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Abstract. We prove that in the critical Bernoulli percolation on graphs Z2 × {0, . . . , k − 1}d−2, for each ρ > 0, the probability of
open left-right crossing of rectangle [0, ρN ] × [0,N ] × [0, k − 1]d−2 is uniformly positive.

Résumé. On démontre que dans la percolation de Bernoulli critique sur le graphe Z
2 × {0, . . . , k − 1}d−2, pour chaque ρ > 0, la

probabilité d’avoir un passage de gauche à droite ouvert dans [0, ρN ] × [0,N ] × [0, k − 1]d−2 est uniformément positive.

MSC: 60K35; 82B43

Keywords: Critical Bernoulli percolation; Slab; Russo–Seymour–Welsh theorem

1. Introduction

One of the main tools in the study of planar percolation models at criticality is the Russo–Seymour–Welsh (RSW)
theorem. It states that the probability that an open path connects the left and right sides of a rectangle is bounded
away from 0 and 1 by constants that only depend on the aspect ratio of the rectangle. This theorem was first proved
for critical Bernoulli percolation on planar lattices in [7,9–11] and recently has been extended to some other planar
models, perhaps most notably to the FK-percolation [3,4] and Voronoi percolation [2,12].

In this note we consider critical Bernoulli percolation on two dimensional slabs Z2 × {0, . . . , k − 1}d−2. We prove
that the probability of crossing a rectangle is bounded from below by a positive constant which only depends on
the aspect ratio of the rectangle and the slab parameter k, but does not depend on the size of the rectangle. Our
work is inspired by a recent paper of Duminil-Copin, Sidoravicius, and Tassion [5] where they prove the absence of
percolation at criticality for slabs and develop techniques for “glueing” open paths. Our proof is partly based on these
new ideas.

2. Notation and result

Fix an integer k ≥ 1, and define the slab of width k by

S= Z
2 × {0, . . . , k − 1}d−2.

We consider Bernoulli bond percolation on S with parameter p ∈ [0,1], and denote the corresponding measure by Pp .
Let pc be the critical threshold for percolation, i.e.,

pc = inf
{
p : Pp[open connected component of 0 in S is infinite] > 0

}
,

and define the measure P= Ppc .
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For a subset A of vertices of Z2, let

A = A × {0, . . . , k − 1}d−2.

Define a rectangle and its left and right boundary regions by

B(m,n) = [0,m) × [0, n), L(m,n) = {0} × [0, n), R(m,n) = {m − 1} × [0, n).

Consider the crossing event

LR(m,n) = {
L(m,n) is connected to R(m,n) by an open path in B(m,n)

}

and the crossing probability

p(m,n) = P
[
LR(m,n)

]
.

In this note we prove the following theorem.

Theorem 2.1. For any ρ ∈ (0,∞),

lim inf
n→∞ p

(�ρn�, n)
> 0. (2.1)

Proof. The case k = 1 is classical; see e.g. [7,10,11]. As some of the “glueing” ideas used in the proof are unnecessary
for k = 1 and easier for k ≥ 2, we assume from now on without further mentioning that k ≥ 2. The theorem is proved
in 3 steps:

• The result holds for all ρ ∈ (0,1). This is well known. We give a proof in Proposition 3.1.
• If the result holds for some ρ > 1, then it holds for all ρ > 1. This is a well known fact in planar percolation. We

prove the slab version in Proposition 5.1 using the planar approach together with a novel technique for glueing
paths from [5] (see Lemma 4.2).

• There exist c > 0 and C < ∞ such that for all n ≥ 1, p(44n,43n) ≥ c · p(43n,44n)C . This inequality is the main
contribution of this paper. We prove it in Proposition 6.1 using various “paths glueing” procedures. �

Remark 2.2. For ρ < 1, the result of Theorem 2.1 holds in any dimension d ≥ 2. We believe that it also holds for
ρ ≥ 1, but do not know a proof. Our method unfortunately crucially relies on planarity of slabs. If dimension is
sufficently high, it is proved in [1] that the crossing probabilities tend to 1 as n → ∞. We believe that for percolation
on slabs (and in low dimensions) for every ρ > 0, lim supn→∞ p(�ρn�, n) < 1, but do not have a proof yet.1

Earlier we defined A as a subset of S for each A ⊂ Z
2. In the proofs we will often use the same notation A for

A ⊂ S meaning

A = {
z = (z1, . . . , zd) ∈ S : (z1, z2, x3, . . . , xd) ∈ A for some x3, . . . , xd

}
.

This way, for each A ⊂ Z
2, A defined earlier is the same as A × {0}d−2 defined just above.

3. Crossings of narrow rectangles

The following proposition is an adaptation to slabs of a well known fact about the probabilities of crossing hypercubes
of fixed aspect ratio in the easy direction.

Proposition 3.1. For any ρ ∈ (0,1), (2.1) holds.

1For slabs, this was recently proved in [8].
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Proof. Let 0 < a < b be integers. It suffices to prove that lim infn→∞ p(an,bn) > 0. A standard recursive inequality
gives that for C = 2	 b

b−a

 + 1, every p ∈ [0,1] and n ≥ 1,

Pp

[
LR(2an,2bn)

] ≤ (
CPp

[
LR(an, bn)

])2
. (3.1)

Indeed, any open left-right crossing of [0,2an) × [0,2bn) produces open left-right crossings of [0, an) × [0,2bn)

and [an,2an) × [0,2bn) giving Pp[LR(2an,2bn)] ≤ Pp[LR(an,2bn)]2. Then, any open left-right crossing of
[0, an) × [0,2bn) either crosses horizontally one of the rectangles [0, an) × [kn, (k + b)n), k ∈ {0, b − a,

2(b − a), . . . , 	 b
b−a


(b − a)}, or crosses vertically one of the rectangles [0, bn) × [kn, (k + a)n), k ∈ {b − a,

2(b − a), . . . , 	 b
b−a


(b − a)}, which implies that Pp[LR(an,2bn)] ≤ C · Pp[LR(an, bn)].
By (3.1), for all p ∈ [0,1], n ≥ 1, and s ≥ 0,

Pp

[
LR

(
2san,2sbn

)] ≤ (
C2

Pp

[
LR(an, bn)

])2s

.

If lim infn→∞ p(an,bn) = 0, then there exists n ∈ N such that C2p(an,bn) < 1. Since the crossing probability
Pp[LR(an, bn)] is continuous in p, there also exists p > pc such that C2

Pp[LR(an, bn)] < 1. For this choice of
parameters, lims→∞ Pp[LR(2san,2sbn)] = 0, which is impossible, since for every p > pc, this limit equals to 1 (see
e.g. [6, Theorem 8.97]). Thus, lim infn→∞ p(an,bn) > 0. �

4. Glueing

In this section we recall a new technique for glueing paths from [5]. It will be used to adapt some arguments from
planar percolation to slabs. We begin with a classical combinatorial lemma about local modifications; see e.g. [5,
Lemma 7].

Lemma 4.1. Let n ≥ 1 and p ∈ (0,1). Let A,B ⊆ {0,1}n and Pp a product measure on {0,1}n with parameter p,
i.e.,

Pp[ω] =
n∏

i=1

pωi (1 − p)1−ωi , ω ∈ {0,1}n.

If there exists a map f : A → B such that for every ω′ ∈ B , there exists a set S ⊆ {1, . . . , n} such that |S| ≤ s and

ωi = ω′
i , for all i /∈ S and ω ∈ f −1(ω′),

then

Pp[A] ≤
(

2

min(p,1 − p)

)s

· Pp[B].

We will often apply Lemma 4.1 in the case p = pc and s being not bigger than the number of edges in [−3,3]2.
Therefore, we define

C∗ =
(

2

min(p,1 − p)

)d·72·kd−2

, c∗ = 1

1 + 3C∗
.

The following lemma is essentially proven in [5, Lemma 6].

Lemma 4.2. Let X1, X2, Y1, and Y2 be disjoint connected subsets of the interior vertex boundary of [0,m) × [0, n)

arranged in a counter-clockwise order. Then

P
[
X1 is connected to X2 in B(m,n)

] ≥ c∗ · P
[
X1 is connected to Y1 in B(m,n),
X2 is connected to Y2 in B(m,n)

]
.



1924 D. Basu and A. Sapozhnikov

Proof. Let

Ei = {
Xi is connected to Yi in B(m,n)

}
,

X = {
X1 is connected to X2 in B(m,n)

}
.

It suffices to prove that P[E1 ∩ E2 ∩ Xc] ≤ 3C∗ · P[X]. For i ∈ {1,2}, consider events

Fi =
⋃

z∈X3−i

{
Xi is connected to z + [−3,3]2 in B(m,n)

}
.

For any ω ∈ Fi ∩ Xc, one can choose z ∈ X3−i satisfying the requirement of Fi so that after modifying the occupancy
configuration in z + [−3,3]2, one obtains a configuration in which z × {0}d−2 is the unique vertex of X3−i which
is connected to Xi in B(m,n). By Lemma 4.1, we obtain P[Fi ∩ Xc] ≤ C∗ · P[X]. Thus, it suffices to prove that
P[E1 ∩ E2 ∩ Fc

1 ∩ Fc
2 ] ≤ C∗ · P[X]. To show this, we will again use Lemma 4.1, where a suitable function f :

E1 ∩ E2 ∩ Fc
1 ∩ Fc

2 → X will be constructed using ideas from [5, Lemma 6].
We fix an order on edges {e : |e| = 1} in Z

d and enumerate all the vertices of S arbitrarily. Define an order <

on self-avoiding paths from X1 to Y1 in B(m,n) as follows. If γ = (γ0, . . . , γn) and γ ′ = (γ ′
0, . . . , γ

′
n′) are two such

paths, then γ < γ ′ if

• γ0 has a smaller number than γ ′
0, or

• n < n′ and γ = (γ ′
0, . . . , γ

′
n), or

• there exists k < min(n,n′) such that (γ0, . . . , γk) = (γ ′
0, . . . , γ

′
k), and the edge {0, γk+1 − γk} is smaller than

{0, γ ′
k+1 − γ ′

k}.
Take ω ∈ E1 ∩ E2 ∩ Fc

1 ∩ Fc
2 . Let γmin(ω) be the minimal open self-avoiding path from X1 to Y1 for the above

defined order. Since ω ∈ E2, there exists z ∈ γmin(ω) such that z is connected to X2 by an open path that does not use
any edges of γmin(ω). Since ω ∈ Fc

1 ∩ Fc
2 , for any such z, the set z + [−3,3]2 × {0}d−2 is disjoint from X1 ∪ X2. By

modifying ω in z + [−3,3]2 × {0}d−2, exactly as in the proof of [5, Lemma 6, Fact 2], one obtains a new configuration
f (ω) ∈ E1 ∩ X such that

• z ∈ γmin(f (ω)),
• z is a unique vertex on γmin(f (ω)) connected to X2 by an open path that does not use edges of γmin(f (ω)),
• ωe = f (ω)e for all e /∈ z + [−3,3]2 × {0}d−2.

This construction is tricky, but it is very carefully explained in the proof of [5, Lemma 6, Fact 2], therefore we do not
repeat it here. The constructed function f : E1 ∩ E2 ∩ Fc

1 ∩ Fc
2 → X satisfies the conditions of Lemma 4.1 with s

being the number of edges in [−3,3]2. Thus, P[E1 ∩ E2 ∩ Fc
1 ∩ Fc

2 ] ≤ C∗ · P[E1 ∩ X] ≤ C∗ · P[X]. The proof of the
lemma is complete. �

Lemma 4.2 and the FKG inequality imply the following corollary.

Corollary 4.3. Let X1, X2, Y1, Y2 be as in Lemma 4.2. Then

P
[
X1 is connected to X2 in B(m,n)

]
≥ c∗ · P[

X1 is connected to Y1 in B(m,n)
] · P[

X2 is connected to Y2 in B(m,n)
]
.

5. Crossings of wide rectangles

Proposition 5.1. If (2.1) holds for some ρ > 1, then it holds for all ρ > 1.
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Fig. 1. (a) Left-right crossing of B(m,n) and top-bottom crossing of a [m − n,m) × [0, n) landing on the right half of the bottom, (b) path from
L(m,n) to [m − n

2 ,m) × {0} in B(m,n), (c) paths from L(2m − n,n) to [m − n
2 ,m) × {0} and from [m − n,m − n

2 ) × {0} to R(2m − n,n) in
B(2m − n,n), (d) left-right crossing of B(2m − n,n).

Proof. This is immediate from the following inequality, which relates the crossing probability of a long rectangle
with that of a shorter one. For all m > n,

p(2m − n,n) ≥ 1

4
· c∗3 · p(m,n)4. (5.1)

The inequality (5.1) follows from two applications of Corollary 4.3 illustrated on Figure 1. �

6. Crossings of rectangles: Short and long directions

The main contribution of this paper is the following proposition, which relates the crossing probability of a rectangle
in the long direction with the one in the short.

Proposition 6.1. For all n ∈ N,

p(44n,43n) ≥ c∗21 · p(43n,44n)198

10154
. (6.1)

Proof. Fix n ∈N. We write

B = B(43n,44n), L = L(43n,44n), R = R(43n,44n),

and define

c = p(43n,44n), c′ = c∗21 · c198

10154
.

We prove the proposition by considering several cases. The first 2 steps are inspired by the ideas of Bollobás and
Riordan from [2], and aimed at restricting possible shapes of left-right crossings. Steps 3 and 4 contain preliminary
estimates needed to implement the main idea in Step 5.

Step 1. We first consider the case when there is a considerable probability that a left-right crossing of B stays away
from the top or bottom boundary of B , see Figure 2. Assume that

p(43n,42n) ≥ c

100
.
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Fig. 2. Left-right crossing staying at least 2n away from the top of B(43n,44n).

Then by (5.1),

p(44n,43n) ≥ p(44n,42n) ≥ 1

4
· c∗3 · p(43n,42n)4 ≥ c′,

which implies (6.1). Thus, we may assume that

p(43n,42n) <
c

100
. (6.2)

Step 2. Next, we consider the case when there is a considerable probability that a left-right crossing of B starts
sufficiently far away from the middle of L. Let

S = {0} × [20n,24n) (6.3)

be in the middle of L. Assume that

P[L \ S is connected to R in B] ≥ c

10
.

Then, by reflectional symmetry,

P
[{0} × [24n,44n) is connected to R in B

] ≥ c

20
.

By assumption (6.2),

P
[{0} × [24n,44n) is connected to [0,43n) × {2n} in B

] ≥ c

20
− c

100
≥ c

100
.

By rotational symmetry, the above inequality states precisely that

P
[{0} × [0,43n) is connected to [22n,42n) × {0} in B(42n,43n)

] ≥ c

100
.

Similarly to the second application of Corollary 4.3 in the proof of (5.1), see Figure 3, one gets

p(44n,43n) ≥ c∗ ·
(

c

100

)2

≥ c′,

which is precisely (6.1).
Thus, we may assume, in addition to (6.2), that

P[L \ S is connected to R in B] <
c

10
. (6.4)
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Fig. 3. (a) Part of L above S is connected to [0,43n) × {2n} in B , (b) rotation of (a) by π
2 , (c) L(44n,43n) is connected to [22n,42n) × {0} and

[2n,22n) × {0} is connected to R(44n,43n), (d) left-right crossing of B(44n,43n).

Step 3. Here we consider the case when there is a considerable probability that two well-separated subsegments of
L are connected. For integers a < b, let

Tab = [0,43n) × [a, b) and T = [0,43n) ×Z.

Assume that for some a < b,

P
[{0} × [0,4n) is connected to {0} × [8n,12n) in Tab

] ≥ c∗ · c18

1014
.

Then, by repetitive use of Corollary 4.3, see Figure 4, for each m ≥ 1,

P
[{0} × [0,4n) is connected to {0} × [

4n(m + 1),4n(m + 2)
)

in T
] ≥ c∗2m−1 · c18m

1014m
.

Note that if m = 11, then the event on the left hand side implies that there is a vertical crossing of [0,43n) × [4n,48n).
Thus,

p(44n,43n) ≥ c∗21 · c198

10154
= c′,

which gives (6.1). Therefore, we may assume, in addition to (6.2) and (6.4), that

P
[{0} × [0,4n) is connected to {0} × [8n,12n) in Tab

]
<

c∗ · c18

1014
, for all a < b. (6.5)

Next, we derive several corollaries of assumption (6.5).
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Fig. 4. Vertical extension of open paths.

Fig. 5. (a) Illustration of the event in (6.6), (b) proof of Corollary 6.2.

Corollary 6.2. Under the assumption (6.5), for all a < b,

P
[{0} × [8n,12n) is connected to {43n − 1} × [0,4n) in Tab

]
<

c9

107 . (6.6)

See Figure 5(a) for an illustration of the event in (6.6).

Proof. Using reflectional symmetry and Corollary 4.3 (see also Figure 5(b)),

P
[{0} × [8n,12n) is connected to {43n − 1} × [0,4n) in Tab

]2

= P
[{0} × [8n,12n) is connected to {43n − 1} × [0,4n) in Tab

]
· P[{0} × [0,4n) is connected to {43n − 1} × [8n,12n) in Tab

]

≤ c∗−1 · P[{0} × [0,4n) is connected to {0} × [8n,12n) in Tab

] (6.5)
<

c18

1014
. �
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Fig. 6. An illustration of the event in (6.7).

Corollary 6.3. Under the assumption (6.5), for all a < b,

P

⎡
⎣there exist a simple path γ from {0} × [0,4n) to {43n − 1} × [0,4n) in Tab

and a path γ ′ from {0} × [8n,12n) in Tab, such that
the distance between γ and γ ′ is ≤ 2

⎤
⎦ <

3 · c9

107 . (6.7)

In particular,

P

⎡
⎣there exist a simple path γ from {0} × [0,4n) to {43n − 1} × [0,4n) in T

and a path γ ′ from {0} × [8n,12n) in T , such that
the distance between γ and γ ′ is ≤ 2

⎤
⎦ ≤ 3 · c9

107 . (6.8)

See Figure 6 for an illustration of the event in (6.7).

Proof. It suffices to prove (6.7), as (6.8) follows from (6.7) by sending a → −∞ and b → +∞.
Denote the event in (6.7) by A. By the total probability formula,

P[A] ≤ P
[{0} × [8n,12n) is connected to {0} × [0,4n) in Tab

]
+ P

[{0} × [8n,12n) is connected to {43n − 1} × [0,4n) in Tab

]

+ P

[
A, {0} × [8n,12n) is not connected to {0} × [0,4n) in Tab,

{0} × [8n,12n) is not connected to {43n − 1} × [0,4n) in Tab

]
.

The sum of the first two probabilities is < c∗·c18

1014 + c9

107 , by the assumptions (6.5) and (6.6).
Denote by A′ the event in the third probability. For a configuration ω, let P(ω) be the set of vertices, which belong

to at least one self-avoiding path from {0} × [0,4n) to {43n − 1} × [0,4n) in Tab , one may call it a backbone. Consider
a local modification map f from A′ to the event

A′′ =
{
ω′′ : there exists a unique z(ω′′) ∈ P(ω′′) connected to {0} × [8n,12n)

by an open path contained in Tab \ P(ω′′) except for the vertex z(ω′′)

}

such that for all ω′ ∈ A′ and all e /∈ z(f (ω′)) + [−3,3]2 × {0}d−2, f (ω′)e = ω′
e. By Lemma 4.1, P[A′] ≤ C∗ ·P[A′′] ≤

c∗−1 · P[A′′]. Since

A′′ ⊆ {{0} × [0,4n) is connected to {0} × [8n,12n) in Tab

}
,

we conclude that

P
[
A′] ≤ c∗−1 · P[{0} × [0,4n) is connected to {0} × [8n,12n) in Tab

]
<

c18

1014
,
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Fig. 7. An illustration of the event in (6.9).

where the last inequality follows from the assumption (6.5). Putting the bounds together,

P[A] <
c∗ · c18

1014
+ c9

107 + c18

1014
≤ 3 · c9

107 . �

Corollary 6.4. Under the assumptions (6.4) and (6.5),

P

⎡
⎣ there exist a path γ ′ from {0} × [0,4n) in T

and a path γ ′′ from {0} × [16n,20n) in T , such that
the distance between γ ′ and γ ′′ is ≤ 4

⎤
⎦ ≤ 12 · c8

107 . (6.9)

See Figure 7 for an illustration of the event in (6.9).

Proof. Denote the event in (6.9) by A. By assumption (6.4),

P
[{0} × [8n,12n) is connected to {43n − 1} × [8n,12n) in T

] ≥ c − 2
c

10
≥ c

2
.

Since the above event and the event A are increasing, by the FKG inequality,

P[A] ≤ 2

c
· P[

A, {0} × [8n,12n) is connected to {43n − 1} × [8n,12n) in T
]
.

The intersection of the two events on the right hand side implies that for any path γ from {0} × [8n,12n) to
{43n − 1} × [8n,12n) in T , the distance from γ to γ ′ ∪ γ ′′ is ≤ 2. Thus, by (6.8),

P[A] ≤ 2

c
· 2

3 · c9

107 = 12 · c8

107 . �

Step 4. The aim of this step is to introduce a certain event of positive probability, see Proposition 6.5. Our choice
of this event will be clarified in Step 5.

Recall the definition of S from (6.3). For a configuration ω, let CS = CS(ω) be the set of all z ∈ T connected to S

by an open path in T . Let

f (ω) = P
[{0} × [4n,8n) is connected to {43n − 1} ×Z in T \ CS | CS

]
(ω),

and

g(ω) = P

[
there exists a path γ ′ from {0} × [4n,8n) in T , such that

the distance between γ ′ and CS is ≤ 4

∣∣∣∣ CS

]
(ω).
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We consider the following events:

A1 = {
S is connected to [0,43n) × {2n} in T

}
, A2 =

{
f (ω) ≥ c2

10

}
, A3 =

{
g(ω) ≤ c4

1000

}
.

Proposition 6.5. Under the assumptions (6.2), (6.4), and (6.5),

P[A1 ∩ A2 ∩ A3] ≥ c4

103
.

Proof. By assumptions (6.2) and (6.4),

P[A1] ≥ c − c

10
− c

100
≥ c

2
.

By the Markov inequality and (6.9),

P
[
Ac

3

] ≤ 1000

c4
·E[g] <

1000

c4
· 12 · c8

107 = 12 · c4

104
.

To bound P[A1 ∩A2] from below we use the Paley–Zygmund inequality. Using (6.9) and the FKG inequality, we first
estimate

E
[
f (ω) · 1A1

] = P

[
S is connected to [0,43n) × {2n} in T , and

{0} × [4n,8n) is connected to {43n − 1} ×Z in T \ CS(ω)

]

≥ P

[
S is connected to [0,43n) × {2n} in T , and

{0} × [4n,8n) is connected to {43n − 1} ×Z in T

]
− 12 · c8

107

≥ P[A1] · P[{0} × [4n,8n) is connected to {43n − 1} ×Z in T
] − 12 · c8

107

≥ c

2

(
c − c

10

)
− 12 · c8

107 ≥ c2

5
.

The Paley–Zygmund inequality for non-negative random variable X states that P[X ≥ 1
2 E[X]] ≥ 1

4
(E[X])2

E[X2] . We apply

it to the measure P[·] = E[1·
1A1
P[A1] ], to get

E

[
1

f (ω)≥ 1
2 ·E[f (ω)· 1A1

P[A1] ]
· 1A1

P[A1]
]

≥ 1

4
·
(
E

[
f (ω) · 1A1

P[A1]
])2

.

Thus,

P[A1 ∩ A2] ≥ c4

100
,

and we conclude that

P[A1 ∩ A2 ∩ A3] ≥ c4

100
− 12 · c4

104
≥ c4

103
. �

Step 5. We are ready to conclude. For a configuration ω, let Q(ω) be the set of vertices from T , which are connected
to S by an open path in [0,43n) × [2n,∞). Let �(ω) be the outer vertex boundary of Q(ω), and �′(ω) the mirror
reflection of � with respect to the hyperplane {x : x2 = 2n − 1

2 }. We denote the connected component of T \ (� ∪ �′)
which contains 0 by V . Note that V is finite for any ω ∈ A1.
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Fig. 8. An illustration of �, �′ , and V for a configuration from the event A1 ∩ A2 ∩ A3. � is the outer vertex boundary of the cluster of S in
[0,43n) × [2n,+∞), �′ is its mirror reflection with respect to the hyperplane {x : x2 = 2n− 1

2 }, and V is the connected component of T \ (� ∪�′)
containing the origin.

Let X = {0} × [4n,8n), and X′ = {0} × [−4n,0). Note that X′ is the mirror reflection of X with respect to the
hyperplane {x : x2 = 2n − 1

2 }. Moreover, if ω ∈ A2 ∩ A3, then both X and X′ are contained in V . See Figure 8 for an
illustration of all the above defined objects.

We consider an auxiliary probability space �′ with configurations ω′ and the same probability measure P on it. We
compute

P
[
X is connected to X′ in T by an open path in ω′]

≥ P⊗ P

[(
ω,ω′) : ω ∈ A1 ∩ A2 ∩ A3,

X is connected to X′ in V (ω) by an open path in ω′
]

(∗)≥ C∗−1 · P⊗ P

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(
ω,ω′) :

ω ∈ A1 ∩ A2 ∩ A3,

X is not connected to X′ in V (ω) by an open path in ω′
X is connected to �′(ω) in V (ω) by an open path in ω′,
X′ is connected to �(ω) in V (ω) by an open path in ω′,

there is no open path π in ω′ from X in V (ω)

so that the distance between π and �(ω) is ≤ 4,
there is no open path π ′ in ω′ from X′ in V (ω)

so that the distance between π ′ and �′(ω) is ≤ 4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

≥ C∗−1 ·Eω

[
1A1∩A2∩A3(ω) · Pω′

[
X is connected to �′(ω) in V (ω) by an open path in ω′,
X′ is connected to �(ω) in V (ω) by an open path in ω′

]]

− C∗−1 ·Eω

⎡
⎢⎢⎢⎢⎣1A1∩A2∩A3(ω) · Pω′

⎡
⎢⎢⎢⎢⎣

there is an open path π in ω′ from X in V (ω)

so that the distance between π and �(ω) is ≤ 4,
or

there is an open path π ′ in ω′ from X′ in V (ω)

so that the distance between π ′ and �′(ω) is ≤ 4

⎤
⎥⎥⎥⎥⎦

⎤
⎥⎥⎥⎥⎦

− C∗−1 · P[
X is connected to X′ in T by an open path in ω′]
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≥ C∗−1 ·Eω

[
1A1∩A2∩A3(ω) · [f (ω)2 − 2g(ω)

]]
− C∗−1 · P[

X is connected to X′ in T by an open path in ω′].
The inequality (∗) follows from Lemma 4.1 and a similar local transformation as in the proof of Corollary 6.3. (Mind
that every path from X to �′ in V and every path from X′ to � have intersecting projections, and all the “intersection
points” are sufficiently far away from �∪�′ to allow for a local modification far away from �∪�′.) The last inequality
comes from the FKG inequality and the definitions of event A1 and functions f and g.

By the definition of events A2 and A3 and Proposition 6.5,

P
[
X is connected to X′ in T

] ≥ c∗ ·
(

c4

100
− 2 · c4

1000

)
· c4

103
.

In particular, there exist a < b such that

P
[
X is connected to X′ in Tab

] ≥ c∗ · c8

106
.

From this we conclude, as in the argument of Step 3, that p(44n,43n) ≥ c′ (or simply observe that the above inequality
contradicts the assumption (6.5)).

The proof of Proposition 6.1 is complete. �

Acknowledgements

Bibliographic note: After this project was completed, we learned that an alternative proof of our main result was
independently obtained by Newman, Tassion, and Wu, which was subsequently written up in [8]. In the same paper,
they prove that in the critical Bernoulli percolation on slabs, the probabilities of open left-right crossings of rectangles
with any given aspect ratio are uniformly smaller than 1, see Remark 2.2.
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