

Simplified Developed 43 −0.9 3.0 −17.9 36.4 20.9 9.3
model Developing 80 9.3 23.1 21.5 38.4 11.2 21.2
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TABLE 5
Validation results for MMR estimates, for the validation exercise II whereby all observations in and

after 2007 were left out, and for developed and developing countries. Outcome measures are
reported for the MMR (per 100,000 live births) in 2007 for countries for which observations were

left out and given by the median error (ME), absolute error (MAE), relative error (MRE), and
absolute relative error (MARE), as well as the % of countries for which MMR estimates in 2007 are
below and above the 80% CIs based on the training set. Results are provided for the BMat model as

well as a simplified model in which the country-year-specific multipliers νc,t are set to one

Error in MMR Relative error (%) Outside 80% CI

Model Category # of countries ME MAE MRE MARE % Below % Above

BMat Developed 43 0.2 1.0 2.8 12.2 9.3 7.0
Developing 80 3.3 9.5 4.7 11.9 2.5 6.2

Simplified Developed 43 −0.3 1.5 −5.8 18.7 44.2 16.3
model Developing 80 3.5 19.3 4.4 17.1 17.5 30.0

per 100,000 live births, corresponding to a relative error of 15.2%. This suggests
that projections may be somewhat optimistic and overestimate the MMR decline
in developing countries. Coverage of 80% prediction intervals is reasonable and
between 80 and 90% for both exercises and for both developing as well as de-
veloped countries. The greatest asymmetry regarding the percentage of left-out
observations above or below the prediction intervals is observed when leaving out
recent data in developed countries, with 11.6% of the observations falling below,
and 4.7% falling above their respective intervals.

The comparison between estimates based on the training and full data set for the
year 2007 is given in Table 5. Errors, which here are the differences in the MMR
estimates for the year 2007 between full and training data set, are reasonably small
with median absolute relative errors just above 10% for both developed as well as
developing countries. Coverage of the 80% CIs based on the training set is greater
than 80%, as expected and desired, indicating that the addition of more recent data
does not tend to move the MMR estimates outside previously constructed CIs.

For comparison, Tables 4 and 5 also include the validation results for the model
in which the country-year-specific multipliers νc,t are set to one, or, equivalently,
where the non-AIDS MMR is determined by the multilevel regression model only.
This implied model, which approximates the MMEIG 2014 model, performs worse
than BMat, indicating that the addition of the country-year-multipliers improves
model performance.

5. Discussion. Estimating maternal mortality is challenging because of lim-
ited maternal mortality data availability, especially for recent years for many de-
veloping countries, and, moreover, the substantial uncertainty surrounding obser-
vations due to reporting issues and random errors associated with the observations.
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We have described the BMat model for estimating the MMR for all countries in
the world. This Bayesian model extends the approach previously used by the UN
MMEIG to better capture trends in, and uncertainty around, country data: it com-
bines the rate of change implied by a multilevel regression model with a flexible
time series model to capture data-driven changes in country-specific MMRs. As
compared to the past MMEIG approach, the new modeling approach eliminates
the need for grouping countries based on data availability: one model is used for
all countries, regardless of data sources available. In addition, BMat includes a data
model to adjust for systematic and random errors associated with different types of
data sources, such that observations are adjusted and weighted appropriately when
constructing MMR estimates.

Model validation exercises suggested that the BMat model is reasonably well
calibrated, but indicated, based on out-of-sample projections for more recent pe-
riods, that recent maternal mortality declines may be overestimated in developing
countries. An investigation into the regression model used to estimate and project
the systematic change in the non-AIDS MMR may result in the selection of an al-
ternative model with improved performance. The calibration of the current model
was found to be satisfactory with respect to coverage of prediction intervals for
left-out observations and credible intervals for MMR estimates, and differences in
MMR points estimates between full and training data set were small.

With the development of BMat, we illustrated how a regression model can be
extended through the addition of an ARIMA process to provide a more flexible
model setup to capture levels and trends in the outcome of interest, as indicated
by the data, while still providing regression-based results for populations and/or
time periods for which limited or no information is available. At the same time,
we showed how to improve upon simplified assumptions regarding observational
errors, that is, the use of error variances that are equal across observations in the
MMEIG 2014 model, by incorporating appropriate data models. The change, from
a relatively standard (frequentist) regression model to a Bayesian model that com-
bines regression functions with time series models and includes appropriate data
models, may be appropriate for the modeling of other global health or demographic
indicators for which regression models are currently being used.

Important limitations to our study are related to maternal mortality reporting
issues, the estimation of AIDS maternal deaths, and the dependency of the estima-
tion of maternal mortality on the estimation of other demographic indicators. The
estimation of underreporting in surveys and miscellaneous data sources, as well
as the estimation of the proportion of pregnancy-related deaths that are maternal,
are hindered by limited availability of data which allow for a detailed analysis.
Additional information is needed to overcome these current data limitations. Re-
garding the estimation of pregnancy-related deaths which are not maternal, future
analyses may be possible based on an increasing number of studies that report
both pregnancy-related as well as maternal mortality information. Further analysis
of the misclassification of maternal deaths in vital registration systems would aid
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the estimation of maternal mortality in developed countries with well-functioning
VR systems, as well as in countries in which VR systems have improved in re-
cent years. The second limitation of our study is due to the limited information on
AIDS maternal mortality [Wilmoth et al. (2012)], which complicates the recon-
struction of trends in maternal mortality in countries with generalized HIV/AIDS
epidemics. This limitation is of lesser concern for more recent years in which the
contribution of AIDS maternal deaths to the overall number of maternal deaths has
decreased. Last, because of the dependency of the maternal mortality estimation
on the estimation of all-cause deaths to women of reproductive ages as well as
the number of births, the challenges and limitations that apply to the estimation of
these demographic indicators are also applicable to maternal mortality estimation.
We did not include the uncertainty surrounding these demographic indicators into
the uncertainty assessment for maternal mortality because such uncertainty assess-
ments are generally not available. Future research work regarding the assessment
of uncertainty in these demographic indicators may result in the reporting of uncer-
tainty intervals for a wider range of demographic indicators and allow for a more
complete uncertainty assessment for maternal mortality.

The MDGs ended in 2015 and the global developmental agenda transi-
tioned to the Sustainable Development Goals (SDGs; see http://www.un.org/
sustainabledevelopment/sustainable-development-goals/). “Ending preventable
maternal mortality” continues to be a central part of the health goals. SDG 3.7
aims to reduce the global MMR to less than 70 deaths per 100,000 births by 2030
and, in addition, to reduce the MMR in each country to be no higher than twice
the average global MMR, thus 140, by the same year [World Health Organization
(2015)]. Hence, continued monitoring of the levels of and trends in maternal mor-
tality at global and country levels is necessary to evaluate progress and aid resource
allocation and priority setting. Given the great uncertainty surrounding maternal
mortality indicators, greater emphasis should be placed on the communication of
uncertainty intervals to avoid confusion, for example, when point estimates of the
MMR in the baseline year for SDG assessment are updated in light of new data,
as described for under-five mortality monitoring [Oestergaard, Alkema and Lawn
(2013)]. Despite the challenges related to the measurement of maternal mortality
and the limitations of MMR estimates, the importance of monitoring maternal sur-
vival necessitates the continued production of estimates and justifies a continued
effort to further improve the validity of maternal mortality estimates.

APPENDIX

The BMat model for the MMR �c,t = �c,t/Bc,t is specified as follows:

�c,t = �
(non-AIDS)
c,t + D

(AIDS&Mat)
c,t ,

�
(non-AIDS)
c,t = �

(non-AIDS)
c,t · Bc,t ,

�
(non-AIDS)
c,t = �̃

(non-AIDS)
c,t · ϑc,t .

http://www.un.org/sustainabledevelopment/sustainable-development-goals/
http://www.un.org/sustainabledevelopment/sustainable-development-goals/
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The expected non-AIDS MMR �̃
(non-AIDS)
c,t is obtained using a multilevel re-

gression model for the expected non-AIDS maternal deaths �̃
(non-AIDS)
c,t :

�̃
(non-AIDS)
c,t = �̃

(non-AIDS)
c,t /Bc,t ,

log
(
�̃

(non-AIDS)
c,t

) = log
(
D

(non-AIDS)
c,t

) + αc − β1 log
(
x

(GDP)
c,t

)
+ β2 log

(
x

(GFR)
c,t

) − β3x
(SAB)
c,t ,

αc|αr[c], σ 2
country ∼ N

(
αr[c], σ 2

country
)
,

αr |αworld, σregion ∼ N
(
αworld, σ

2
region

)
,

αworld ∼ N
(
log(0.001),100

)
,

σα,country ∼ U(0,5),

σα,region ∼ U(0,5),

βh ∼ N(0.5,1000), for h = 1,2,3.

The log-transformed multiplier ϑc,t is modeled with an ARIMA(1,1,1) model
with ϑc,1990 = 1 and for t = 1985,1986, . . . ,2014:

log(ϑc,t+1) = log(ϑc,t ) − ϑ ′
c,t ,

ϑ ′
c,t = − log(ϑc,t+1/ϑc,t ),

= φϑ ′
c,t−1 − θεc,t−1 + εc,t ,

εc,t ∼ N
(
0, σ 2

c

)
.

Initial conditions follow from the stationary distribution for ϑ ′
c,t :

ϑ ′
c,1985 ∼ N(0, γ0,c),

εc,1985 ∼ N
(
σ 2

c /γ0,c · ϑ ′
c,1985, σ 2

c

(
1 − σ 2

c /γ0,c

))
,

where γ0,c refers to the stationary variance of ϑ ′
c,t , γ0,c = 1−2φθ+θ2

1−φ2 ·σ 2
c . Priors for

φ and θ and the hierarchical distribution for γ0,c are as follows:

φ ∼ U(0,1),

θ ∼ U(−1,0),
√

γ0,c = √
γ0 · (1 + λc),√

γ0 ∼ U(0,0.025),

λc ∼ TN(−1,2)

(
0, σ 2

λ

)
,

σλ ∼ U(0,2),
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where the upper bound for
√

γ0,c was based on the assumption that, for country
periods without any data, we expect the true ARR to be roughly within ±0.05 of
the covariate-based ARR. Model constraints were included such that �̃

(non-AIDS)
c,t <

D
(non-AIDS)
c,t and �c,t < Dc,t .
Data models for observations i = 1,2, . . . ,N are given by

log(yi)|�i, γi ∼ N

(
log

(
�i/γi

Di

)
, σ 2

i

)
,

�i =

⎧⎪⎪⎨⎪⎪⎩
�i, definition i is maternal,

�
(non-AIDS)
i /ωc[i] + D

(AIDS&Preg)
i , definition i is

pregnancy-related,

ωc ∼
{

TN(0,1)

(
0.9,0.052)

, for sub-Saharan Africa,

TN(0,1)

(
0.85,0.052)

, for other regions.

The reporting adjustment parameter γi = 1 for specialized studies and 1.1 for mis-
cellaneous studies. For VR observations with γi ≡ γc[i],t[i], country-year adjust-
ment γc,t = gc,t for type I data, while for VR data of types I and II, it is assigned a
prior distribution p(γc,t ):

p(γc,t ) = Pr(γc,t 
= gc,t ) ·
1
(gc,t ,g

(upper)
c,t )

(γc,t )

g
(upper)
c,t − gc,t

+ Pr(γc,t = gc,t ) · δ(γc,t − gc,t ),

g
(upper)
c,t =

{
gc,t + (3 − gc,t ) · (0.8 − uc,t )/0.2, for VR-II with gc,t < 3,

3, otherwise.

Finally, the total error variance σ 2
i is given by stochastic variance for VR data and

specialized studies, and estimated as follows for other sources:

σ 2
i = s2

i + σ 2
(DHS) · 1DHS(i) + σ 2

(not-DHS) · (
1 − 1DHS(i)

)
,

σ(DHS) ∼ U(0.1,0.5),

σ(not-DHS) ∼ U(0.1,0.5),

where s2
i denotes sampling error variance.
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SUPPLEMENTARY MATERIAL

Supplementary figure: Data series and estimates of the PM (proportion of
all-cause deaths that are maternal) and the MMR (number of maternal deaths
per 100,000 live births) for 183 countries (DOI: 10.1214/16-AOAS1014SUPP;
.pdf). BMat estimates are illustrated by the solid red lines and 80% CIs are shown
by the red shaded areas. Reported (unadjusted) and adjusted observations used for
fitting the BMat model are displayed and explained in the legend. The vertical line
with each adjusted observation indicates the approximate 80% confidence interval
for the PM or MMR associated with that observation, based on point estimates for
reporting adjustments and total error variance. The UN MMEIG 2014 estimates are
illustrated with the green lines. Adjusted observations that were used in the WHO
2014 regression model are plotted with black crosses. Estimates are shown for the
period 1990–2015; data before 1990 were used in model fitting. Note that these
estimates are obtained by fitting the model to a 2014 MMEIG database. Therefore,
the BMat 2014 estimates presented here differ from the BMat and MMEIG 2015
estimates, which are based on more recent data [WHO et al. (2015)].
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