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Abstract. The extremal index is an important parameter in the characterization of extreme values of a stationary sequence. Our
new estimation approach for this parameter is based on the extremal behavior under the local dependence condition D(k)(un).
We compare a process satisfying one of this hierarchy of increasingly weaker local mixing conditions with a process of cycles
satisfying the D(2)(un) condition. We also analyze local dependence within moving maxima processes and derive a necessary and
sufficient condition for D(k)(un). In order to evaluate the performance of the proposed estimators, we apply an empirical diagnostic
for local dependence conditions, we conduct a simulation study and compare with existing methods. An application to a financial
time series is also presented.

Résumé. L’indice extrémal est un paramètre important pour la caractérisation des valeurs extrêmes d’une séquence stationnaire.
Notre nouvelle approche d’estimation de ce paramètre est basée sur le comportement extrême sous la condition de dépendance
locale D(k)(un). Nous comparons un processus satisfaisant une des conditions dans la famille hiérarchique des conditions de
mélange local avec un processus de cycles satisfaisant la condition D(2)(un). Nous analysons aussi la dépendance locale à l’intérieur
du processus des maxima mobiles et établissons une condition nécessaire et suffisante pour D(k)(un). Dans le but d’estimer les
performances des estimateurs proposés, nous appliquons un diagnostique empirique des dépendances locales, nous conduisons
une étude par simulation et comparons avec les méthodes existantes. Une application aux séries temporelles financières est aussi
présentée.
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1. Introduction

Let {Xn}n≥1 be a stationary sequence with marginal distribution FXn = F . Consider Mi,j = ∨j

s=i+1 Xs , where x ∨ y

denotes max(x, y), with M0,j = Mj and Mi,j = −∞ for i ≥ j . The sequence {Xn}n≥1 has extremal index θ ∈ [0,1]
if, for each τ > 0, there is a sequence of normalized levels {un ≡ u

(τ)
n }n≥1, i.e.,

n
(
1 − F(un)

) → τ,

as n → ∞, such that

P(Mn ≤ un) → e−θτ (1)

http://www.imstat.org/aihp
http://www.imstat.org/aihp
https://doi.org/10.1214/16-AIHP815
mailto:helena.ferreira@ubi.pt
mailto:msferreira@math.uminho.pt


588 H. Ferreira and M. Ferreira

(Leadbetter et al. [19]). A null θ corresponds to “pathological” cases, not addressed here. When θ = 1 the exceedances
of high thresholds un, by the variables in {Xn}n≥1, tend to occur isolated as in an independent variables context. How-
ever, if θ < 1 we have groups of exceedances in the limit. Clusters of extreme values are linked with incidences and
durations of catastrophic phenomena, an important issue in areas like environment, finance, insurance, engineering,
among others. The extremal index is a key parameter in this context and its estimation has been greatly addressed in
literature. The most popular procedures are the blocks and the runs estimators (e.g., Nandagopalan [22]; Hsing [13];
Smith and Weissman [27]; Weissman and Novak [31]; Robert et al. [24]). Both methods require a clustering identifi-
cation parameter which is a largely arbitrarily task to comply and has some impact in inference. The interexceedance
times methods (Ferro and Segers [9]; Süveges [29]) overcome this issue by avoiding this parameter but presents some
threshold sensitivity. Laurini and Tawn [16] proposes a two-threshold estimator leading to a more complete cluster
identification. The maximum likelihood estimator in Süveges [29] demands a local dependence condition to hold. The
K-gaps estimator (Süveges and Davison [30]; Fukutome et al. [10]) implies the choice of a run-length K . Unlike
these methods which depend on the choice of a threshold, the maxima procedures (Gomes [11]; Ancona-Navarrete
and Tawn [1]; Northrop [23]) are based on the choice of a block size.

In this paper we propose a new estimation procedure that works under the local dependence condition D(k)(un) of
Chernick et al. [3]. This condition requires the dependence condition D(un) of Leadbetter [18], which states that for
αn,ln → 0, as n → ∞, for some sequence ln = o(n), where

αn,l = sup
{∣∣P(Mi1,i1+p ≤ un,Mj1,j1+q ≤ un) − P(Mi1,i1+p ≤ un)P (Mj1,j1+q ≤ un)

∣∣},
for any integers 1 ≤ i1 < i1 + p + l ≤ j1 < j1 + q ≤ n. We say that condition D(k)(un) holds for {Xn}n≥1, if for some
{bn}n≥1 such that,

bn → ∞, bnαn,ln → 0, bnln/n → 0,

as n → ∞, we have

nP (X1 > un,M1,k ≤ un < Mk,rn) −→
n→∞ 0,

with {rn = [n/bn]}n≥1 ([x] denotes the integer part of x). Condition D(k)(un) is implied by

n

rn∑
j=k+1

P(X1 > un,M1,k ≤ un < Xj) −→
n→∞ 0.

This corresponds to condition D′(un) of Leadbetter et al. [19] whenever k = 1 which locally restricts the occurrence of
clusters of exceedances and thus leads to θ = 1. If k = 2 we have condition D′′(un) of Leadbetter and Nandagopalan
[20]. This condition locally restricts the occurrence of two or more upcrossings within a cluster, but still allows
clustering of exceedances.

In Chernick et al. [3] it is proved that, under D(k)(un), the extremal index exists and is given by

θX = lim
n→∞P(M1,k ≤ un|X1 > un). (2)

The runs estimator can be derived from this relation by taking the runs parameter r equal to k. In particular, under
condition D(2)(un), Nadagopalan [22] found

θX = lim
n→∞P(X2 ≤ un|X1 > un)

= lim
n→∞

P(X1 ≤ un < X2)

P (X2 > un)
,

which motivates his estimator based on the ratio between the number of upcrossings (equal to the number of down-
crossings) and the number of exceedances. Although the D(2)(un) condition implies D(k)(un) for k > 2 and we have
several representations for θX as in (2), under D(2)(un) we have only to be concerned with the count of upcrossings
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and exceedances, rather than the length r for runs of non-exceedances or intervals between exceedances. It is this easy
approach in the Nandagopalan’s estimator that we want to take advantage in this paper, by estimating θX through the
extremal index of an auxiliary sequence satisfying D(2)(un).

The results that motivate our new estimation approach are given in Section 2. In this section we relate the extremal
index θX of the process satisfying D(k)(un) with the one of a process of cycles satisfying D(2)(un), deriving new
representations for θ that motivate the estimators. In this way, we promote the application of the estimation procedures
that work under D(2)(un).

Knowledge about D(k)(un) has not only impact on the computation of the extremal index of a process but also
informs about the cluster structure of extreme values. In moving maximum processes we directly obtain the extremal
index by calculating the limit in (1). It may be the reason why there is no study in literature, as far as we know,
concerning local dependence within these processes. In Section 3 we derive a necessary and sufficient condition for
D(k)(un) to hold within moving maxima processes.

Section 4 is devoted to inference. We state a diagnostic tool to analyze D(k)(un) since it is the context of our
framework. Therefore, we are also moving forward in diminishing the arbitrarity in the declustering scheme of the
runs estimator. We analyze the performance of the new estimators through simulation and illustrate with an application
to a financial time series. We conclude in Section 5.

2. Extremal index of grouped variables

Let {I0 = 0, In}n≥1 be an increasing sequence of integer random variables (r.v.s) such that {Sn = In − In−1}n≥1 is an
i.i.d. sequence satisfying E(Sn) = p, with p positive integer. From such a renewal process and a stationary sequence
{Xn}n≥1, define

Zn = MIn−1,In , n ≥ 1. (3)

Driven by the strategy used by Rootzén [25] in the study of the extremal behavior of the regenerative processes, we
will compare Mn with the maximum of the first [n/p] variables in the sequence of cycles {Zn}n≥1.

Proposition 2.1. Let {Xn}n≥1 be a stationary sequence and {Zn}n≥1 defined by (3), for some renewal process {Sn}n≥1

such that E(Sn) = p. If {n∨
i≥1 P(MIi−1,Ii

> un)}n≥1 is bounded, then

P(Mn ≤ un) − P

([n/p]⋂
i=1

{MIi−1,Ii
≤ un}

)
→ 0, n → ∞.

Proof. Let Ln = sup{k : Ik ≤ n} and Un = inf{k : Ik > n}. By the law of large numbers, ∀ε > 0, we have

P

(∣∣∣∣Ln

n
− 1

p

∣∣∣∣ > ε

)
−→
n→∞ 0 and P

(∣∣∣∣Un

n
− 1

p

∣∣∣∣ > ε

)
−→
n→∞ 0.

Furthermore,

P(Mn ≤ un) ≤ P

(
Ln⋂
i=1

{MIi−1,Ii
≤ un}

)

= P

(
Ln⋂
i=1

{MIi−1,Ii
≤ un}, n(1/p − ε) ≤ Ln ≤ n(1/p + ε)

)
+ o(1)

≤ P

([n(1/p−ε)]⋂
i=1

{MIi−1,Ii
≤ un}

)
+ o(1).
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Similarly, we derive

P(Mn ≤ un) ≥ P

([n(1/p+ε)]⋂
i=1

{MIi−1,Ii
≤ un}

)
+ o(1).

Now, just observe that

0 ≤ P

([n/p]⋂
i=1

{MIi−1,Ii
≤ un}

)
− P

([n(1/p+ε)]⋂
i=1

{MIi−1,Ii
≤ un}

)

≤ nε
∨
i≥1

{
P(MIi−1,Ii

> un)
} ≤ εk,

as well as

0 ≤ P

([n(1/p−ε)]⋂
i=1

{MIi−1,Ii
≤ un}

)
− P

([n/p]⋂
i=1

{MIi−1,Ii
≤ un}

)
≤ εk,

for some constant k. �

If we assume that {Zn}n≥1 is stationary satisfying D(un) and a local dependence condition D(k)(un) then, by
applying the previous proposition, we can compute the extremal index of {Xn}n≥1 from the knowledge of the joint
distribution of a finite number of consecutive terms of {Zn}n≥1.

In what concerns the local behavior of the large values of {Zn}n≥1, we are going to consider two ways: in Proposi-
tion 2.2 we derive the extremal index by assuming the local independence condition D(1)(un) and in Proposition 2.3
by assuming the local dependence condition D(2)(un).

Proposition 2.2. Under the conditions of Proposition 2.1, if {Zn}n≥1 is stationary and satisfies D(un) and D(1)(un)

conditions for un such that un ≡ u
(τ)
n for {Xn}n≥1 and un ≡ u

(τ∗)
n for {Zn}n≥1, then {Xn}n≥1 has extremal index

θX = lim
n→∞

P(MI1 > un)

pP (X1 > un)
= τ ∗

pτ
.

Proof. We have that {Zn}n≥1 has extremal index θZ = 1 and thus, by applying Proposition 2.1,

lim
n→∞P(Mn ≤ un) = lim

n→∞P

([n/p]∨
i=1

Zi ≤ un

)
= lim

n→∞
(
P(MI1 ≤ un)

)[n/p] = e−τ∗/p.

Therefore, limP(Mn ≤ un) = e−θXτ , as n → ∞, with

θX = τ ∗

τp
= lim

n→∞
P(MI1 > un)

P (X1 > un)p
. �

This is what happens in regenerative processes with independent cycles (see expression (4.2) in Rootzén [25],
obtained directly).

Proposition 2.3. Under the conditions of Proposition 2.1, if {Zn}n≥1 is stationary and satisfies D(un) and D(2)(un)

conditions for un such that un ≡ u
(τ)
n for {Xn}n≥1, un ≡ u

(τ∗)
n for {Zn}n≥1 and nP (MI1 ≤ un < MI1,I2) → ν∗, then

{Xn}n≥1 has extremal index

θX = θZτ ∗

pτ
= lim

n→∞
P(MI1 ≤ un < MI1,I2)

pP (X1 > un)
= ν∗

pτ
.
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Proof. We have that {Zn}n≥1 has extremal index

θZ = lim
n→∞

P(MI1 ≤ un < MI1,I2)

P (MI1 > un)
= ν∗

τ ∗ (4)

and thus, by applying Proposition 2.1,

lim
n→∞P(Mn ≤ un) = lim

n→∞P

([n/p]∨
i=1

Zi ≤ un

)
= e−θZτ∗/p = e−τθX ,

with

θX = θZτ ∗

pτ
= lim

n→∞
P(MI1 ≤ un < MI1,I2)

pP (X1 > un)
. (5)

�

This is what happens in regenerative processes with 1-dependent cycles (see comment after expression (4.2) in
Rootzén [25]).

Since

nP

(
Z1 > un,

rn∨
i=2

Zi > un

)
= nP

(
Z1 > un,Z2 ≤ un <

rn∨
i=3

Zi

)
+ nP (Z1 > un,Z2 > un)

and

nP (Z1 > un,Z2 > un) = nP (Z1 > un) − nP (Z1 > un ≥ Z2),

we can remark that, for {Zn}n≥1 satisfying D(2)(un), it holds that {Zn}n≥1 satisfies D(1)(un) if and only if τ ∗ = ν∗,
that is, the limiting mean number of exceedances is asymptotically equal to the limiting mean number of upcrossings
(or downcrossings). Also, for any k > 2, provided that {Xn}n≥1 satisfies D(k)(un), D(k−1)(un) holds if and only if

lim
n→∞n

(
P(X1 > un,M1,k−1 ≤ un) − P(X1 > un,M1,k ≤ un)

) = 0.

This remark will help in the choice of a value for k, in Section 4, dedicated to the estimation of θX .
The presented results also point out a way to obtain the limiting law of the maximum term of the first

∑n
i=1 Si r.v.s

of the sequence {Xn}n≥1. In fact, for {Xn}n≥1 and {Sn}n≥1 as above, it holds that

P(M∑n
i=1 Si

≤ un) = P

(∑n
i=1 Si∨
j=1

Xj ≤ un

)
= P(Z1 ≤ un, . . . ,Zn ≤ un)

−→
n→∞ e−θZτ∗ = e−pτθX = exp

{
−E(S1) lim

n→∞nP (X1 > un,X2 ≤ un, . . . ,Xk ≤ un)
}
,

if {Xn}n≥1 satisfies D(k)(un).
We could state a general result analogous to the above Propositions 2.2 and 2.3, by considering {Zn}n≥1 satisfying

D(k)(un) with k > 2. However, our final goal is to relate the extremal index of a sequence {Xn}n≥1 satisfying D(k)(un)
with k > 2, with the extremal index of an auxiliary sequence {Zn}n≥1 satisfying D(k)(un) with k ≤ 2. This will enable
us to take profit of the estimation of the extremal index under D(1)(un) or D(2)(un), after a suitable transformation of
the data. The identification of clusters reduces then to the identification of blocks of consecutive exceedances. The
following results discuss relations on long-range and local dependence conditions for {Xn}n≥1 and {Zn}n≥1, which
can be easily obtained in the particular case of a deterministic In, n ≥ 0, considered later for the main proposal of this
work.



592 H. Ferreira and M. Ferreira

Proposition 2.4. Let {Xn}n≥1 be such that {Xi}i∈B is independent of {Si}i∈A whenever A ∩ B = 0, for some renewal
process S = {I0 = 0, Sn = In − In−1}n≥1 with t ≤ Sn ≤ s, n ≥ 1. If, conditionally on S, {Xn}n≥1 satisfies condition
D(un) with spacer sequence ln, then {Zn}n≥1, defined by (3), satisfies D(un) with l∗n = [2ln/t].

Proof. Let I = {i1, . . . , ip} and J = {j1, . . . , jq} with 1 ≤ i1 < · · · < ip < ip + l∗n < j1 < · · · < jq ≤ n and l∗n =
[2ln/t]. Then∣∣∣∣P(∨

i∈I

Zi ≤ un,
∨
i∈J

Zi ≤ un

)
− P

(∨
i∈I

Zi ≤ un

)
P

(∨
i∈J

Zi ≤ un

)∣∣∣∣
=

∣∣∣∣E(
P

( ∨
i∈I∗(SI )

Xi ≤ un,
∨

i∈J ∗(SJ )

Xi ≤ un

)∣∣∣S)

− E

(
P

( ∨
i∈I∗(SI )

Xi ≤ un

)∣∣∣S)
E

(
P

( ∨
i∈J ∗(SJ )

Xi ≤ un

)∣∣∣S)∣∣∣∣,
where SA denotes the vector of r.v.s Si , i ∈ A, and I ∗(SI ) and J ∗(SJ ) are separated by at least ln, since we have
Iip ≤ ips, Ij1−1 ≥ (j1 − 1)t and thus (j1 − 1)t + 1 − ips ≥ ln, for large enough n. Therefore, and meeting the given
assumptions, the previous expression is upper bounded by∣∣∣∣E(

P

( ∨
i∈I∗(SI )

Xi ≤ un,
∨

i∈J ∗(SJ )

Xi ≤ un

)∣∣∣SI∪J

)

− E

(
P

( ∨
i∈I∗(SI )

Xi ≤ un

)
P

( ∨
i∈J ∗(SJ )

Xi ≤ un

)∣∣∣SI∪J

)∣∣∣∣
+

∣∣∣∣E(
P

( ∨
i∈I∗(SI )

Xi ≤ un

)
P

( ∨
i∈J ∗(SJ )

Xi ≤ un

)∣∣∣SI∪J

)

− E

(
P

( ∨
i∈I∗(SI )

Xi ≤ un

)∣∣∣SI

)
E

(
P

( ∨
i∈J ∗(SJ )

Xi ≤ un

)∣∣∣SJ

)∣∣∣∣
≤ αn,ln . �

Proposition 2.5. Let {Xn}n≥1 be a stationary sequence and {Zn}n≥1 defined by (3), for some renewal process S =
{I0 = 0, Sn = In − In−1}n≥1 with t ≤ Sn ≤ s, n ≥ 1.

(a) If {Zn}n≥1 satisfies D(2)(un) with rn = [n/bn], then {Xn}n≥1 satisfies D(2s−t+1)(un) with the same rn.
(b) If 2t > s and {Xn}n≥1 satisfies D(k)(un) for some k ≤ 2t − s +1, with rn = [n/bn], then {Zn}n≥1 satisfies D(2)(un)

with r∗
n = [rn/s].

Proof. To obtain (a) we take into account the following inequalities:

nP (X1 > un,M1,2s−t+1 ≤ un < M2s−t+1,rn)

≤ nP (X1 > un,M1,2s−t+1 ≤ un < M2s−t+1,trn−t+1)

= nP (Xt > un,Mt,2s ≤ un < M2s,trn)

≤ nP

(
MI1 > un,MI1,I2 ≤ un <

rn∨
i=3

MIi−1,Ii

)
= o(1), n → ∞.
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For (b) we have:

nP

(
MI1 > un,MI1,I2 ≤ un <

r∗
n∨

i=3

MIi−1,Ii

)

≤ nP

(
Ms > un,Ms,2t ≤ un <

r∗
n s∨

i=2t+1

Xj

)

≤ n

s∑
j=1

P(Xj > un,Mj,s ≤ un,Ms,2t ≤ un < M2t,rn)

and each of the s terms in the sum above tends to zero by the D(2t−s+1)(un) condition for {Xn}n≥1. �

We state now a result on the “clustered” process {Zn}n≥1 that resumes the path to obtain its extremal index θZ

and to recover θX for the “declustered” process {Xn}n≥1, showing that counting the mean number of upcrossings
(or downcrossings) for {Z1, . . . ,Zn} is asymptotically equivalent to counting the mean number of runs {Xi > un,

Xi+1 ≤ un, . . . ,Xi+k−1 ≤ un}, i ≤ np.

Corollary 2.6. Let {Xn}n≥1 and S be in the conditions of Proposition 2.4 and that E(Sn) = p. Suppose that un ≡ u
(τ)
n

for {Xn}n≥1 which satisfies D(k)(un) for some k ≤ 2t − s + 1. Then

(a) {Zn}n≥1 defined by (3) satisfies D(un) and D(2)(un) conditions.

(b) If un ≡ u
(τ∗)
n for {Zn}n≥1 and there exists limn→∞ nP (MI1 ≤ un < MI1,I2) = ν∗ then it holds that

θZ = ν∗

τ ∗ , θX = θZτ ∗

pτ

and

lim
n→∞nP (MI1 ≤ un < MI1,I2) = p lim

n→∞nP (X1 > un,X2 ≤ un, . . . ,Xk ≤ un).

We now focus on the particular case of In = n(k − 1), n ≥ 0, for some k > 2. Therefore, we have s = t = k − 1. If
is this the case then, from the previous result, condition D(2)(un) for {Zn}n≥1 implies condition D(k)(un) for {Xn}n≥1

with the same length rn to model “local behavior”. Otherwise, the validity of condition D(k)(un) for {Xn}n≥1 leads to
condition D(2)(un) for {Zn}n≥1 with r∗

n = [rn/(k − 1)]. We can then state the following corollary, which can also be
proved directly.

Corollary 2.7. Let {Xn}n≥1 be a stationary sequence and {Zn}n≥1 defined by (3) with In = n(k − 1), n ≥ 0, for some
k > 2. Then {Zn}n≥1 satisfies condition D(2)(un) if and only if {Xn}n≥1 satisfies condition D(k)(un).

Thus, under conditions of Proposition 2.5 and according to (5), the extremal index of {Xn}n≥1 can be written as

θX = θZτ ∗

(k − 1)τ
= lim

n→∞
P(MI1 ≤ un < MI1,I2)

(k − 1)P (X1 > un)
= lim

n→∞
P(Mk−1 ≤ un < Mk−1,2(k−1))

(k − 1)P (X1 > un)
. (6)

By using the stationarity, this limit can be rewritten as the one obtained in Chernick et al. [3] under condition
D(k)(un) and given in (2). However, representation (6) allows to estimate θX through the estimation of θZ for the
cycles Zi = MIi−1,Ii

, i ≥ 1, for which D(2)(un) holds, as we will present in Section 4.
Here we illustrate the above results with finite moving maxima processes (MM) and in the next section we devote

special attention to the local dependence in this kind of processes.



594 H. Ferreira and M. Ferreira

Example 2.1. Consider the moving maximum process, Xn = ∨2
j=0 αjYn−j , α0 = 2/6, α1 = 1/6 and α2 = 3/6,

n ≥ 1, with sequence {Yn}n≥−1 independent and having standard Fréchet marginal distribution, FY = exp(−1/x),
x > 0. This stationary sequence satisfies D(3)(un) for levels un = n/τ , τ > 0, as will be seen in the next sec-
tion and θX = ((2/6) ∨ (1/6) ∨ (3/6)) = 1/2 (see Weissman and Cohen [32]). For Zn = X2n−1 ∨ X2n, we have
nP (Z1 > un) → (5/3)τ = τ ∗, as n → ∞, since

P(Z1 ≤ un) = FY (un)FY (3un/2).

Observe also that

P(Z2 ≤ un,Z1 ≤ un) = FY (un/2)FY (3un/2)

and, provided that D(2)(un) holds for {Zn}n≥1, we have

θZ = lim
n→∞P(Z2 ≤ un|Z1 > un) = 3/5.

By applying (6), we obtain θX = 1/2.

We have seen that, for every stationary sequence {Xn}n≥1 satisfying D(k)(un), k > 2, we can build a stationary
sequence {Zn}n≥1 satisfying D(2)(un) by taking the maxima of k − 1 consecutive variables of sequence {Xn}n≥1.
For big values of k, such aggregation can result in reduced accuracy in the estimation of θX via the sample based on
{Zn}n≥1, as will be pointed in Section 4. Proposition 2.5 states that we can also consider mixtures of big cycles of
several lengths in order to build the sequence {Zn}n≥1 satisfying D(2)(un), as it is illustrated in the next example.

Example 2.2. Let S = {I0 = 0, Sn = In − In−1}n≥1 be a sequence of independent r.v.s uniformly distributed on
{k, k + 2}, with a fixed k ≥ 6, and independent of {Xn}n≥1. For {Xn}n≥1 take a stationary sequence satisfying
D(5)(u(τ)

n ) and D(u(τ)
n ). Let Zn be as in (3), which is stationary and also satisfies D(un). Since 2k − (k + 2) + 1 ≥ 5,

then {Zn}n≥1 satisfies condition D(2)(un). It holds that

τ ∗ = lim
n→∞

1

2

∑
s∈{k,k+2}

nP

(
s∨

i=1

Xi > un

)
,

ν∗ = lim
n→∞

1

4

∑
s1,s2∈{k,k+2}

nP

(
s1∨

i=1

Xi ≤ un <

s1+s2∨
i=s1+1

Xi

)
,

θZ = ν∗
τ∗ and θX = ν∗

(k+1)τ
. Un example of a process {Xn}n≥1 satisfying the conditions above is a moving maxima,

given in the next section, with signatures αl,j and u
(τ)
n = n/τ .

3. Condition D(k)(un) for moving maxima processes

A moving maxima process (MM) is defined as

Xn =
∨
l≥1

∨
−∞<j<∞

αl,j Yl,n−j , n ≥ 1, (7)

where {Yl,j }l≥1,−∞<j<∞ is an i.i.d. sequence of r.v.s, usually unit Fréchet and {αl,j }l≥1,−∞<j<∞ are non negative
constants (usually denoted signatures) such that

∑
l≥1

∑
−∞<j<∞ αl,j = 1 (Deheuvels [6]; Davis and Resnick [5];

Smith and Weissman [28]; Hall et al. [12]; Meinguet [21]).
Under the condition

∑
−∞<j<∞

∑
l≥1 lαl,j < ∞, the MM process is strong-mixing (Meinguet [21]) and therefore

it satisfies D(un).
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An interesting feature of these processes is that the transformation of {Yl,j }l≥1,−∞<j<∞ induces a dependence
structure with extremes occurring in temporal clusters. Any stationary process with finite-dimensional marginal dis-
tributions of multivariate extreme value type can be approximated by an MM process with marginals of extreme value
type (Hall et al. [12]). Examples of finite MM processes (i.e., with l and j finite) are not difficult to deal with and
are often used to illustrate long range and local dependence conditions within extreme values. The extremal index is
directly obtained through limn→∞ P(Mn ≤ n/τ), τ > 0, even for infinite MM processes and thus avoids the validity
of some D(k) condition. In Meinguet [21], Theorem 4, it was presented a nice finite-cluster condition which prevents
a sequence of extremes occurring in MM from being infinite over time. However, it does not enable a representation
for θ from finite marginal distributions of the process. The local dependence conditions brings us enlightenment about
the clustering structure of extreme values. Any finite MM is m-dependent for some positive integer m and thus D(k)

holds at least for some k ≥ m. From simple examples, we know that small changes in the values of coefficients αl,j

may lead to large diferences within the clusters structure. Hence, this raises the question of which conditions αl,j must
satisfy so that some D(k) holds for an MM process. The next result presents a necessary and sufficient condition.

Proposition 3.1. Let {Xn}n≥1 be an MM process as defined in (7), where {Yl,j }l≥1,−∞<j<∞ is an i.i.d. sequence of
unit Fréchet r.v.s. Then

(a) {Xn}n≥1 satisfies condition D(k)(un), k ≥ 2, if and only if, for all l ≥ 1 and −∞ < j < ∞,

αl,j ∧
( ∨

s≥k+1

αl,j+s−1

)
≤

k∨
s=2

αl,j+s−1, (8)

where x ∧ y denotes min(x, y).
(b) {Xn}n≥1 satisfies condition D(1)(un) if and only if, for all l ≥ 1 there is only one −∞ < j < ∞ such that αl,j > 0.

Proof. (a) Observe that

nP

(
X1 > un,

k∨
s=2

Xs ≤ un,

rn∨
s=k+1

Xs > un

)

= nP

(
X1 > un,

rn∨
s=k+1

Xs > un

)
− nP

(
X1 > un,

k∨
s=2

Xs > un,

rn∨
s=k+1

Xs > un

)
.

(9)

Since Xs = ∨
l

∨
j αl,j Yl,1−(j−s+1) and {Yl,j , l ≥ 1,−∞ < j < ∞} is a sequence of independent r.v.s, we have

lim
n→∞nP

(
X1 > un,

rn∨
s=k+1

Xs > un

)

= lim
n→∞n

∑
l

∑
j

P

(
αl,j Yl,1−j > un,

rn∨
s=k+1

αl,j+s−1Yl,1−j > un

)
.

Thus, for levels un = n/τ , τ > 0,

lim
n→∞nP

(
X1 > n/τ,

rn∨
s=k+1

Xs > n/τ

)

= lim
n→∞n

∑
l

∑
j

P

(
Yl,1−j >

n/τ

αl,j

∨ n/τ∨rn
s=k+1 αl,j+s−1

)

= lim
n→∞n

∑
l

∑
j

P

(
Yl,1−j >

n/τ

αl,j ∧ ∨rn
s=k+1 αl,j+s−1

)
.
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Using the same reasoning on the second term in (9) and by the theorem of dominated convergence,

lim
n→∞nP

(
X1 > un,

k∨
s=2

Xs ≤ un,

rn∨
s=k+1

Xs > un

)

=
∑

l

∑
j

lim
n→∞n

(
FY

(
n/τ

αl,j ∧ ∨k
s=2 αl,j+s−1 ∧ ∨rn

s=k+1 αl,j+s−1

)

− FY

(
n/τ

αl,j ∧ ∨rn
s=k+1 αl,j+s−1

))

=
∑

l

∑
j

τ

((
αl,j ∧

∨
s≥k+1

αl,j+s−1

)
−

(
αl,j ∧

k∨
s=2

αl,j+s−1 ∧
∨

s≥k+1

αl,j+s−1

))
,

since αl,j → 0, as l → ∞ and j → ∞. Now just observe that the limit will be null whenever relation (8) holds, for
all l ≥ 1 and −∞ < j < ∞.

(b) The conclusion in (b) follows from

lim
n→∞nP

(
X1 > un,

rn∨
s=2

Xs > un

)
=

∑
l

∑
j

τ

(
αl,j ∧

∨
s≥2

αl,j+s−1

)
.

The latter sum is null if and only if, for each l, there is j∗ such that αl,j∗ > 0 and αl,j = 0 for j = j∗. �

Example 3.1. Consider the moving maximum processes, Xn = ∨2
j=0 αjYn−j , α0 = 2/6, α1 = 1/6 and α2 = 3/6,

n ≥ 1, given in Example 2.1, and Wn = ∨2
j=0 αjYn−j , α0 = 1/6, α1 = 3/6 and α2 = 2/6, n ≥ 1, with sequence

{Yn}n≥−1 independent and having standard Fréchet marginal distribution. We will see that {Xn}n≥1 satisfies D(3)(un)
(and not D(2)(un)) and that {Wn}n≥1 satisfies D(2)(un), for levels un = n/τ , τ > 0, by applying relation (8). The
calculations are summarized in Table 1. Observe that D(2)(un) does not hold for {Xn}n≥1 since, if j = 0 then α0 ∧
(
∨

s≥3 αs−1) = 2/6 ∧ 3/6 > 1/6 = α1. Presumably in {Xn}n≥1 persists longer than {Wn}n≥1 because the largest
signature is the most recent one.

Inference within MM processes has been addressed in literature (see Zhang and Smith [33]). Therefore, as an
alternative to the empirical method of Süveges [29], we can check the validity of D(k)(un) within these processes by
estimating coefficients αl,j and applying (8).

Table 1
Verification of conditions D(3)(un) and D(2)(un) for, respectively, the MM processes {Xn}n≥1
and {Wn}n≥1 of Example 3.1, according to relation in (8)

Condition D(3)(un) for {Xn}n≥1 Condition D(2)(un) for {Wn}n≥1

j αj ∧ (
∨

s≥4 αj+s−1) αj+1 ∨ αj+2 j αj ∧ (
∨

s≥3 αj+s−1) αj+1

≤ −3 0 ∧ 3/6 0 ≤ −2 0 ∧ 3/6 0
−2,−1 0 ∧ 3/6 2/6 −1 0 ∧ 3/6 1/6
0 2/6 ∧ 0 3/6 0 1/6 ∧ 2/6 3/6
1 1/6 ∧ 0 3/6 1 3/6 ∧ 0 2/6
2 3/6 ∧ 0 0 2 2/6 ∧ 0 0
≥ 3 0 ∧ 0 0 ≥ 3 0 ∧ 0 0
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The MM processes are stationary max-stable processes for which, under D(k)(un), we can derive the extremal
index from a tail dependence coefficient. Suppose that the stationary process {Xn}n≥1 has unit Fréchet marginals
F(x) = exp(−1/x), x > 0. If D(k)(u(τ)

n ) holds for {Xn}n≥1, then

θX = lim
n→∞P(M1,k ≤ n/τ |X1 > n/τ)

= 1 − lim
n→∞P(M1,k > n/τ |X1 > n/τ)

= 1 − �
(I1|I2)
U (1,1),

(10)

provided the limit exists, where I1 = {2, . . . , k}, I2 = {1} and �
(I1|I2)
U (1,1) is the upper tail dependence coefficient

considered in Ferreira and Ferreira [7]. In the case of max-stable processes or, more generally, processes satisfying
the max-domain of attraction condition, the limit in (10) is always defined. By applying the Propositions 2.1 and 3.1
in Ferreira and Ferreira [7], we conclude that

θX = E(e−M−1
k )

1 − E(e−M−1
k )

− E(e
−M−1

1,k )

1 − E(e
−M−1

1,k )

and, in particular for k = 2, it holds that

θX = 1

1 − E(e−(X1∨X2)
−1

)
− 2. (11)

This representation for θX motivates its estimation from moment estimators for E(e−M−1
k ) = E(

∨k
i=1 F(Xi)), as

considered in Ferreira and Ferreira [7].
We apply now the results of the previous section in order to compute θX from θZ of the process {Zn =∨n(k−1)

i=(n−1)(k−1)+1 Xi}n≥1 under D(2)(un). The estimation of θZ is considerably simpler as suggested by (11).

Proposition 3.2. Let {Xn}n≥1 be a stationary max-stable process with unit Fréchet marginals F and u
(τ)
n = n/τ ,

τ > 0. Then

(a) {Zn}n≥1 is stationary and max-stable with marginal distribution FZ(x) = Fεk−1(x), where εk−1 =
− logF(X1,...,Xk−1)(1, . . . ,1) ∈ [1, k − 1] is the (k − 1)th extremal coefficient of {Xn}n≥1.

(b) If {Xn}n≥1 satisfies D(un) and D(k)(un), k > 2, then {Zn}n≥1 satisfies D(un) and D(2)(un),

θZ = 1

1 − E(FZ(Z1) ∨ FZ(Z2))
− 2 (12)

and

θX = θZ

− logFZ(1)

k − 1
. (13)

Proof. Part (a) follows trivially and we only justify (b).
We first consider the sequence of cycles {Z∗

n = ∨n(k−1)
i=(n−1)(k−1)+1 Xi/εk−1}n≥1 which satisfies the same local

and long-range dependence conditions as {Zn}n≥1. For this stationary and max-stable sequence with unit Fréchet
marginals, by applying (11), we obtain

θZ∗ = 1

1 − E(e−(Z∗
1∨Z∗

2 )−1
)

− 2.
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Then

θZ = θZ∗ = 1

1 − E(e−(Z1∨Z2)
−1εk−1)

− 2 = 1

1 − E(FZ(Z1) ∨ FZ(Z2))
− 2.

To obtain the relation (13) we apply Proposition 2.3 with

τ ∗ = lim
n→∞nP (Z > n/τ) = − logFZ(1)τ. �

This result suggests the estimation of θX via the estimation of − logFZ(1) and E(FZ(Z1) ∨ FZ(Z2)).

4. Estimation

Our new estimation proposal consists in first, to state the sequence of cycles, Zn = ∨n(k−1)
s=(n−1)(k−1)+1 Xs , n ≥ 1, and

then estimate θ based on {Zn}n≥1. Observe that, from Proposition 2.3, we can write

θX = n/(k − 1)P (Z1 ≤ un < Z2)

nP (X1 > un)
= θZ

n/(k − 1)P (Z1 > un)

nP (X1 > un)
,

and thus define the estimator

θ̂X = UZ
n (un)

NX
n (un)

, (14)

as well as, the estimator

θ̂X = θ̂ZNZ
n (un)

NX
n (un)

, (15)

where UZ
n (un) and NZ

n (un) are, respectively, the number of upcrossings of un and the number of exceedances of
un within {Z1, . . . ,Z[n/(k−1)]} and NX

n (un) is the number of exceedances of un within {X1, . . . ,Xn}. Since D(2)(un)
holds for {Zn}n≥1, estimators under this condition can be used to calculate θ̂Z , e.g., the maximum likelihood estimator
in Süveges [29] and the upcrossings estimator in Nandagopalan [22].

Now observe that, based on (10), we can write θZ as

θZ = 1 − lim
n→∞

P(MI1,I2 > un|MI1 > un)

P (MI1 > un)
= 1 − λZ,

where λZ is the so called “tail dependence coefficient” (see Joe [14], p. 33; Coles et al. [4]; Schmidt and Stadmüller
[26] and references therein; see also Ferreira and Ferreira [8], Proposition 4). Hence, we can derive

θX = (1 − λZ)τ ∗

(k − 1)τ
, (16)

and thus also state the estimator

θ̂X = (1 − λ̂Z)NZ
n (un)

NX
n (un)

. (17)

We can estimate the tail dependence coefficient by applying a non-parametric procedure, e.g., the one in Schmidt and
Stadmüller [26]. This estimator will be denoted θ̂SS. For the particular case of max-stable processes, by representation
(12), we can apply the estimator θ̂Z in Ferreira and Ferreira [7] for θZ and again θ̂X as in (15). In the following, this
method is denoted θ̂FF. A similar procedure based on (13) leads to a second estimator for max-stable processes,
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namely

θ̂X = θ̂Z

− log F̂Z(1)

k − 1
,

where F̂Z(1) is the empirical distribution function. The notation for this latter is θ̂FF∗
.

In the next section we analyze our new proposal through simulation. For θ̂Z in expression (15), we consider the
upcrossings estimator of Nandagopalan [22], the estimator of Ferro and Segers [9] also known as intervals estimator
and the maximum likelihood estimator of Süveges [29], and denote our extremal index estimators, respectively, θ̂U ,
θ̂ I and θ̂ML. We also compare with the intervals and runs estimators applied directly on {Xn}n≥1. For these estimators
we use notation θ̃ I and θ̃R , respectively.

In order to analyze D(k)(un) and construct the cycles {Zn}n≥1, we can extend the methodology in Süveges [29]
considered to check D(2)(un). More precisely, we compute the proportion of anti-D(k)(un) events by

pk(un, rn) =
∑n−rn+1

j=1 1{Xj >un,Xj+1≤un,...,Xj+k−1≤un,Mj+k−1,rn+j−1>un}∑n
j=1 1{Xj >un}

,

for normalized levels un approximated by the empirical quantiles 1 − τ/n, for some fixed positive τ and some se-
quence {rn}n≥1 satisfying the conditions of Proposition (2.2), where 1{·} is the indicator function. We take the propor-
tions pk(um, rm) for sequences {X1, . . . ,Xm}, with increasing length m ≤ n.

On what concerns the choice of {bn}n≥1, we can choose, for instance, the family of sequences of integers b
(s)
n =

[(logn)s], s > 0. Thus, for each τ and s, we can plot the points (m,pk(um, r
(s)
m )), which must converge to zero, for

some s, as m increases if D(k)(un) holds with b
(s)
n . This is a slightly different approach of the one in Süveges [29], but

closer to the definition of D(k)(un), since this condition states a limiting behavior as n → ∞, and un ≈ F−1(1 − τ/n),
rn = [n/bn] and pk(un, rn) are functions of n. To avoid three-dimensional plots that arise from the joint variation of
τ , s and m, we can separately analyze the evolution of the proportions for different choices of rn. For the particular
case of D(1)(un) condition, we have the proportions

p1(un, rn) =
∑n−rn+1

j=1 1{Xj >un,Mj,rn+j−1>un}∑n
j=1 1{Xj >un}

.

Once accepted the condition D(k)(un) for some k, that means we consider that the process satisfies D(s)(un) for all
s ≥ k and does not satisfy D(s)(un) for s < k. The decision to exclude values less than k may be based on the analysis
of (m,pk−1(um, rm)) or, from the remark after Proposition 2.3, by comparing dk−1(un, rn) with dk(un, rn), where

dk(un, rn) =
n−rn+1∑

j=1

1{Xj >un,Mj,j+k−1≤un}.

A good choice of k is enhanced by away trajectories for (m,dk−1(um, rm)) and (m,dk(um, rm)) and close trajectories
for (m,dk(um, rm)) and (m,dk+1(um, rm)). In the following we analyze the respective plots based on this purely
empirical method. We realize that an intensive Monte Carlo study concerning this technique, out of the scope of this
paper, may help us in finding useful guidelines.

An illustration is given in Figure 1, where it was considered a simulated sample of size 10,000 from a GARCH(1,1)

process with Gaussian innovations, autoregressive parameter λ = 0.25 and variance parameter β = 0.7 (Laurini and
Tawn [17]). More precisely, in the first two panels are plotted the proportions of anti-D(3)(un) by choosing bn =
[(logn)3] and bn = [(logn)3.3], respectively, and values τ = 50,100. We can see that the choice bn = [(logn)3.3] may
be better within this case. Observe that from Proposition 2.5 we can also analyze D(k)(un) by evaluating D(2)(un). The
last two plots correspond to the proportions of anti-D(2)(un) within cycles {Zn}n≥1, respectively with k = 4 and k = 5
and bn = [(logn)3] and values τ = 15,20. The plots also suggest that condition D(3)(un) is unlikely to hold for the
considered GARCH(1,1) model. A more prominent decrease is observed within the proportions of anti-D(4)(un) and
anti-D(5)(un). It will be seen in the simulation study that these proportions lead to a quite acceptable choice of values
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Fig. 1. From left to right and top to bottom, proportions of anti-D(3)(un) with bn = [(logn)3] and anti-D(3)(un) with bn = [(logn)3.3] for
GARCH(1,1), for τ = 50 (full line) and τ = 100 (dotted line), and proportions of anti-D(2)(un) of cycles {Zn}n≥1 for GARCH(1,1) with k = 4
and k = 5 and bn = [(logn)3], for τ = 15 (full line) and τ = 20 (dotted line).
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of k in the new estimation procedure. A similar exercise (not reported) was implemented with the following models:
a first order autoregressive process with Cauchy marginals and autoregressive parameter ρ = −0.6 of Chernick [2], a
negatively correlated uniform AR(1) process of Chernick et al. [3] with r = 2, respectively denoted ARCauchy and
ARUnif, an MM process with coefficients α0 = 2/6, α1 = 1/6, α2 = 3/6 as given in Example 2.1, a first order MAR
process with standard Fréchet marginals and autoregressive parameter φ = 0.5 of Davis and Resnick [5] and a Markov
chain with standard Gumbel marginals and logistic joint distribution with dependence parameter α = 0.5. In all the
cases we considered bn = [(logn)3] , and values τ = 50,100. The MAR process satisfy D(2)(un) and so D(3)(un)
holds, thus leading to small proportions of anti-D(3)(un). The same scenario is noticed in the first three models, all
satisfying condition D(3)(un). There are slightly upper curves within the Markov chain but still comprising small
values. A little decrease occurs in the proportions of anti-D(4)(un) for the Markov process.

These plots can give us some clue about D(k)(un) but they do not allow us to make a definite decision. We can
always opt for higher values of k since, if D(k)(un) holds then D(s)(un) holds for all s > k. However, a too large k for
the cycles may diminish the precision of the new estimators, as will be pointed in the next section.

4.1. Simulations

In our study we consider 1000 replicates of simulated samples of size 1000 of each of the models referred previ-
ously: ARCauchy (ρ = −0.6), ARUnif (r = 2), MM (α0 = 2/6, α1 = 1/6, α2 = 3/6), MAR (φ = 0.5), Markov chain
(α = 0.5) and GARCH(1,1) (λ = 0.25, β = 0.7). We have calculated the values of the new estimator θ̂ given in (14),
as well as, the values of estimators θ̂ I , θ̂ML and θ̂U based on the new indirect approach in (15), and estimator θ̂SS

based on (17). Although θ̂FF and θ̂FF∗
are derived under a max-stable premise, we still apply them since, in practice,

we are taking cycles {Zn}n≥1 of maximums which, albeit crudely, can approach a max-stable behavior. We denote
all these estimators as indirect. For comparison, we also consider the runs estimator (θ̃R) and the intervals estimator
(θ̃ I ) directly for θX . In opposition to indirect estimators, we denote θ̃R and θ̃ I as direct. The root mean squared errors
(rmse) and the absolute mean biases (abias) are given in Table 2, for levels un corresponding to the empirical quantile
0.95. Observe that θ̂FF∗

does not depend on un. The bold entries correspond to good performances (the best one is
marked with a plus) and the italic entry denotes the worst result. For models MM, ARUnif, ARCauchy and MAR,
which satisfy condition D(3)(un), all the new estimators were based on the construction of cycles {Zn}n≥1 by taking
k = 3. The direct runs estimator θ̃R was also computed for run r = k (see Section 1). The results for the Markov
chain and GARCH(1,1) are given by considering that D(k)(un) holds with k = 4 in the first case and k = 5 in the
second model. See Figure 1 and the respective comments on this topic in Section 4 above. In what concerns the direct
runs estimator θ̃R , we choose a run r equal to k = 4 in the Markov chain model and run r equal to k = 5 in the
GARCH(1,1) model. Ancona-Navarrete and Tawn [1] considered r = 10 for the runs estimator θ̃R in the Markov
chain model. Indeed, if we take r = 10 in our simulations for this model, we obtain slightly lower rmse’s for this
estimator. We have also considered r = 10 in the GARCH(1,1) model which led to an overall decreasing of 0.1 in
the rmse’s for estimator θ̃R . The presented choice of the values k for the indirect estimators leads to the best results
among other values of k also tried in simulations. Figure 2 illustrates this. Indeed, if the models satisfy condition
D(k)(un), the results by taking k + 1 are quite close but if we continue to increase k, they get worst for both bias and
rmse. Observe that a too much large k means larger cycles {Zn}n≥1 and thus some loss of information. On the other
hand, choosing k too small also raises bias and rmse (see the GARCH plots in Figure 2).

The new approach presents good results, particularly with estimators θ̂ and θ̂U . As expected, the upcrossings
estimator is a competitor within our framework. The estimator θ̂FF has also a good performance, except for the
ARUnif model. In this case the results are better if we take k = 4, leading to a rmse ranging from 0.084 to 0.158.
One reason is that the cycles {Zn}n≥1 with k = 4 for this model may be closer to max-stable behavior. We observe a
similar situation with estimator θ̂FF∗

. It performs well except in model ARUnif where, for k = 4, we obtain a rmse of
0.077, as well as in model ARCauchy where k = 4 leads to a rmse of 0.063. The intervals estimator yields the largest
errors and behaves better if applied indirectly in the case of the Markov chain and the GARCH(1,1). The indirect
estimators θ̂ML and θ̂SS have a similar performance.

4.2. Application to financial data

Log-returns of a financial time series usually present high volatility and clustering of large values. Klar et al. [15]
have analyzed DAX German stock market index time series and concluded that GARCH(1,1) is a good model to
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Table 2
The root mean squared error (rmse) and the absolute mean bias (abias) obtained by con-
sidering the empirical quantile 0.95. The direct runs estimator θ̃R is based on run r = 3
for models MM, ARUnif, ARCauchy and MAR, and for models Markov chain (MC) and
GARCH(1,1), on run r = 4 for model MC and r = 5 for model GARCH. The results in
bold correspond to the best performances (the plus signal indicates the least value) and
the italic denotes the worst performance

rmse

MM ARUnif ARCauchy MAR MC GARCH(1,1)

θ̃R 0.055 0.063+ 0.077+ 0.071 0.084 0.148
θ̃ I 0.114 0.200 0.158 0.134 0.141 0.200
θ̂ 0.057 0.063+ 0.084 0.071 0.071 0.110
θ̂U 0.055 0.089 0.095 0.077 0.071 0.105
θ̂ I 0.141 0.182 0.179 0.145 0.118 0.134
θ̂ML 0.063 0.089 0.095 0.077 0.084 0.073
θ̂SS 0.055 0.089 0.089 0.077 0.077 0.071
θ̂FF 0.032+ 0.335 0.084 0.045 0.071 0.063
θ̂FF∗

0.032+ 0.875 0.602 0.032+ 0.055+ 0.045+

abias

MM ARUnif ARCauchy MAR MC GARCH(1,1)

θ̃R 0.028 0.005 0.041 0.005 0.024 0.121
θ̃ I 0.061 0.179 0.095 0.067 0.082 0.130
θ̂ 0.036 0.003+ 0.051 0.026 0.036 0.095
θ̂U 0.013 0.011 0.018 0.009 0.022 0.076
θ̂ I 0.071 0.130 0.088 0.075 0.032 0.085
θ̂ML 0.009 0.015 0.014 0.005 0.021 0.010+
θ̂SS 0.000+ 0.020 0.003+ 0.002+ 0.014+ 0.010+
θ̂FF 0.003 0.331 0.072 0.003 0.053 0.020

θ̂FF∗
0.003 0.861 0.595 0.006 0.050 0.010+

describe these data. In particular they considered the series of log-returns of DAX closing prices from 1991 to 1998
(see Figure 3) and fitted a GARCH(1,1) model with autoregressive parameter λ � 0.08, variance parameter β = 0.87
and innovations t7 (after removing null log-returns). By the tabulated values of the extremal index of GARCH(1,1)

models in Laurini and Tawn [17], the true value is around 0.3. In Table 3 we report the estimates, derived according to
the conclusions of the simulations concerning the GARCH(1,1) model (the anti-D(k)(un) plots were considered with
bn = [(logn)2.5], for τ = 15 and τ = 20 and the anti-D(2)(un) plots of the respective cycles {Zn}n≥1 were considered
with bn = [(logn)2], for τ = 5 and τ = 10). Thus the direct runs estimator θ̃R was computed with run 5 and the
indirect estimators (θ̂ , θ̂U , θ̂ I , θ̂ML, θ̂SS, θ̂FF and θ̂FF∗

) were calculated by considering cycles {Zn}n≥1 with k = 5.
The estimates were obtained based on the quantile 0.95. We have also tried other values for k and found that k = 6
leads to θ̂ = 0.34 and the other estimators have values of approximately 0.39, except for the intervals and the direct
runs estimator where the estimates were 0.12 and 0.68. If we consider the direct runs estimator θ̃R with run 10 (see
Section 4) we obtain the estimate 0.48.

5. Conclusions

In this work we consider the estimation of the extremal index, an important dependence parameter within extreme
values of stationary sequences. The new approach requires the validity of the local dependence condition D(k)(un) of
Chernick et al. [3]. The results are promising under a suitable choice for k and an empirical procedure was proposed
for this evaluation. We also find that it is a useful tool for the well-known runs estimator, by guiding a first choice for
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Fig. 2. The thicker full and dash-dot lines correspond, respectively, to the direct runs and intervals estimators. The dotted lines correspond to
estimator θ̂ , where the labels indicate the value of k and the full line corresponds to the “true” k. The left panels represent the absolute bias and the
right panels the root mean squared error obtained for quantiles 0.95, 0.975 and 0.99, respectively denoted, q0.95, q0.975 and q0.99, of models MM
and GARCH.

the run. Since it is a crucial issue within our framework, further strength in diagnostic tools to identify the proper k of
D(k)(un) will be addressed in a future work.

Our aim, within the estimation of the extremal index, is to provide a new approach, being, however, aware that
it does not solve the open problem of the best choice of k. We recognize that different estimators available in the
literature have strengths and also vulnerabilities that led to our contribution, and we hope that future works can
test it.
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Fig. 3. Daily log-returns of DAX, from 1991 to 1998, with 1786 observations (successive equal prices excluded).

Table 3
Estimates of the extremal index of the DAX series at quantile 0.95. The
direct runs estimator was derived with run 5. The indirect estimators
(θ̂ , θ̂U , θ̂ I , θ̂ML, θ̂SS, θ̂FF and θ̂FF∗

) were obtained based on cycles
{Zn}n≥1 with k = 5

θ̃R θ̃I θ̂ θ̂U θ̂I θ̂ML θ̂SS θ̂FF θ̂FF∗

0.72 0.50 0.40 0.36 0.37 0.48 0.50 0.47 0.49
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