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Abstract. We study a notion of local time for a continuous path, defined as a limit of suitable discrete quantities along a general
sequence of partitions of the time interval. Our approach subsumes other existing definitions and agrees with the usual (stochastic)
local times a.s. for paths of a continuous semimartingale. We establish pathwise version of the Tanaka–Meyer, change of variables
and change of time formulae. We provide equivalent conditions for existence of pathwise local time. Finally, we study in detail
how the limiting objects, the quadratic variation and the local time, depend on the choice of partitions. In particular, we show that
an arbitrary given non-decreasing process can be achieved a.s. by the pathwise quadratic variation of a standard Brownian motion
for a suitable sequence of (random) partitions; however, such degenerate behaviour is excluded when the partitions are constructed
from stopping times.

Résumé. Nous étudions la notion de temps local pour un processus continu, défini comme la limite de fonctions discrètes le long
d’une suite de partitions de l’intervalle de temps. Notre approche englobe les définitions déjà existantes et coincide p.s. avec la
définition (stochastique) usuelle des temps locaux pour les trajectoires de semimartingales continues. Nous établissons une version
trajectorielle des formules de changement de variables, de temps et de Tanaka–Meyer ansi que plusieures conditions équivalentes
pour l’existence du temps local trajectoire par trajectoire. Finalement, nous proposons une étude détaillée de la façon dont le
processus limite, son temps local et sa variation quadratique, dépendent du choix de la suite de partitions. Nous montrons en
particulier qu’un processus non-décroissant donné peut toujours être obtenu p.s. comme la variation quadratique d’un mouvement
Brownien standard le long d’une suite appropriée de partitions (aléatoires). De tels comportements pathologiques sont cependant
exclus quand les partitions sont construites à l’aide de temps d’arrêt.

MSC: 60G17; 60H05
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1. Introduction

In a seminal paper, Föllmer [9] pioneered a non-probabilistic approach to stochastic calculus. For a function x of
real variable, he introduced a notion of quadratic variation 〈x〉t along a sequence of partitions (πn)n and proved the
associated Itô’s formula for f ∈ C2:

f (xt ) − f (x0) =
∫ t

0
f ′(xs) dxs + 1

2

∫ t

0
f ′′(xs) d〈x〉s , (1.1)
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where the integral
∫ t

0 f ′(xs) dxs is defined as the limits of non-anticipative Riemann sums, shown to exist whenever
〈x〉t exists. Föllmer also observed that a path of a semimartingale a.s. admits quadratic variation in the pathwise sense
and the usual stochastic integral agrees with his pathwise integral a.s.

The underlying motivation behind our current study was to extend the pathwise stochastic integral and its Itô’s
formula to functions f which are not in C2. This question arose from applications in mathematical finance (see Davis
et al. [6]) but, we believe, is worth pursuing for its own sake. It led us to develop pathwise stochastic calculus featuring
local times, which is the first main contribution of our work. We define a notion of local time Lx

t (u) for a continuous
function x, prove the associated Tanaka–Meyer formula and show that a path of a continuous semimartingale X a.s.
admits pathwise local time L

X(ω)
t (u) which then agrees with the usual (stochastic) local time. Our contribution should

be seen in the context of three previous connected works. First, our results are related to Bertoin [1], who showed
similar results for a large class of Dirichlet processes; see also Coutin, Nualart and Tudor [5] (who consider fractional
Brownian motion with Hurst index H > 1/3) and Sottinen and Viitasaari [22] (who consider a class of Gaussian
processes). Second, related results appeared in the unpublished diploma thesis of Wuermli [26]. Our approach is
similar, however the proof in [26] was complicated and applied only to square integrable martingales. We also have a
slightly different definition of local time which includes continuity in time and importantly we consider convergence
in Lp for p ∈ [1,∞) instead of just p = 2. This allows us to capture the tradeoff between the generality of paths
considered and the scope of applicability of the Tanaka–Meyer formula. Indeed, as the term

∫
R

Lπ
t (u)f ′′(du) suggests,

there is a natural duality between Lπ
t and f ′′, so the smaller the space to which Lπ

t belongs, the more general f ′′ one
can take.

The latter idea was already exploited in our third main reference, the recent paper by Perkowski and Prömel [17]
(and, to a much lesser extent, by Feng and Zhao [8]), in which Lπ

t belongs to the space of continuous functions,
and thus f ′′ can be a general measure (i.e. f ′ has bounded variation and f is the difference of two arbitrary convex
functions), recovering the Tanaka–Meyer formula in full generality (the authors also consider the case where Lπ

t is
continuous and has bounded p-variation, so that f ′ can be any function with bounded q-variation). In particular, the
conclusion of their main theorem (Theorem 3.5 in [17]) on the existence of L

X(ω)
t (u) for a.e. ω is stronger than ours;

however, since their local time has to be continuous, extra conditions are required (see Section 6 below), whereas our
Theorem 6.1 applies to a general semimartingale X.

Further, we investigate several questions not considered in [1,26] and [17], as we explain now. The main advantage
of our definition, as compared with these previous works, is that we are able to characterise the existence of pathwise
local time with a number of equivalent conditions (see Theorem 3.1). This feature seems to be entirely new. It allowed
us in particular to build an explicit example of a path which admits a quadratic variation but no local time. Also, while
[6] and [26] (following [9]) consider partitions πn whose mesh is going to zero (which are well suited for changing
variables), the results [1, Theorem 3.1] and [17, Theorem 3.5] of existence of pathwise local time consider Lebesgue2

partitions. Since neither type of partition is a special case of the other, this makes the results in these papers hard
to compare. We solve this conundrum by proving our existence result (Theorem 6.1) for a general type of partition,
which subsumes both types considered above. Finally, we prove that the existence of Lt(u) is preserved by a C1

change of variables (improving on [6, Proposition B.6]) and by time changes, and that g → ∫ t

0 g(xs) dxs is continuous
(similarly3 to [17]).

Finally, we investigate how the limiting objects, quadratic variation and local time, depend on the choice of parti-
tions. We show that for a path which oscillates enough, with a suitable choice of partitions, its quadratic variation can
attain essentially any given non-decreasing function. From this, taking care of null sets and measurability issues, one
can deduce that for a Brownian motion W and a given increasing [0,∞]-valued measurable process A with A0 = 0
there exist refining partitions (πn)n made of random times such that

〈W 〉πn
t :=

∑
tj ∈πn

(Wtj+1∧t − Wtj ∧t )
2 → At a.s. for all t ≥ 0.

This result illustrates, in the most stark way possible, the dependence of the pathwise quadratic variation (and thus
of the pathwise local time) on the partitions (πn)n. This may push the reader to dismiss the notion of pathwise

2Which we define in (2.2).
3Note that due to difference in definitions of local time, we use different topologies.
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quadratic variation (and local time). However, it worth recalling that if we restrict ourselves to partitions constructed
from stopping times, the limit of 〈W 〉πn

t exists and is independent of the choice of partitions, and it always equals t .
Analogously, our Theorem 6.1 states that, if we only consider partitions constructed from stopping times, the pathwise
local time L

X(ω)
t (u) of a semimartingale X exists and is independent of the choice of partitions, and it coincides with

the classical local time.
As already known by Lévy, infπ 〈x〉π1 = 0 for every continuous function x and supπ 〈W(ω)〉π1 = ∞ for a.e. ω. Our

analysis builds on these facts and answers in particular two questions: whether for the general path x = W(ω) one
can make 〈x〉πn

1 converge to any chosen C = C(ω) ∈ R, and what dependence in t we can expect for limn〈x〉πn
t .

Specifically it is clear that it must be an increasing function, and we wondered whether it is automatically continuous;
indeed, while we followed Föllmer [9], who carefully required that limn〈x〉πn

t be continuous,4 several authors who
cite [9] do not (see for example [1,6,21]) and our results show that this is a significant omission.

The plan for rest of the paper is as follows. In Section 2 we introduce most of the notations and definitions, and
recall parts of [9]. In Section 3 we identify several conditions equivalent to the existence of pathwise local time, prove
the Tanaka–Meyer formula and the continuity of g → ∫ t

0 g(xs) dxs . In Section 4 we consider change of variable and
time, and in Section 5 we extend Tanaka–Meyer formula from the case of a Sobolev function f to the case where f

is a difference of convex functions. In Section 6 we prove that a path of a semimartingale a.s. admits the pathwise
local time, and relate this to the downcrossing representation of semimartingale local time proved by Lévy. Finally in
Section 7 we state the results about dependence of quadratic variation on the sequence of partitions, including the con-
vergence 〈W 〉πn

t → At mentioned above. We only give the proof for one path avoiding the (non-trivial) technicalities
related to measurability and null sets.

2. Pathwise stochastic calculus

In this section we introduce most notations and definitions used throughout the article, and we revisit the part of
[9] which deals with continuous functions, slightly refining its results to include uniformity in t and more general
partitions.

By measure we mean sigma-additive positive measure; a Radon measure will be the difference of two measures
which are finite on compact sets. With |μ| we will denote the total-variation measure relative to a ‘real measure’
μ (i.e. μ is the difference of two measures), and with max(μ,0) the measure (μ + |μ|)/2 (i.e. the positive part in
the Hahn–Jordan decomposition of μ). We will say that gn → g fast in Lp(μ) if

∑
n∈N ‖gn − g‖p

Lp(μ) < ∞; this
trivially implies that gn → g a.s. and in Lp(μ). We will denote by B (resp. BT ) the Borel sets of [0,∞) (resp.
[0, T ]). For a continuous function x = (xs)s≥0, xt and xt are respectively the minimum and maximum of xs over
s ∈ [0, t]. We set x∞ = 0, denote by δt the Dirac measure at t , and by π a partition of [0,∞), i.e. π = (tk)k∈N where
tk ∈ [0,∞], t0 = 0, tk < tk+1 if tk+1 < ∞, and limk→∞ tk = ∞. For such x and π , we set

Ot(x,π) := max
{∣∣x(b) − x(a)

∣∣ : a, b ∈ [tk, tk+1) ∩ [0, t] for some k ∈ N
}
. (2.1)

Föllmer works with a sequence of finite partitions (πn)n whose step on compacts converges to zero. This excludes
very commonly used partitions: the Lebesgue partitions, i.e., those of the form πP = πP (x) = (tk)k∈N,

where t0 := 0, tk+1 := inf{t > tk : xt ∈ P,xt �= xtk } (2.2)

for some P partition of R, i.e., P = (pk)k∈Z with

pk ∈ [−∞,∞], lim
k→±∞pk = ±∞, p0 = 0 and pk < pk+1 if pk,pk+1 ∈R.

We will work instead with partitions πn such that OT (x,πn) → 0 for all T < ∞; these are very flexible, as they
subsume both Lebesgue partitions and the ones used by Föllmer. Moreover they allow us to obtain time-change

4More precisely [9] deals with càdlàg x and requires that μn (defined later in (2.3)) converge weakly to a measure μ which assigns mass (�xt )
2

to the singleton {t}; if x is continuous this implies continuity of 〈x〉�· .
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results, and have the additional advantage that one can always pass to refinements (since if π ⊆ π ′ then OT (x,π) ≥
OT (x,π ′)).

While our aim in this paper is to develop a pathwise, non-probabilistic, theory, it is often the case that we want to
consider paths that arise as sample functions of some stochastic process. Such processes are assumed to be defined
on some underlying filtered probability space (�,F, (Ft )t∈[0,∞),P) satisfying the ‘usual conditions’. We denote
by

∫ t

0 Hs dXs the stochastic integral of a predictable and locally-bounded integrand H with respect to a continuous
semimartingale X = (Xt )t≥0. Inequalities between random variables are tacitly supposed to hold for P-almost every ω.
A sequence of partitions of [0,∞) made of random (resp. stopping) times will be called a random (resp. optional)
partition of [0,∞); more precisely if π = (τk)k∈N, where τk are [0,∞]-valued random variables such that τ0 =
0, τk ≤ τk+1 with τk < τk+1 on {τk+1 < ∞}, and limk→∞ τk = ∞, then π is called a random partition, and if moreover
{τk ≤ t} ∈Ft for all k, t then π is an optional5 partition.

Definition 2.1. Given a continuous function x : [0,∞) → R and a sequence of partitions � = (πn)n such that
OT (x,πn) converges to zero as n → ∞ for all T < ∞, we will say that x has quadratic variation (sampled along �)
if the measures

μn :=
∑
tj ∈πn

(xtj+1 − xtj )
2δtj (2.3)

converge vaguely6 to a measure without atoms μ as n → ∞. We will write x ∈ Q if OT (x,πn) → 0 for all T < ∞
and x has quadratic variation.

Recall that μn converges weakly to a non-atomic measure μ iff its cumulative distribution function converges
pointwise to a continuous function, and thus iff

〈x〉πn
t :=

∑
tj ∈πn

(xtj+1∧t − xtj ∧t )
2

converges pointwise to a continuous (increasing) function 〈x〉t ; the cumulative distribution function of μ is then 〈x〉,
and is called the quadratic variation of x. Such convergence is then always uniform in t , and more generally for every
T > 0 and continuous function f : [xT , xT ] →R

∑
tj ∈πn

f (xti )(xtj+1∧t − xtj ∧t )
2 −→

∫ t

0
f (xs) d〈x〉s uniformly in t ∈ [0, T ] : (2.4)

indeed if tj ≤ t < tj+1 the sum on the left of (2.4) differs from
∫ t

0 f dμn by at most

∣∣f (xtj )
(
(xtj+1 − xtj )

2 − (xt − xtj )
2)∣∣ ≤ 2‖f ‖∞OT (x,πn)

2,

and
∫ t

0 f dμn converges to
∫ t

0 f dμ uniformly in t ≤ T as the following simple observation applied to the positive and
negative parts of f shows.

Scholium 2.2 (Polya). Let F,Fn : [0, T ] → R be càdlàg increasing. If F is continuous and Fn → F pointwise then
the convergence is uniform in t ∈ [0, T ].

Note that a priori μ, 〈x〉 and Q depend on � = (πn)n; when we want to stress this dependence, we will write
μ�, 〈x〉�,Q�. Note also that the series in (2.4) is in fact a finite sum, since every partition is finite on compacts.

5The terminology is justified by the fact that τ is a stopping time iff 1{τ≤·} is an optional process.
6Meaning that

∫
f dμn → ∫

f dμ for every continuous function f with compact support.
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We introduce now some more notation which will be used throughout and in particular in Section 7 and its proofs.
Given numbers a ≤ s ≤ t ≤ b and a finite partition π of [a, b] (meaning π = (ti)

k
i=0 with t0 = a, ti < ti+1 for all i,

and tk = b) we set

〈x〉π(s,t] :=
∑

i

(x(tk+1∧t)∨s − x(tk∧t)∨s)
2; (2.5)

if s = a and t = b the latter expression simplifies and we denote it with

〈x〉π := 〈x〉π(a,b] =
∑

i

(xtk+1 − xtk )
2.

Notice that if π is a partition of [a, b] � s, t then

〈x〉π(a,b] = 〈x〉π(a,s] + 〈x〉π(s,b] if s ∈ π; (2.6)

in particular

〈x〉π(s,t] ≤ 〈x〉π(a,b] if s, t ∈ π, (2.7)

and if π̃ is a partition of [b, c] then

〈x〉π∪π̃
(a,c] = 〈x〉π(a,b] + 〈x〉π̃(b,c]. (2.8)

We shall now see that the quadratic variation sampled along optional partitions (πn)n exists on a.e. path of a
semimartingale and that a.e. it does not depend on (πn)n. This is essentially the usual result on the existence of the
quadratic variation for a semimartingale.

Proposition 2.3. Let X be a continuous semimartingale and [X]t := X2
t − 2

∫ t

0 Xs dXs . If � = (πn)n are optional
partitions such that OT (X,πn) → 0 a.s. for all T < ∞ then there exists some subsequence (nk)k such that, for each
ω outside a P-null set and setting �′ := (πnk

)k , we have X(ω) ∈Q�′
and 〈X(ω)〉�′ = [X](ω).

Proof. Write πn = (τn
j )j , take Hn := ∑

j Xτn
j

1(τn
j ,τn

j+1] and notice that

2
∫ t

0
X dX + [X]t = X2

t = 2
∫ t

0
Hn dXt + 〈X〉πn

t . (2.9)

Since Hn converges pointwise to X and is bounded by a locally bounded predictable process,7 the stochastic domi-
nated convergence theorem gives that

∫ ·
0 Hn dX converges to

∫ ·
0 X dX uniformly on compacts in probability, which

implies the thesis. �

We now show that one can identify some of the subsubsequences along which the previous statement holds; in
particular this holds when πn is the Lebesgue partition πDn corresponding to Dn := 2−nN (the dyadics of order n).
Given p ∈ [1,∞) we denote by Sp the set of continuous semimartingales X = (Xt )t∈[0,T ] which satisfy

‖X‖Sp := ∥∥[M]1/2
T

∥∥
Lp +

∥∥∥∥
∫ T

0
d|V |t

∥∥∥∥
Lp

< ∞,

where X = M + V is the canonical semimartingale decomposition of X, [M]t := M2
t − 2

∫ t

0 Ms dMs is the quadratic
variation of M and |V |t is the variation of (Vs)s∈[0,t]. We recall the inequality∥∥∥sup

t≤T

|Xt |
∥∥∥

Lp(P)
≤ Cp‖X‖Sp , (2.10)

7For example |Hn
t | ≤ X∗

t with X∗
t := sups≤t |Xs |.
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which holds for local martingales (this being one side of the celebrated Burkholder–Davis–Gundy inequalities) and
thus trivially extends to X ∈ Sp . We will also use without further mention that if H is locally-bounded and predictable
then the canonical decomposition of

∫ ·
0 H dX is

∫ ·
0 H dM + ∫ ·

0 H dV and so

∥∥∥∥
∫ ·

0
H dX

∥∥∥∥
Sp

=
∥∥∥∥
(∫ T

0
H 2

t d[M]t
)1/2∥∥∥∥

Lp

+
∥∥∥∥
∫ T

0
|Ht |d|V |t

∥∥∥∥
Lp

.

Proposition 2.4. If in Proposition 2.3 we make the stronger assumption that
∑

n OT (X,πn) < ∞ a.s. for all T < ∞
then X(ω) ∈Q� and 〈X(ω)〉� = [X](ω) for a.e. ω.

Proof. Fix a compact time interval [0, T ] on which we will work. By prelocalizing we can assume that X ∈ S4

(see8 Émery [7, Théorème 2]) and passing to an equivalent probability we can moreover9 assume that K :=∑
n OT (X,πn) ∈ L4. Take Hn as in Proposition 2.3, Kn := Hn − X and notice that supt |Kn

t | ≤ OT (X,πn), so∑
n supt |Kn

t | ≤ K and in particular
∑

n supt |Kn
t |2 ≤ K2 ∈ L2. Using (2.10) and (a + b)2 ≤ 2(a2 + b2) gives that

supt |
∫ t

0 Kn dX| converges to zero fast in L2 if

∑
n

E

(∫ (
Kn

)2
d[M] +

(∫
Kn d|V |

)2)

is finite, which is true since it is bounded above by E(K2([M]T + |V |2T )), which is finite by Hölder inequality since
K ∈ L4,X ∈ S4. Since supt≤T | ∫ t

0 Kn dX| → 0 fast in L2 and thus a.s., (2.9) yields supt≤T |〈X〉πn
t −[X]t | → 0 a.s. �

Theorem 2.5 (Föllmer [9]). If x ∈Q, g ∈ C1 and t ∈ [0,∞) the limit

lim
n

∑
tj ∈πn

g(xtj )(xtj+1∧t − xtj ∧t ) (2.11)

exists uniformly on compacts and defines a continuous function of t denoted
∫ t

0 g(xs) dxs . This integral satisfies Itô’s
formula: for f ∈ C2(R),

f (xt ) − f (x0) =
∫ t

0
f ′(xs) dxs + 1

2

∫ t

0
f ′′(xs) d〈x〉s . (2.12)

Notice that the series defining the Föllmer integral in (2.11) and later in this paper are in fact finite sums, since
every partition is finite on compacts.

Proof of Theorem 2.5. By using the second order Taylor’s expansion write∑
tj ∈πn

f (xtj+1∧t ) − f (xtj ∧t ) (2.13)

as ∑
tj ∈πn

f ′(xtj )(xtj+1∧t − xtj ∧t ) + 1

2

∑
tj ∈πn

f ′′(xtj )(xtj+1∧t − xtj ∧t )
2 + Cn(t), (2.14)

where the correction term Cn(t) is bounded by∑
tj ∈πn

φ
(|xtj+1∧t − xtj ∧t |

)
(xtj+1∧t − xtj ∧t )

2 (2.15)

8This statement also appears in [18, Chapter 5, Theorem 14], without proof.
9If X ∈ S4(P) and (dQ/dP)(ω) := C exp(−K(ω)) then K ∈ L4(Q), and X ∈ S4(Q) since dQ/dP ∈ L∞(P).
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for some increasing function φ which is continuous at 0 and such that φ(0) = 0. Since x ∈ Q(πn)n , the term (2.15)
converges to 0 (for t = T , and thus also uniformly in t ≤ T ). Since (2.4) states that the second term of (2.14) converges
to the last term of (2.12) uniformly on compacts, by difference the first term of (2.14) also converges, uniformly on
compacts; moreover (2.12) holds since the telescopic sum (2.13) equals f (xt ) − f (x0). �

Remark that Föllmer [9] considers sums of the form∑
πn�tj ≤t

g(xtj )(xtj+1 − xtj ) and
∑

πn�tj ≤t

g(xtj )(xtj+1 − xtj )
2,

whereas we consider∑
tj ∈πn

g(xtj )(xtj+1∧t − xtj ∧t ) and
∑
tj ∈πn

g(xtj )(xtj+1∧t − xtj ∧t )
2. (2.16)

Since the difference between these two sums is

g(xti )(xti+1 − xt ) and g(xti )
(
(xti+1 − xti )

2 − (xti+1 − xt )
2)

(where i := max{j : πn � tj ≤ t}), which goes to zero as OT (x,πn) → 0, these expressions are equal in the limit. The
reason we prefer to use (2.16) is that it involves only non-anticipative quantities (i.e. their value of time t does not
depend on the value of x at later times), which better fits with the theory of stochastic integration and thus allows us
to obtain formulae like (2.9) and (6.5).

3. Pathwise local time

As already suggested in [9], there should be an extension of ‘Itô formula’ valid also when f ′′ is not a continuous
functions, as it is in (2.12). In the theory of continuous semimartingales, such an extension proceeds via local times
and the Tanaka–Meyer formula; what follows is a pathwise version.

If f ′− is the left-derivative of a convex function f , and f ′′ is the second derivative of f in the sense of distributions
(i.e. the unique positive Radon measure which satisfies f ′′([a, b)) = f ′−(b) − f ′−(a)) we obtain for a ≤ b

f (b) − f (a) =
∫ b

a

f ′−(y) dy =
∫ b

a

(
f ′−(a) +

∫
[a,y)

f ′′(du)

)
dy

= f ′−(a)(b − a) +
∫

[a,b)

(b − u)f ′′(du), so that

f (b) − f (a) = f ′−(a)(b − a) +
∫ ∞

−∞
1[a∧b,a∨b)(u)|b − u|f ′′(du) ∀a, b ∈R.

So if given a function x and a partition π = (tj )j , we set for u,v ∈ R

[[u,v]) :=
{

[u,v), if u ≤ v,

[v,u), if u > v,

and define the discrete local time (along π ) as

Lπ
t (u) := 2

∑
tj ∈π

1[[xtj ∧t ,xtj+1∧t ])(u)|xtj+1∧t − u|, (3.1)

then, if f equals the difference of two convex functions, we have the following discrete Tanaka–Meyer formula

f (xt ) − f (x0) =
∑
tj ∈π

f ′−(xtj )(xtj+1∧t − xtj ∧t ) + 1

2

∫
R

Lπ
t (u)f ′′(du). (3.2)
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A simple but important remark is that only the values of f in the compact interval [xt , xt ] are relevant. Note that
Lπ

t (u) = 0 for u /∈ [xt , xt ] and Lπ
t (·) is càdlàg, thus it is bounded; in particular Lπ

t (·) is f ′′-integrable.
In the remainder of this section we will restrict our attention to those functions whose second derivative is not

a general Radon measure but instead one which admits a density with respect to the Lebesgue measure. Thus, the
underlying measure space will be R with its Borel sets, endowed with the Lebesgue measure L1(du) (sometimes
denoted simply by du). We will consider L

πn
t (·) as a function in Lp , and denote by Wk,p the (Sobolev) space of

functions whose kth derivative in the sense of distributions is in Lp , so that W 1,p is the set of absolutely continuous
functions whose classical derivative (which exists a.e.) belongs to W 0,p = Lp , and W 2,p is the set of C1 functions
whose classical derivative belongs to W 1,p . The following is our main theorem in this section.

Theorem 3.1. Let x be continuous function and fix a sequence of partitions � = (πn)n such that Ot(x,πn) → 0 as
n → ∞ for all t ∈ [0,∞). Then, for 1 < p < ∞, q = p/(p − 1), the following are equivalent:

(1)
∑

tj ∈πn
g(xtj )(xtj+1∧t − xtj ∧t ) converges for every g ∈ W 1,q and t ∈ [0,∞) to a continuous function of t , which

we denote by
∫ t

0 g(xs) dxs .
(2)

∑
tj ∈πn

g(xtj )(xtj+1∧· − xtj ∧·) converges uniformly on compacts for every g ∈ W 1,q .

(3) (L
πn
t )n converges weakly in Lp to some Lt for all t ∈ [0,∞), and [0,∞) � t �→ Lt ∈ Lp is continuous if Lp is

endowed with the weak topology.
(4) For all t ∈ [0,∞) there exists Lt ∈ Lp s.t.

∫
R

L
πn· (u)h(u)du → ∫

R
L·(u)h(u)du uniformly on compacts for every

h ∈ Lq .
(5) x ∈Q� and for all M ∈ [0,∞) there exists t ≥ M such that (L

πn
t )n is bounded in Lp .

If the above conditions are satisfied then (L
πn
t )n is bounded in Lp for all t ∈ [0,∞), and for all f ∈ W 2,q and

t ∈ [0,∞)

f (xt ) − f (x0) =
∫ t

0
f ′(xs) dxs + 1

2

∫
R

Lt(u)f ′′(u) du, (3.3)

and for all Borel bounded h∫ t

0
h(xs) d〈x〉s =

∫
R

Lt(u)h(u)du. (3.4)

The statements above hold for p = ∞, q = 1 if the weak topology on Lp is replaced by the weak∗ topology on L∞.
Moreover, they also hold for p = 1, q = ∞ if in item (5) boundedness in Lp is replaced by equintegrability.

In Theorem 3.1 we slightly modify10 the setting of [26] in order to obtain a stronger theorem with equivalent
conditions; the main novelty is that item (5) implies the others. In particular we can exactly describe the difference
between functions that only admit (pathwise) quadratic variation and the ones that also have local time. In Example 3.6
below we show that the two notions are strictly different and give an explicit construction of a path which admits
quadratic variation but not a pathwise local time.

We will henceforth denote by Lp the space of continuous functions x for which the equivalent conditions of
Theorem 3.1 hold. We will call Lt(u) the pathwise local time of x at time t at level u. Observe that Lp and Lt(u) a
priori depend on � = (πn)n, and that Lt(u) depends on x. We will write L�

p , L�
t (u), Lx

t (u) or L
x,�
t (u) only when

we want to highlight these dependencies; as in the remainder of this section � = (πn)n will be fixed, we will never
do that, and we will simply write Ln

t for L
πn
t .

Notice that since Ln
t (u) = 0 for u /∈ [xt , xt ], we can consider Ln

t (u) as an element of Lp(μ) with μ being the

restriction of the Lebesgue measure to [xt , xt ]. In particular, Theorem 3.1 holds if Wk,q is replaced with W
k,q

loc .
Moreover, if p̂ ≤ p, since μ is finite, Lp(μ) embeds continuously in Lp̂(μ), and so Lp ⊆ Lp̂ and the limits of (L

πn
t )n

in the weak Lp and Lp̂ topology coincide, so Lt does not really depend on p.

10Indeed [26] does not require t �→ Lt to be continuous, and considers strong convergence in L2 instead of weak convergence in Lp .
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Note also that for x ∈ L1, using standard regularisation techniques, we can define a modification (lt )t of the
pathwise local time (Lt )t which is càdlàg and increasing in t for a.e. u. The occupation time formula then extends to
all Borel bounded h∫ T

0
h(t, xt ) d〈x〉t =

∫
R

∫ T

0
h(t, u) dlt (u) du. (3.5)

Finally, we show that if x ∈ Lp the Föllmer integral is a continuous linear functional on W 1,q . This fact could have
been used to define Föllmer’s integral for g ∈ W 1,q as the continuous extension of the Föllmer’s integral for g ∈ C1

defined in Theorem 2.5, as done in [1]. Note that the following result would not hold if we only assumed uniform
convergence on compacts of gn to g.

Proposition 3.2. Let p ∈ (1,∞] (resp. p = 1) with conjugate exponent q . If x ∈ Lp , gn, g ∈ W 1,q , gn(x0) → g(x0)

and g′
n → g′ in the weak (resp. weak∗) topology of Lq , then

∫ t

0 gn(xs) dxs → ∫ t

0 g(xs) dxs for all t ∈ [0,∞), and the
convergence is uniform on compacts if moreover |g′

n| → |g′| weakly (resp. weakly∗) in Lq .

Proof. Define f (u) := ∫ u

x0
g(y)dy and analogously fn from gn, and notice that fn(u) → f (u) for all u ∈ R, so

Tanaka–Meyer formula (3.3) gives the thesis. If moreover |g′
n| → |g′| weakly in Lq then since the positive part

max(h,0) of h equals (h + |h|)/2, Polya’s Scholium 2.2 shows local uniformity of the convergence∫
R

Lt(u)max
(
g′

n(u),0
)
du →

∫
R

Lt(u)max
(
g′(u),0

)
du;

working analogously with the negative parts we get the thesis. �

In the rest of this section we establish Theorem 3.1 via a series of lemmas; if not explicitly stated otherwise, p is
assumed to be in (1,∞).

Lemma 3.3. x ∈Q iff
∫
R

Ln
t (u) du converges to a continuous function ψt of t ∈ [0,∞). In this case the convergence

is uniform on compacts and 〈x〉 = ψ .

Proof. Applying formula (3.2) with f (x) = x2 ∈ L1([xt , xt ]) we obtain

∑
tj ∈πn

x2
tj+1∧t − x2

tj ∧t − 2xtj (xtj+1∧t − xtj ∧t ) =
∫
R

Ln
t (u) du. (3.6)

The statement follows rewriting the left side of (3.6) as
∑

tj ∈πn
(xtj+1∧t − xtj ∧t )

2. �

Given x ∈ Q, νt will denote the occupation measure of (xs)s≤t (along �), defined on the Borel sets of [0, t] by
νt (A) := ∫ t

0 1A(xs) d〈x〉s .

Lemma 3.4. If x ∈Q and t ∈ [0,∞) the following are equivalent.

(1) For every g ∈ W 1,q the following sequence converges

∑
tj ∈πn

g(xtj )(xtj+1∧t − xtj ∧t ). (3.7)

(2) The sequence (Ln
t (·))n converges in the weak topology of Lp (to a quantity which we denote by Lt(·)).

The above conditions imply that (Ln
t (·))n is bounded in Lp and (3.3) holds. Conversely, if (Ln

t (·))n is bounded in
Lp and x ∈Q then items (1) and (2) hold, and νt has a density Lt with respect to L1.
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Proof. The equivalence between items (1) and (2), and the fact that these imply (3.3), follows immediately applying
(3.2) with f (u) := ∫ u

x∗ g(y)dy. That item (2) implies the boundedness of (Ln
t (·))n follows from Banach–Steinhaus

theorem. For the opposite implication notice that since x ∈ Q we can use Theorem 2.5, which together with (3.2)
shows that

∃ lim
n

∫
R

Ln
t (u)h(u)du =

∫ t

0
h(xs) d〈x〉s =

∫
hdνt for all h ∈ C0. (3.8)

Since Lp is reflexive (see [3, Theorem 4.10]), its unit ball is sequentially compact in the weak topology [3, Theorem
3.18], so we can get convergence of Ln

t along some subsequence (of any subsequence) to some Lt and all we have
to show is that the limit does not depend on the subsequence. Considering (Ln

t )n as elements of the measure space
([xt , xt ],L1) we have that C0 ⊆ Lp , so

∫
g(u)νt (du) = ∫

g(u)Lt (u) du for all continuous g. Thus Lt(u)du = νt (du);
in particular the limit Lt does not depend on the subsequence, proving item (2). �

Lemma 3.5. If the equivalent conditions (1) and (2) of Lemma 3.4 are satisfied for all t ∈ [0,∞), the following
conditions are equivalent.

(1) For every g ∈ W 1,q the function
∫ t

0 g(xs) dxs is continuous in t ∈ [0,∞).
(2) For every g ∈ W 1,q the convergence in (3.7) is uniform on compacts.
(3) The map [0,∞) � t �→ Lt(·) ∈ Lp is continuous in the weak topology of Lp .
(4) For every h ∈ Lq the convergence

∫
R

Ln
t (u)h(u)du → ∫

R
Lt(u)h(u)du is uniform on compacts.

Proof. The identity (3.2) shows that items (2) and (4) are equivalent. The identity (3.3) shows that (1) and (3) are
equivalent. Trivially item (2) implies item (1). Finally Scholium 2.2 shows that item (3) implies item (4). �

Proof of Theorem 3.1. If item (5) holds, since the last term in the decomposition (4.3) is bounded by Ot(x,π) and
the two sums are increasing in t , (Ln

t )n is bounded in Lp for all t ∈ [0,∞); moreover Lemma 3.4 shows that for all
h ∈ Lq

∃ lim
n

∫
R

Ln
t (u)h(u)du =

∫
Lt(u)h(u)du =

∫
hdνt =

∫ t

0
h(xs) d〈x〉s . (3.9)

Since (3.9) shows that
∫

Lt(u)h(u)du is a continuous function of t , Lemma 3.5 implies that item (3) holds. That
item (3) implies x ∈ Q follows applying Lemma 3.3 since 1[xt ,xt ] ∈ Lp and Ln

t = 0 outside [xt , xt ]. Lemma 3.4 states
that νt has a density Lt ; thus, formula (3.4) holds. All other assertions follow directly from Lemmas 3.4 and 3.5.

If p = 1 or p = ∞ the proofs hold with the following minor modification in the part of the proof of Lemma 3.4
which deals with the sequential compactness of (Ln

t )n. If p = ∞, the unit ball of L∞ is sequentially compact since it
is compact (and metrizable) in the weak∗ topology because of Banach–Alaoglu theorem (and since L1 is separable),
see [3, Theorem 3.16] (and see [3, Theorems 3.28 and 4.13]). If p = 1, since Ln

t ≥ 0, Lemma 3.3 implies that (Ln
t )n

is bounded in L1, so if (Ln
t )n is equintegrable then it is weakly sequentially compact (by the Dunford–Pettis theorem,

see [3, Theorem 4.30]). �

We end this section with the following

Example 3.6. There exists a function that admits pathwise quadratic variation but no pathwise local time.

Put differently, we show that the inclusion L�
1 ⊂ Q� can be strict. This proves that the additional requirement

in (5) in Theorem 3.1 is not automatic and is indeed needed. More precisely, we now construct a continuous function
x : [0,1] → R and a sequence of refining partitions � = (πn)n of [0,1] whose mesh is going to zero and such that
〈x〉πn

t converges for all t to the (continuous!) Cantor function c(t) (a.k.a. the Devil’s staircase) but (L
πn

1 )n does not
converge weakly in L1(du); in particular x has no pathwise local time along (πn)n, no matter which definition we
use.11 Our construction was inspired by a remark by Bertoin on page 194 of [1].

11Meaning that if one replaced the weak topology of L1 with any stronger topology (e.g. the weak/strong topology of Lp , or the uniform topology
as done in [17, Definition 2.5]) one would still not obtain convergence of L

πn
t .
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Divide [0,1] into three equal subintervals and remove the middle one I 1
1 := ( 1

3 , 2
3 ). Divide each of the two re-

maining closed intervals [0, 1
3 ] and [ 2

3 ,1] into three equal subintervals and remove the middle ones I 2
1 := ( 1

32 , 2
32 ) and

I 2
2 := ( 7

32 , 8
32 ). Continuing in this fashion, at each step i we remove the middle intervals I i

1, . . . , I
i
2i−1 , each of length

1/3i . The Cantor set is defined as

C := [0,1]
∖ ∞⋃

i=1

2i−1⋃
j=1

I i
j ,

and the function which we will consider is x(t) := √
2 mins∈C |s − t |. To construct our partitions πn of [0,1] we

define first a refining sequence (πi
n,j )n of Lebesgue partitions of I i

j setting πi
n,j = (t

k,i
n,j )

2ni+1

k=0 with t
0,i
n,j = inf I i

j (so that

x(t
0,i
n,j ) = 0), and

t
k+1,i
n,j := inf

{
t > t

k,i
n,j : xt ∈

(
2−ni sup

t∈I i
j

x(t)
)
Z, xt �= x

t
k,i
n,j

}
, (3.10)

so that t
2ni+1,i
n,j = sup I i

j and |x
t
k+1,i
n,j

− x
t
k,i
n,j

| = 2−ni supt∈I i
j
x(t) = 1/(

√
32n)i and so

〈x〉π
i
n,j

I i
j

:=
2ni+1−1∑

k=0

(x
t
k+1,i
n,j

− x
t
k,i
n,j

)2 = 2ni+13−i2−2ni = 3−i21−ni . (3.11)

Then define our refining sequence (πn)n of partitions of [0,1] whose mesh is going to zero setting πn := {0,1} ∪⋃n
i=1

⋃2i−1

j=1 πi
n,j and we set εn := 2

2n3 so that as n → ∞

〈x〉πn

1 =
n∑

i=1

2i−1∑
j=1

〈x〉π
i
n,j

I i
j

=
n∑

i=1

(εn)
i = 1 − (εn)

n+1

1 − εn

→ 1. (3.12)

Now, the Cantor function c is defined on [0,1] to be the only continuous extension of the function f which is defined

on the set D := {0,1} ∪ ⋃∞
i=1

⋃2i−1

j=1 Ī i
j in this way:12 f (0) = 0, f (1) = 1, and each time we remove the middle third

I i
j from a parent interval J i

j , f is defined on the closure Ī i
j of I i

j to be the average of its values at the extremes of J i
j

(so f = 1/2 on Ī 1
1 , f = 1/4 on Ī 2

1 and f = 3/4 on Ī 2
2 etc.).

Since the difference between 〈x〉πn
t and the increasing function

∑
πn�tj ≤t (xtj+1 − xtj )

2 is going to zero for all t

as n → ∞, and since c is continuous and increasing, to conclude that 〈x〉πn
t → c(t) for all t it is enough to show

it for all t in the dense set D, see also Lemma 7.2 below. We already know this for t = 1 and (trivially) for t = 0.
Since 〈x〉πn

(0, 1
3 ] = 〈x〉πn

( 2
3 ,1], and (3.11) shows that 〈x〉πn

( 1
3 , 2

3 ] → 0, (3.12) and (2.6) give that 〈x〉πn
t → 1/2 = c(t) for all

t ∈ [ 1
3 , 2

3 ] = Ī 1
1 . Analogously 〈x〉πn

(0, 1
9 ] = 〈x〉πn

( 2
9 , 1

3 ], and (3.11) shows that 〈x〉πn

( 1
9 , 2

9 ] → 0, so 〈x〉πn
1
3

→ 1/2 and (2.6) give

that 〈x〉πn
t → 1/22 = c(t) for all t ∈ [ 1

9 , 2
9 ] = Ī 2

1 . In this way we see that 〈x〉πn
t → c(t) for all t ∈ D and thus for all

t ∈ [0,1].
To conclude, let us prove that the pathwise local time L

πn

1 (u) converges to 0 for all u �= 0, so that (L
πn

1 )n does
not converge weakly in L1(du) (because otherwise, by the Dunford–Pettis theorem [3, Theorem 4.30], it would be
uniformly integrable and would thus converge to zero strongly in L1(du), whereas we know that

∫ 1
0 L

πn

1 (u) du =
〈x〉πn

1 → c(1) = 1). Since x(t) ≥ 0 for all t , L
πn

1 (u) = 0 for all n if u < 0. For each i, j the function (x(t))t∈πn∩I i
j

crosses13 each level u > 0 at most twice, and since sup{x(t) : t /∈ ⋃k
i=1

⋃2i−1

j=1 I i
j } = 1/

√
3k+1 is strictly smaller than

12Such extension exists and is unique since f is continuous and D is dense in [0,1].
13Meaning that either xtk ≤ u < xtk+1 or xtk+1 ≤ u < xtk where (tk)k := πn ∩ I i

j
.
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any u > 0 for big enough i = i(u), the number of times (x(t))t∈πn crosses level u > 0 is bounded above independently
of n; since O1(x,πn) = 1/(

√
3n) → 0 as n → ∞, this implies that L

πn

1 (u) → 0.

4. Change of variables and time-change

In applications to the study of variance derivatives, for example [6], one starts with a continuous positive price func-
tion S, and the ‘variance’ is defined as the quadratic variation of the log price x = logS. In this connection it is useful
to be able to change variables, and to relate for example the local time of log(x) with the one of x. We recall that, al-
though being a semimartingale is preserved only by C2 transformations, possessing a quadratic variation (in the sense
of Definition 2.1) is more generally invariant under C1 transformations; indeed f ∈ C1 and x ∈ Q� imply f (x) ∈Q�

and 〈f (x)〉�t = ∫ t

0 f ′(xs)
2〈x〉�s (see [21, Proposition 2.2.10]). We prove below a similar result for the pathwise local

time (if f is monotone), extending the C2 case treated in [6]; then we show that time-change preserves the pathwise
local time.

For Propositions 4.1 and 4.2 we consider a fixed sequence of partition (πn)n such that Ot(x,πn) → 0 as n → ∞
for all t ∈ [0,∞).

Proposition 4.1. Let x ∈ Lp and let f : R→R be C1 and strictly monotone. Then f (x) ∈ Lp and the pathwise local
times of x and f (x) are related by

L
f (x)
t

(
f (u)

) = ∣∣f ′(u)
∣∣Lx

t (u). (4.1)

In Proposition 4.1 one considers the same sequence of partitions (πn)n for x and for f (x). This seems to be
problematic, since ideally we would like Proposition 4.1 to hold also for Lebesgue partitions, and clearly if P is a
partition of R then πP (f (x)) differs from πP (x). However Proposition 4.1 does apply to suitably chosen Lebesgue
partitions since πf (P )(f (x)) = πP (x) if f is strictly increasing.

To prove Proposition 4.1 and better understand the behavior of Lπ , let tJ := max{tj ∈ π : tj ≤ t} and

πU
t (u) := {tj ∈ π : xtj ≤ u < xtj+1, tj+1 ≤ t},

πD
t (u) := {tj ∈ π : xtj+1 ≤ u < xtj , tj+1 ≤ t},

(4.2)

and notice that, since all the terms in (3.1) with t < tj are equal to zero,

Lπ
t (u)/2 =

∑
tj ∈πU

t (u)

(xtj+1 − u) +
∑

tj ∈πD
t (u)

(u − xtj+1) + 1[xtJ
,xt )(u)|xt − u|. (4.3)

Proof of Proposition 4.1. Since including t in any partition π does not change the value of Lπ
t (u) and insures that the

last term in (4.3) is zero, we assume without loss of generality that our partitions contain t . If f is strictly increasing
and a ≤ b then

xa ≤ u < xb iff f (xa) ≤ f (u) < f (xb),

and thus (4.3) implies that L
f (x),π
t (f (u))/2 equals

∑
tj ∈πU

t (u)

(
f (xtj+1) − f (u)

) +
∑

tj ∈πD
t (u)

(
f (u) − f (xtj+1)

)
. (4.4)

If tj ∈ πU
t (u), since f ∈ C1 there exists zj (u) ∈ (u, xtj+1) such that

f (xtj+1) − f (u) = f ′(zj (u)
)
(xtj+1 − u),
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so we can write the first sum in (4.4) as∑
tj ∈πU

t (u)

(
f ′(zj (u)

) − f ′(u)
)
(xtj+1 − u) + f ′(u)

∑
tj ∈πU

t (u)

(xtj+1 − u). (4.5)

Treating analogously the second sum in (4.4) we get that

L
f (x),π
t

(
f (u)

) − f ′(u)L
x,π
t (u) (4.6)

is bounded by

2
∑

tj ∈πU
t (u)∪πD

t (u)

∣∣f ′(zj (u)
) − f ′(u)

∣∣|xtj+1 − u|. (4.7)

Now define

Rt(g,π) := max
{∣∣g(c) − g(d)

∣∣ : c, d ∈ [xt , xt ], |c − d| ≤ Ot(x,π)
}
. (4.8)

Clearly (4.7) with π = πn is bounded by Rt(f
′,πn)L

x,πn
t (u), so since L

x,πn
t converges to Lx

t and Rt(f
′,πn) → 0 we

get that (4.6) with π = πn converges to 0, proving the thesis.
If f is strictly decreasing then the argument is the same save for the sign change, which comes from the fact that

upcrossings are now transformed in downcrossings and conversely, so xtj+1 − u needs to be replaced by u − xtj+1 . �

Proposition 4.2. Let τ : [0,∞) → [0,∞) be an increasing càdlàg function such that xτ is continuous and τ(0) = 0.
Given � = (πn)n, let τ(�) := (τπn)n where, given π = (tj )j , τπ denotes the partition (τtj )j . If Oτt (x, τπn) → 0 for

all t ∈ [0,∞) and x ∈ Lτ(�)
p then Ot(x ◦ τ,πn) → 0 for all t ∈ [0,∞), xτ ∈ L�

p and the pathwise local times are
related by

L
x◦τ,�
t (u) = Lx,τ(�)

τt
(u).

Moreover if τ is bijective14 then x ◦ τ is continuous, O
τ−1
t

(x ◦ τ, τ−1
π ) = Ot(x,π) for any partition π , and if P is a

partition of R then the Lebesgue partitions of x ◦ τ and x satisfy πP (x ◦ τ) = τ−1
πP (x).

Proof. Even if τ is not strictly increasing, the identity{
τs : s ∈ [ti , ti+1) ∩ [0, t]} = [τti , τti+1) ∩ [0, τt ] ∩ τ

([0,∞)
),

holds, and it trivially implies that Ot(x ◦ τ,πn) ≤ Oτt (x, τπn), with equality if τ is a bijection. Trivially L
x◦τ,π
t (u) =

L
x,τπ
τt (u) holds for every partition π , and everything else follows easily. �

Note that Propositions 4.1 and 4.2 hold (with the same proof) with other definitions of existence of the pathwise
local time; for example if one replaced the weak topology of Lp for p ∈ [1,∞) (resp. the weak∗ topology on L∞)
with the strong one in item (3) of Theorem 3.1, or if one considered Definition 2.5 in [17].

5. Extension to convex functions

The choice of how to define the existence of the pathwise local time is intrinsically linked to the class of functions for
which one is able to establish the pathwise Tanaka–Meyer formula (3.3). To establish it for all convex functions one
needs to restrict significantly the set of paths for which the local time exists; nonetheless, in [17] it is shown that this
approach works for general enough paths (namely, for the ‘typical path’ in the sense of Vovk [25]).

It is natural to ask if the above can be extended even further, to all continuous functions. As already remarked in
[9], the next proposition shows that, if one wants to consider a generic path of a local martingale, the answer is no –

14I.e. if τ is strictly increasing, continuous and such that τ(0) = 0, limt→∞ τ(t) = ∞.
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to define stochastic integrals in a pathwise manner for more general integrands one has to consider partitions which
depend both on the integrator and the integrand as in [2, Theorem 7.14] and [12].

Proposition 5.1 (Stricker [23]). Let x ∈ C[0, T ]. If for every sequence of partitions (πn)n with OT (x,πn) → 0 and
every bounded continuous function f on R the Riemann sums

∑
ti∈πn

f (xti )(xti+1 − xti ) converge, then x has finite
variation.

In what follows we take a different route from [17] to further extend Föllmer’s integral and Tanaka–Meyer formula
beyond f ∈ C2. We consider f which is a difference of two convex functions and write f ′− for its left-continuous
derivative and f ′′ for the second distributional derivative. In a way somewhat reminiscent of [1, Proposition 1.2],
we define

∫ t

0 f ′−(xs) dxs as the limit of
∫ t

0 f ′
n(xs) dxs , where fn are some special C2 functions converging to f and∫ t

0 f ′
n(xs) dxs is defined in Theorem 2.5 as a limit of Riemann sums.

We now fix � = (πn)n such that Ot(x,πn) → 0 as n → ∞ for all t ∈ [0,∞), and we consider a function g which
is C2, positive and with compact support in [0,∞), and such that

∫
R

g(x)dx = 1. We will then approximate the target
fuction f with fn := gn ∗ f , where ∗ denotes the convolution between a function and a measure (or a function), gn

is the mollifier gn(u) := ng(nu). Recall that, if x ∈ L1, Lt(·) is seen an element of L1(du); the following theorem
assumes that there exists a modification of Lt which is càdlàg in u, i.e., a function L̃t (u) càdlàg in u and such that,
for each t , the set {u : L̃t (u) �= Lt(u)} has zero Lebesgue measure; this is not an unreasonable assumption, as it is
satisfied by a.e. path of a semimartingale (indeed the local time of a continuous semimartingale has a modification
which is jointly càdlàg in u and continuous in t ).

Theorem 5.2. Assume that x ∈ L1 and there exists a modification Lt(u) of the pathwise local time which is càdlàg in
u for all t . If f is convex then fn is C2 and for all t ∈ [0,∞) the Föllmer integral

∫ t

0 f ′
n(xs) dxs converges to a finite

limit, denoted by
∫ t

0 f ′−(xs) dxs , which is independent of the choice of g and satisfies

f (xt ) − f (x0) =
∫ t

0
f ′−(xs) dxs + 1

2

∫
R

Lt(u)f ′′(du). (5.1)

Moreover if Lt(u) is jointly càdlàg in u and continuous in t then the convergence is uniform on compacts and t �→∫ t

0 f ′−(xs) dxs is continuous.

Theorem 5.2 allows us to define15
∫ t

0 g−(xs) dxs for any function g of finite variation on compacts, since
then f (u) := ∫ u

x0
g(y)dy is the difference of convex functions. We now study the continuity properties of g �→∫ ·

0 g−(xs) dxs .

Proposition 5.3. Let x ∈ L1 and assume that there exists a modification Lt(u) of the pathwise local time which is
continuous in u. If gn, and g are functions of finite variation on compacts, gn(x0) → g(x0) and g′

n → g′ weakly
(seen as measures), then

∫ t

0 gn(xs) dxs → ∫ t

0 g(xs) dxs for all t ∈ [0,∞). Moreover, if |g′
n| → |g′| weakly then the

convergence is uniform on compacts.

Proof. Define f (u) := ∫ u

x0
g(y)dy and analogously fn from gn, and notice that fn(u) → f (u) for all u ∈ R, so

Tanaka–Meyer formula (5.1) gives the thesis. If moreover |g′
n| → |g′| weakly then, since the positive part max(h,0)

of h equals (h + |h|)/2, Polya’s Scholium 2.2 shows local uniformity of the convergence∫
R

Lt(u)max
(
g′

n,0
)
(du) →

∫
R

Lt(u)max
(
g′,0

)
(du);

working analogously with the negative parts we get the thesis. �

15As pointed out to us by Föllmer [10] another possible definition of
∫ t

0 f ′−(xs ) dxs for non-smooth convex f is as the limit of
∫ t

0 f ′
k
(xs ) dxs for

any (fk)k ⊆ C2 such that f ′′
k

(x) dx (considered as a measure) converges weakly to f ′′(x) dx. It follows from (3.3) that this definition makes sense
(i.e. the limit exists and is independent of the approximating sequence (fk)k ), and agrees with ours, if Lt (u) has a modification which is continuous
in u.
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It is then natural to ask for which paths the above given definition of
∫ t

0 f ′−(xs) dxs coincides with the one used in
Theorem 3.1 for f ∈ W 2,q . The answer is that the limit of the Riemann sums

∑
tj ∈πn

f ′−(xtj )(xtj+1∧t − xtj ∧t ) exists

and equals
∫ t

0 f ′−(xs) dxs iff
∫

L
x,πn
t (u)f ′′(du) converges to

∫
Lx

t (u)f ′′(du), as it follows from (3.2) and (5.1). In
particular this holds if x ∈ Lp ⊆ L1, so the definition of the Föllmer’s integral given in Theorem 5.2 is indeed an
extension of the one given in Theorem 3.1.

Proof of Theorem 5.2. Since f is uniformly continuous on compacts, fn → f pointwise. Thus, if we can prove
that

∫
R

Lt df
′′
n → ∫

R
Lt df

′′, the thesis follows applying (3.3) to fn and taking limits; indeed (5.1) shows that∫ t

0 f ′−(xs) dxs does not depend on g. Define ĝn(u) := gn(−u) and apply Fubini’s theorem and the identity f ′′
n =

gn ∗ f ′′ to get that∫
R

Lt df
′′
n =

∫
R

(ĝn ∗ Lt) df ′′. (5.2)

Since Lt is zero outside [xt , xt ] and g has compact support, Lt , g and ĝn ∗ Lt are all 0 outside a common compact
interval [−A,A]. In particular since Lt(·) is càdlàg it is bounded; since supu |ĝn ∗ Lt(u)| ≤ supu |Lt(u)|, the thesis
follows from the dominated convergence theorem and (5.2) if we prove that ĝn ∗ Lt(u) → Lt(u) for all u. Notice that

(ĝn ∗ Lt − Lt)(u) =
∫
R

ĝn(y)
(
Lt(u − y) − Lt(u)

)
dy. (5.3)

Since Lt(·) is right continuous, for every ε > 0 and u there is an n such that

∣∣Lt(u − y) − Lt(u)
∣∣ < ε if y ∈ [−A/n,0]; (5.4)

since g = 0 outside [0,A], the integral on the right side of (5.3) is actually over [−A/n,0], so |ĝn ∗Lt(u)−Lt(u)| < ε.
Finally if Lt(u) is jointly càdlàg in u and continuous in t then n such that (5.4) holds can be chosen as to hold

simultaneously for all t in any given compact set. This implies that the convergence is uniform on compacts, and so∫ ·
0 f ′−(xs) dxs is continuous. �

6. Upcrossing representations of local time

In this section we will consider a continuous semimartingale X = (Xt )t (with t ∈ [0,∞) or t ∈ [0, T ]) with canonical
semimartingale decomposition X = M + V and with (classical16) local time t (u) which is (jointly) continuous in
t and càdlàg in u (such a version exists, see [13, Chapter 3, Theorem 7.1]). Some of our results specialise to the
case where  is jointly continuous in t and u, which happens for example when dV is absolutely continuous with
respect to d[M]: as explained17 in [27, Example 2.2.3], since (6.4) below gives that Y := ∫ ·

0 1{Xs=u} dMs = 0, so
that if dV = σd[M] then using (6.4) again we get that ·(u) − ·(u−) = 2

∫ ·
0 1{Xs=u}σs d[M]s = 2

∫ ·
0 σs d[Y ]s = 0. In

particular dV = σd[M] holds if V = 0, i.e. if X is a local martingale (under the original probability P or a Q such
that P �Q).

The following is the main theorem of this section. It essentially says that the pathwise local time sampled along
optional partitions (πn)n exists on a.e. path of a semimartingale, and that a.e. it equals the (classical) local time (in
particular, it does not depend on (πn)n).

Theorem 6.1. Assume that f : R → R is the difference of two convex functions, that πn are optional partitions such
that OT (X,πn) → 0 a.s. and that X = (Xt )t∈[0,∞) is a continuous semimartingale. If X has a jointly continuous local

16We refer to the semimartingale local time, i.e. the one for which the Tanaka–Meyer formula holds; this is in general different from the parallel
notion of local time for Markov processes.
17We thank an anonymous referee for this observation and reference.
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time , or if f is C1, then there exists a subsequence (nk)k such that, for ω outside a P-null set (which may depend on
f ′′),

sup
t≤T

∣∣LX(ω),πnk
(ω)

t (u) − t (ω,u)
∣∣ → 0 in Lp

(∣∣f ′′∣∣(du)
)

as k → ∞ (6.1)

simultaneously for all p ∈ [1,∞), T < ∞.

Note that applying Theorem 6.1 with f (x) = x2/2 ∈ C1 gives in particular that a.e. path of a continuous semi-

martingale is in Lp for all p < ∞; indeed, L
X,πnk
t (u) → t (u) strongly (and thus weakly) in Lp(du) a.s., locally

uniformly in t .
The previous theorem follows from the following technical statement.

Theorem 6.2. Let πn be optional partitions such that OT (X,πn) → 0 a.s., p ∈ [1,∞), T < ∞, X ∈ Sp , μ be a
sigma-finite positive Borel measure on R, and define

hπn(u) :=
∥∥∥sup

t≤T

∣∣LX(ω),πn(ω)
t (u) − t (ω,u)

∣∣∥∥∥
Lp(P(dω))

, u ∈R. (6.2)

Then hπn(·) is bounded and (hπn(·))n converges pointwise (resp. μ a.e.) to 0 if  is jointly continuous (resp. if μ is a
measure with no atoms).

The fact that (hπn(·))n converges pointwise to zero was given an involved proof18 in [26] in the case where X

is a continuous martingale bounded in L2, p = 2 and πn are deterministic partitions such that ‖πn‖ → 0. In the
case where X is in a class of continuous Dirichlet processes which includes S2 semimartingales and the partitions
are of Lebesgue-type, it is shown in [1, Theorem 2.5 and Proposition 2.7] that L

X(ω),πn(ω)
t (u) → t (ω,u) weakly in

L1(dP× du) for each t .
Moreover, Lemieux [14, Theorem 2.4] has derived a version of Theorem 6.1 where the Lp(|f ′′|(du)) convergence

is replaced by the uniform convergence, in the special case where the partitions are of Lebesgue-type. For the case
of continuous local martingales one can also consult Perkins [16] or Chacon et al. [4, Theorem 2 and Remark 2], or
Perkowski and Prömel [17, Theorem 3.5 and Remark 3.6], who actually prove convergence not only for P a.e. ω but
even quasi surely with respect to the set of all local martingale measures. Although our approach yields a weaker type
of convergence, it has a simple proof and it works for continuous semimartingales and general optional partitions such
that OT (X,πn) → 0 a.s.

In the special case of Lebesgue partitions π = πεZ, Theorem 6.2 closely relates to the downcrossing representa-
tion of local time conjectured by Lévy (proved by Itô and McKean for Brownian motion, extended by El Karoui to
semimartingales, and found in [19, Theorem VI.1.10]), which states that, for an X ∈ Sp ,

lim
ε→0

∥∥∥sup
t≤T

∣∣εDε
t (ω,0) − t (ω,0)

∣∣∥∥∥
Lp(P(dω))

= 0,

where Dε
t (ω,0) (defined in (6.3) below) is the number of downcrossings at level 0. Indeed, as we now explain, Lévy’s

representation above is equivalent to the fact that hπεnZ(0) → 0 whenever 0 < εn → 0.
Given a continuous path x = (xs)s≤t and a < b, we set σ

a,b
0 := 0, τ

a,b
0 = inf{t : xt = b} and, for k ≥ 1, we define

σ
a,b
k := inf

{
t > τ

a,b
k−1 : xt = a

}
, τ

a,b
k := inf

{
t > σ

a,b
k : xt = b

}
,

Dε
t (u) := max

{
k : σu,u+ε

k ≤ t
}
.

(6.3)

It turns out that the downcrossings Dε
t (u) of (Xs)s≤t from u + ε to u are closely related to the local time along πεZ.

Indeed, the upcrossings Uε
t (u) := max{k : τu+ε,u

k ≤ t} of (Xs)s≤t from u to u + ε differ from Dε
t (u) by at most 1, so

18The uniformity in t , not stated in [26], follows easily by Doob’s L2-inequality since (6.5) shows that (L
πn,X
t (u) − t (u))t is a L2 bounded

martingale for each u,n.
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using (4.3) we get that

L
πεZ
t (u)/2 = U

πεZ
t (u)(ε − u) + D

πεZ
t (u)u + 1[xtJ

,xt )(u)|xt − u|.
The last term is bounded by Ot(x,πεZ) ≤ ε and, considering u = 0, we get that∣∣LπεZ

t (0)/2 − εDε
t (0)

∣∣ ≤ 2ε,

which concludes the proof of equivalence.
We recall the following fact, for which we refer to [19, Chapter 6, Theorem 1.7]:

2
∫ ·

0
1{Xs=u} dXs = 2

∫ ·

0
1{Xs=u} dVs = ·(u) − ·(u−) a.s.,∀u ∈ R. (6.4)

Proof of Theorem 6.2. Consider the convex function f (x) := |x −u| and let sign(x −u) be its left-derivative and 2δu

its second (distributional) derivative. Subtracting from the discrete-time Tanaka–Meyer formula (3.2) its continuous-
time stochastic counterpart we get that

0 =
∫ t

0

(
Hπn

s (u) − Hs(u)
)
dXs + (

L
πn,X
t (u) − t (u)

)
/2, (6.5)

where using πn = (τn
i )i we define the predictable processes

Hπn
s (u) :=

∑
i

sign(Xτn
i

− u)1(τn
i ,τn

i+1](s) and Hs(u) := sign(Xs − u).

Now hπn(u) → 0 follows from (2.10) and (6.5) if we show that
∫ ·

0 H
πn
s (u) dXs → ∫ ·

0 Hs(u)dXs in Sp . To this end
notice that∣∣Hπn

s (u) − Hs(u)
∣∣ ≤ Kπn

s (u) := 2 × 1{Os(X,πn)≥|Xs−u|}, (6.6)

and that since X· and O·(X,πn) are continuous adapted processes, K
πn· (u) is predictable, so it is enough to prove that∫ ·

0 K
πn
s (u) dXs → 0 in Sp . Since O

πn

T → 0 a.s. implies that K
πn
t (u) → 0 a.s. on {Xt �= u} for all t ≤ T , and since

Kπn ≤ 2, the thesis follows from the (deterministic) dominated convergence theorem if ‖ ∫ ·
0 1{Xs=u} dXs‖Sp = 0,

which by (6.4) holds for all u if  is continuous. Since Minkowski inequality for integrals says that∥∥∥∥
∫ T

0
1{Xs=u} d|V |s

∥∥∥∥
Lp(μ)

≤
∫ T

0
‖1{Xs=u}‖Lp(μ) d|V |s =

∫ T

0

(
μ

({Xs}
))1/p

d|V |s ,

which is zero for μ which has no atoms. Using (6.4), considering Lp(μ ⊗ P) norm and using Fubini, we conclude
that ‖ ∫ ·

0 1{Xs=u} dXs‖Sp = 0 for μ a.e. u, and so hπn → 0 μ a.e. Finally (2.10), (6.5) and (6.6) imply that

hπn(u) ≤ Cp

∥∥∥∥
∫ ·

0
2
(
Hπ

s (u) − Hs(u)
)
dXs

∥∥∥∥
Sp

≤ 4Cp‖X‖Sp for all u ∈ R,

concluding the proof. �

Proof of Theorem 6.1. Let (τm)m a sequence of stopping times which prelocalizes X to Sp (see Emery [7, Theo-
reme 2]), i.e. τm ↑ ∞ a.s. and Xτm− ∈ Sp for all m. Let μi(A) := |f ′′|(A ∩ [−i, i]) and set

Gn(ω,T ,u) := sup
t≤T

∣∣LX(ω),πn(ω)
t (u) − t (u,ω)

∣∣
and Gm

n := 1{T <τm}Gn. Since μi is a finite measure, Theorem 6.2 implies that, as n → ∞, Gm
n converges to 0 in

Lp(P × μi), for all m, i ∈ N and T ≥ 0. Passing to a subsequence (without relabelling) we can get convergence fast
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in Lp(P× μi) and so, for ω outside a P-null set N
p,T
i,m , Gm

n (ω,T , ·) converges to 0 in Lp(μi). Then along a diagonal
subsequence we obtain that Gm

n (ω,T , ·) converges to 0 in Lp(μi) for all i,m,p,T ∈ N \ {0} for every ω outside the

null set Nf ′′ := ⋃
i,m,T ,p∈N\{0} N

p,T
i,m . Since Gn = Gm

n on {T < τm}, Gn → 0 in Lp(μi) for all i,p,T ∈ N \ {0} for
every ω outside Nf ′′ . Since outside a compact set Gn(ω,T , ·) = 0 for all n, convergence in Lp(μi) for arbitrarily
big i,p implies convergence in Lp(|f ′′|) for all p ∈ [1,∞). Since Gn(ω, ·, u) = 0 is increasing, convergence for
arbitrarily big T implies convergence for all T ∈ [0,∞). �

7. Dependence on the partitions

In this section we investigate the extent to which the pathwise quadratic variation 〈x〉� := limn〈x〉πn depends on the
sequence of partitions � := (πn)n. Instead of constructing explicit examples we show that, for functions with a highly
oscillatory behaviour, the pathwise quadratic variation depends in the most extreme way possible on (πn)n. We then
build on this fact and extend the result to a stochastic setting considering paths of a Brownian motion. We only give a
detailed proof of the main statement for a fixed path. Extending this to an a.s. statement in a Brownian setting involves
thorny technicalities which arise from the dependence in ω (i.e. tracking the null sets and ensuring measurability) and
we only briefly outline the necessary steps.19

Our work builds on two facts already mentioned (without proof) by Lévy in [15, p. 190]: that infπ 〈x〉π1 = 0 for
every continuous function x and that for a.e. path B(ω) of a Brownian motion supπ 〈B(ω)〉π1 = ∞. Proofs can be
found in Freedman [11, p. 47–48]; the second fact can be found in a strengthened form and with an alternative proof
in Taylor [24, Corollary in Section 4]. Our first result combines and generalises the above: we show that, with a
suitable choice of (πn)n, the pathwise quadratic variation may be equal to an arbitrary given increasing process a.
Notice that we do not even assume a is right-continuous. We will denote with Dn the dyadics of order n in [0,1], i.e
Dn := [0,1] ∩N2−n.

Theorem 7.1. Let x : [0,1] → R be a continuous function such that for every 0 ≤ c < d ≤ 1 there exist partitions
(π̂n)n of [c, d] such that limn〈x〉π̂n

(c,d] = ∞. Then, if a : [0,1] → [0,∞) is an increasing function such that a0 = 0,
there exist refining partitions (πn)n of [0,1] such that Dn ⊆ πn for all n and

〈x〉πn
t → at for all t ∈ [0,1] as n → ∞, (7.1)

and the convergence is uniform if (at )t is continuous. Moreover, given arbitrary partitions (π̄n)n, one can choose the
(πn)n such that π̄n ⊆ πn for all n.

To prove that convergence occurs at all times simultaneously, we will need the following simple lemma.

Lemma 7.2. Let a : [0,1] → [0,∞) be increasing, x : [0,1] → R be continuous and (πn)n be partitions of [0,1]
such that O(x,πn) → 0, and assume that

〈x〉πn
t → a(t) for all t ∈ F ⊆ [0,1] as n → ∞.

If F is dense in [0,1] and contains the times of jump of a then 〈x〉πn· → a· pointwise on [0,1], and if a is continuous
the convergence is uniform.

Proof. Although 〈x〉πn is not necessarily an increasing function, it differs from the increasing function an(t) :=
μn([0, t]) (where μn is as in (2.3)) by at most O(x,πn), and so it is enough to prove the statement with an replacing
〈x〉πn . By hyphothesis 〈x〉πn

t → a(t) for all t at which a is not continuous. If a is continuous at t then for each ε > 0
there exist s1, s2 ∈ F s.t. s1 < t < s2 and a(s2) − a(s1) < ε, and so a(t) − ε ≤ a(s1) = limn〈x〉πn

s1 ≤ lim infn〈x〉πn
t

and analogously lim supn〈x〉πn
t ≤ a(t) + ε. Letting ε ↓ 0 we see that limn〈x〉πn

t exists and equals a(t). Scholium 2.2
concludes the proof. �

19An interested reader can find the full detailed proof in an earlier version of our work at arXiv:1508.05984v2.

http://arxiv.org/abs/1508.05984v2


Pathwise stochastic calculus with local times 19

Proof of Theorem 7.1. Note that, as observed already by Freedman [11], given k ∈ N \ {0} and π we can build a
partition π ′ ⊇ π such that 〈x〉π ′

t = 〈x〉πt /k; indeed it is enough to do so on each subinterval of π , so we can assume
that π = {c, d}. If x(c) = x(d) take π ′ := {c, d}; if x(c) �= x(d) we define π ′ = (ti)

k
i=0 setting t0 := c and

ti := min
{
t ∈ [c, d] : x(t) = x(c) + (

x(d) − x(c)
)
i/k

}
for i = 1, . . . , k;

indeed 〈x〉π ′
t = ∑k−1

i=0 ((x(d) − x(c))/k)2 = 〈x〉πt /k holds. We will denote by F(π, k) the partition π ′ built with the
above construction starting from π and k.

We now fix a t ∈ [0,1] and prove the existence of some π ′ such that |〈x〉π ′
t − a(t)| ≤ 1/2n. To do so we take i ∈N

such that a(t) ∈ [i/2n, (i +1)/2n) and show that there exists π such that 〈x〉πt ∈ [i, i +1) and then take π ′ = F(π,2n).
Note that we automatically know such π exists when i = 0 (by taking π = F(π̃, k) where π̃ is an arbitrary partition
and k a big enough integer), so let us now consider the case i ≥ 1. By assumption, there exist a partition π̂ such that
〈x〉π̂t ≥ i2. Now using Freedman’s construction with k equal to be the integer part of 〈x〉π̂t / i we obtain π := F(π̂, k)

such that 〈x〉πt = 〈x〉π̂t /k ∈ [i, i + i/k) ⊆ [i, i + 1), concluding our proof of the existence of π and thus of some π ′
such that |〈x〉π ′

t − a(t)| ≤ 1/2n.
Now, given any π̃n, by applying the above reasoning to the increments of a on each subinterval of π̃n, we can find

a πn ⊇ π̃n such that |〈x〉πn
t − a(t)| ≤ 1/2n simultaneously for all t ∈ π̃n. If we define (π̃n,πn) by induction setting

π̃0 := {0,1} =: π0 and taking π̃n to be the union of Dn ∪ π̄n with the times when a has a jump of size bigger than 1/n

and with
⋃

k<n πk , and then building πn from π̃n as explained at the beginning of this paragraph, we obtain a refining
πn which contains Dn ∪ π̄n and such that 〈x〉πn

t → a(t) holds for any dyadic time and any time of jump of a, and thus
holds simultaneously for all t by Lemma 7.2. �

One can apply Theorem 7.1 to the paths of Brownian motion; indeed, as Lévy first remarked, for a.e. ω there exist
partitions πn = πn(ω) s.t. limn〈B(ω)〉πn

(0,1] = ∞. However, to obtain an interesting result one needs to show that the
partitions can be chosen in a measurable way. This requires first to correspondingly strengthen Levy’s result in the
following way.

Lemma 7.3. If 0 ≤ c < d there exist random partitions πn of [c, d] such that

〈B〉πn

(c,d] → ∞ a.s. as n → ∞.

To prove Lemma 7.3, one needs to revisit the proof of [24, Theorem 1 and its Corollary in Section 4] and delve into
the proof of the existence of a Vitali subcover to show how one can choose a measurable one (on a set of probability
arbitrarily close to 1); although this essentially follows from an application of the section theorem, the proof is not
simple and we do not include it here.

Having established Lemma 7.3, one can follow the logic of the proof of Theorem 7.1 and with laborious but entirely
elementary proofs20 one can check measurability to obtain a similar result for the paths of Brownian motion, which
we state below. To slightly generalize Theorem 7.1 to include the case of a positive but potentially non-finite process
A, we identify [0,1] (with the Euclidean topology) with [0,∞] using the bijection 1 − exp(−x) (where e−∞ := 0),
and thus we endow [0,∞] with the distance d(a, b) := |e−a − e−b|, which makes it homeomorphic to [0,1] and for
all M < ∞ satisfies d(a, b) ≤ |a − b| ≤ C d(a, b) for all a, b ∈ [0,M] and some C = C(M). Of course, if A·(ω) is
finite valued the convergence under the Euclidean distance |a − b| is equivalent to the convergence under the distance
d(a, b). In all that follows, if π = (τn)n is a random partition we denote by π(ω) the sequence (τn(ω))n∈N. Given sets
C,D which depend on ω, we write that C ⊆ D if C(ω) ⊆ D(ω) for a.e. ω, and in particular we say that a sequence of
random partition (πn)n∈N is refining if πn ⊆ πn+1 for all n.

Theorem 7.4. Let B be a Brownian motion and A a jointly-measurable21 increasing process with values in [0,∞]
and such that A0 = 0. Then, there exist refining random partitions πn of [0,∞) such that N2−n ⊆ πn and for all ω

20The proofs rest entirely on Borel Cantelli’s lemma and on the fact that, given a càdlàg adapted process D, its jumps of size bigger than a given
constant are stopping times, see [20, Theorem 3.1].
21Of course any càdlàg increasing process A is jointly-measurable. However this is not true for general increasing processes: for example if
A := Y1{τ } + 1(τ,∞) where τ is an exponentially distributed random time and Y is a non-measurable function with values in (0,1) then A is a
process with respect to the completed sigma-algebra (At is measurable since At = 0 a.e.), yet A is clearly not jointly-measurable.
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outside a null set〈
B(ω)

〉πn(ω)

t
→ At(ω) for all t ∈ [0,∞) as n → ∞; (7.2)

if 0 ≤ c < d < ∞ the convergence in (7.2) is uniform on t ∈ [c, d] for the ω’s at which (At (ω))t∈[c,d] is continuous.
Moreover, given arbitrary random partitions (π̄n)n one can choose πn = (τ i

n)i such that π̄n ⊆ πn for all n and, if A is
adapted, τ i

n + 2−n is a stopping time for each i, n.

It is insightful to contrast this result with the well known fact that, if (πn)n is a sequence of optional partitions
such that OT (B,πn) → 0 a.e., 〈B(ω)〉πn(ω)

t converges to t uniformly on compacts in probability (see the proof of
Proposition 2.3). The random times (τ i

n)i making up πn do not need to look far into the future to break the convergence

of 〈B(ω)〉πn(ω)
t to t : as the theorem states, one could take the (τ i

n)i to look only an arbitrarily small amount of time
into the future. Notice that the random times making up πn are bounded (since (τ i

n)i = πn ⊇N2−n implies τ i
n ≤ i/2n).

Although we stated Theorem 7.4 only for Brownian motion, it holds for any continuous stochastic process with an
oscillatory behavior wild enough to have infinite 2-variation on any interval, in the sense that for every 0 ≤ c < d <

∞ there exist random partitions πn of [c, d] along which the quadratic variation of B converges a.s. to infinity. In
particular our proof of Lemma 7.3 shows that Theorem 7.4 applies whenever B is a continuous adapted22 process for
which there exists some continuous strictly increasing function ψ such that ψ(h)/h2 → 0 as h ↓ 0 and

for every t ≥ 0 lim sup
h↓0

ψ(|Bt+h − Bt |)
h

≥ 1 a.s. (7.3)
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