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Characterization of multivariate time series of behaviour data from
animal-borne sensors is challenging. Biologists require methods to objec-
tively quantify baseline behaviour, and then assess behaviour changes in
response to environmental stimuli. Here, we apply hidden Markov models
(HMMs) to characterize blue whale movement and diving behaviour, identi-
fying latent states corresponding to three main underlying behaviour states:
shallow feeding, travelling, and deep feeding. The model formulation ac-
counts for inter-whale differences via a computationally efficient discrete
random effect, and measures potential effects of experimental acoustic distur-
bance on between-state transition probabilities. We identify clear differences
in blue whale disturbance response depending on the behavioural context dur-
ing exposure, with whales less likely to initiate deep foraging behaviour dur-
ing exposure. Findings are consistent with earlier studies using smaller sam-
ples, but the HMM approach provides a more nuanced characterization of
behaviour changes.

1. Introduction. Measuring and describing behaviour changes by marine
mammals in response to underwater noise is a key step in understanding the po-
tential harmful effects of this type of human disturbance on marine ecosystems
[Ellison et al. (2012), Shannon et al. (2015)]. The effects of mid-frequency mil-
itary sonars, airguns used for geophysical exploration, and shipping noise are of
particular concern [National Research Council (2005), Southall et al. (2007)]. We
focus on potential behaviour changes in response to military mid-frequency active
sonar sounds (MFAS, broadly defined) and pseudo-random noise (PRN) in the
same frequency range. Here, mid-frequency is broadly 1-10 kHz, but the narrower
frequency band containing the primary energy of the MFAS and PRN stimuli is
between 3—4.5 kHz. Previous work has suggested that blue whales respond simi-
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larly to these MFAS and PRN sounds [Friedlaender et al. (2016), Goldbogen et al.
(2013a)].

Controlled exposure experiments (CEEs) are experiments in which animals are
tracked—either visually or using animal-borne tags—before, during, and after
controlled exposure to the sound stimuli of interest. CEEs are an empirical way
to obtain direct measurements of behaviour and potential behavioural responses
[Tyack, Gordon and Thompson (2003)]. Analysis of CEE data then requires qual-
itative [Miller et al. (2012), Sivle et al. (2015)] or quantitative [Antunes et al.
(2014), DeRuiter et al. (2013), Goldbogen et al. (2013a)] analysis of multivari-
ate time-series data. These data often include many synoptic variables collected
at very high temporal resolution. In some cases, particularly for species of great
interest in terms of environmental management, datasets may include only a few
individual animals [e.g., DeRuiter et al. (2013), Miller et al. (2015), Stimpert et al.
(2014)]. With rapid technological advances in animal-borne sensors, there have
been increases in the amount and complexity of these data. However, the devel-
opment of quantitative analysis methods for these data has often lagged behind
[Holyoak et al. (2008)].

In these types of analyses, it is particularly challenging to find methods that
combine the relevant data streams in an objective, repeatable way, accounting for
individual differences between animals, respecting dependence over time and be-
tween streams, and providing output that has a natural interpretation in relation to
animal motivation (reasons why an animal performs certain behaviours) and be-
havioural state. The biological research goal is not simply to provide qualitative
descriptions of behaviour, but to conduct hypothesis-driven research into the rela-
tionship between acoustic disturbance and behaviour. Given this focus, there is a
particular need for models that summarise short-term observations in terms of be-
havioural states and animal motivation. Differences in behaviour due to a host of
contextual variables such as environmental conditions, social conditions, or whale-
to-whale variability can be of a magnitude equal to or larger than changes in re-
sponse to acoustic disturbance [Ellison et al. (2012), Friedlaender et al. (2015)].
Consequently, an adequate model for basic behaviour (and individual variation in
that behaviour) is often a prerequisite for assessing the effects of sound on be-
haviour. However, to date, few tools have been presented that allow such charac-
terisation of multivariate animal behaviour time-series data in terms of behavioural
states (even neglecting covariates such as acoustic disturbance). Such models could
facilitate biological interpretation, and also provide inputs for models of Popula-
tion Consequences of Disturbance (PCoD) [National Research Council (2005),
Schick et al. (2013), New et al. (2013, 2014), King et al. (2015)].

Hidden Markov models (HMMs) are well suited to characterising multivariate
time-series data in terms of a set of latent states [Zucchini, MacDonald and Lan-
grock (2016), Zucchini, Raubenheimer and MacDonald (2008)], which in this case
serve as proxies for the underlying behavioural states of the animals. HMMs have
previously been applied to multivariate animal behaviour data in order to identify
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latent behavioural states [Bagniewska et al. (2013), McKellar et al. (2014)], and
somewhat analogous Bayesian hierarchical state-switching models have been used
to achieve similar goals [Isojunno and Miller (2015), McClintock et al. (2013)], but
no previous work has identified such states in animal behaviour while accounting
for individual differences between tagged animals and incorporating effects of an
environmental covariate modulating between-state transition rates. Here, we apply
HMMs to describe a relatively large dataset on blue whale (Balaenoptera muscu-
lus) movement and diving behaviour, including a computationally efficient discrete
random effect to account for differences between tag records. The model also in-
corporates covariates affecting the state transition probability matrix, enabling a
quantitative analysis of the potential effects of experimental sounds (MFAS and
PRN) on the between-state transition probabilities.

2. Blue whale CEE response measurements.

2.1. Background: Research program and tags. Our dataset includes observa-
tions of 37 blue whales collected offshore of southern California, USA, as part
of the Southern California Behavioral Response Study (SOCAL-BRS). SOCAL-
BRS is an interdisciplinary research collaboration designed to study marine mam-
mal behaviour and reactions to sound. This study is the first to include CEEs using
MFAS transmissions from operational Navy vessels using full-scale sonar systems
involved in previous marine mammal strandings, in addition to simulated sonar
transmissions from transducer arrays deployed from research vessels. Its overall
objective is to provide a better scientific basis for estimating risk and minimizing
effects of active sonar for the U.S. Navy and regulatory agencies. The project’s
experimental methods have been described in detail elsewhere [Southall et al.
(2012)], and additional methodological detail is also provided in Supplement A
[DeRuiter et al. (2017a)].

Whales were tagged with animal-borne data loggers [DTAGs, Johnson and Ty-
ack (2003), or, in 2 cases, B-probes, Greeneridge Sciences, Inc., Santa Barbara,
CA] that recorded acoustic data and high-resolution animal-movement data. In
total, the dataset includes 37 individual whales and 1054 dives, 168 of which over-
lapped with sound exposure periods (see Table 1 for details of tag deployments). In
addition to the tag data, surface observations of animal positions were collected vi-
sually by observers following the whales in a small boat. Boat-based visual obser-
vations to determine spatial locations of animal surface positions were consistent
throughout all phases of data analysed (before, during, and after CEEs).

2.2. Controlled exposure experiment protocols. Data were collected before,
during, and after 21 CEEs, in which 31 of the 37 whales were exposed to ei-
ther MFAS or PRN sounds (Table 1). Tag data and visual observations were col-
lected for a minimum of one hour before and after exposures, unless precluded by
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MFAS, mid-frequency active sonar; PRN, pseudo-random noise

TABLE 1
Summary of tag deployments on blue whales analysed in this study. Abbreviations used in this table:
ID, identification; Dur., duration; h, hours; CEE, controlled exposure experiment; Simul., simulated,

365

Number ‘Whale ID Date Dur. (h) Dives CEE Dives Exposure
1 bw10_235a 2010-08-23 14 26 7 Simul. MFAS
2 bw10_235b 2010-08-23 1.9 31 9 Simul. MFAS
3 bw10_235_Bprobe_019 2010-08-23 1.5 24 9 Simul. MFAS
4 bw10_238a 2010-08-26 1.5 26 9 Simul. MFAS
5 bw10_239b 2010-08-27 6.0 53 5 Simul. MFAS
6 bw10_240a 2010-08-28 1.6 54 16 Simul. MFAS
7 bw10_240b 2010-08-28 2.7 16 3 Simul. MFAS
8 bw10_241_Bprobe_034 2010-08-29 2.3 27 8 Silent
9 bwl0_241a 2010-08-29 2.9 16 3 Silent

10 bw10_243a 2010-08-31 4.8 22 3 PRN

11 bw10_243b 2010-08-31 4.4 22 3 PRN

12 bw10_244b 2010-09-01 1.6 11 2 PRN

13 bw10_244c 2010-09-01 2.4 17 6 PRN

14 bw10_245a 2010-09-02 5.2 36 3 PRN

15 bw10_246a 2010-09-03 4.0 27 2 Simul. MFAS

16 bw10_246b 2010-09-03 4.4 15 2 Simul. MFAS

17 bwl10_251a 2010-09-08 3.0 26 7 PRN

18 bwl0_265a 2010-09-22 5.2 44 3 Simul. MFAS

19 bw10_266a 2010-09-23 2.5 17 5 PRN

20 bwll_210a 2011-07-29 33 17 3 Simul. MFAS

21 bwll_210b 2011-07-29 4.9 33 5 Simul. MFAS

22 bwll_211a 2011-07-30 3.7 24 2 PRN

23 bwll_213b 2011-08-01 49 51 6 Simul. MFAS

24 bwll_214b 2011-08-02 4.9 93 10 PRN

25 bwll_218a 2011-08-06 2.6 17 4 PRN

26 bwll_218b 2011-08-06 3.6 23 2 PRN

27 bwll_219b 2011-08-07 2.1 10 0 None

28 bwll_220a 2011-08-08 1.1 6 3 Simul. MFAS

29 bwl1l_220b 2011-08-08 2.1 15 6 Simul. MFAS

30 bwll_221a 2011-08-09 4.3 33 4 PRN

31 bwll_221b 2011-08-09 2.8 17 4 PRN

32 bwl12_292a 2012-10-18 4.4 14 3 PRN

33 bwl3_191a 2013-07-10 4.8 41 6 Real MFAS

34 bwl13_207a 2013-07-26 34 37 8 Silent

35 bwl3_214b 2013-08-02 3.5 21 0 None

36 bwl3_217a 2013-08-05 2.3 13 0 None

37 bwl13_259a 2013-09-16 54 67 7 Simul. MFAS

unplanned early tag detachment, darkness, or when the animal was lost. During
CEEs, individual sound stimuli (about 1.5 seconds in duration) were transmitted
by a custom-built underwater transducer array [Southall et al. (2012)] approxi-
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mately once every 25 seconds for 30 minutes total (or 58 minutes of transmissions
from a US Navy vessel for the single real MFAS CEE). For further details, consult
Supplement A [DeRuiter et al. (2017a)].

2.3. Whale behaviour data. Using the high-resolution, multivariate tag data,
a number of variables were chosen to summarise the whales’ behaviour: dive du-
ration, post-dive surface duration, maximum depth, number of feeding lunges, and
variability of whale heading. Two additional variables were based on the visual
observations of spatial locations: step length and turning angle in the horizontal
dimension. Supplement A [DeRuiter et al. (2017a)] provides details of data pro-
cessing procedures. All variables were computed on a dive-by-dive basis; in other
words, the input data for modelling were time series for which the sampling unit
was one dive. (Here, a “dive” was defined as any excursion from the surface to 10
m depth or greater.) Figures 1-2 show example time-series plots of the data for
two of the 37 whales. Similar plots for all whales are included in Supplement B
[DeRuiter et al. (2017b)].

3. Modelling the state-switching behaviour using HMMs.
3.1. A baseline model.

3.1.1. Motivation. The data suggest that at least two (and probably three) dis-
tinct behavioural states drive the magnitude of the observations made [Goldbogen
et al. (2013b)]. For example, the deepest, longest dives usually contain multi-
ple lunges (feeding events), and represent deep feeding behaviour; there are also
shorter, shallow feeding dives that usually contain a single lunge; finally, some rel-
atively short, shallow dives without lunges have very low heading variance, and
may represent near-surface travelling. Furthermore, there is autocorrelation in the
observed time series, due to persistence of behavioural states, with animals tend-
ing to repeat the same type of dive several times before switching to a different
behavioural state.

HMMs naturally accommodate both these features. A basic N-state HMM in
discrete time involves two components: (1) an observed state-dependent process
and (2) an unobserved N -state Markov chain, with the observations of the state-
dependent process assumed to be generated by one of N component distributions
corresponding to the N states of the Markov chain. In HMM applications to animal
behaviour data, the states of the Markov chain can often naturally be interpreted
as proxies for the behavioural states of animals, although there is not necessarily a
one-to-one correspondence between nominal HMM states and biologically mean-
ingful behavioural states [Langrock et al. (2012, 2015), Zucchini, Raubenheimer
and MacDonald (2008)].
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FIG. 1. Time-series plot of the input data for whale number 30. The CEE exposure period is shaded
in darker grey; this whale was exposed to a pseudo-random noise (PRN) CEE. The bottom panel
shows the most probable state for each dive according to the best model (with 3 states, 4 contexts,
and a common effect of acoustic disturbance). These states are also indicated in the other panels by
symbols: circles for state 1, triangles for state 2, and squares for state 3.
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Time-series plot of the input data for whale number 5. The CEE exposure period is shaded
in darker grey; this whale was exposed to a simulated MFA sonar CEE. The bottom panel shows
the most probable state for each dive according to the best model (with 3 states, 4 contexts, and
a common effect of acoustic disturbance). These states are also indicated in the other panels by

symbols: circles for state 1, triangles for state 2, and squares for state 3.



HMMS FOR BLUE WHALE BEHAVIOUR 369

3.1.2. Formulation of the initial model. For each whale, the observed state-
dependent process is multivariate and will be denoted by {X,,4.}4=1,2...., D, » Where
Xwd- = (Xwdi, - --» Xwap) 1s the vector of variables observed for dive d performed
by whale w, and D, is the total number of dives performed by that whale. In our
application, we have P = 7 data streams. The N-state Markov chain giving the
(behavioural) states that underlie the dives performed by whale w will be denoted
by {Swa}a=12....,p,,» Where Sy4 gives the state associated with dive d. Thus, with
our model, we classify dives into a finite number of categories [Bagniewska et al.
(2013), Hart et al. (2010)], rather than modelling diving activity at a finer, within-
dive scale [Langrock et al. (2014)]. We will focus on models with N = 3 states,
with a justification of this choice to be provided below.

We assume a basic first-order dependence structure for the state process, and,
for whale w, summarize the state transition probabilities yij.w) =Pr(Sya = Jj |
Sw.d—1 = i) in the transition probability matrix (t.p.m.)

Vl(lw) N Vl%)

r=qp"=: -
NI - VNN

We initially assume that T™) =T = (y, ;) for all w (i.e., complete pooling of
the individual whales’ time series: all whales have the same state-switching dy-
namics), but this assumption will be relaxed later on. The initial state distribution,
denoted by (the row vector) § = (Pr(Sy1 = 1),...,Pr(Sy1 = N)), is also initially
assumed to be common to all individuals, and, like I', is estimated from the data.

To allow use of an unconstrained numerical optimizer to find the maximum
likelihood estimates, we reparametrise all model components in terms of uncon-
strained parameters. In particular, we let

_ exp(aij)
143, explain)’

and perform the maximization of the likelihood with respect to the real-valued
parameters «;;, i, j =1,..., N, i # j. This reparametrisation based on the multi-
nomial logit function will be convenient also when extending the model to incor-
porate random effects and covariates (see subsequent sections).

We assume that the different time series (whales) observed are independent of
each other. For the state-dependent processes, we assume that, given the state un-
derlying dive d, the observation vector X,,4. is conditionally independent of past
and future observations and states. Furthermore, for the observation vector Xy,4.,
we assume contemporaneous conditional independence given the states, that is,

Vij

P
S Xwd. | Swd = swa) = 1_[ f(xwdp | Swd = Swd)-
p=1
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Note that we use f as a general symbol for a density or probability function.
Unconditionally, the P =7 component variables will still be dependent on each
other because the Markov chain induces dependence between them. For the blue
whale data considered here, we found that the correlation implied by the HMMs fit-
ted under the contemporaneous conditional independence assumption was slightly
lower than the empirical correlation between the component variables [see Sup-
plement B, DeRuiter et al. (2017b)]. This indicates that the assumption is ade-
quate, since our interest does not centre precisely on the correlation between the
data streams, but on the state-switching dynamics. In addition, there is generally
no practical alternative to contemporaneous conditional independence: unless a
multivariate normal distribution can be assumed (which rarely is the case), there
is usually no simple multivariate distribution available to specify the correlation
structure between variables within states. For more details on the assumption of
contemporaneous conditional independence, see Zucchini, MacDonald and Lan-
grock (2016).

As a consequence of the contemporaneous conditional independence assump-
tion, to formulate a model for the blue whale dataset, we simply need to specify
one univariate distribution for each of the seven variables observed. (The parame-
ters of each distribution then depend on the underlying state.) We model the dive
depth, dive duration, post-dive surface duration and step length with gamma distri-
butions, since those variables all take on positive real values and may have right-
skewed distributions. For the gamma distributions, we employ a parametrisation in
terms of the mean u and standard deviation o; if required, these parameters can be
easily converted to the more standard shape (k) and scale () parametrisation ac-
cording to k = p?/o? and 6 = o /1. For the number of lunges, we use a Poisson
distribution, a standard choice for count data. We select a von Mises distribution—
which is a circular analogue of the normal distribution—for the turning angle data.
Finally, we model the heading variance with a beta distribution, which, like the
data, has support on the interval [0, 1].

3.1.3. Model fitting. A key property of HMMs is that an efficient algorithm,
the forward algorithm, can be used to evaluate the likelihood. The forward algo-
rithm exploits the dependence structure of the HMM to calculate the likelihood
recursively, from the start to the end of the observed time series. At each time step
the likelihood, as well as the probability of each state at the current time step, is
updated based on the following: the t.p.m., the state-dependent distributions, and
the probabilities of each state at the preceding time-step (using the initial state dis-
tribution for the first observed time-step). This renders it computationally feasible
and convenient to estimate the model parameters by numerically maximising the
likelihood [MacDonald (2014)]. For the model specified above—with both t.p.m.,
I', and initial state distribution, §, being identical across individuals—the use of
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the forward algorithm leads to the likelihood expression
37

(D L= ]](QXw1)TQXu2) - TQXyp,)1),

w=1
where Q(xy4.) is an N x N diagonal matrix with the kth entry on the diago-
nal given by l—[[{):1 f (xwap | Swa = k) (i.e., the joint density of the observations

Xwdls -+ > Xwdp, given state k), and 1 € R¥ is a column vector of ones.

We note that an advantage of the HMM formulation described above is its ability
to deal with missing and partially missing data. In ecological datasets in particu-
lar, on some occasions data may be available from some variables in the observed
multivariate state-dependent process, but missing for other variables. For exam-
ple, in the current dataset, observations for some whales span nightfall. After dark,
surface visual observations ceased, and so all data derived from visually observed
positions are missing. However, the tag-derived variables are recorded as usual re-
gardless of darkness. As another example, some whales in the study were tagged
with B-probes rather than DTAGs. The B-probe devices do not have tri-axial ac-
celerometers and magnetometers, and so they do not collect any heading data. An
HMM—with an assumption of contemporaneous conditional independence, as de-
tailed earlier in Section 3.1.2— can easily accommodate such partially observed
data in the state-dependent process. If any x,,4, (the observation of variable p for
dive d by whale w) is missing, we simply have f(xydp | Swa = k) =1 in equa-
tion (1) [Zucchini, MacDonald and Langrock (2016)]; in consequence, the missing
data point makes no contribution to Q(Xyq4.), and thus does not affect the overall
likelihood, but observations of other variables for that same dive do still contribute.

Confidence intervals for the parameter estimates were obtained based on the in-
verse of the observed Fisher information, that is, the inverse of the Hessian of the
negative log-likelihood at its minimum. Since the model was parametrised in terms
of unconstrained parameters, the Fisher information provides approximate stan-
dard errors for those unconstrained parameters. Assuming approximate normality
of the estimators, confidence intervals were then constructed for the unconstrained
parameters, before transforming the resulting interval boundaries to the scale of
the constrained parameters, that is, those of interest.

For the blue whale dataset, in the case of three states (N = 3), it took five min-
utes to numerically maximize this model’s likelihood using n1m () in R [R Core
Team (2015)] (on an octa-core i7 CPU, at 2.7 GHz and with 4 GB RAM).

3.1.4. Results and interpretation of the states. For the baseline model with
N =3 states, the resulting parameter estimates with associated 95% confidence
intervals are presented in Table 2 and Figure 3. The estimated t.p.m. and the cor-
responding stationary distribution (as implied by the t.p.m.) are

. 0.931(0.894,0.952) 0.014(0.005, 0.039) 0.055(0.034, 0.087)
I' = 0.018(0.005,0.065) 0.785(0.709,0.839) 0.197(0.141,0.266)
0.071(0.047,0.108) 0.100(0.070,0.139) 0.829(0.783, 0.864)
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TABLE 2
Parameter estimates and 95% confidence intervals (in parentheses) for the state-dependent
distributions for the 3-state model with complete pooling. For each variable, the distribution fitted
to the data is indicated in parentheses. An == symbol indicates that the relevant parameter was

constrained to take on the specified value, rather than estimated

Variable

State 1

State 2

State 3

Duration (gamma)

1 = 140 (132, 148)

= 334 (305, 367)

=516 (503, 530)

o =80 (73, 88) o =212 (187,241) o =130 (120, 140)
Surface Duration (gamma) wn="170(64,77) n =386 (78,95) w =151 (144, 158)

o =68 (61,76) o =55 (47,65) o =69 (63,75)
Maximum Depth (gamma) w =32 (30,35) n =068 (59,79) u =170 (164, 176)

o =24 (21,26) o =65 (55,77) o =60 (56, 65)

Step Length (gamma)

=189 (175, 204)
o =134 (121, 149)

=675 (629, 725)
o =305 (268, 348)

n =406 (376, 439)
o =287 (258,318)

Turning Angle (von Mises) nw==0 nw==0 uw==0
k=1.0(0.9,1.2) Kk =3.1(2.5,3.7) k =0.8 (0.6, 1.0)

Heading Variance (beta) a=1.0(0.8,1.1) a=0.5(00.4,0.6) a=1.7(.5,1.9)
b=2.1(1.8,2.4) b=54142,7.1) b=1.6(14,1.8)

Number of Lunges (Poisson) A =0.7 (0.6, 0.8) 2 =0.0(0.0,0.1) A=3.4(3.2,3.6)

and (0.433(0.311,0.557),0.199(0.134, 0.282), 0.368(0.283, 0.455)), respective-
ly. The latter implies that, according to the fitted model, in the long run 43%, 20%,
and 37% of the dives are made in states 1, 2, and 3, respectively. The initial state
distribution was estimated as § = (0.169 (0.075,0.337),0.171 (0.076,0.326),
0.660 (0.475, 0.792)). The discrepancy between estimated initial state distribution
and stationary distribution implied by the t.p.m. indicates that the time of tagging
is not independent of the behavioural state process of the individuals, with many
more initial dives being allocated to state 3 than would be the case under station-
arity. We note that the confidence intervals obtained all seem plausible. However,
given the rough surface of the likelihood, with many local maxima, some caution
is warranted when considering and interpreting such curvature-based uncertainty
quantification.

This simple model succeeds in capturing several of the important features of
the data. In particular, it identifies three biologically relevant dive types. State
1 includes shorter, shallower dives with 0—1 lunges per dive, short step length,
and variable turning angle and heading variance; these are likely shallow forag-
ing dives. State 2 comprises dives of moderate length and depth, without lunges,
and with long step lengths and small turning angles and heading variance; these
probably represent directed travel by the whales (without feeding). Finally, state 3
likely includes deep foraging dives, with long duration, deep depth, many lunges,
moderate step length, and variable turning angle and heading variance. These three
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dive types provide an adequate, if simplistic, classification of the main dive types
performed by all the whales in the dataset.

In all models from this point forward, we consider only formulations with three
states. Although this is a somewhat arbitrary choice, the selected model captures
the most important structure in the data, is biologically informative and inter-
pretable, serves the desired scientific purpose, and is generally consistent with pre-
vious classifications of blue whale behavioural states [Goldbogen et al. (2013a)].
For the given data, as is often found when applying HMMs to complex real data,
formal model selection criteria favour models with much higher numbers of states
(results not reported), resulting in a model that would be essentially uninterpretable
and infeasible to work with [cf. Dean et al. (2012), Van de Kerk et al. (2015),
Langrock et al. (2015)]. In fact, standard model selection criteria (such as AIC,
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BIC, or cross-validation) tend to fail at choosing the correct number of states of
an HMM applied to a complex real data set. HMMs are used to analyse complex
time-series data, and, like all statistical models, they are simplistic representations
of the real data-generating process. However, these models have a relatively com-
plicated hierarchical structure, and so the simplifications occur in various places in
the model formulation. To name a few possibilities, the families of state-dependent
distributions may be too inflexible; the Markov property might be too strong an as-
sumption; variation over time (cyclic or not) may not be adequately modelled;
covariate information might be missing; there might be additional dependence
structure between successive observations; and there might be outliers. When not
accounted for in the model, any of these features can lead to model selection cri-
teria favouring models with overly complex state architectures, that is, more states
than adequate relative to the actual biological process, simply to compensate for
the simplistic model formulation. In other words, the additional states essentially
relate to structure in the data that should, were it been feasible, ideally have been
incorporated directly in the model formulation. While these more complex models
may perform better in terms of forecasts, they can also obscure patterns in the data
and make insight into the underlying biological process more difficult, and so they
are clearly undesirable when characterisation rather than prediction is the goal.

Given these challenges, we chose to focus on three-state models for the practical
reasons mentioned. Since it is not the aim of the current paper to reveal how many
states are required in order to explain the observed variance, but rather to investi-
gate how key behavioural patterns may change in response to sonar, we think that it
is both legitimate and sensible to choose the number of states in this pragmatic way,
which focuses on interpretability and practicality of the resulting model. However,
to see what we might be missing by focusing on the simpler three-state model,
we investigated the differences between the fitted three- and four-state models. In
the given example, when moving from the three-state to the four-state model, the
‘deep foraging’ state is split into two states, which are somewhat distinct in terms
of the maximum depths, dive times, and surface times, but, crucially, imply al-
most exactly the same number of foraging lunges (though not necessarily identical
foraging rates) (see Supplement B [DeRuiter et al. (2017b)] for plots comparing
the state-dependent distributions for three- and four-state models). Thus, from a
biological perspective, it seems more appropriate to merge these two model states
into a single deep foraging state, as done by the model with three states. The result-
ing minor lack of fit between observed and modelled state-dependent distributions
for the deep foraging state is acceptable, since we focus on drawing inference re-
garding the state-switching dynamics rather than on predictive performance of the
time-series model.

Although the initial three-state model captures several important features of the
data, in the raw data, it is immediately evident that the proportion of dives of each
type, and the transition rates between them, vary strongly from whale to whale
[see Figures 1-2 and Supplement B, DeRuiter et al. (2017b)]. Accordingly, as the
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next step in model development, we chose to relax the assumption of homogeneity
between whales (tag records).

3.2. Accounting for heterogeneity.

3.2.1. Motivation. Comparing the time-series dive data between whales, sev-
eral clear patterns indicate that the assumption of homogeneity among individ-
uals is inadequate. Some whales have one predominant dive type. For example,
as shown in Supplement B [DeRuiter et al. (2017b)], whales 10, 11, 12, and 36
perform almost solely deep, multi-lunge dives, while whales 1, 5, and 17 perform
numerous consecutive shallow dives without lunges and with larger turning angles.
Other whales alternate more regularly between dive types. For example, whales 2,
6, 19, 24, and 30 alternate dives with and without lunges, without very long series
of either.

This variation may be evidence of genuine individual differences between
whales, although that conclusion is difficult to confirm without re-tagging the same
individual multiple times in different situations [Goldbogen et al. (2013a)]. Even in
the absence of individual differences as such, it is of biological interest to account
for differences between tag recordings. Blue whale behaviour, particularly feed-
ing behaviour, is strongly driven by environmental covariates such as the density
and depth at which prey are present [Goldbogen et al. (2013b), Hazen, Friedlaen-
der and Goldbogen (2015)]. These covariates are very difficult to measure, and are
missing from many observations of whale behaviour (including those of most indi-
viduals in our study). Variation in prey abundance and depth, among other environ-
mental covariates, may drive whales to occupy a corresponding behavioural ‘con-
text’ [Friedlaender et al. (2016)]. In other words, blue whales forage differently
depending on prey (krill) abundance: when prey are shallow and more dispersed,
whales feed with low lunge counts and maximize oxygen conservation; when deep,
dense krill patches are available, whales likely go into oxygen debt in order to
lunge as many times as possible and maximize energy gain [Goldbogen et al.
(2015), Hazen, Friedlaender and Goldbogen (2015)]. The increased maneuvering
necessary to harvest low-prey-density patches relative to dense ones is also signifi-
cant [Goldbogen et al. (2015), Hazen, Friedlaender and Goldbogen (2015)]. Within
this framework, it seems reasonable to assume that there is a finite, relatively small
number of behavioural contexts adopted by blue whales in our study region.

3.2.2. Formulation of a model with discrete-valued random effects. Maruotti
and Rydén (2009), McKellar et al. (2014), and Towner et al. (2016) suggest the
use of discrete-valued random effects in HMMs to capture this type of hetero-
geneity across component time series. This approach has two main advantages
over the more common use of continuous-valued random effects: (1) the computa-
tional effort is substantially reduced, and (2) restrictive distributional assumptions
on the random effects are avoided. Furthermore, interpretation is often more intu-
itive than for continuous-valued random effects. For example, each outcome of a
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discrete random effect incorporated in the t.p.m. corresponds to one type of state-
switching pattern, which in turn corresponds to one of the behavioural contexts
described earlier.

To incorporate discrete random effects into our blue whale dive behaviour
model, we assume that

r(w) — rs(w) = (yijri:(w))

with an i.i.d. discrete random effect €™ such that Pr(¢™) = k) = my for k =
1,...,K,and

exp(eijk)
143, explain)’

Vijk =Pr(Swa = j | Sw.a—1 =i, =k) =

for k=1, ..., K. With this mixture model for the state-switching dynamics, there
are K possible I's, I'y, ..., 'k, and each individual whale’s time series is assumed
to be driven by exactly one of them. The mixture weight 7, k =1, ..., K, gives
the probability that the t.p.m. 'y underlies the state-switching dynamics for a given
whale. The number of mixture components, K, controls the flexibility of the model
to account for heterogeneity and can be chosen using model selection criteria. The
initial state distributions are also assumed to be context-specific, that is, sw) —
8$(w), where the K different initial state distributions, 81, ..., dk, are estimated
alongside the other model parameters.

3.2.3. Model fitting. The likelihood of the above HMM with discrete-valued
random effects is

37 K 37 K
@ L=]1Y "m =[] > (+Qxwi)T1QXu2) - - Tk QXuwp, ) 17k).-
w:l k:l w:l k:]

Here [,,(cw) denotes the conditional likelihood of the observations made for whale
w given the kth behavioural context (i.e., given &™) =k and hence I'™) = T});
otherwise the notation is the same as in (1).

Fitting this more complicated model via naive application of a numerical opti-
mizer presented several difficulties. Due to the fairly large number of parameters,
the optimisation was slow and subject to numerical instability in terms of iden-
tification of local rather than global maxima of the likelihood. To allow for an
efficient fitting of the model, we used several complementary strategies. First, we
wrote the HMM forward algorithm using the Rcpp package [Eddelbuettel (2013)],
which provides a simple way to use C++ code in conjunction with R software.
This substitution of C++ code for R code greatly reduced the computation time re-
quired for model fitting. Second, we carefully selected appropriate starting values
following a two-stage procedure:
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I. In the first stage, we determined reasonable starting values for the parame-
ters of the state-dependent distributions. Exploratory analysis indicated that these
parameter values are stable for any number of possible outcomes of the discrete
random effect K. Thus, we ran the optimizer for K = 1 and used the resulting
estimates of state-dependent distribution parameters as starting values for the rest
of the optimization stages.

II. In the second stage of model fitting, the goal was to find reasonable start-
ing values for the parameters determining the Markov state process, that is, the
entries of the transition probability matrices I'y and the corresponding initial dis-
tributions 8. Exploratory analysis indicated that the estimators of these parameters
are highly unstable due to local maxima in the likelihood surface, and so selecting
good starting values is crucial. We fixed the state-dependent distribution parame-
ters at their starting values, and allowed only the parameters of the state process to
vary during this optimisation stage. (Fixing the parameters of the state-dependent
distributions decreased the required computing time by about a factor of 20.) To
select starting values for the parameters of the state process, we ran the optimiza-
tion 15,000 times, using random starting values in each run. The resulting sets of
parameter estimates related to the hidden Markov chain were ranked in terms of
their corresponding data likelihood, and the best 100 sets were used as starting
values for the next stage of model fitting (comprehensive optimisation).

Finally, we carried out a full numerical maximisation of the likelihood. Initially,
we simply ran the numerical maximiser, selecting the initial values for the state-
dependent distribution parameters and the Markov chain parameters as described
earlier. To further decrease the chance of finding only local maxima rather than
the global maximum, we then additionally jittered the parameter estimates and re-
ran the optimiser. Specifically, for each of the 100 best models identified in the
previous stage, we added a small amount of noise to each parameter estimate, and
used these jittered values as the initial values to re-run the optimiser. This was
done five times for each of the 100 best models identified. This jittering procedure
is similar to a bootstrap restart as suggested by Wood (2001); we also implemented
the latter, but for our data it did not yield any improvements.

A possible alternative to this brute-force, but effective, method for finding
the global maximum could be to run a few dozen iterations of the expectation-
maximisation (EM) algorithm (as it is known to be slightly less sensitive to the
choice of initial values) before switching to (much faster) direct maximisation of
the likelihood, as was done, for example, in Bulla et al. (2012). However, in light
of the complexity of the current model and the resulting requirement for substan-
tial technical derivations for implementation of the EM algorithm, we have not
pursued this option in the given application.

3.2.4. Model selection on the number of behavioural contexts. All of the sets
of parameter estimates obtained were ranked according to their corresponding like-
lihoods, and we selected the maximum likelihood estimates to define the best
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TABLE 3
Log-likelihood and AIC values for the different models considered. The last column also gives the
difference in AIC for each model relative to the base model (3 states, one behavioural context,
and no effect of acoustic exposure)

Number of
Type of model K  parameters log £ AIC A AIC
No effect of acoustic exposure 1 44 —25736.6  51561.1 0
2 53 —25682.9  51471.8 —89.3
3 62 —25665.4 514548 —106.3
4 71 —25651.0 514440 -—117.1
5 80 —25643.3 514465 —114.6
Common acoustic exposure effect 4 77 —25642.5 51438.9 —122.2
Context-specific acoustic exposure effect 4 95 —25636.8  51463.7 -97.4

model for each value of K. We considered K (the number of behavioural con-
texts) to take on candidate values from 1 to 5, selecting the optimal K based on
AIC scores.

Table 3 provides model selection results, including log-likelihoods and AIC
values for the various models considered. According to the AIC scores, the optimal
number of behavioural contexts, K, is four for these blue whale data. Rather than
reporting model parameter estimates at this point, we defer those results to the next
section where we consider one final refinement of the model: inclusion of an effect
of acoustic exposure on the transition probability matrices.

3.3. Investigating the effect of sound exposure.

3.3.1. Motivation. As detailed in Section 2 and Supplement A [DeRuiter et al.
(2017a)], most of the whales included in our dataset were subject to CEEs in which
they were exposed to PRN or MFAS sounds (real or simulated). Previous analy-
sis of a subset of the current dataset has suggested that blue whale behavioural
responses to CEEs did not uniformly occur, but that when they did, they were
variable, complex, and included responses such as the cessation of deep feed-
ing behaviour and initiation of directed travel [Goldbogen et al. (2013a)]. To al-
low for such responses, we modified our model formulation to include the effect
of an acoustic exposure covariate on the transition probability matrix (or matri-
ces). We note that models such as this one, which incorporate both random ef-
fects and covariates, fall into the category of mixed HMMs as discussed in Altman
(2007).

Although the number of CEEs included in our dataset is quite large compared
to all other such studies, it is still small from a statistical perspective, and so we
did not attempt to differentiate between exposures of different types (14 simulated
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MFA, 1 real MFA, and 14 PRN CEEs). Rather, we sought to assess the utility of
HMMs to investigate potential changes in blue whale state-switching behaviour
in response to these somewhat similar mid-frequency sounds. Previous studies
[Goldbogen et al. (2013a)] and ongoing analyses are considering individual re-
sponses by specific sound type to compare potential differential responses, includ-
ing identifying changes as a function of received sound level. Here, we assumed
that the effects of all CEE sounds were identical regardless of sound type and
received sound exposure level, and that silent control CEEs had no effect on be-
haviour. While these assumptions undoubtedly represent simplifications of reality,
the results of previous work suggest that they should probably be approximately
appropriate for this species [Goldbogen et al. (2013a)].

3.3.2. Model formulation of a model that incorporates sound exposure. In
models with an acoustic exposure covariate, altered t.p.m.’s are in place during
times when whales were subject to sonar exposure. For each behavioural context,
the between-state transition probabilities yi(j% =Pr(Sya =Jj | Swa—1=1, é(w) =
k) are now defined as

(w) exp(a;jk + BijkZwd)
®) Vijkd = :
14> i expletink + Bitkzwa)
where
1, if whale w was exposed to sonar during dive d;
Z =
wd 0, otherwise.

In other words, for each of the K contexts, there are two t.p.m.’s: one associated
with baseline (undisturbed) periods, and the other with CEE (potentially disturbed)
periods.

We consider several possible constraints on the 8 parameters, which quantify
the strength and direction of the relationships between exposure and each tran-
sition probability. In the most general case, the effect of acoustic exposure is
context-specific so that each f;;; has a unique value for each k, k =1,...,K;
the effect of exposure is different for each t.p.m. entry within every behavioural
context. We also consider the possibility of a common acoustic exposure effect,
where the B;j; have constant values across all contexts, that is, B;j1 =--- = Bk
for all i, j = 1, 2, 3. Finally, we constructed confidence intervals around the pa-
rameter estimates via the observed Fisher information (or via profile likelihood,
if the observed Fisher information indicated a standard error of zero for a given
estimate). Thus we implicitly consider the possibility that acoustic exposure may
have effects only on specific contexts or specific interstate transitions.
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3.3.3. Model fitting. The likelihood of the model including both discrete-
valued random effects and the sonar exposure covariate has exactly the same form
as stated in equation (2), except that now each t.p.m. additionally varies over dives
as it depends on the associated covariate value z,4.

As the mixed HMM requires estimation of even more parameters than the model
with the discrete random effects, fitting it entails technical and numerical chal-
lenges equal to or greater than those encountered with the discrete random effect
model. To obtain reliable model parameter estimates, we followed the same pro-
cedure outlined in Section 3.2.3.

3.3.4. Results. Table 3 provides model selection results, including the models
with common and context-specific acoustic exposures. The best model as selected
by AIC has K = 4 behavioural contexts and an effect of acoustic exposure that is
common across all behavioural contexts.

Figure 4 shows the state-dependent distributions for the final (best) model.
State 1 includes the shortest, shallowest dives, with short step lengths and few
lunges; it may correspond to shallow foraging behaviour. State 2 features inter-
mediate depth and duration, long step length, small turning angle, low heading
variance, and no lunges; perhaps it can be labelled travelling behaviour. State 3
has the deepest, longest dives, with intermediate step length, large variability of
heading, and multiple lunges; it is consistent with deep foraging behaviour. These
distributions are very similar to those of the initial model (the simplest one, with N
=3, K =1, and no discrete random effect or exposure effect; Figure 3), confirming
that the main differences between the initial and final models are in the transition
probabilities, not the properties of the states themselves.

For the final, best model, the baseline t.p.m. is different for each of the four
behavioural contexts, and each of the four matrices is affected in the same way
by acoustic disturbance (that is, the f;;x parameters are the same for each context;
see Section 3.3.2 for details). The resulting eight baseline and exposure t.p.m.’s
are presented graphically in Figure 5. Table 4 presents the estimated initial state
distributions for each context. Context 1 has very high persistence in states 2 and
3, and immediate transition from state 1 to 3 (if 1 is ever observed); context 2 has
high persistence in all three states, but with occupancy of state 3 quite rare (cf.
Table 4); context 3 has persistence in state 2 and some alternation between states
1-3; and context 4 has the highest probability of switching between states, with
frequent transitions to state 3 from other states.

Table 5 presents the maximum likelihood estimates of the parameters related to
the state-dependent process, of the weights associated with the discrete random ef-
fects, and of the parameters describing the effect of sonar exposure. The table also
includes 95% confidence intervals for the parameter estimates. As for the baseline
model, these confidence intervals were obtained from the observed Fisher informa-
tion, except for the interval provided for the parameter B;3., which was obtained
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FI1G. 4. Fitted model estimates of the state-dependent distributions for the 3-state HMM with 4
contexts and a common effect of acoustic disturbance.

using the profile likelihood [Venzon and Moolgavkar (1988)] since here the ob-
served Fisher information indicated a standard error of zero, due to a ridge of the
likelihood in this dimension. [The reason for this ridge is that, for any sufficiently
large negative estimate of the regression coefficient f;3., the transformation via the
inverse of the multinomial logit link in (3) effectively results in a zero transition
probability from state 1 to state 3, which corresponds to the maximum likelihood
estimate.] Among the acoustic exposure parameters (f8s), only 813. and 1. have
95% confidence intervals that do not contain zero. The corresponding parameter
estimates indicate that during acoustic exposure the rate of already rare transi-
tions from state 1 to state 3 falls to zero (f13. = —27.1), balanced by an increased
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FIG. 5. Fitted model estimates of the transition probability matrices for the 3-state HMM with 4
contexts (one column per context). For each context, the first row shows the t.p.m.s (in the absence of
acoustic disturbance), the second row shows the t.p.m. with acoustic disturbance, and the third row
shows the difference between the two. The magnitudes of the transition probabilities are indicated
by the fill colour, as well as the printed numeric values in each cell. For the t.p.m.s with acoustic
disturbance, circles around the probabilities indicate entries corresponding to acoustic-disturbance
parameters whose 95% confidence intervals do not contain zero.

probability of remaining in state 1. There is also an increase in the rate of tran-
sitions from state 2 to state 1 (B21.), at the expense of a decreased persistence in

state 2.

TABLE 4

Estimated initial state distributions §*) for the best model, with N =3, K =
4, and a common effect of acoustic disturbance

Context State 1 State 2 State 3
k=1 0.84 0.00 0.16
k=2 0.63 0.37 0.00
k=3 0.50 0.50 0.00
k=4 0.66 0.00 0.34
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TABLE 5

383

Parameter estimates, along with 95% Cls, for the best model as selected by AIC (N = 3 states,
K =4 behavioural contexts, and an effect of acoustic exposure that is common across all

behavioural contexts)

Parameter State Lower bound Estimate Upper bound
Dive Duration (1) 1 131 139 147
Dive Duration (o) 1 71.4 77.8 84.7
Dive Duration (1) 2 312 342 375
Dive Duration (o) 2 190 217 247
Dive Duration (1) 3 502 515 528
Dive Duration (o) 3 120 129 139
Surface Duration () 1 65.2 71.3 77.91
Surface Duration (o) 1 61.2 68.1 75.7
Surface Duration () 2 76.4 84.8 94.1
Surface Duration (o) 2 48.2 56.5 66.2
Surface Duration (1) 3 143 150 157
Surface Duration (o) 3 63.6 69.2 75.3
Maximum Depth (1) 1 30.0 322 34.5
Maximum Depth (o) 1 21.2 23.3 25.7
Maximum Depth (1) 2 58.6 67.7 78.1
Maximum Depth (o) 2 54.3 64.4 76.4
Maximum Depth (w) 3 164 169 176
Maximum Depth (o) 3 56.3 60.9 65.8
Number of Lunges () 1 0.492 0.656 0.651
Number of Lunges (1) 2 0.001 0.010 0.095
Number of Lunges (1) 3 3.06 3.31 3.43
Step Length (1) 1 179 193 208
Step Length (o) 1 125 138 152
Step Length (1) 2 649 693 741
Step Length (o) 2 269 304 343
Step Length (1) 3 379 409 441
Step Length (o) 3 259 287 318
Turning Angle (k) 1 0.850 1.01 1.19
Turning Angle (k) 2 2.61 3.18 3.86
Heading Variance (a) 1 0.826 0.940 1.07
Heading Variance (b) 1 1.77 2.05 2.36
Heading Variance (a) 2 0.435 0.518 0.617
Heading Variance (b) 2 4.89 6.55 8.78
Heading Variance (a) 3 1.42 1.66 1.86
Heading Variance (b) 3 1.34 1.58 1.83
Mass, rand. eff. comp. 1 (71) 0.189 0.333 0.494
Mass, rand. eff. comp. 2 (77) 0.280 0.449 0.607
Mass, rand. eff. comp. 3 (73) 0.013 0.054 0.187
Mass, rand. eff. comp. 4 (14) 0.070 0.163 0.320
Acoustic Exposure (812.) —2.56 —-0.997 0.561
Acoustic Exposure (813.) —00 —27.1 —6.86
Acoustic Exposure (871.) 15.0 17.0 19.0
Acoustic Exposure (523.) —0.829 0.147 1.123
Acoustic Exposure (831.) —-3.22 —1.24 0.733
Acoustic Exposure (837.) —0.507 0.390 1.29
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For each whale, we decode the states locally (i.e., for each data point, we find
the most likely state under the fitted model and given the observations) as fol-
lows:

Pr(Swa = j | Xu.., 2.)
K

=Y Pr(Swa=j. ™ =k | Xu.., Zu.)
k=1

Pr(Syq = j | €™ =k, Xy, 2. ) Pr(E™ =k | Xyp.., 2.
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Bayes’ theorem is applied in the last step. The calculation of the first factor sim-
ply corresponds to the local decoding of a basic HMM with no random effects
and is performed as described in Zucchini, MacDonald and Langrock (2016)
(Section 5.3.1). All remaining quantities are evaluated as previously described.
These decoded states are included in Figures 1-2, and corresponding figures for
all whales analysed are included in the web-based Supplementary Materials.

4. Discussion. Our analysis of the blue whale data demonstrates the success-
ful application of HMMs to multivariate animal behaviour data. While multivariate
HMMs and other hidden state models are already in use for ecological data, most
applications involve fitting models to animal movement data, such as animal tracks
in two or three dimensions [for example, see Langrock et al. (2012), McKellar et al.
(2014), Langrock et al. (2014), McClintock et al. (2012), Patterson et al. (2008),
Johnson et al. (2008), Morales et al. (2004)]. Examples of using HMMs to clas-
sify and characterise broader animal behaviour states are much less prevalent [but
see Bagniewska et al. (2013), Isojunno and Miller (2015)]. Here, we demonstrate
the power and flexibility of this approach. By applying HMMs to free-ranging
marine mammals in a range of behavioural states and sound exposure regimes, we
illustrate how they can incorporate random effects to account for individual or con-
textual differences, and also quantify the effects of environmental covariates (here,
sound exposure) in modulating behavioural transitions. An additional strength of
this modelling approach, particularly for biological data sets, is its ability to sim-
ply and effectively deal with partially observed multivariate data without omitting
any observed data points.

Our best model for the blue whale data incorporates a discrete random effect to
account for differences between observed whales, whether these are due to gen-
uine individual variation or the effects of unobserved contextual variables. Large
inter-individual variability is a prominent, obvious feature of our dataset and many
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other ecological datasets. In fact, the magnitude of these differences is often equal
to or greater than the changes induced by experimental manipulation, and so ac-
counting for them can dramatically improve model fit, as evidenced by the very
large improvement in AIC score between models without and with the random ef-
fect. More importantly, failing to account for individual differences (or contexts,
as we call them here) may make it difficult to detect relatively small-magnitude
behaviour modulations caused by other factors (such as acoustic disturbance). In
particular, not accounting for individual heterogeneity can result in biases and in-
valid standard errors of estimators that describe an effect of interest. While it is
easy to argue that random effects to account for individual variation are a key
component of animal behaviour models, fitting traditional continuous random ef-
fects can be computationally challenging, especially for models like HMMs that
are already complex and parameter-rich. The discrete random effect formulation
used in this study makes inclusion of between-subject variability, which is key for
improving model fit, practically feasible and reasonably quick, within a simple
maximum-likelihood estimation framework.

In addition to accounting for inter-subject differences, we illustrate here a sim-
ple formulation allowing the inclusion of a covariate affecting the t.p.m., which
could easily be generalised to multiple covariates if the data allow. In the blue
whale case, previous research suggested that the most likely effect of acoustic dis-
turbance would be on rates of transition between behavioural states [Goldbogen
etal. (2013a)]. However, one could also consider including covariates affecting one
or more of the state-dependent distributions, if appropriate for the data. In the case
of acoustic disturbance in particular, it would be of considerable biological inter-
est to consider whether response intensity scales with stimulus type (simulated or
real MFAS, or PRN) or with the received level of the sound stimulus at the whale.
In fact, while many regulations assume that responsiveness depends on exposure
level, considerable and evolving data support the conclusion that myriad contextual
factors related to the exposure configuration and internal behavioural features of
the subject can strongly affect response probability [Ellison et al. (2012)]. A wealth
of studies indicate differential responses to different sound types within the same
species [for example, Miller et al. (2012), Goldbogen et al. (2013a), Nowacek,
Johnson and Tyack (2004), and reviews Southall et al. (2007), DeRuiter (2010)],
although in some cases sound frequency and type have not been confirmed as im-
portant predictors of response [Antunes et al. (2014)]. Potential effects of signal
type and received level could be easily accommodated in our model formulation,
essentially resulting in a multiple multinomial logistic regression of the transition
probabilities on the stimulus type and intensity. In addition to the stimulus type
and sound level considerations mentioned above, it would be of biological inter-
est to assess whether responses extended beyond the end of the exposure period
or were cumulative across multiple exposures. Unfortunately, sample size but also
computational limitations prevent us from implementing these models and fitting
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them to the blue whale dataset. This circumstance highlights one limitation of hid-
den state models like our mixed multivariate HMM: they are parameter-rich and
can be challenging to fit to data, such that computational considerations and sam-
ple size often limit the complexity of candidate models. It is therefore interesting,
and perhaps surprising, that we see a relatively consistent behavioural response in
our data across several stimulus types (as further detailed below). One reason may
be the relatively limited range of exposure levels; none of the CEEs resulted in
received levels exceeding 157 dB re. 1 wPa rms [computed as detailed in DeRuiter
et al. (2013)], and so relatively little information is lost in considering the acoustic
disturbance as ‘on’ or ‘off” and in disregarding the measured intensity. Alterna-
tively, animals may be responding more to the presence of a relatively nearby
sound source producing several sound types rather than distinguishing among the
types themselves.

In this study of blue whale behavioural responses to acoustic disturbance, it is
difficult to draw firm conclusions about the biological significance of the changes
observed during acoustic exposure: the difference in AIC scores between the
model with and without the exposure covariate is only about 5.1. While the model
with an effect of acoustic disturbance has considerably more support from the data
than the model without, the improvement in model fit resulting from the exposure
covariate is modest compared to that of the random effect. This modest improve-
ment could result from the limited number of CEE dives observed. It might also
indicate that the disturbance effect has a relatively small magnitude, and/or affects
only some of the individuals, and/or affects only certain behaviour states, as ev-
idenced by the confidence intervals presented in Table 5. These results are again
consistent with those of Goldbogen et al. (2013a).

The mixed HMM fitted here allows us not only to state that the acoustic distur-
bance had an effect, but also to characterise that effect quantitatively. The types of
changes that occur, according to the common acoustic exposure effect model, are
consistent with previous work. We find that whales are less likely to initiate deep
foraging behaviour during acoustic disturbance, in accordance with Goldbogen
et al. (2013a), who analysed a subset of the data presented here. Beaked whales
[DeRuiter et al. (2013), Miller et al. (2015), Stimpert et al. (2014), Tyack et al.
(2011)] and sperm whales [Isojunno and Miller (2015)] have also been shown to
avoid deep-feeding behaviour during disturbance. In each case, more research is
needed to understand whether this response helps whales conserve energy, avoid
detection, or something else. We also found that the rate of transition from state 2
(directed travel) to state 1 (shallow dives, with no or few feeding lunges) was ele-
vated during exposure. This effect on the transition rate was largest in behavioural
context 1, but in context 1 whales were very unlikely ever to be in state 2; and
in all other contexts, the baseline probability of transition from state 2 to 1 was
so low that the ‘elevated’ probability during exposure was still effectively zero. If
confirmed, a change from directed travel to shallow dives might relate to increased
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vigilance or variability of behaviour during lower-level acoustic disturbance re-
lated to consideration of an appropriate course of action, as seen in some beaked
whales [DeRuiter et al. (2013), Miller et al. (2015)]. However, since this finding
deals with very rare or unlikely events, more research would clearly be needed to
confirm the results and their interpretation.

Another important consideration for the interpretation of the model results is
the grouping of dives with and without lunges together in state 1, as it relates to
our observations of the natural history of these whales. By selecting a three-state
model to reasonably group dives into categories, the model groups no-, single-, and
several-lunge dives within a single shallow-diving state, indicating that these dives
are quite similar (aside from number of lunges), or at least that the differences
between them are less than those between shallow, travelling, and deep-feeding
dives. Although this model categorization may differ slightly from a priori distinc-
tions between shallow feeding, deep feeding, and nonfeeding [as in Goldbogen
et al. (2013a)], we believe this grouping is still generally consistent with the be-
havioural state of shallow-diving and feeding behaviour in blue whales. Recent
data, for instance, indicates that there may be significantly greater energetic ben-
efit (as well as cost) in deep versus shallow foraging [Hazen, Friedlaender and
Goldbogen (2015)].

The results of this study are consistent with previous observations that be-
havioural responsiveness to acoustic disturbance is highly context-specific: ani-
mals adjust the intensity of their response depending not only on the intensity of
the sound they experience, but also on the environmental and behavioural condi-
tions [Ellison et al. (2012)]. This study illustrates that even if the type of response
is consistent across behavioural contexts, the apparent intensity of the response
displayed will vary depending on the baseline behaviour (Figure 5). The detec-
tion and further characterisation of these behavioural responses is of strong bio-
logical and management interest since it can contribute to our understanding and
mitigation of any potential negative effects of anthropogenic noise. Since the be-
haviour changes observed relate to alterations of foraging behaviour, they have
particular potential to affect animals’ health and fitness, and perhaps lead to pop-
ulation consequences. Although the HMM analysis results are reassuringly con-
sistent with previous work on blue whale responses to acoustic disturbance, the
models presented here offer several advantages and features that complement pre-
vious regression-based approaches [Friedlaender et al. (2016), Goldbogen et al.
(2013a), Hazen, Friedlaender and Goldbogen (2015)]. The regression-based ap-
proach relies on principal components analysis to decompose the dependent mul-
tivariate behaviour data into independent response variables, and then fits gener-
alised additive mixed-effect models to each one. This approach does account for
whale-to-whale variation and quantify differences in principal components scores
in response to different sound exposure types. However, biological interpretation
of the principal components axes is notoriously challenging [James and McCul-
loch (1990)], and characterisation of behaviour or discussion of results in terms of
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dive types or behavioural states must be post-hoc and relatively subjective, as the
models do not explicitly include such structure. The HMM approach naturally inte-
grates data from multiple input data streams, accounting for the time-series nature
of the data and for some dependence between data streams (subject to the contem-
poraneous conditional independence assumption). It provides a concise summary
of blue whale dive behaviour with and without effects of acoustic exposure, in the
form of a finite set of possible dive types (states) and their accompanying char-
acteristics (state-dependent distributions), all of which here have straightforward
biological interpretations. In addition, based on the fitted HMM, one can readily
compute simulated whale behaviour time series in the presence and absence of
acoustic exposure, which may greatly facilitate incorporation of these results into
impact assessments and models of population consequences of acoustic distur-
bance that use agent-based models [Donovan et al. (2012), Houser (2006)]. Mixed
HMMs prove to be a flexible, powerful tool for the characterisation of animal be-
havioural states, including behavioural responses to acoustic disturbance or other
environmental stimuli.
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