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Abstract. We show that a uniform quadrangulation, its largest 2-connected block, and its largest simple block jointly converge
to the same Brownian map in distribution for the Gromov–Hausdorff–Prokhorov topology. We start by deriving a local limit
theorem for the asymptotics of maximal block sizes, extending the result in (Random Structures Algorithms 19 (2001) 194–246).
The resulting diameter bounds for pendant submaps of random quadrangulations straightforwardly lead to Gromov–Hausdorff
convergence. To extend the convergence to the Gromov–Hausdorff–Prokhorov topology, we show that exchangeable “uniformly
asymptotically negligible” attachments of mass simply yield, in the limit, a deterministic scaling of the mass measure.

Résumé. Nous montrons qu’une quadrangulation uniformément aléatoire, sa plus grande composante 2-connexe, et sa plus grande
composante simple convergent conjointement en loi vers la même carte brownienne dans le sens Gromov–Hausdorff–Prokhorov. En
premier, nous étendons l’analyse de (Random Structures Algorithms 19 (2001) 194–246) afin de démontrer un théorème limite local
pour les tailles des plus grandes composantes. Les bornes sur les diamètres ainsi obtenues impliquent directement la convergence
dans le sens Gromov–Hausdorff. Pour obtenir la convergence pour la topologie Gromov–Hausdorff–Prokhorov, nous prouvons que
l’effet de l’attachement des masses sur l’objet limite est déterministe, si les masses sont attachées de manière échangeable et les
masses sont uniformément asymptotiquement négligeables.
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Keywords: Brownian map; Gromov–Hausdorff–Prokhorov convergence; Singularity analysis; Connectivity; Random quadrangulations

1. Introduction

Much work has been devoted to understanding the asymptotic properties of large random planar maps. It is conjec-
tured, and known in several cases, that after rescaling the graph distance properly, planar maps from many families
converge to the same universal metric space, the Brownian map, in the Gromov–Hausdorff–Prokhorov sense. Re-
cently Le Gall [11] and Miermont [14] independently proved that the Brownian map is the scaling limit of several
important families of planar maps, and Addario-Berry and Albenque [1] proved that simple triangulations and simple
quadrangulations also rescale to the same limit object.

The aim of this paper is to show that random quadrangulations and their cores jointly converge to the same limit
object, even after conditioning on their sizes. Before making this more precise, we state one corollary (Theorem 1.1)
of our main result: the Brownian map is again the scaling limit of random 2-connected quadrangulations.

Throughout the paper, all maps are embedded in the sphere S2 and are considered up to orientation preserving
homeomorphism. A rooted map is a pair M = (M,uv) where M is a map and uv is an oriented edge of M . A quad-
rangulation is a map in which every face has degree 4. A quadrangulation is 2-connected if the removal of any vertex
does not disconnect the map. It is simple if it contains no multiple edges. Write Q, R, and S for the set of rooted
connected, 2-connected, and simple quadrangulations, respectively. It is easy to verify that simple quadrangulations
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Fig. 1. (0,1) is the root edge of M. For the total order ≺=≺M we have, e.g., (0,1) ≺ (0,2), (2,12) ≺ (12,2) ≺ (12,111) ≺ (111,12). Also,
of the two copies of edge (11,111), the one succeeding (11,2) in the clockwise order is smaller for ≺. The simple block S(M) has vertices
0,1,2,11,12,111.

are 2-connected, so S ⊂ R ⊂ Q. It is technically convenient to view a single edge as a 2-connected, simple quadran-
gulation, and we do this.

Given a finite set G, the notation G ∈u G means that G is chosen uniformly at random from G. Given a finite rooted
or unrooted map G write μG for the uniform probability measure on the vertex set v(G), and for c > 0, write cG for
the measured metric space (v(G), c · dG,μG), where dG denotes graph distance. Given a set G of maps and n ∈ N,
write Gn = {G ∈ G : |v(G)| = n}. Finally, write M = (M, d,μ) for the measured Brownian map. (See Le Gall [11]
for a definition of M.)

Theorem 1.1. Let Rr ∈u Rr , then as r → ∞,(
21

40r

)1/4

Rr
d→ M

in distribution for the Gromov–Hausdorff–Prokhorov topology.

A brief overview of the Gromov–Hausdorff–Prokhorov (GHP) distance appears in Section 2.2.
To state our main results, a little more terminology is needed; see Figure 1 for an illustration. Given a rooted map

M = (M,uv), we may define a canonical total order <M on v(M) as follows. List the vertices of M as u1 = u,u2 =
v, . . . , u|v(M)| according to their order of discovery by a breadth-first search which starts from the root edge uv and
uses the clockwise order of edges around each vertex starting from the explored edge to determine exploration priority.
(See Even [7] for a definition of breadth-first search.) We also define a total order ≺M on the set of oriented edges of
M as follows. Let uiuj ≺M ui′uj ′ precisely if either (a) ui was discovered before ui′ or (b) i = i′ and uiuj has higher
priority than uiuj ′ .

Fix a bipartite map M = (M,uv). A cycle C in a map M is nearly facial if at least one connected component of
S2 \ C contains no vertices of M (it may contain edges). We say M is nearly simple if every cycle in M with length
two is nearly facial. Write M◦ = (M◦, uv) for the map obtained by collapsing each nearly facial 2-cycle into an edge.
(This is a slight abuse of notation as the edge uv ∈ e(M) may be collapsed with other edges in forming M◦, but the
meaning should be clear.) Note that M is nearly simple precisely if M◦ is simple – in this case we call M◦ the simple
nerve of M.

The definitions of the next two paragraphs are partly illustrated in Figure 2. For A ⊂ v(M), write M[A] for the
submap of M induced by A. For any edge e ∈ e(M) with endpoints x and y let Be ⊂ v(M) be maximal subject
to the constraints that {x, y} ⊂ Be, and that M[Be] is 2-connected. We call M[Be]◦ a 2-connected block of M. In
particular, write R• = R•(M) = (M[Buv]◦, uv) and call R• the 2-connected root block of M. Our choice to collapse
nearly-facial 2-cycles renders this different from the standard graph theoretic definition of a 2-connected block. We
make this choice as it simplifies upcoming counting arguments.
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Fig. 2. The 2-connected blocks of M are M[{a, b, c, d}]◦ and M[{d, e, f, g,h, i}]◦ . The simple blocks of M are M[{a, b, c, d, e, f, i}]◦ and
M[{d,g,h, i}]◦ .

Next, for any edge e ∈ e(M) with endpoints x and y, consider the set S = {B ⊂ v(M) : {x, y} ⊂ B,

M[B] is nearly simple}. Let S′ = {B ′ ∈ S : B ′ is maximal}, where maximal is with respect to the inclusion relation
on v(M). Then define B ′

e ⊂ v(M) to be the lexicographically minimal element of S′ with respect to the total order
<M. We call M[B ′

e]◦ a simple block of M or, more specifically, the simple block containing edge e. We also write
S• = S•(M) = (M[B ′

uv]◦, uv) and call S• the simple root block of M.
Write R(M) (resp. S(M)) for the largest 2-connected (resp. simple) block of M, rooted at its ≺M-minimal edge,

and write b(M) = |v(R(M))| and sb(M) = |v(S(M))|. If there are multiple 2-connected blocks with size b(M), among
these blocks we take R(M) to be the one whose root edge uiuj is ≺M-minimal, and use the same convention for S(M).
We call R(M) and S(M) the 2-connected and simple cores of M, respectively.

The next theorem states that a uniform quadrangulation, its largest 2-connected block, and its largest simple block
jointly converge to the same Brownian map. (Note that the definition of Rq in the coming theorem is different from
that in Theorem 1.1. We recycle some notation to keep the sub- and superscripts from becoming too cumbersome; we
will always remind the reader when there is a possibility of ambiguity or confusion.)

Theorem 1.2. Let Qq ∈u Qq and write Rq = R(Qq), Sq = S(Qq). Then as q → ∞,

((
9

8q

)1/4

Qq,

(
9

8q

)1/4

Rq,

(
9

8q

)1/4

Sq

)
d→ (M,M,M)

in distribution for the Gromov–Hausdorff–Prokhorov topology.

The convergence of the first coordinate in Theorem 1.2 was proved independently by Le Gall [11] and by Miermont
[14]. The convergence of the third coordinate on its own is implied by a result by Addario-Berry and Albenque [1],

who show that if Sq is a uniform simple quadrangulation for all q , then (3/(8|v(Sq)|))1/4Sq
d→ M. It is known (Gao

and Wormald [9], Banderier et al. [3]) that |v(Sq)|/q → 1/3 in probability, so in the third coordinate the scaling factor
(9/(8q))1/4 may be replaced by (3/(8|v(Sq)|))1/4, and the convergence then follows from the result of Addario-Berry
and Albenque [1]. Similarly, the convergence of the second coordinate on its own can be deduced from Theorem 1.1.

Theorem 1.2 and Theorem 1.1 both follow from a stronger “local invariance principle,” in which the sizes of the
largest 2-connected block and largest simple block are fixed rather than random. Given integers q ≥ r ≥ s ≥ 1, let

Qq,r,s = {
Q ∈Qq : b(Q) = r, sb(Q) = s

}
,

Rr,s = {
Q ∈Rr : sb(Q) = s

}
.

Theorem 1.3. Let (r(q) : q ∈N) and (s(q) : q ∈N) be such that r(q) = 7q/15 +O(q2/3) and s(q) = q/3 +O(q2/3)

as q → ∞. Let Qq ∈u Qq,r(q),s(q) and write Rq = R(Qq), Sq = S(Qq). Then as q → ∞,

((
9

8q

)1/4

Qq,

(
9

8q

)1/4

Rq,

(
9

8q

)1/4

Sq

)
d→ (M,M,M)

in distribution for the Gromov–Hausdorff–Prokhorov topology.
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We provide an outline of the proof of Theorem 1.3 (our main result) in Section 1.2.
Now and for the remainder of the paper, fix C > 0 and let (r(q) : q ∈ N) and (s(q) : q ∈ N) be such that |r(q) −

7q/15| < Cq2/3 and |s(q) − 5q/7| < Cq2/3 for all q sufficiently large. The scaling of r(q) and s(q) in Theorem 1.3
is explained by the following local limit theorem for the asymptotics of maximal block sizes.

Theorem 1.4. Let Qq ∈u Qq , and write δr (q) = r(q)−7q/15
q2/3 , δs(q) = s(r(q))−5r(q)/7

r(q)2/3 . Then

P
(
b(Qq) = r(q), sb(Qq) = s

(
r(q)

))= βA(βδs(q))

r(q)2/3

β ′A(β ′δr (q))

q2/3

(
1 + o(1)

)
,

where β and β ′ are positive constants given in Propositions 3.8 and 3.7 respectively, A : R→ [0,1] is a density.

Here o(1) denotes a function tending to zero whose decay may depend on C, but we omit this dependence from the
notation. We prove Theorem 1.4 using the machinery developed by Banderier et al. [3], based on singularity analysis
of generating functions, in Section 3. Theorem 1.2 follows from Theorem 1.3, Theorem 1.4, and an easy averaging
argument. We similarly deduce Theorem 1.1 by averaging over the second coordinate in the next proposition.

Proposition 1.5. Let Rr ∈u Rr,s(r) and write Sr = S(Rr ). Then as r → ∞,

((
21

40r

)1/4

Rr ,

(
21

40r

)1/4

Sr

)
d→ (M,M)

in distribution for the Gromov–Hausdorff–Prokhorov topology.

Remarks.

(1) The proof of Proposition 1.5, given in Section 6, uses the convergence of simple quadrangulations, proved in
Addario-Berry and Albenque [1], to deduce convergence of 2-connected quadrangulations, as a stepping stone to
proving the joint convergence of Theorem 1.3. The results of Addario-Berry and Albenque [1] in turn use the “re-
rooting invariance trick” introduced by Le Gall [11], together with the convergence of uniform quadrangulations
to the Brownian map (Le Gall [11], Miermont [14]), to deduce convergence for uniform simple quadrangulations.
We mention this to emphasize that the results of this paper do not constitute an independent proof of convergence
for uniform quadrangulations.

(2) In Addario-Berry and Albenque [1] it is also shown that simple triangulations converge to the Brownian map.
Using this, the arguments of the current paper could be modified to show joint convergence of uniformly random
triangulations and their largest loopless and simple blocks.

Before sketching our proof, we first describe the combinatorial relations between Q, R•(Q) and S•(Q), on which
our proofs rely.

1.1. Bijections for Q, R and S

Suppose we are given only R• = R•(Q). What additional information is required to reconstruct Q? Similarly, what do
we require in addition to S• = S•(R) in order to reconstruct R•? In each case, the reconstruction requires augmenting
the edges with additional data. The reconstruction (equivalently described as decomposition) procedures which we
describe in this section are all either due to Tutte [16] or are obtained by slight variants of his methods.

When reconstructing R• from S•, this data consists of a 2-connected quadrangulation for each edge of S•. When
reconstructing Q from R•, we require a sequence of quadrangulations for each edge of R•, together with a second,
binary sequence whose entries specify how to attach the quadrangulations in the sequence. In both cases, the root edge
must be treated slightly differently from the others (in brief, for the root edge we must specify data twice, once for
each side of the edge). We now turn to details.

A quadrangulation of a 2-gon is a rooted map whose unbounded face has degree 2, with all other faces of degree 4,
rooted such that the unbounded face lies to the left of the root edge. Temporarily write T for the set of quadrangulations
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Fig. 3. (a) A simple quadrangulation. (b) “Decorations” for the edges. (c) After attaching the decorations. (d) The map R.

of 2-gons. Given a map in T , merge the two edges incident to the unbounded face to obtain a map in Q; we call this
the natural bijection between T and Q. For n ≥ 3, it in fact restricts to a bijection between Tn and Qn. Also, T2
contains only one element: the map with one edge and two vertices. Recalling that we also view a single edge as a
2-connected quadrangulation, it follows that T2 =Q2, and it is convenient to view the natural bijection as associating
these two sets with one another.

Let S = (S,uv) be a simple quadrangulation. List the vertices of S in breadth-first order as u1, . . . , un and list the
edges of S as uv = e1, . . . , em, oriented so that the tail precedes the head in breadth-first order. To build a 2-connected
quadrangulation with simple root block S, proceed as follows (see Figure 3).

(1) Create a second copy e0 of the edge uv so that e0 lies to the left of e1.
(2) For 0 ≤ i ≤ m let Mi be a 2-connected quadrangulation, and let M′

i = (Mi,uivi) be the quadrangulation of a
2-gon associated to Mi by the natural bijection.

(3) For each 0 ≤ i ≤ m, identify the edge ei with the root edge uivi of M′
i . The resulting map has a single facial

2-cycle (lying between M0 and M1), with vertices u and v; collapse it and root at the resulting edge uv.

Call the resulting map R. Then R is a 2-connected quadrangulation with S•(R) = S. We note that

∣∣e(R)
∣∣= ∣∣e(S)

∣∣+ |e(S)|∑
i=0

∣∣e(Mi )
∣∣1[|e(Mi )|�=1] = −1 +

|e(S)|∑
i=0

(
1 + ∣∣e(Mi )

∣∣1[∣∣e(Mi )
∣∣ �=1]

)
. (1.1)

Proposition 1.6. The above procedure induces a bijection ϕ between R and the set{
(S,�) : S ∈ S,� ∈R|e(S)|+1}.

Proof. Given a 2-connected quadrangulation of a 2-gon, collapsing the unbounded face to form a single edge (which is
equivalent to taking the simple nerve), then rooting at this edge, yields a 2-connected quadrangulation. This operation
is easily seen to be a bijection. In view of the fact that the quadrangulation R ∈ R in the above construction has
S•(R) = S, the result follows. �

Next let R = (R,uv) be a 2-connected quadrangulation and list e(R) as e1, . . . , em, as above. For each integer
1 ≤ i ≤ m, write e+

i and e−
i for the head and the tail of ei respectively. To build a quadrangulation with 2-connected

root block R, proceed as follows (see Figure 4).

(1) Create a second copy e0 of the edge uv so that e0 lies to the left of e1.
(2) For 0 ≤ i ≤ m fix �i ∈ N≥0 and sequences Li = (Mi,j : 1 ≤ j ≤ �i) ∈ Q�i , bi = (bi,j : 1 ≤ j ≤ �i) ∈ {0,1}�i .
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Fig. 4. The quadrangulation in (d) can be reconstructed from its 2-connected core in (a) with the decoration ((Li , bi ) : 0 ≤ i ≤ r) where
L0 = (M0,1), b0 = (1),L1 = (M1,1), b1 = (0), L2 = L3 = ∅, b2 = b3 =∅,L4 = (M4,1,M4,2), b4 = (0,1).

(3) For each 1 ≤ i ≤ m, add an additional �i copies of ei ; label the resulting �i + 1 copies of ei as ei,1, . . . , ei,�i+1 in
clockwise order around e−

i .
(4) For 0 ≤ i ≤ m and 1 ≤ j ≤ �i , let M′

i,j be the quadrangulation of a 2-gon associated to Mi,j by the natural
bijection.

(5) Attach M′
i,j = (Mi,j , ui,j vi,j ) inside the 2-cycle formed by ei,j and ei,j+1 by identifying ui,j with e−

i (if bi,j = 0)

or e+
i (if bi,j = 1). The resulting map has a single facial 2-cycle, with edges e0,�0+1 and e1,1; collapse it and root

at the resulting edge uv.

Call the resulting map Q. Then Q is a connected quadrangulation with R•(Q) = R. We note that

∣∣e(Q)
∣∣ = ∣∣e(R)

∣∣+ |e(R)|∑
i=0

�i∑
j=1

(∣∣e(Mi,j )
∣∣+ 1 + 1[∣∣e(Mi,j )

∣∣�=1]
)

= −1 +
|e(R)|∑
i=0

(
1 +

�i∑
j=1

(∣∣e(Mi,j )
∣∣+ 1 + 1[|e(Mi,j )|�=1]

))
. (1.2)

In the following proposition we write (Q× {0,1})∗ = {∅} ∪⋃
n∈N(Q× {0,1})n.

Proposition 1.7. The above procedure induces a bijection ψ between Q and the set

{
(R,�) : R ∈R,� ∈ ((

Q× {0,1})∗)|e(R)|+1}
.

Proof. This is immediate from the fact that the above construction has R•(Q) = R. �

For both decompositions, we refer informally to the maps in the vectors � and � as decorations or as pendant
submaps.



1896 L. Addario-Berry and Y. Wen

1.2. Proof sketch for Theorem 1.3

In this subsection, we assume familiarity with the Gromov–Hausdorff and Gromov–Hausdorff–Prokhorov distances.
The relevant definitions appear in Section 2. We begin by stating (and sketching the proof of) a joint convergence
result for a 2-connected quadrangulation and its largest simple block; the proof of this result contains most of the key
ideas for the proof of Theorem 1.3.

Given Rr = (Rr, er ) ∈u Rr,s(r), it is easily seen that Sr = S(Rr ) is uniformly distributed over Ss(r). Then by

Addario-Berry and Albenque [1], Theorem 1, (3/8s(r))1/4Sr
d→ M as s(r) → ∞. Also, the definition of s(r) guar-

antees that ( 3
8s(r)

)1/4 · ( 21
40r

)−1/4 → 1 as r → ∞.
Let e′ be the ≺Rr

-minimal oriented edge of Sr . If er ∈ e(Sr ) then Sr = S•(Rr ). Write R′
r = (Rr, e

′). By Proposi-
tion 1.6, R′

r uniquely decomposes as ϕ(R′
r ) = (S,�) ∈ Ss(r) ×R|e(S)|+1, and our choice of e′ guarantees that S = Sr .

Write � = (�i : 0 ≤ i ≤ 2s(r) − 4), and

L(Rr ) = max
{∣∣v(�i)

∣∣ : 0 ≤ i ≤ 2s(r) − 4
}
,

D(Rr ) = max
{
diam(�i) : 0 ≤ i ≤ 2s(r) − 4

}
.

In words, L(Rr ) and D(Rr ) are the greatest number of vertices and the greatest diameter, respectively, of any submap
pendant to the biggest simple block of Rr . The identification of Sr as a submap of Rr gives the bound dGH(Rr ,Sr ) ≤
D(Rr ). To prove that ( 21

40r
)1/4dGH(Rr ,Sr ) = o(1) in probability, it thus suffices to show that ( 21

40r
)1/4D(Rr ) = o(1)

in probability. (Note that here we have the Gromov–Hausdorff rather than Gromov–Hausdorff–Prokhorov distance!)
To accomplish this, we use the methodology developed by Banderier et al. [3], which allows one to describe the

largest block size of a map whenever the map may be described by a recursive decomposition into rooted blocks,
using a suitable composition schema; this is explained in greater detail in Section 3. We thereby obtain the following
distributional result for |v(Sr )|.

Proposition 1.8. Let Rr ∈u Rr , then for any A > 0, uniformly over x ∈ [−A,A],

P
(
sb(Rr ) = ⌊

5r/7 + xr2/3⌋)= βA(βx)

r2/3

(
1 + o(1)

)
,

where β is given in Proposition 3.8.

The proof of Proposition 1.8 appears in Section 3. The range of values for r in the above local limit theorem is
what leads to our choice for the range of s(r) in Theorem 1.3 and Theorem 1.4. The following proposition bounds the
size of the largest simple block of a random 2-connected quadrangulation.

Proposition 1.9. For any A > 0, there exist positive constants c1 and c2 such that for all r ∈ N and for integer
k ∈ (5r/7 + Ar2/3, r], if Rr ∈u Rr ,

P
(
sb(Rr ) = k

)≤ c1 exp
(−c2r(k/r − 5/7)3).

This proposition is a slight extension of Banderier et al. [3], Theorem 1, which proves similar bounds but requires
that (r − k)/r2/3 → ∞. We do not reprove the entire result, but simply analyze the behaviour in the range not covered
in the work of Banderier et al. [3]. We use Proposition 1.9 in proving stretched exponential tail bounds for the size of
the largest pendant submap in a random 2-connected quadrangulation.

Proposition 1.10. For all ε ∈ (0,1/3), there exist positive constants c1, c2, and c3 = c3(ε) such that for all r ∈ N, if
Rr ∈u Rr,s(r),

P
(
L(Rr ) ≥ r2/3+ε

)≤ c1 exp
(−c2r

c3
)
.
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Fig. 5. Parallel alternating 1-paths and 3-paths attached to the root edge es .

Proofs for Proposition 1.9 and Proposition 1.10 are given in Section 4.
Next we deduce a bound for D(Rr ) through extending a result by Chassaing and Schaeffer [6]. The following

proposition follows straightforwardly from Chassaing and Schaeffer [6], Proposition 4.

Proposition 1.11 (Chassaing and Schaeffer [6]). There exist positive constants y0, C1, and C2 such that for all
y > y0 and q ∈ N, if Qq ∈u Qq ,

P
(
diam(Qq) > yq1/4)≤ C1 exp(−C2y).

This bound is for connected quadrangulations rather than 2-connected ones. However, at the cost of polynomial
corrections, we are able to transfer the result to the latter family of quadrangulations, as shown in Section 4.1. This in
particular yields the following bound.

Proposition 1.12. Let Rr ∈u Rr,s(r), then there exist positive constants C1, C2, and C3 such that

P
(
D(Rr ) ≥ r5/24)≤ C1 exp

(−C2r
C3
)
.

The above results immediately give rise to Gromov–Hausdorff convergence of (Rr ,Sr ) after rescaling, as shown
in Proposition 4.2 in the end of Section 4.1. However, to deduce GHP convergence, the above propositions are insuf-
ficient, as they do not guarantee that the uniform measures on v(Rr ) and v(Sr ) are close in the Prokhorov sense. Here
is an example of the sort of issue that may a priori still occur. For all s ∈ N, let Ss ∈u Ss have root edge es . Let Ps

be the quadrangulation of a 2-gon with 2�s/5� + 2 vertices composed of parallel alternating 1-paths and 3-paths, and
write e′

s for one of the boundary edges of Ps . Then identify es with e′
s , embed Ps in the face of Ss to the left of es ,

and write R′
s for the resulting quadrangulation; see Figure 5. Recall that M = (M,d,μ) is the Brownian map. Then it

is not hard to see that (R′
s ,Ss) converges after rescaling to (M′,M), where M′ = (M,d,μ′) has the geometry of the

Brownian map but has mass measure 5
7μ + 2

7δρ , where ρ is a point of M with law μ.
To prevent the masses of “pendant submaps” from concentrating on small regions in this manner, we use that they

attach to exchangeable random locations on the simple block and that each of them has asymptotically negligible size.
The first follows from the details of the construction of a 2-connected quadrangulation from its simple root block,
explained in Section 1.1; the second is a consequence of Proposition 1.10.

In order to show that the facts from the preceding paragraph suffice to imply joint convergence, we prove a general
result on the preservation of Gromov–Hausdorff–Prokhorov convergence under small random modifications; our result
relies on results of Aldous on concentration for partial sums of exchangeable random variables. Details for this part
of the proof appear in Sections 5 and 6.

We conclude the proof sketch by explaining how we strengthen Proposition 1.5 to prove Theorem 1.3. First, with
Qq ∈u Qq,r(q),s(q), we show that R(Qq) contains S(Qq) with high probability. The joint convergence of the second
and third coordinates in Theorem 1.3 then follows from Proposition 1.5.

The convergence of the first coordinate does not follow from the existing result by Le Gall [11] or Miermont [14],
because Qq here is not uniformly distributed over Qq , but conditioned on b(Qq) = r(q) and sb(Qq) = s(q). To deal
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with this, we require versions of Propositions 1.10 and 1.12 that apply to uniform quadrangulations sampled from Qq

and Qq,r(q),s(r(q)). These follows straightforwardly once we show that with high probability, S(R(Qq)) = S(Qq). We
postpone the details.

A reprise of the argument for Proposition 1.5 then shows that if Qq ∈u Qq,r(q),s(q), then (Qq,R(Qq))
d→ (M,M)

as q → ∞. Since we also know (R(Qq),S(Qq))
d→ (M,M) as q → ∞, Theorem 1.3 follows immediately.

2. Preliminaries

2.1. Hausdorff and Prokhorov distances

Let (V , d) be a compact metric space with its Borel σ -algebra B(V ). Given A ⊂ V , the ε-neighborhood of A is
defined as

Aε = {
x ∈ V : ∃y ∈ A,d(x, y) < ε

}
.

The Hausdorff distance dH between two non-empty subsets X,Y of (V , d) is defined as

dH(X,Y ) = inf
{
ε > 0 : X ⊂ Y ε,Y ⊂ Xε

}
.

Denote by P(V ) the collection of all probability measures on the measurable space (V ,B(V )). The Prokhorov
distance dP : P(V )2 → [0,∞) between two Borel probability measures μ and ν on V is given by

dP(μ, ν) = inf
{
ε > 0 : μ(A) ≤ ν

(
Aε

)+ ε and ν(A) ≤ μ
(
Aε

)+ ε,∀A ∈ B(V )
}
.

2.2. Gromov–Hausdorff(–Prokhorov) distance

We refer the reader to Burago et al. [5], Miermont [14] and Le Gall [11] for more details on the Gromov–Hausdorff
and Gromov–Hausdorff–Prokhorov distances and the topologies they induce. Let (V , d) and (V ′, d ′) be two compact
metric spaces. A correspondence between V and V ′ is a set C ⊂ V × V ′ such that for every x ∈ V , there is x′ ∈ V ′
with (x, x′) ∈ C, and vice versa. We write C(V,V ′) for the set of correspondences between V and V ′. The distortion
of any set C ⊂ V × V ′ with respect to d and d ′ is given by

dis
(
C;d, d ′)= sup

{∣∣d(x, y) − d ′(x′, y′)∣∣ : (x, x′) ∈ C,
(
y, y′) ∈ C

}
.

The Gromov–Hausdorff distance between (V , d) and (V ′, d ′) is defined as

dGH
(
(V , d),

(
V ′, d ′))= inf

{
ε > 0 : ∃C ∈ C

(
V,V ′),dis

(
C;d, d ′)≤ 2ε

}
.

Next, suppose μ and μ′ are non-negative Borel measures on (V , d) and (V ′, d ′), respectively. The Gromov–
Hausdorff–Prokhorov distance between V = (V , d,μ) and V′ = (V ′, d ′,μ′) is given by

dGHP
(
V,V′)= inf

[
max

{
dH

(
φ(V ),φ′(V ′)), dP

(
φ∗μ,φ′∗μ′)}],

where the infimum is taken over all isometries φ,φ′ from (V , d), (V ′, d ′) into a metric space (Z, δ) (see Miermont
[13], Section 6.2). Writing K for the set of all isometry classes of compact measured metric spaces, (K, dGHP) is a
Polish space; when we refer to GHP convergence we mean convergence in this space.

2.3. The Airy distribution

The Airy distribution is the probability distribution whose density is

A(x) = 2e−2x3/3(xAi
(
x2)− Ai′

(
x2))

= 1

πx

∑
n∈N

(−x32/3)n �(2n/3 + 1)

n! sin(−2nπ/3),
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where the Airy function Ai is given by

Ai(z) = 1

2π

∫ ∞

−∞
ei(zt+t3/3) dt

= 1

π32/3

∑
n∈N≥0

(
31/3z

)n �((n + 1)/3)

n! sin
(
2(n + 1)π/3

)
.

3. Composition schemata

Let F(z) = ∑
n∈N≥0

Fnz
n be a generating function (i.e. an analytic function with nonnegative integer coefficients)

with positive radius of convergence r = rF . We say F is singular with exponent 3/2 if the following properties hold.

• There exists ε > 0 such that F is continuable in � = {z : |z| < r + ε, z /∈ [r, r + ε)}.
• There exist positive constants a = aF , b = bF , c = cF such that F(z) = a − b(1 − z/r) + c(1 − z/r)3/2 + O((1 −

z/r)2) as z → r in �.

Gao and Wormald [9] derived asymptotics for the coefficients of F under the above conditions.

Proposition 3.1 (Gao and Wormald [9], Theorem 1(iii)). Let F be singular with exponent 3/2, let r and c be as
above. Then

Fn ∼ 3c

4π1/2

r−n

n5/2
.

Next, let C and H be generating functions with positive coefficients, and define a bivariate generating function M

by M(z,u) = C(uH(z)); Banderier et al. [3] call this a composition schema. We generically write Ck = [zk]C(z) and
Mn = [zn]M(z,1), and for n ∈N let Xn be a real random variable with law given by

P(Xn = k) = Ck

Mn

[
zn
]
H(z)k.

We quote from Banderier et al. [3]:

Combinatorially, this corresponds to a composition M = C ◦H between classes of [rooted] objects, where objects of type H are substituted
freely at individual “atoms” (i.e., nodes, edges, or faces) of elements of C. . . [znuk]M(z,u) gives the number of M-objects of total size n

whose C-component (the “core”) has size k, and Xn is the corresponding random variable describing core-size in this general context.

More precisely, Xn is the law of the size of the C-component containing the root, in an object chosen uniformly at
random from among all M-objects of size n. The connection with the bijections for quadrangulations described in
Section 1.1 should be clear. We say the triple (M,C,H) is a map schema if C and H are both singular with exponent
3/2 and additionally H(rH ) = rC .1 The following results are all from Banderier et al. [3].

Proposition 3.2 (Banderier et al. [3], Theorems 1 and 5). Suppose (M,C,H) is a map schema with

C(z) = c0 − c1(1 − z/rC) + c3/2(1 − z/rC)3/2 + O
(
(1 − z/rC)2),

H(z) = h0 − h1(1 − z/rH ) + h3/2(1 − z/rH )3/2 + O
(
(1 − z/rH )2),

the expansions for C(z) and H(z) valid in some neighbourhoods of rC and of rH , respectively. Let α = α(M,C,H), β =
β(M,C,H) and γ = γ(M,C,H) be defined by

α = c1h3/2h
1/2
0 + c3/2h

3/2
1

h
3/2
0

, β = h
5/3
1

(3h3/2)2/3h0
, γ = β · c3/2h

3/2
1

α · h3/2
0

.

1In Banderier et al. [3], this is called a critical composition schema of singular type ( 3
2 ◦ 3

2 ). We shorten this to “map schema” as such schemata
seem to primarily arise in the study of maps.
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Then

[
zn
]
M(z,1) ∼ 3α

4π1/2

r−n
H

n5/2
.

Furthermore, writing α0 = α0,(M,C,H) = h0/h1, for any A > 0,

lim
n→∞ sup

x∈[−A,A]
∣∣n2/3P

(
Xn = ⌊

α0n + xn2/3⌋)− γA(βx)
∣∣= 0. (3.1)

Finally, there exist continuous functions f : [α0,1] → (0,∞) and g : [α0,1] → (0,∞) such that for any function
λ : N→N with λ(n) → ∞,

P(Xn = k) = (
1 + o(1)

)
f (k/n)

(k/n − α0)
1/2

n1/2(1 − k/n)3/2
e−n(k/n−α0)

3g(k/n), (3.2)

the preceding asymptotic holding uniformly in α0n + n2/3λ(n) < k < n − n2/3λ(n).

Remark. In Banderier et al. [3], schema of the form M(z,u) = C(uH(z)) + D(z) are also considered. Replacing
M(z,u) by M(z,u) − D(z) turns this into a compositional schema; if the latter is a map schema then Proposition 3.2
applies. The equation involving D is convenient when considering map families in which the core may have size zero;
such families should be counted by [u0]M(z,u), which is identically zero in C(uH(z)).

Corollary 3.3. Suppose (M,C,H) is a map schema, and let α0 = α0,(M,C,H), f and g be as in Proposition 3.2. Then
for any function λ :N →N with λ(n) → ∞ and any a > 0,

P(Xn = k) = �(1) · (k/n − α0)
1/2

n1/2(1 − k/n)3/2
e−n(k/n−α0)

3g(k/n),

uniformly over integers k ∈ [α0n + an2/3, n − λ(n)n2/3).

Proof. Note that if k = α0n + cn2/3 then

(k/n − α0)
1/2

n1/2(1 − k/n)3/2
e−n(k/n−α0)

3g(k/n) = c1/2

n2/3(1 − k/n)3/2
e−c3g(α0+c/n1/3).

For |k − α0n| = O(n2/3), the latter is �(n−2/3). By (3.1), we indeed have P(Xn = k) = �(n−2/3) for such k.
If the claim of the corollary fails then there exists a sequence (ni, i ≥ 1) and ki ∈ [α0ni + an2/3, ni − λ(ni)n

2/3
i ]

along which the ratio of P(Xni
= ki) and

(ki/ni − α0)
1/2

n
1/2
i (1 − ki/ni)3/2

e−ni(ki/ni−α0)
3g(ki/ni )

either diverges or tends to zero. By passing to a subsequence if necessary, we may assume that either ki − α0ni =
O(n2/3) or (ki − α0ni)/n

2/3
i → ∞. In view of the above computation, the first possibility is in contradiction with

(3.1). The second possibility is in contradiction with (3.2); thus neither can occur. �

Corollary 3.4 (Banderier et al. [3], Theorem 7). Suppose (M,C,H) is a map schema with α0 = α0,(M,C,H) and
β = β(M,C,H) defined in Proposition 3.2. Let X∗

n be the size of the largest C-component in a random M-map of size n

with uniform distribution. Then

P
(
X∗

n = ⌊
α0n + xn2/3⌋)= βA(βx)

n2/3

(
1 + o(1)

)
,

uniformly for x in any bounded interval.
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Let M(z),C(z),B(z) be the generating functions of rooted connected, 2-connected, and simple quadrangulations
respectively. More precisely, we take [zn]M(z) = |Qn+2|, [zn]C(z) = |Rn+2|, and [zn]B(z) = |Sn+2| for n ≥ 1, and
[zn]M(z) = [zn]C(z) = [zn]B(z) = 0 for n = 0. (The latter is slightly at odds with our convention of viewing a single
edge as a 2-connected quadrangulation, but is algebraically convienent below.) Define

H(z) = z

(
1

1 − 2z(1 + M(z))

)2

, (3.3)

U(z) = z
(
1 + C(z)

)2
. (3.4)

The following two lemmas follow immediately from Propositions 1.6 and 1.7 respectively.

Lemma 3.5. We have the following substitution relation between M(z) and C(z):

M(z) = C
(
H(z)

) · 1

1 − 2z(1 + M(z))
+ 2z(1 + M(z))

1 − 2z(1 + M(z))
. (3.5)

Equivalently,

M(z) = C
(
H(z)

)+ 2z
(
1 + M(z)

)2
. (3.6)

Equation (3.6) is obtained by multiplying both sides of (3.5) by 1−2z(1+M(z)) and then rearranging elements. To
see that (3.6) gives a composition schema, we can rewrite it as M̂(z) = C(H(z)) with M̂(z) = M(z)−2z(1+M(z))2.

We now take a closer look at equation (3.3), which describes the “M-decorations” of an edge of a C-object (i.e. of
a 2-connected map). This is best understood with the bijection from Proposition 1.6 at hand. In the term 2z(1+M(z)),
the multiplier 2 counts the choice of extremity at which the decoration is attached; M(z) counts the case when
attachment is a quadrangulation with at least 3 vertices (recalling that z marks the number of vertices less two, and the
lowest power term of M(z) is 2z); the additive term 1 counts the case when attachment is a single edge; the multiplier
z adjusts the counting of extra vertices resulting from the attachment (we multiply by z instead of z2 because the
attachment vertex is already counted in the core). Taking the reciprocal of 1 − 2z(1 + M(z)) accounts for the fact that
we can attach a sequence of submaps (each two separated by an edge). Squaring the reciprocal accounts for the fact
that in a quadrangulation Q we have |e(Q)| = 2(|v(Q)| − 2).

In equation (3.5), the term 2z(1+M(z))
1−2z(1+M(z))

takes into consideration when the root block is a single edge. The multi-

plication 1
1−2z(1+M(z))

in the first term accounts for the extra submap attachment due to split of the root edge (recall
the construction preceding Proposition 1.6).

Lemma 3.6. We have the following substitution relation between C(z) and B(z):

C(z) = B
(
U(z)

) · (1 + C(z)
)
. (3.7)

To see that this identity gives a composition schema, note that it may equivalently be written as C(z) = B̂(U(z))

with B̂ = B/(1 − B). The multiplication (1 + C(z)) accounts for the extra submap attachment due to the split of the
root edge (see the construction preceding Proposition 1.7).

The substitution relations of the two preceding lemmas yield, via well-known methodology, that (M,C,H) and
(C,B,U) are both map schemata. More specifically, we have the following two propositions.

Proposition 3.7. The triple (M,C,H) is a map schema with

α0 = 7

15
, α = 40

27
, β = 52/3 · 15

28
, γ = 9

51/3 · 4
. (3.8)
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Table 1
Expansions of generating functions around their dominant singularities

f rf Expansion at rf

H 1/12 27
196 − 405

1372 (1 − 12z) + 54
343 (1 − 12z)3/2 + O((1 − 12z)2)

C 27/196 1
27 − 28

135 (1 − 196z/27) + 392
675

√
7
15 (1 − 196z/27)3/2 + O((1 − 196z/27)2)

U 27/196 4
27 − 28

135 (1 − 196z/27) + 112
675

√
7
15 (1 − 196z/27)3/2 + O((1 − 196z/27)2)

B 4/27 1
28 − 27

196 (1 − 27z/4) + 9
√

3
98 (1 − 27z/4)3/2 + O((1 − 27z/4)2)

Proposition 3.8. The triple (C,B,U) is a map schema with

α0 = 5

7
, α = 211/2 · 9

51/2 · 50
, β = 72/3

61/3 · 2
, γ = 5

421/3 · 2
. (3.9)

Note that Proposition 1.8 follows immediately from Corollary 3.4 and Proposition 3.8.
We will also need the following analogue of Proposition 1.8 for the largest 2-connected block of a general quad-

rangulation, which follows from Corollary 3.4 and Proposition 3.7.

Proposition 3.9. Let Qq ∈u Qq , then for any A > 0, uniformly over x ∈ [−A,A],

P
(
b(Qq) = ⌊

7q/15 + xq2/3⌋)= βA(βx)

q2/3

(
1 + o(1)

)
,

where β is given in Proposition 3.7.

Lemma 3.10. H(z),C(z),U(z), and B(z) each has radius of convergence and asymptotic expansion around
rH , rC, rU , and rB as given in Table 1.

This lemma may be established essentially automatically using standard techniques in enumerative combinatorics.
We include a brief explanation of this methodology in the Appendix.

4. Sizes and diameters of pendant submaps

In this section, we first obtain a size bound for the decorations of the largest simple block in a uniform rooted 2-
connected quadrangulation. Using this we then derive a corresponding diameter bound which leads to a “GH conver-
gence version” of Proposition 1.5, shown in Section 4.1. Analogous tail bounds for uniform rooted quadrangulations
are stated in Section 4.2.

Proof of Proposition 1.9. Let λ : N → N be a function tending to infinity with λ(r) ≤ r1/3

(log r)2 . For k ≤ r − r2/3λ(r),

the bound follows straightforwardly from Proposition 1.8 and Corollary 3.3. We hereafter assume that r − r2/3λ(r) <

k ≤ r . Note that for r large enough, r − r2/3λ(r) > r/2, so there must be less than one largest simple block of size k.
Let Rr ∈u Rr , and note that P(sb(Rr ) = k) = |Rr,k |

|Rr | . By Proposition 3.1 and Lemma 3.10, |Rr | = [zr−2]C(z) =
�(1) · r−5/2r−r

C as r → ∞ with rC = 27
196 .

Each element of Rr,k may be constructed by first choosing S ∈ Sk and a collection (Me, e ∈ e(S)) of rooted 2-
connected quadrangulations and with

∑
e∈e(S) |e(Me)| = 2(r − k); then attaching each Me to e ∈ e(S) to obtain a map
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R with r edges; and, finally, fixing a root edge e in R from among the (4r − 8) possible choices. This builds a map
(R, e) ∈Rr,k , and any element of Rr,k may be so built. It follows that

|Rr,k| ≤ |Sk| ·
( ∑

(x1,...,x2k−4)

2k−4∏
i=1

|Rxi
|
)

· (4r − 8),

where the sum is over non-negative integer vectors (x1, . . . , x2k−4) with
∑

i≤2k−4 xi = r − k. It is easily verified that

for all s, t , |Rs ||Rt | ≤ |Rs+t−2| ≤ |Rs+t |, so in the above sum we always have
∏2k−4

i=1 |Rxi
| ≤ |Rr−k|. The number

of summands is clearly less than (2k − 4)r−k , so we obtain

|Rr,k| ≤ |Sk| · (2k − 4)r−k · |Rr−k| · (4r − 8).

Recalling that |Sk| = [zk−2]B(z), |Rr−k| = [zr−k−2]C(z), this yields

|Rr,k| ≤ �(r) · (2k − 4)r−k · k−5/2 · r−k
B · (r − k)−5/2 · r−r+k

C ,

where rB and rC appear in Table 1.
Altogether, for r − r2/3λ(r) < k ≤ r ,

P
(
sb(Rr ) = k

)= |Rr,k|
|Rr | ≤ �(r) · (2k − 4)r−k · k−5/2 · (r − k)−5/2 · r5/2 ·

(
rC

rB

)k

.

For large enough r we have r − k < λ(r)r2/3 ≤ r

(log r)2 , so for such r ,

(2k − 4)r−k = exp
(
(r − k) · log(2k − 4)

)≤ exp

(
r

(log r)2
· log(2k − 4)

)
≤ exp

(
r

log r

)
.

We have rC
rB

< 1, so there exists b > 0 such that rC
rB

≤ exp(−b). It follows that for some positive constants c1 and c2,

P
(
sb(Rr ) = k

) ≤ (4r − 8) · k−5/2 · (r − k)−5/2 · r5/2 · exp

(
−b · k + r

log r

)

≤ c1 exp
(−c2r(k/r − 5/7)3). �

Proof of Proposition 1.10. For all positive integers r and x with x ≤ r − s(r) + 2 write

Lr,x = {
R ∈Rr,s(r) : L(R) = x

}
.

Fix ε ∈ (0,1/3) for the remainder of the proof. Letting Rr ∈u Rr,s(r),

P
(
L(Rr ) ≥ r2/3+ε

)= |Rr,s(r)|−1
r−s(r)+2∑

x=�r2/3+ε�
|Lr,x |. (4.1)

Since s(r) = 5r/7 + O(r2/3) as r → ∞, by Proposition 1.8,

|Rr,s(r)| = �
(
r−2/3) · |Rr | = �

(
r−2/3) · r−5/2 · r−r

C = �
(
r−19/6) · r−r

C . (4.2)

Thus, it remains to bound |Lr,x |.
Each element of Lr,x can be obtained by attaching some Rx ∈ Rx to the largest simple block of some R ∈

Rr−x+2,s(r) with sb(R) ≤ x, then possibly re-assigning the root edge. We therefore have

|Lr,x | ≤ �
(
r · s(r)) · |Rr−x+2,s(r)| · |Rx | (4.3)
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as r → ∞. Then to bound |Lr,x |, it suffices to bound |Rr−x+2,s(r)| and |Rx |. For large enough r and for all x ∈
[r2/3+ε, r − s(r)+ 2], we have 5(r − x + 2)/7 + (r − x + 2)2/3 ≤ s(r) ≤ r − x + 2. For x in this range, we may apply
Proposition 1.9: we obtain that for some C′ > 0,

|Rr−x+2,s(r)|
|Rr−x+2| = O(1) · exp

(
−C′(r − x)

(
s(r)

r − x
− 5/7

)3)
.

For all possible x, by Proposition 3.2 and Lemma 3.10 we have |Rr−x+2| = �(1) · (r − x)−5/2r−r+x
C , so

|Rr−x+2,s(r)| = O(1) · (r − x)−5/2 · r−r+x
C · exp

(
−C′(r − x)

(
s(r)

r − x
− 5/7

)3)
.

Then (4.3) gives

|Lr,x | = O
(
r · s(r)) · x−5/2 · (r − x)−5/2 · r−r

C · exp

(
−C′(r − x)

(
s(r)

r − x
− 5/7

)3)
.

Since s(r)
r

≥ 5/7 − Cr−1/3, we have for large r ,

exp

(
−C′(r − x)

(
s(r)

r − x
− 5/7

)3)
≤ exp

(−C′(r − x)−2(5x/7 − Cr2/3)3)
.

For r2/3+ε ≤ x ≤ r − s(r), and for large enough r , we thus have

|Lr,x |
= O

(
r · s(r)) · x−5/2 · (r − x)−5/2 · r−r

C · exp
(−C′(r − x)−2(5x/7 − Cr2/3)3)

= O
(
r · s(r)) · x−5/2 · (r − x)−5/2 · r−r

C · exp
(−C′(r − r2/3+ε

)−2(5r2/3+ε/7 − Cr2/3)3)
= r−r

C · exp
(−C′′ · r3ε

)
, (4.4)

for some C′′ > 0.
Finally, combining (4.1), (4.2), (4.4) and the fact that s(r) = 5r/7 + O(r2/3), there exist positive constants c1, c2

and c3 = c3(ε) such that

P
(
L(Rr ) ≥ r2/3+ε

)= |Rr,s(r)|−1
r−s(r)+2∑

x=�r2/3+ε�
|Lr,x | ≤ c1 exp

(−c2r
c3
)
.

�

4.1. Diameters of submaps pendant to the largest simple block

We want to apply Chassaing and Schaeffer [6] to obtain a diameter bound, but first we need to transfer the diameter
tail bound from Chassaing and Schaeffer [6] to the setting of 2-connected quadrangulations.

Lemma 4.1. Let Rr ∈u Rr , then there exist positive constants x0, c1 and c2 such that for all x > x0,

P
(
diam(Rr ) > xr1/4)≤ c1r

2/3 exp(−c2x).

Proof. For q ∈ N, let Qq ∈u Qq . Given that b(Qq) = r , R(Qq) has the same distribution as Rr . So for all q ≥ r and
x > 0, we have

P
(
diam(Rr ) > xr1/4) = P

(
diam

(
R(Qq)

)
> xr1/4|b(Qq) = r

)
≤ P

(
diam(Qq) > xr1/4|b(Qq) = r

)≤ P(diam(Qq) > xr1/4)

P(b(Qq) = r)
.
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Now let q = �15r/7�, then xr1/4 ≥ x(7/15)1/4q1/4, so by Proposition 1.11, there exist positive constants x0,C1,C2
such that for all x > x0,

P
(
diam(Qq) > xr1/4)≤ C1 exp(−C2x).

On the other hand, by Proposition 3.9, there exists C3 > 0 such that for all r ∈N,

P
(
b(Qq) = r

)≥ C3r
−2/3.

Altogether, we have

P
(
diam(Rr ) > xr1/4)≤ C1 exp(−C2x)

C3r−2/3
.

Then setting c1 = C1/C3 and c2 = C2 concludes the proof. �

Proof of Proposition 1.12. Fix a positive integer r and let k ∈ N with k ≤ min{s(r), r − s(r)}. Let Rr = (Rr, er ) ∈u

Rr,s(r), write Sr = S(Rr ), let e′ be the ≺Rr
-minimal oriented edge of Sr , and write R′

r = (Rr , e
′). It follows from

Proposition 1.6 that R′
r uniquely decomposes as (Sr ,�) ∈ S ×R|e(Sr )|+1. Write � = (�0,�1, . . . ,�|e(S(Rr ))|); recall

that � has two entries corresponding to the root edge.
For any 0 ≤ i ≤ |e(Sr )|, given that |v(�i)| = k, �i is uniformly distributed over Rk . By Lemma 4.1 and since

k ≤ r , there exist positive constants x0, c1 and c2 such that for all x ≥ x0, and for all 0 ≤ i ≤ |e(Sr )|,
P
(
diam(�i) ≥ xk1/4|∣∣v(�i)

∣∣= k
)≤ c1r

2/3 exp(−c2x). (4.5)

Note that |e(Sr )| = 2s(r) − 4 and recall that D(Rr ) = max(diam(�i) : 0 ≤ i ≤ 2s(r) − 4). Fix ε ∈ (0,1/7). Using
a union bound,

P
(
D(Rr ) ≥ r5/24)

≤
2s(r)−4∑

i=0

[�r2/3+ε�∑
k=1

P
(
diam(�i) ≥ r5/24,

∣∣v(�i)
∣∣= k

)+ P
(∣∣v(�i)

∣∣≥ r2/3+ε
)]

≤
2s(r)−4∑

i=0

[�r2/3+ε�∑
k=1

P
(
diam(�i) ≥ r5/24|∣∣v(�i)

∣∣= k
)+ P

(∣∣v(�i)
∣∣≥ r2/3+ε

)]
.

By (4.5), for k ≤ r2/3+ε and for each 0 ≤ i ≤ 2s(r) − 4,

P
(
diam(�i) ≥ r5/24|∣∣v(�i)

∣∣= k
) ≤ c1r

2/3 exp
(−c2r

5/24k−1/4)
≤ c1r

2/3 exp
(−c2r

1/24−ε/4).
Finally, by Proposition 1.10, there exist positive constants k1, k2 and k3 = k3(ε) such that for each 0 ≤ i ≤ 2s(r) − 4,

P
(∣∣v(�i)

∣∣≥ r2/3+ε
)≤ P

(
L(Rr ) ≥ r2/3+ε

)≤ k1 exp
(−k2r

k3
);

combining the preceding 3 inequalities and using that s(r) ≤ r and that 1/24 − ε/4 > 1/168 yields

P
(
D(Rr ) ≥ r5/24) ≤ (

2s(r) − 3
)[

r2/3+ε · c1r
2/3 exp

(−c2r
1/24−ε/4)+ k1 exp

(
k2r

k3
)]

= O
(
r7/3+ε exp

(−c2r
1/168))+ O

(
r · exp

(−k2r
k3
))

.

By choosing the constants C1,C2 and C3 carefully, we may conclude the proof. �

Given the diameter bound, we immediately have the “GH convergence version” of Proposition 1.5:
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Proposition 4.2. Let Rr ∈u Rr,s(r) and write Sr = S(Rr ), then as r → ∞,

((
v(Rr ),

(
21

40r

)1/4

· dRr

)
,

(
v(Sr ),

(
21

40r

)1/4

· dSr

))
d→ (

(M, d), (M, d)
)

(4.6)

in distribution for the Gromov–Hausdorff topology.

Proof. For any compact metric space X = (X,d) and any subspace Y = (Y, d|Y×Y ) we have dGH(X,Y) ≤
supx∈X d(x,Y ). By Proposition 1.12, supv∈v(Rr )

r−1/4dRr
(v,Sr )

p→ 0, and the result follows. �

4.2. Analogous results for the largest 2-connected block

By analogy to Propositions 1.10 and 1.12, we have the following bounds for the submaps pendant to the largest
2-connected block in a uniform quadrangulation.

Given Qq = (Qq, eq) ∈ Qq , write Rq = R(Qq), let e′ be the ≺Qq -minimal oriented edge of Rq , and write Q′
q =

(Qq, e′). By Proposition 1.7, Q′
q uniquely decomposes as

(
Rq,

(
(Li, bi) : 0 ≤ i ≤ 2

∣∣e(Rq)
∣∣− 4

))
,

where Li = (Mi,j : 1 ≤ j ≤ li ) ∈ Qli and bi = (bi,j : 1 ≤ j ≤ li ) ∈ {0,1}li , and (li : 0 ≤ i ≤ 2|e(Rq)| − 4) are suitable
non-negative integers. Write

L′(Qq) = max
{∣∣v(Mi,j )

∣∣ : 0 ≤ i ≤ 2
∣∣e(Rq)

∣∣− 4,1 ≤ j ≤ li
}
, (4.7)

D′(Qq) = max
{
diam(Mi,j ) : 0 ≤ i ≤ 2

∣∣e(Rq)
∣∣− 4,1 ≤ j ≤ li

}
. (4.8)

Proposition 4.3. For all ε ∈ (0,1/3), there exist positive constants c1, c2, and c3 = c3(ε) such that, if Qq ∈u Qq,r(q),

P
(
L′(Qq) ≥ q2/3+ε

)≤ c1 exp
(−c2q

c3
)
.

Proposition 4.4. Let Qq ∈u Qq,r(q), then there exist positive constants C1, C2, and C3 such that

P
(
D′(Qq) ≥ q5/24)≤ C1 exp

(−C2q
C3
)
.

We omit proofs for the above propositions since the arguments are very similar as those for Propositions 1.10
and 1.12.

5. Exchangeable decorations

This section provides bounds on the Prokhorov distance between three sorts of measures on the vertices of a graph:
the uniform measure, the degree-biased measure, and measures obtained by assigning vertices exchangeable random
masses. In subsequent sections, these bounds help control the GHP distance between a map and its largest block.

Recall from the Introduction that for a map G, and c > 0, cG denotes the measured metric space (v(G), c ·dG,μG).
Given a map G, write degG(v) for the degree of v ∈ v(G) in G; the degree-biased measure on G is the measure μB

G

on v(G) satisfying μB
G(S) =∑

v∈S degG(v)/(2|e(G)|).

Lemma 5.1. For any quadrangulation Q and any ε > 0, with μG and μB
G viewed as measures on εQ, we have

dP
(
μQ,μB

Q

)≤ max
{
ε,1/

∣∣v(Q)
∣∣}.
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Proof. Let n be the number of faces of Q, so that |v(Q)| = n + 2 and |e(Q)| = 2n. Fix V � v(Q) (the remaining
case is trivial). A face f of Q is an internal face of Q[V ] if all vertices of f lie in V ; it is a boundary face of Q[V ] if
some edge of Q[V ] is incident to f , but not all edges incident to f belong to Q[V ].

Write V + = {v ∈ v(Q) : dQ(v,V ) ≤ 1}, and note that V ⊂ V +. We claim that

μB
Q

(
V +)≥ μQ(V ) − 1

|v(Q)| . (5.1)

If this is so then in εQ we obtain μQ(V ) ≤ μB
Q(V ε)+1/|v(Q)|; since V was arbitrary, the lemma then follows easily.

We now prove (5.1).
First suppose Q[V ] is connected, and write p = |V |. If p = 1 then the inequality is easily checked. If p ≥ 2 then

view Q[V ] as a quadrangulation with boundaries; let the boundaries have lengths �1, . . . , �k and write
∑k

i=1 �i = �.
We have k ≥ 1 since V �= v(Q).

Writing i for the number of internal faces of Q[V ], Euler’s formula straightforwardly yields p = i + 2 + �/2 − k.
Furthermore, if f is a boundary face of Q[V ] then all edges of f lie within Q[V +]. Now, a boundary face can be
incident to at most two edges of Q[V ], so Q[V ] must have at least �/2 boundary faces. It follows that

∑
v∈V +

degQ(v) ≥
∑

f internal to Q[V +]
4 ≥ 4(i + �/2) = 4(p + k − 2) ≥ 4(p − 1).

Since
∑

v∈v(Q) degQ(v) = 2|e(Q)| = 4n, it follows that

μB
Q(V ) ≥ p − 1

n
= μQ(V ) − n + 2 − 2p

n(n + 2)
≥ μQ(V ) − 1

|v(Q)| .

Finally, if Q[V ] is not connected, the same argument applied component-wise yields the same bound. �

Since both 1/s → 0 and ( 3
8s

)1/4 → 0 as s → ∞, the following is immediate.

Corollary 5.2. For Ss ∈ Ss , with μSs and μB
Ss

viewed as measures on ( 3
8s

)1/4Ss , we have dP(μSs ,μ
B
Ss

) → 0 as
s → ∞.

In what follows, for a vector x = (x1, . . . , xk) ∈ Rk write |x|p = (
∑k

i=1 x
p
i )1/p . Suppose that G = (G, e) is a rooted

map. Enumerate the edges of G as e1, . . . , em, where m = |e(G)|, and let e0 be a second copy of the root edge e. (This
makes sense even if G is random, as long as it is possible to specify a canonical way to order the edges of G; for
example, we may use the order ≺G described in the Introduction.)

For each 0 ≤ i ≤ m, let wi be a uniformly random endpoint of ei . Let n = (n0, . . . , nm) be a vector of non-negative
real numbers with |n|1 > 0. Define a (random) probability measure νn

G on v(G) as follows: for V ⊂ v(G), let

νn
G(V ) = 1

|n|1 ·
∑

{i:wi∈V }
ni. (5.2)

If one views (wi : 0 ≤ i ≤ 2s − 4) as attachment locations for pendant submaps, and n as listing the masses of these
submaps, then νn

G is the probability measure assigning each vertex v a mass proportional to the total mass of submaps
pendant to v.

Lemma 5.3. Let G = (G, e) have |e(G)| = m and let n = (n0, . . . , nm) be an exchangeable random vector of non-
negative real numbers with |n|2 strictly positive. Then for any V ⊂ v(G),

P

(∣∣νn
G(V ) − μB

G(V )
∣∣> 2t

|n|1 + 1

m + 1

∣∣∣|n|2
)

≤ 4 exp

(
− 2t2

|n|22

)
.
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In the proof, we will use the following result of Aldous [2], Proposition 20.6, which informally says that partial
sums constructed by sampling without replacement may be obtained by first sampling with replacement and then
taking a suitable projection.

Proposition 5.4 (Aldous [2], Proposition 20.6). Fix x1, . . . , xm ∈ R and k ∈ {1, . . . ,m}, let σ be a uniformly random
permutation of {1, . . . ,m}, and let I1, . . . , Ik be independent and uniform on {1, . . . ,m}. Then there exists a pair of
random variables (X,Y ) such that E[Y |X] = X and

X
d=

k∑
j=1

xσ(j), Y
d=

k∑
j=1

xIj
.

Aldous [2] notes the following consequence of the preceding proposition, which is what we will in fact use.

Corollary 5.5 (Strassen [15], Theorem 2). Under the conditions of Proposition 5.4, for all continuous convex func-
tions φ :R→ R,

E
[
φ(X)

]≤ E
[
φ(Y )

]
.

Proof of Lemma 5.3. Given V ⊂ v(G), write ∂eV for the edge boundary of S, i.e., the set of edges e′ ∈ e(G) with
one endpoint in V and one in V c . By definition, for 0 ≤ j ≤ m, the vertex wj is a uniformly random endpoint of ej .
We have

νn
G(V ) =

∑
{j :ej ∈G[V ]} nj +∑

{j :ej ∈∂eV } 1[wj ∈V ]nj

|n|1 . (5.3)

We now show that νn
G(V ) is concentrated using Proposition 5.4. Independently for each j ≥ 1 let Ij ∈u {0, . . . ,m}.

By the exchangeability of n, it follows that for any continuous convex φ :R→ R,

E

[
φ

( ∑
{j :ej ∈G[V ]}

nj

)]
≤ E

[
φ

( ∑
{j :ej ∈G[V ]}

nIj

)]
.

Also by exchangeability,

E

[ ∑
{j :ej ∈G[V ]}

nIj

]
= |n|1 · |e(G[V ])|

m + 1
.

Taking φ(x) = ecx for c := 4t

|n|22
and applying Markov’s inequality as in McDiarmid [12], Theorem 2.5, yields Hoeffd-

ing’s inequality-type bounds for
∑

{j :ej ∈G[V ]} nj :

P

(∣∣∣∣ ∑
{j :ej ∈G[V ]}

nj

|n|1 − |e(G[V ])|
m + 1

∣∣∣∣> t

|n|1
∣∣∣|n|2

)

= P

(∣∣∣∣ ∑
{j :ej ∈G[V ]}

nj − |n|1 · |e(G[V ])|
m + 1

∣∣∣∣> t

∣∣∣|n|2
)

≤ e−ct ·E
[

exp

(
c ·

∣∣∣∣ ∑
{j :ej ∈G[V ]}

nj − |n|1 · |e(G[V ])|
m + 1

∣∣∣∣
)∣∣∣|n|2

]

≤ e−ct ·E
[

exp

(
c ·

∣∣∣∣ ∑
{j :ej ∈G[V ]}

nIj
− |n|1 · |e(G[V ])|

m + 1

∣∣∣∣
)∣∣∣|n|2

]

≤ 2 exp

(
− 2t2

|n|22

)
.
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The last inequality follows from a straightforward calculation; see McDiarmid [12], Lemma 2.6. The random variables
1[wj ∈V ] are iid Bernoulli(1/2), so a reprise of the argument yields

P

(∣∣∣∣ ∑
{j :ej ∈∂eV }

1[wj ∈V ]nj

|n|1 − |∂eV |
2(m + 1)

∣∣∣∣> t

|n|1
∣∣∣|n|2

)
≤ 2 exp

(
− 2t2

|n|22

)
.

We have

μB
G(V ) = 1

2|e(G)|
∑
v∈V

deg(v) = 2|e(G[V ])| + |∂eV |
2m

,

so ∣∣∣∣μB
G(V ) − |e(G[V ])|

m + 1
− |∂eV |

2(m + 1)

∣∣∣∣≤ 1

m + 1
.

Considering (5.3), we then have

P

(∣∣νn
G(V ) − μB

G(V )
∣∣> 2t

|n|1 + 1

m + 1

∣∣∣|n|2
)

≤ P

(∣∣∣∣ ∑
{j :ej ∈∂eV }

1[wj ∈V ]nj

|n|1 − |∂eV |
2(m + 1)

∣∣∣∣> t

|n|1
∣∣∣|n|2

)

+ P

(∣∣∣∣ ∑
{j :ej ∈G[V ]}

nj

|n|1 − |e(G[V ])|
m + 1

∣∣∣∣> t

|n|1
∣∣∣|n|2

)
.

Combining the three probability inequalities then proves the lemma. �

It is easily seen that the above lemma applies even for random sets V , so long as V is independent of the randomness
used to select the endpoints wi of the edges; we will use this in what follows.

6. Projection of masses in random quadrangulations

In this section we apply Lemma 5.3 to study projection of masses in large random quadrangulations, and in particular
to prove Proposition 1.5. We begin by stating a straightforward corollary of Lemma 5.3. For a metric space X = (X,d)

and x ∈ X write B(x, r;X) = {y : d(x, y) < r}.

Corollary 6.1. For s ∈ N let ns = (ns,0, . . . , ns,2s−4) be an exchangeable random vector of non-negative real num-
bers. Let Ss ∈u Ss , and for v ∈ v(Ss) write B(v, r) = B(v, r · s1/4;Ss). Conditional on Ss , let U and U ′ be indepen-
dent, uniformly random elements of v(Ss). If |ns |1 → ∞ and |ns |2/|ns |1 → 0 then for all x ≥ 0,

∣∣νns

Ss

(
B(U,x)

)− μB
Ss

(
B(U,x)

)∣∣→ 0, (6.1)

∣∣νns

Ss

(
B(U,x) ∩ B

(
U ′, x

))− μB
Ss

(
B(U,x) ∩ B

(
U ′, x

))∣∣→ 0 (6.2)

in probability as s → ∞.

Proof. Fix x ≥ 0. We assumed that |ns |1 → ∞ and |ns |2/|ns |1 → 0; we may therefore choose a sequence t (s) such
that t (s)/|ns |1 → 0 and t (s)/|ns |2 → ∞. Now take V = B(U,x). Recalling that |e(Ss)| + 1 = 2s − 3, for any ε > 0,
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Lemma 5.3 gives

lim sup
s→∞

P
(∣∣νns

Ss

(
B(U,x)

)− μB
Ss

(U, x)
∣∣≥ ε||ns |2

)

≤ lim sup
s→∞

P

(∣∣νns

Ss
(V ) − μB

Ss
(V )

∣∣≥ 2t (s)

|ns |1 + 1

2s − 3

∣∣∣|ns |2
)

≤ lim sup
s→∞

4 exp

(
−2t (s)2

|ns |22

)

= 0,

which is (6.1). To prove (6.2) take V = B(U,x) ∩ B(U ′, x) and argue similarly. �

Corollary 6.2. Under the assumptions of Corollary 6.1, with ν
ns

Ss
and μB

Ss
viewed as measures on ( 3

8s
)1/4Ss , we have

dP(μSs
, ν

ns

Ss
) → 0 in probability as s → ∞.

Proof. By Corollary 5.2, it suffices to show that dP(μB
Ss

, ν
ns

Ss
)

p→ 0. To achieve this, we use Corollary 6.1 and the
compactness of the Brownian map M = (M, d,μ). For the remainder of the proof we abuse notation by writing
μs = μB

Ss
and νs = ν

ns

Ss
, for readability.

Fix ε > 0. By Addario-Berry and Albenque [1], Theorem 1, the triple (v(Ss), (
3
8s

)1/4dSs
,μSs

) converges in distri-
bution to M as r → ∞. Since M is almost surely compact and μ a.s. has support M, if (Ui : i ∈ N) are independent
with law μ then we almost surely have

K∞ := inf

{
k ∈N :

k⋃
i=1

B(Ui, ε;M) =M
}

< ∞.

For s ∈ N, let (Us,i : i ∈N) be independent with law μSs
, and let

Ks = inf

{
k ∈N :

k⋃
i=1

B
(
Us,i, ε; (3/8s)1/4Ss

)= v(Ss)

}
.

The aformentioned distributional convergence and the a.s. finiteness of K∞ together imply that there exists K ∈ N

such that for all s ∈ N, P(Ks > K) < ε.
For i ≥ 1 let

Bi = B
(
Us,i, ε;

(
3/(8s)

)1/4Ss

)
. (6.3)

Let A1 = B1, and for i > 1 let Ai = Bi \⋃i−1
j=1 Bj . Then A1, . . . ,AKs is a covering of v(Ss) by disjoint sets.

Suppose that dP(μs, νs) > ε. Then there exists a set S ⊂ v(Ss) such that either μs(S
ε) < νs(S) − ε or νs(S

ε) <

μs(S) − ε. Since A1, . . . ,AKs partition v(Ss), there is j such that either

μs

(
Sε ∩ Aj

)
< νs(S ∩ Aj) − ε/Ks ≤ νs(Aj ) − ε/Ks or

νs

(
Sε ∩ Aj

)
< μs(S ∩ Aj) − ε/Ks ≤ μs(Aj ) − ε/Ks.

For one of these to occur we must have S ∩ Aj �= ∅. Since Aj has radius at most ε, it follows that Aj ⊂ Sε . Thus,
either

μs(Aj ) < νs(Aj ) − ε/Ks or

νs(Aj ) < μs(Aj ) − ε/Ks.
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This yields the bound

P
(
dP(μs, νs) > ε

)
≤ P

(∣∣μs(Aj ) − νs(Aj )
∣∣> ε/Ks for some 1 ≤ j ≤ Ks

)
≤

K∑
j=1

P
(∣∣μs(Aj ) − νs(Aj )

∣∣> ε/Ks,Ks ≤ K
)+ P(Ks > K)

≤
K∑

j=1

P
(∣∣μs(Aj ) − νs(Aj )

∣∣> ε/K
)+ ε. (6.4)

By the triangle inequality, for all 1 ≤ i ≤ K ,

∣∣μs(Ai) − νs(Ai)
∣∣

=
∣∣∣∣∣μs

(
Bi

∖ i−1⋃
j=1

Bj

)
− νs

(
Bi

∖ i−1⋃
j=1

Bj

)∣∣∣∣∣
≤ ∣∣μs(Bi) − νs(Bi)

∣∣+
∣∣∣∣∣μs

(
Bi ∩

i−1⋃
j=1

Bj

)
− νs

(
Bi ∩

i−1⋃
j=1

Bj

)∣∣∣∣∣
≤ ∣∣μs(Bi) − νs(Bi)

∣∣+ i−1∑
j=1

∣∣μs(Bi ∩ Bj ) − νs(Bi ∩ Bj )
∣∣,

where the last sum equals 0 in the case i = 1. Recalling the definitions of the Bi from (6.3), the preceding inequality
and Corollary 6.1 imply that for each fixed i ≥ 1,

∣∣μs(Ai) − νs(Ai)
∣∣→ 0

in probability as s → ∞. Combining this with (6.4), we obtain

lim sup
s→∞

P
(
dP(μs, νs) > ε

)≤ ε.

Since ε > 0 was arbitrary, this completes the proof. �

We are almost ready to prove Proposition 1.5; before doing so we state two easy facts, which each provide bounds
on the GHP distance between a measured metric space and an induced (in some sense) subspace. The first fact is
immediate from the definition of dGHP.

Fact 6.3. Fix a measured metric space X = (X,d,μ) and Y ⊂ X, and let μY be a Borel measure on (Y, dY ), where
dY = d|Y×Y is the induced metric. Write Y = (Y, dY ,μY ). Then dGHP(X,Y) ≤ max{dH(X,Y), dP(μ,μY )}.

The second fact informally says that in a compact measured metric space, projecting onto an ε-net does not change
the space very much (in the GHP sense). The proof is left to the reader.

Fact 6.4. Let X = (X,d,μ) be a compact measured metric space, and let S ⊂ X be finite so that there exists ε > 0
with X ⊂ Sε . Let (Xs : s ∈ S) be measurable subsets of X such that

⋃
s∈S Xs = X, that μ(Xs ∩Xs′) = 0 for s �= s′, and

that Xs ⊂ B(s, ε;X) for all s ∈ S. Define a measure ν on S by ν(s) = μ(Xs) for any s ∈ S, and let S = (S, d|S×S, ν).
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Then

dGHP(X,S) ≤ ε.

Proof of Proposition 1.5. For r ∈ N, let Rr ∈u Rr,s(r), and let Sr = S(Rr ). Write Rr = (Rr, er ), and let e′ be the ≺Rr
-

minimal oriented edge of Sr . Next, apply the bijection of Proposition 1.6 to the map R′
r = (Rr , e

′): this decomposes
Rr into Sr together with a sequence (�i : 0 ≤ i ≤ 2s(r) − 4) of submaps of Rr . Let nr,0 = |e(�0)|1[|e(�i)|>1], and for
1 ≤ i ≤ 2s(r) − 4 let nr,i = 1 + |e(�i)|1[|e(�i)|>1]. Then let nr = (nr,0, . . . , nr,2s(r)−4) and construct the measure ν

nr

Sr

as in (5.2): for 0 ≤ i ≤ 2s(r) − 4, wi is a random endpoint of ei , and

ν
nr

Sr
(v) = 1

2r − 4

∑
{i:wi=v}

nr,i .

(The difference of 1 in the definition of nr,0 accounts for the fact that when reconstructing Rr from Sr and the �i , we
identify two copies of the root edge; the fact that 2r − 4 is the correct normalization follows from (1.1).)

We have |nr |1 = 2r − 4 → ∞ as r → ∞. Furthermore, if L(Rr ) ≤ r3/4 then nr,i ≤ 2r3/4 − 3 for all i, so

|nr |2/|nr |1 = O(r−1/8) → 0. By Proposition 1.10, we have P(L(Rr ) ≤ r3/4) → 1, so |nr |2/|nr |1 p→ 0.
Corollary 6.2 now implies that dP(μSr

, ν
nr

Sr
) → 0 as r → ∞, with the measures viewed as living on ( 21

40r
)1/4Sr . For

Borel measures μ,ν on a compact metric space (X,d), we have dGHP((X,d,μ), (X,d, ν)) = dP(μ, ν), so

dGHP

((
21

40r

)1/4

Sr ,

(
v(Sr ),

(
21

40r

)1/4

· dSr
, ν

nr

Sr

))
p→ 0. (6.5)

We now bound the distance from ( 21
40r

)1/4Rr to the latter space. It is convenient to work with a graph with edge
lengths rather than a finite measured metric space. More precisely, view each edge e of Rr as an isometric copy Ie of
the unit interval [0,1], endowed with the rescaled Lebesgue measure (2r − 4)−1 · LebIe , and write R′ = (R′

r , d
′
r ,μ

′
r )

for the resulting measured metric space. We then have μ′
r (R

′
r ) = (2r − 4)−1 ·∑e∈e(Rr )

LebIe (Ie) = 1.
We may naturally identify v(Rr) with the set of endpoints of edges in R′, and this is an isometric embedding in

that with this identification we have dRr = d ′
r |v(Rr ). Furthermore, the degree-biased measure μB

Rr
may be obtained by

projection onto v(Rr): for v ∈ v(Rr) we have μB
Rr

(v) = μ′
r (B(v,1/2;R′)) = degRr

(v)/(2(2s − 4)). By Fact 6.4, it
follows that for any ε > 0,

dGHP
(
εR′,

(
v(Rr), εdRr ,μ

B
Rr

))≤ ε. (6.6)

The space Sr = (v(Sr), dSr ) is likewise isometrically embedded within R′, and we may also obtain the measure
ν

nr

Sr
by projection. To do so, let Ei = e(�i) for 1 ≤ i ≤ 2s(r) − 4, let E0 = E(�0) \ {e′}, and for v ∈ v(Sr) let

Xv =
⋃

{i:wi=v}

⋃
e∈Ei

Ie.

Then ν
nr

Sr
(v) = μ′

r (Xv). Furthermore, (Xv : v ∈ v(Sr)) covers R′
r and μ′

r (Xu ∩ Xv) = 0 for u �= v since edges
only intersect at their endpoints. Recalling the definition of D(Rr ) from Section 1.2, for any v ∈ V we have
Xv ⊂ B(v,D(Rr );R′). It follows from Fact 6.4 that for all ε > 0,

dGHP
(
εR′,

(
v(Sr), εdSr , ν

nr

Sr

))≤ ε · D(Rr ). (6.7)

We always have D(Rr ) ≥ 1, so combining (6.6), (6.7) gives

dGHP
((

v(Sr), εdSr , ν
nr

Sr

)
,
(
v(Rr), εdRr ,μ

B
Rr

))≤ 2ε · D(Rr ).

Using Lemma 5.1 to bound dGHP((v(Rr), εdRr ,μ
B
Rr

), εRr ), the triangle inequality then gives

dGHP
((

v(Sr), εdSr , ν
nr

Sr

)
, εRr

)≤ 2ε · D(Rr ) + max{ε,1/r}. (6.8)
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By Proposition 1.12, r−1/4D(Rr )
p→ 0, and (6.5) then implies that

dGHP

((
21

40r

)1/4

Sr ,

(
21

40r

)1/4

Rr

)
p→ 0.

Since 3
8s(r)

· Sr
d→ M as r → ∞, and 3

8s(r)
= (1 + o(1)) 21

40r
, the result follows. �

7. Proofs of the theorems

Recall that K is the set of measured isometry classes of compact metric spaces, and that GHP convergence refers to
convergence in the Polish space (K, dGHP).

Proof of Theorem 1.1. Let g : K → R be a bounded continuous function, and write ‖g‖ = sup |g| < ∞. Recall that
Rr ∈u Rr , and let Mr = ( 21

40r
)1/4Rr . We show that

E
[
g(Mr )

]→ E
[
g(M)

]
(7.1)

as r → ∞; the result then follows by the Portmanteau theorem.
The proof of (7.1) is simply summarized: average over the size of sb(Rr ). The details are also fairly straightforward.

Fix ε ∈ (0,1/2) with ε < 1/‖g‖, let A be the Airy density and let β given by Proposition 1.8. Then fix Cε > 0 large
enough that

∫ Cε

−Cε
βA(βx)dx > 1 − ε. Recall from the Introduction s(r) satisfies |s(r) − 5r/7| ≤ Cr2/3 for large r .

The constant C was fixed but arbitrary, so we may assume that C > Cε .
Next, for r, s ∈N with s ≤ r , let Rr,s ∈u Rr,s and write Mr,s = ( 21

40r
)1/4Rr,s . We claim that

sup
{s∈N:|s−5r/7|≤Cεr2/3}

∣∣g(Mr,s) − g(M)
∣∣→ 0 (7.2)

as r → ∞. Indeed: otherwise we may find a sequence (ŝ(r) : r ∈ N) such that |ŝ(r) − 5r/7| ≤ Cεr
2/3 < Cr2/3

with lim supr→∞ |g(Mr,ŝ(r)) − g(M)| �= 0. By the Portmanteau theorem, this implies that Mr,s does not converge in
distribution to M, contradicting Proposition 1.5. This establishes (7.2).

Now for each r ∈ N, let

Er = {∣∣sb(Rr ) − 5r/7
∣∣≤ Cεr

2/3}.
Recalling the definition of δs(·) from Theorem 1.4, it follows from Proposition 1.8 and a Riemann approximation that
for large enough r ,

P(Er) = (
1 + o(1)

) ∑
{s∈N:|s−5r/7|≤Cεr2/3}

βA(βδs(q))

r2/3

= (
1 + o(1)

)∫ Cε

−Cε

βA(βs) ds

> 1 − 2ε.

Then for large enough r ,∣∣E[g(Mr )
]−E

[
g(Mr1[Er ])

]∣∣≤ P
(
Ec

r

)‖g‖ < 2ε‖g‖. (7.3)

We now show that |E[g(Mr1[Er ])] − E[g(M)]| is also small. The conditional law of Rr given that sb(Rr ) = s is
identical to that of Rr,s , so

E
[
g(Mr1[Er ])

]=
∑

{s∈N:|s−5r/7|≤Cεr2/3}
P
(
sb(Rr ) = s

)
E
[
g(Mr,s)

]
.
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By the triangle inequality, we therefore have∣∣E[g(Mr1[Er ])
]−E

[
g(M)

]∣∣
≤

∑
{s∈N:|s−5r/7|≤Cεr2/3}

P
(
sb(Rr ) = s

) · ∣∣E[g(Mr,s)
]−E

[
g(M)

]∣∣
≤ sup

{s∈N:|s−5r/7|≤Cεr2/3}

∣∣g(Mr,s) − g(M)
∣∣. (7.4)

This tends to 0 by (7.2), which with (7.3) gives lim supr→∞ |E[g(Mr )] − E[g(M)]| ≤ 2ε‖g‖. Since ε > 0 was arbi-
trary, this establishes (7.1) and completes the proof. �

In the remaining proofs, we use the following simple fact. Recall the definition of L′ from (4.7).

Fact 7.1. Let Qq ∈ Qq , write Rq = R(Qq) and Sq = S(Qq). Note that if Sq �= S(Rq), then sb(Qq) ≥ sb(Rq), and it
follows that Qq contains at least two 2-connected blocks of size at least sb(Rq), implying that L′(Qq) ≥ sb(Rq).

Proof of Theorem 1.4. Fix q ∈N and write Rq = R(Qq). Let R ∈u Rr(q). Given that b(Qq) = r(q), Rq
d= R, so

P
(
b(Qq) = r(q), sb(Rq) = s

(
r(q)

))
= P

(
sb(Rq) = s

(
r(q)

)|b(Qq) = r(q)
) · P(b(Qq) = r(q)

)
= P

(
sb(R) = s

(
r(q)

)) · P(b(Qq) = r(q)
)
.

Writing β = 52/3·15
28 and β ′ = 72/3

61/3·2 , by Propositions 3.9 and 1.8, we thus have

P
(
b(Qq) = r(q), sb(Rq) = s

(
r(q)

))= βA(βδr (q))

q2/3

β ′A(β ′δs(q))

r(q)2/3

(
1 + o(1)

)
. (7.5)

Next,∣∣P(b(Qq) = r(q), sb(Rq) = s
(
r(q)

))− P
(
b(Qq) = r(q), sb(Qq) = s

(
r(q)

))∣∣
≤ P

(
b(Qq) = r(q), sb(Qq) �= s

(
r(q)

)
, sb(Rq) = s

(
r(q)

))
+ P

(
b(Qq) = r(q), sb(Qq) = s

(
r(q)

)
, sb(Rq) �= s

(
r(q)

))
. (7.6)

If {b(Qq) = r(q), sb(Qq) �= s(r(q)), sb(Rq) = s(r(q))} occurs then L′(Qq) ≥ s(r(q)), as explained in Fact 7.1. Sim-
ilarly, if {b(Qq) = r(q), sb(Qq) = s(r(q)), sb(Rq) �= s(r(q))} occurs then Qq must contain a simple block of size
s(r(q)) that does not lie within Rq ; since b(Qq) = r(q) > s(r(q)), in this case we also obtain L′(Qq) ≥ s(r(q)). It
follows from Proposition 4.3 that there exist positive constants c1, c2, c3 such that∣∣P(b(Qq) = r(q), sb(Rq) = s

(
r(q)

))− P
(
b(Qq) = r(q), sb(Qq) = s

(
r(q)

))∣∣
≤ 2P

(
L′(Qq) ≥ s

(
r(q)

))
≤ c1 exp

(−c2q
c3
)

= o
(
q−2),

which combined with (7.5) proves the theorem. �

For the proof of Theorem 1.3, we require a lemma bounding the maximum degree in a quadrangulation uniformly
drawn from Qq,r(q),s(q); the lemma follows easily from the fact that degrees in uniform quadrangulations have expo-
nential tails.
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Lemma 7.2. Let Qq ∈u Qq,r(q),s(q). Then for all q sufficiently large,

P
(
max

(
degQq

(w) : w ∈ v(Qq)
)≥ (lnq)2)< q−10.

Proof. By Bender and Canfield [4], Theorem 2(i) (and Tutte’s angular bijection between maps and quadrangulations),
for all ε > 0 there exists B > 0 such that for all q ≥ 3, if Q ∈u Qq and u ∈u v(Q) then

P
(
degQ(v) > d

)
< B

(
1

2
+ ε

)d

. (7.7)

Given that b(Q) = r(q) and sb(R(Q)) = s(q), the conditional law of Q is uniform on Qq,r(q),s(q); so

P
(
max

(
degQq

(w) : w ∈ v(Qq)
)
> d

)
= P

(
max

(
degQ(w) : w ∈ v(Q)

)
> d|b(Q) = r(q), sb

(
R(Q)

)= s(q)
)

≤ q · P(degQ(u) > d|b(Q) = r(q), sb
(
R(Q)

)= s(q)
)

≤ q · P(degQ(u) > d)

P(b(Q) = r(q), sb(R(Q)) = s(q))

= O
(
q7/3)P(degQ(u) > d

)
,

the final inequality by Theorem 1.4 and the definition of r(q) and s(q). Taking d = ln2 q and ε < 1/2, the result then
follows from (7.7). �

Proof of Theorem 1.3. Recall that Qq ∈u Qq,r(q),s(q), and Rq = R(Qq) and Sq = S(Qq). Let Q ∈u Qq . Given that

b(Q) = r(q) and sb(Q) = s(q), we have Qq
d= Q. By Fact 7.1, we then have

P
(
Sq �= S(Rq)

) = P
(
S(Q) �= S

(
R(Q)

)|b(Q) = r(q), sb(Q) = s(q)
)

≤ P
(
L′(Q) ≥ s(q)|b(Q) = r(q), sb(Q) = s(q)

)
≤ P(L′(Q) ≥ s(q)|b(Q) = r(q))

P(b(Q) = r(q), sb(Q) = s(q))
.

Combined with Theorem 1.4, this gives

P
(
Sq �= S(Rq)

)= O
(
q4/3) · P(L′(Q) ≥ s(q)|b(Q) = r(q)

)
.

Since s(q) = q/3 + O(q2/3), by Proposition 4.3 there exist c2, c3 > 0 such that

P
(
L′(Q) ≥ s(q)|b(Q) = r(q)

)= O
(
exp

(−c2q
c3
))

.

Hence,

P
(
Sq �= S(Rq)

)= O
(
q4/3 · exp

(−c2q
c3
))

. (7.8)

Now let R ∈u Rr(q),s(q). Given that Sq = S(Rq), we have Rq ∈u Rr(q),s(q), so (7.8) implies easily that for any bounded
continuous function g :K2 → R∣∣∣∣E

[
g

((
21

40r(q)

)1/4

Rq,

(
21

40r(q)

)1/4

Sq

)]
−E

[
g

((
21

40r(q)

)1/4

R,

(
21

40r(q)

)1/4

S(R)

)]∣∣∣∣→ 0,

as q → ∞. By Proposition 1.5 and the Portmanteau theorem, it follows that as r(q) → ∞,((
21

40r(q)

)1/4

Rq,

(
21

40r(q)

)1/4

Sq

)
d→ (M,M). (7.9)
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Moreover, by the definition of r(q), there exist C1,C2 > 0 such that for all q > 0,

9

8q + C1q2/3
≤ 21

40r(q)
≤ 9

8q − C2q2/3
.

From this and (7.9) we obtain

((
9

8q

)1/4

Rq,

(
9

8q

)1/4

Sq

)
d→ (M,M) (7.10)

as q → ∞. To finish the proof, we show that also

((
9

8q

)1/4

Qq,

(
9

8q

)1/4

Rq

)
d→ (M,M). (7.11)

Joint convergence of the triple to the limit (M,M,M) is immediate from (7.10) and (7.11), so it remains to prove
(7.11). (Note that we may not simply invoke the result of Le Gall [11] and of Miermont [14] to conclude that the

( 9
8q

)1/4Qq
d→ M since Qq is not uniformly distributed over Qq , but over Qq,r(q),s(q).) The argument is similar to that

in Proposition 1.5, and we focus on explaining the points where it differs.
Let e′ be the ≺Qq

-minimal oriented edge of Rq ; by definition, this is the root edge of Rq . Write Qq = (Qq, eq)

and Rq = (Rq, e′). Also, let Q′
q = (Qq, e′). The bijection ψ from Proposition 1.7 gives a decomposition of Q′

q as

(
Rq,

(
(Li, bi) : 0 ≤ i ≤ 2r(q) − 4

))
,

where the Li = (Mi,j : 1 ≤ j ≤ �i) ∈ Q�i satisfy (recalling (1.2))

∣∣e(Qq)
∣∣= ∣∣e(Rq)

∣∣+ |e(Rq)|∑
i=0

�i∑
j=1

(∣∣e(Mi,j )
∣∣+ 1 + 1[∣∣e(Mi,j )

∣∣=1]
)
, (7.12)

and bi = (bi,j : 1 ≤ j ≤ �i) ∈ {0,1}�i .
List the elements of e(Rq) as (ei : 1 ≤ i ≤ |e(Rq)|) according to the order ≺Rq

; like in Section 1.1, we view ei

as oriented (we oriented so that the tail e−
i precedes the head e+

i according to the breadth-first order described in the
Introduction, but this is unimportant; all that matters is to have a fixed rule for choosing the orientation). Also, let e0
be a copy of e′. Under the bijection ψ , for each 0 ≤ i ≤ |e(Rq)| and 1 ≤ j ≤ �i , the value bi,j indicates the endpoint
ei at which Mi,j is attached.

Recall that μB = μB
Qq

is the degree-biased measure on v(Qq), We now compare μB with a random projection of

μB onto Rq . First define a vector nq as follows. Let n0 = 0 if �0 = 0 and otherwise let n0 = ∑�0
j=1(|e(M0,j )| + 1 +

1[|e(M0,j |�=1]), and for 1 ≤ i ≤ 2r(q) − 4 let

ni = 1 +
�i∑

j=1

(∣∣e(Mi,j )
∣∣+ 1 + 1[∣∣e(Mi,j )

∣∣ �=1]
)

(7.13)

Set nq = (ni : 0 ≤ i ≤ 2r(q) − 4); it is immediate from Proposition 1.7 that nq is exchangeable. Now define the
measure νnq = ν

nq

Rq
as in (5.2): more precisely, for each edge ei ∈ e(Rq) choose a uniformly random endpoint wi of

ei . Then νnq is specified by letting

νnq (V ) = 1

2q − 4

∑
{i:wi∈V }

ni

for V ⊂ v(Rq). (The fact that 2q − 4 is the correct normalizing constant follows from (7.12).)
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If max(ni : 0 ≤ i ≤ 2r(q) − 4)/(2q − 4)
p→ 0 then |nq |2/|nq |1 p→ 0 and the same argument which led to Corol-

lary 6.2 gives dP(μRq
, νnq )

p→ 0. Assuming this holds then just as in (6.5) we obtain

dGHP

((
9

8q

)1/4

Rq,

(
v(Rq),

(
9

8q

)1/4

· dRq
, νnq

))
p→ 0. (7.14)

Recall the definition of D′ from (4.8). Reprising the argument for (6.8) now gives that for ε > 0,

dGHP
((

v(Rq), εdRq
, νnq

)
, εQq

)≤ 2ε · (D′(Qq) + 1
)+ max(ε,1/q). (7.15)

This has a very slightly different form from (6.8), where the bound was 2εD(Rr ) + max(ε,1/r). The reason for the
difference is that in the current setting, the submaps of Qq pendant to Rq only attach to one end of an edge of Rq .
When we project the mass to form νnq we may choose the “wrong end.” This source of error did not appear when
projecting mass onto the largest simple block because the 2-connected “decorations” of the largest simple block are
attached at both endpoints of their respective edges.

At any rate, by Proposition 4.4, D′(Qq)/q1/4 p→ 0, so (7.15) and (7.14) together give dGHP(( 9
8q

)1/4Qq,

( 9
8q

)1/4Rq)
p→ 0. But by (7.10) we know that the second argument converges to M, and (7.11) follows.

It thus remains to prove that max{ni : 0 ≤ i ≤ 2r(q)− 4}/(2q − 4)
p→ 0. But this is easy: �i is the number of copies

of a particular edge in Qq , so max0≤i≤2q−4 �i is at most max(degQq
(w) : w ∈ v(Qq)). By (7.13) we then have

max
{
ni : 0 ≤ i ≤ 2r(q) − 4

}≤ 1 + max
{
degQq

(w) : w ∈ v(Qq)
} ·

(
2 + max

i,j

∣∣e(Mi,j )
∣∣).

By Lemma 7.2, the largest degree is at most ln2 q with high probability, and Proposition 4.3 gives that q−3/4 ·
maxi,j |e(Mi,j )| ≤ q−3/4 · (2L′(Qq) − 4)

p→ 0. The result follows. �

Proof of Theorem 1.2. The theorem follows from Theorem 1.3 in exactly the same way as Theorem 1.1 followed
from Proposition 1.5, using Theorem 1.4 in place of Proposition 1.8 for the averaging argument. �

Appendix: The remaining derivation for compositional schemata

In this section we explain how Propositions 3.7 and 3.8 are derived. Though this consists in a rather classical applica-
tion of analytic combinatorics machinery, we have included a reasonably detailed discussion, as we believe this may
be useful for readers whose expertise is primarily probabilistic.

We first establish a system of parameterization for M(z), which is the key to showing that M(z) is singular with
exponent 3/2 and to extracting the coefficients of M(z),C(z) and H(z).

Lemma A.1. Let ψM(t) = t (2−9t)

(1−3t)2 , let φM(t) = 1
1−3t

, and let LM(z) be defined by the implicit relation LM(z) =
zφM(LM(z)), then

M(z) = ψM

(
LM(z)

)
.

Algebraic functions with such parameterization are called Lagrangean. The proof is a textbook application of
Tutte’s so-called quadratic method. This parameterization is the one used by Goulden and Jackson [10]. It differs
slightly from the original parameterization given by Tutte [16] and used in Banderier et al. [3], but the two are
related by a birational transformation. The derivation of Lemma A.1 is quite the same as that given in Banderier et
al. [3], Proposition 1, and we refer readers to that work for the idea of the proof. (Also, in Banderier et al. [3] the
parameterization is stated for the generating function of general maps but this is equivalent, using Tutte’s angular
bijection, to quadrangulations. See also Goulden and Jackson [10], Section 2.9, for a detailed explanation of the
quadratic method for map enumeration.) One may inspect the Taylor expansion of ψM(LM(z)) at z = 0 to conclude
that this parametrization gives M(z) = 2z + 9z2 + 54z3 + 378z4 + O(z5).
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Corollary A.2 (Tutte [16]).

LM(z) = 1

6
− 1

6
(1 − 12z)1/2, (A.1)

M(z) = 1

3
− 4

3
(1 − 12z) + 8

3
(1 − 12z)3/2 + O

(
(1 − 12z)2). (A.2)

In particular, M(z) is singular with exponent 3/2.

Proof of Corollary A.2. Using Lemma A.1, Lagrange inversion yields the explicit formulas

LM(z) = 1

6
− 1

6
(1 − 12z)1/2, M(z) = −1 + 1

54z2

(−(1 − 18z) + (1 − 12z)3/2).
Writing y = 1 − 12z, the asymptotic expansion for M follows easily by rearrangement. �

Implicit functional equations can be used to derive asymptotic expansions in great generality, even when no closed
form is available, and we exploit this machinery in the current paper. We now sketch how the method is applied in
our setting in slightly more detail, referring the reader to Banderier et al. [3] and Flajolet and Sedgewick [8], Section
VII.8, for a full exposition.

Suppose we are given y defined by an implicit formula y(z) = zφ(y(z)), where φ is analytic, non-zero at 0, has non-
negative Taylor coefficients, and has limx→ry xφ′(x)/φ(x) > 1, where ry ∈ (0,∞] is the radius of convergence of φ.
(In our case, φ will always in fact be a rational function satisfying the preceding conditions.) Then, using Lagrange
inversion, one obtains an asymptotic expansion of y around its dominant singularity (see Flajolet and Sedgewick [8],
Section VI.7). Given another function m expressible as m(z) = ψ(y(z)) where ψ is a rational function whose radius
of convergence is at least as large as that of y, this yields an asymptotic expansion for m as follows.

First, we locate the radius of convergence for y. By Flajolet and Sedgewick [8], Theorem VI.6, we can expand
y(z) as

y(z) = τ − l1/2(1 − z/ry)
1/2 + l1(1 − z/ry) + O

(
(1 − z/ry)

3/2), (A.3)

where the coefficients li/2 are to be determined for i ∈N, and ry and τ are determined by the equations

τφ′(τ ) − φ(τ) = 0, ry = τ

φ(τ)
.

To determine l1/2 and l1, let h(t) = ry − t
φ(t)

. Then h(τ) = 0 = h′(τ ), so expanding h(t) around τ yields

1 − z/ry

= h(t)

ry

= h′′(τ )

2ry
(t − τ)2 + h′′′(τ )

6ry
(t − τ)3 + O

(
(t − τ)4)

= h′′(τ )

2ry

[−l1/2(1 − z/ry)
1/2 + l1(1 − z/ry) + O

(
(1 − z/ry)

3/2)]2

+ h′′′(τ )

6ry

[−l1/2(1 − z/ry)
1/2 + l1(1 − z/ry) + O

(
(1 − z/ry)

3/2)]3 + O
(
(t − τ)4)

= h′′(τ )

2ry
l2
1/2(1 − z/ry) −

(
2
h′′(τ )

2ry
l1/2l1 + h′′′(τ )

6ry
l3
1/2

)
(1 − z/ry)

3/2 + O
(
(1 − z/ry)

2).
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By comparing the coefficients of the terms (1 − z/ry) we obtain

l1/2 =
(

2ry

h′′(τ )

)1/2

=
(

2φ(τ)

φ′′(τ )

)1/2

, (A.4)

and by comparing the coefficients of the terms (1 − z/ry)
3/2 we have

l1 = − h′′′(τ )l3
1/2

6h′′(τ )l1/2
. (A.5)

Now we use the expansion (A.3) to derive an expansion for m(z) around its dominant singularity rm. First, the
equation m(z) = ψ(y(z)) and the assumption that rφ ≥ ry together imply that rm = ry . In the current work, we always
have that ψ ′(τ ) = 0 (indeed, this seems to generally be the case in compositional schemata involving maps); together
with (A.3), a Taylor expansion of ψ around τ then yields

m(z) = ψ
(
y(z)

)
= ψ

(
τ − l1/2(1 − z/ry)

1/2 + l1(1 − z/ry) + O
(
(1 − z/ry)

3/2))
= ψ(τ) + 1

2
ψ ′′(τ )

[−l1/2(1 − z/ry)
1/2 + l1(1 − z/ry) + O

(
(1 − z/ry)

3/2)]2

+ 1

6
ψ ′′′(τ )

[−l1/2(1 − z/ry)
1/2 + l1(1 − z/ry) + O

(
(1 − z/ry)

3/2)]3

+ O
(
(1 − z/ry)

2)
= ψ(τ) + 1

2
ψ ′′(τ )l2

1/2(1 − z/ry) −
(

ψ ′′(τ )l1/2l1 + 1

6
ψ ′′′(τ )l3

1/2

)
(1 − z/ry)

3/2

+ O
(
(1 − z/ry)

2).
We remark that the vanishing term ψ ′(τ ) = 0 accounts for the shift of the singular exponent to 3/2.

Using the compositional relation given in Lemma 3.5 together with the expansion of LM(z) given in Corollary A.2,
we obtain that H(z) is also Lagrangean. Expanding H(z) at its radius of convergence verifies the correctness of the
first line of Table 1. We obtain expansions for C(z),U(z), and B(z), and thereby complete the proof of Lemma 3.10,
in a similar manner; all this is formalized in the following lemma.

Lemma A.3. Table 2 gives Lagrangean parameterizations for M(z),H(z),C(z),U(z),B(z).

Proof. Let H(z) be defined as in Proposition 3.7, and let ψM(t) be given in Lemma A.1. Write t = LM(z), then

H(z) = z

(
1

1 − 2z(1 + M(z))

)2

= z

(
1

1 − 2z(1 + ψM(LM(z)))

)2

= − t (−1 + 3t)3

(1 − 5t + 8t2)2
;

this proves the first assertion. Then taking ψH (t) as given by Table 2 yields H(z) = ψH (LM(z)).
The remaining parameterizations of Table 2 are established similarly, using (3.5) for C(z), and (3.7) for U(z) and

B(z). The radius of convergence and expansions around the radius in Table 1 are derived using Lagrange inversion as
in Corollary A.2. �

Remark. One of the fundamental facts of singularity analysis is that the radius of convergence of a generating
function determines the exponential growth rate of the associated combinatorial family. Under Tutte’s angular bi-
jection (see Tutte [16]), 2-connected and simple quadrangulations respectively correspond to 2-edge-connected and
2-connected maps. In view of this, the values rC = 27/196 and rB = 4/27 agree with the known exponential growth
rates for loopless bridgeless maps Walsh and Lehman [17], (7), and for 2-connected maps Banderier et al. [3], Table 2
(noting that the coefficients of the expansion for B(z) are slightly different than in Banderier et al. [3], because in that
work a single loop is counted as a 2-connected map).
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Table 2
In this table we always have Lf (z) = zφf (Lf (z)), where f is
one of the functions H,C,U , or B

f φf ψf

H 1
1−3t

− t (−1+3t)3

(1−5t+8t2)2

C − (1−5t+8t2)2

(−1+3t)3
t2(−1+5t)

(−1+3t)3

U − (1−5t+8t2)2

(−1+3t)3 − t (−1+4t)2

(−1+3t)3

B − (−1+3t)3

(−1+4t)2
t2(−1+5t)

(−1+4t)(1−5t+8t2)

Proofs of Propositions 3.7 and 3.8. We have verified that M(z) and H(z) are singular with exponent 3/2 in Lem-
mas A.2 and 3.10 respectively. The facts that H(rH ) = rC and that U(rU ) = rB are immediate from the values and
expansions given in Table 1. Thus, (M,C,H) and (C,B,U) are map schemata. The values claimed in (3.8) and (3.9)
are then derived by routine arithmetic. �
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