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Abstract. We consider a jump type diffusion X = (Xt )t with infinitesimal generator given by

Lψ(x) = 1

2

∑
1≤i,j≤d

aij (x)
∂2ψ(x)

∂xi ∂xj
+ g(x)∇ψ(x) +

∫
Rd

(
ψ
(
x + c(z, x)

)− ψ(x)
)
γ (z, x)μ(dz),

where μ is of infinite total mass. We prove Harris recurrence of X using a regeneration scheme which is entirely based on the
jumps of the process. Moreover we state explicit conditions in terms of the coefficients of the process allowing to control the speed
of convergence to equilibrium in terms of deviation inequalities for integrable additive functionals.

Résumé. On considère une diffusion X = (Xt )t , avec des sauts, correspondant au générateur infinitésimal suivant :

Lψ(x) = 1

2

∑
1≤i,j≤d

aij (x)
∂2ψ(x)

∂xi ∂xj
+ g(x)∇ψ(x) +

∫
Rd

(
ψ
(
x + c(z, x)

)− ψ(x)
)
γ (z, x)μ(dz)

où μ est de masse totale infinie. On prouve ici la récurrence au sens de Harris de X en utilisant un schéma de régénération
entièrement basé sur les sauts du processus. De plus, on donnera des conditions explicites en terme de coefficients du processus X

permettant de contrôler la vitesse de convergence à l’équilibre en terme d’inégalités de déviations pour des fonctionnelles additives
intégrables.
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1. Introduction

Let N(ds,dz,du) be a Poisson random measure on R+ × R
d × R+, defined on a probability space (�,A,P ) with

intensity measure dsμ(dz)du, where μ is a σ -finite measure on R
d . We consider a process X = (Xt )t≥0,Xt ∈ R

d ,
solution of

Xt = x +
∫ t

0
g(Xs)ds +

∫ t

0
σ(Xs)dWs +

∫
[0,t]

∫
Rd×R+

c(z,Xs−)1u≤γ (z,Xs−)N(ds,dz,du), (1.1)
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x ∈ R
d , where W is an m-dimensional Brownian motion. The associated infinitesimal generator is given for smooth

test functions by

Lψ(x) = 1

2

∑
1≤i,j≤d

aij (x)
∂2

∂xi ∂xj

ψ(x) + g(x)∇ψ(x) +
∫
Rd

(
ψ
(
x + c(z, x)

) − ψ(x)
)
γ (z, x)μ(dz), (1.2)

where a = σσ ∗. Notice that the jump rate at time t of process depends on the position of the process Xt itself, i.e.
the intensity measure in the infinitesimal operator L is γ (z, x)μ(dz). We will suppose that

∫
γ (z, x)μ(dz) = ∞, i.e.,

jumps occur with infinite activity and the process possesses infinitely many small jumps during any finite time interval
[0, T ].

The principal aim of the present paper is to give easily verifiable conditions on the coefficients g,σ, c and γ under
which the process is recurrent in the sense of Harris and satisfies the ergodic theorem, without imposing any non-
degeneracy condition on the diffusive part. Recall that a process X is called recurrent in the sense of Harris if it
possesses an invariant measure m such that any set A with m(A) > 0 is visited infinitely often almost surely (see
Azéma, Duflo and Revuz [2] (1969)): For all x ∈ R

d ,

Px

[∫ ∞

0
1A(Xs)ds = ∞

]
= 1.

For classical jump diffusions there starts to be a huge literature on this subject, see e.g. Masuda [9] (2007) who
works in a simpler situation where the intensity term 1u≤γ (z,Xs−) is not present. In order to prove recurrence, Masuda
follows the Meyn and Tweedie approach developed in [10] or [11]. Kulik [7] (2009) uses the stratification method
in order to prove exponential ergodicity of jump diffusions, but the models he considers do not include the situation
with a position dependent jump rate neither. Finally, let us mention Duan and Qiao [4] (2014) who are interested in
solutions driven by non-Lipschitz coefficients.

On the contrary to the above mentioned papers, in our model, jumps occur at a given intensity depending both on
the current position of the process and on an additional variable z chosen according to μ(dz). The presence of this
intensity term γ (z,Xs−) in (1.1) is in fact quite natural, but it implies that the study of X is technically more involved
than the easier situation when γ is lower-bounded and strictly positive.

The aim of the present paper is to show that the jumps themselves can be used in order to generate a splitting
scheme which implies the recurrence of the process. The method we use is the so-called regeneration method which
we apply to the big jumps. More precisely, for some suitable set E such that μ(E) < ∞, we cut the trajectory of X into
excursions between successive jumps appearing due to choices of z in E. In spirit of the splitting technique introduced
by Nummelin [12] (1978) and Athreya and Ney [1] (1978), we state a non-degeneracy condition which guarantees that
the jump operator associated to the big jumps possesses a Lebesgue absolutely continuous component. This amounts
to imposing that the partial derivatives of the jump term c with respect to z are sufficiently non-degenerate, see (2.6)
and (2.7) below. We stress that we do not need any non-degeneracy condition for the diffusion coefficient σ .

In this situation we will be able to construct a sequence of regeneration times Rn such that the trajectories
(X(Rn+t),t<Rn+1−Rn)n≥1 are i.i.d. In particular, ‘regeneration generates independence immediately,’ i.e. at each re-
generation time Rn, the ‘future’ XRn+t , t ≥ 0 is independent of the past σ {Xs, s < Rn}, without imposing any time
lag as usual in the study of processes in continuous time.

Notice that we do not apply the splitting technique to an extracted sampled chain nor to the resolvent chain as
in Meyn and Tweedie [11] (1993); the loss of memory needed for regeneration is produced only by big jumps. This
approach is very natural in this context, but does not seem to be used so far in the literature, except for Xu [15] (2011),
who works in a very specific frame where the jumps do not depend on the position of the process.

Our paper is organized as follows. In Section 2 we state our main assumptions, prove a lower bound which is
of local Doeblin type and state our main results on Harris recurrence and speed of convergence to equilibrium of
the process. Section 3 introduces the regeneration technique based on big jumps and proves the existence of certain
(polynomial) moments of the associated regeneration times. Section 4 is devoted to an informal discussion on explicit
and easily verifiable conditions stated in terms of the coefficients g,σ, c and γ which imply the Harris recurrence.
Finally, we give in Section 5 a proof of the local Doeblin condition.
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2. Basic assumptions and main results

Consider a Poisson random measure N(ds,dz,du) on R+ × R
d × R+, defined on a probability space (�,A,P ),

with intensity measure dsμ(dz)du, where μ is a σ -finite measure on (Rd ,B(Rd)). Let X = (Xt )t≥0,Xt ∈ R
d , be a

solution of

Xt = x +
∫ t

0
g(Xs)ds +

∫ t

0
σ(Xs)dWs +

∫
[0,t]

∫
Rd×R+

c(z,Xs−)1u≤γ (z,Xs−)N(ds,dz,du), (2.1)

x ∈ R
d , where W is an m-dimensional Brownian motion, m ≥ 1. Write F= (Ft )t≥0 for the canonical filtration of the

process given by

Ft = σ
{
Ws,N

([0, s] × A × B
)
, s ≤ t,A ∈ B

(
R

d
)
,B ∈ B(R+)

}
.

Throughout this paper, for any x ∈ R
d , |x| will denote the Euclidean norm on R

d . Moreover, for d × d matrices A,
‖A‖ denotes the associated operator norm.

2.1. Existence of the process and non-degeneracy of the jump measure

In order to grant existence and uniqueness of the above equation, throughout this article, we impose the following
conditions on the coefficients g,σ, c and γ .

Assumption 2.1.

1. g and σ are globally Lipschitz continuous.
2. c and γ are Lipschitz continuous with respect to x, i.e.∣∣c(z, x) − c

(
z, x′)∣∣ ≤ Lc(z)

∣∣x − x′∣∣ and
∣∣γ (z, x) − γ

(
z, x′)∣∣ ≤ Lγ (z)

∣∣x − x′∣∣,
where Lc,Lγ are functions Rd →R+.

3. supx

∫
Rd (Lc(z)γ (z, x) + Lγ (z)|c(z, x)|)μ(dz) < ∞.

4. supx

∫
Rd γ (z, x)|c(z, x)|μ(dz) < ∞.

Under these assumptions, Theorem 1.2. of Graham [5] (1992) implies that (2.1) admits a unique strong non-
explosive adapted solution which is Markov, having càdlàg trajectories.

Notice that our assumptions do not imply that there exists a finite total jump rate∫
Rd

γ (z, x)μ(dz)

for any x ∈ R
d . In other words, the above integral might be equal to +∞, and jumps occur with infinite activity. We

also stress that due to the presence of the intensity term 1u≤γ (z,Xs−) in equation (2.1) we are not in the classical frame
of jump diffusions where the jump term depends in a smooth manner on z and x.

In the present article we are seeking for conditions ensuring that the process X is recurrent in the sense of Harris
without using additional regularity of the coefficients, based on some minimal non-degeneracy of the jumps and
without imposing any non-degeneracy condition on σ . Recall that a process X is called recurrent in the sense of
Harris if it possesses an invariant measure m such that any set A of positive m-measure m(A) > 0 is visited infinitely
often by the process almost surely (see Azéma, Duflo and Revuz [2] (1969)): For all x ∈R

d ,

Px

[∫ ∞

0
1A(Xs)ds = ∞

]
= 1.

We will prove Harris recurrence by introducing a splitting scheme that is entirely based on the big jumps of X. In
order to do so, we introduce the following additional assumption which is a non-degeneracy condition on the jump
noise and the associated jump rate.
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Assumption 2.2. Writing the Lebesgue decomposition μ = μac + μs , with μac(dz) = h(z)dz, for some measurable
function h ≥ 0 ∈ L1

loc(λ), λ the Lebesgue measure on R
d , we suppose that there exist x0, z0 ∈ R

d and r,R > 0 such
that

inf
z:|z−z0|≤R,x:|x−x0|≤r

γ (z, x)h(z) = ε > 0.

In the following we explain what we mean by big jumps.

2.2. Coupling with a dominating Poisson process

In order to introduce what we shall call big jumps, we impose the following condition which implies that the measure
γ (x, z)μ(dz) is sigma-finite, uniformly in x.

Assumption 2.3. There exists a non-decreasing sequence (En)n of subsets of Rd and an increasing sequence of
positive numbers 	n with 	n ↑ +∞ as n → ∞, such that

⋃
En =R

d ,∫
En

γ (z, x)μ(dz) =: γ̄n(x) ≤ 	n < ∞ (2.2)

for all n.

We fix some n. Thanks to (2.2), we can couple the process Xt with a rate 	n-Poisson process N [n] = (N
[n]
t )t≥0

such that jumps of Xt produced by noise z ∈ En,


Xt =
∫

En

∫ ∞

0
c(z,Xt−)1{u≤γ (z,Xt−)}N(dt,dz,du),

can only occur at the jump times T
[n]
k , k ≥ 1, of N [n]. We will construct our regeneration scheme based on these big

jumps T
[n]
k , k ≥ 1, for a suitably chosen truncation level n.

Let

�(x,dy) = L(X
T

[n]
k

| X
T

[n]
k − = x)(dy) (2.3)

be the associated transition kernel. Our aim is to obtain a local Doeblin condition of the type

�(x,dy) ≥ 1C(x)βν(dy), (2.4)

for a suitable measurable set C, some β ∈]0,1[ and a suitable probability measure ν.
First notice that 	n in (2.2) is only an upper bound on the total jump rate produced by noise belonging to En.

As a consequence, for any k ≥ 1 and on the event that X
T

[n]
k − = x, jumps are only accepted with probability γ̄n(x)

	n
.

Moreover, it is easy to see that the following lower bound holds. Write K = {x ∈ R
d : |z − z0| ≤ R} with z0 and R

chosen according to Assumption 2.2. Then for all V ∈ B(Rd),

�(x,V ) ≥ 1

	n

∫
En∩K

γ (z, x)1V

(
x + c(z, x)

)
μ(dz)

≥ 1

	n

∫
En∩K

γ (z, x)1V

(
x + c(z, x)

)
h(z)dz, (2.5)

where h is the Lebesgue density of the absolute continuous part of μ. It is natural to use a change of variables in the
r.h.s. of the above lower bound, i.e. to replace, for fixed initial position x, the argument x + c(x, z) by y = y(z), on
suitable subsets of Rd where z 
→ x + c(x, z) is a diffeomorphism. The difficulty is to control the dependence on the
starting point x, since we are seeking for uniform lower bounds (2.4), uniform in x ∈ C.



1140 E. Löcherbach and V. Rabiet

To be able to achieve such a control we impose the following regularity condition on the jump height c(z, x) which
implies that z 
→ c(z, x) is a local diffeomorphism, uniformly with respect to x where x is allowed to vary in some
small balls.

Assumption 2.4. Let x0, z0 ∈ R
d and r,R > 0 as in Assumption 2.2.

1. We assume that for all x ∈R
d with |x − x0| ≤ r , there exists A > 0 with∣∣∇zc(z0, x)y

∣∣ ≥ A|y|, ∀y ∈ R
d . (2.6)

2. There exists K > 0 such that for all x, z ∈R
d with |z − z0| ≤ R and |x − x0| ≤ r ,

∥∥(∇zc(z0, x)
)−1∥∥∑

i,j

∣∣∣∣ ∂2c

∂zi ∂zj

(z, x)

∣∣∣∣ ≤ K

d
. (2.7)

3. S = sup
z:|z−z0|≤R

sup
x:|x−x0|≤r

sup
i

∣∣∂zi
c(z, x)

∣∣ < ∞, (2.8)

where h(z) is the Lebesgue density of the absolutely continuous part of μ.

Remark 2.5. Let us explain briefly the heuristic of the preceding assumptions. Our main objective is to obtain a lower
bound of the type

inf
x:|x−x0|<η

P [X
T

[n]
k

∈ V | X
T

[n]
k − = x] = inf

x:|x−x0|<η
�(x,V ) ≥ cλ(V ∩ B)

(compare to (2.9) below), where c is some constant, λ the Lebesgue measure on R
d and where the radius η has to be

determined. Since we have (2.5), we need to find B(z0,R) and B(x0, η) such that there exists a ball B verifying

B ⊂ �x

(
B(z0,R)

)
, ∀x ∈ B(x0, η),

with �x(z) := x + c(x, z).
Assumption 2.4 implies the existence of a such a ball as we will explain now.
Let us fix x and suppose first that z ∈R and that � ′

x(z0) = 1. Then a condition of the type |� ′′
x (z)| ≤ K , nearby z0,

will ensure that �x is ‘close’ to the identity (plus a constant): there will exist consequently B ⊂ �x(B(z0,R)) ‘large’
enough for our future needs. In the multidimensional case, if ∇zc(z0, x) = ∇z�x(z0) = Id, the same mechanism
applies and (2.7) appears to be merely the multidimensional version of |� ′′

x (z)| ≤ K .
If ∇z�x(z0) �= Id, we have to use an intermediate renormalized function

f (z) := (∇zc(z0, x)
)−1

�x(z)

in order to use the preceding point, and the condition (2.7) leads again to the existence of a ball B̃ ⊂ f (B(z0,R
′)).

Now we use the condition (2.6) to transform B̃ into a set ‘not flat’ (i.e. containing the wanted ball B) included in
�x(B(z0,R)).

This whole heuristic is basically the pattern behind the proof of Lemma 5.1 (stated and proved in Section 5); result
which will help us to show the next proposition.

Proposition 2.6. Grant Assumptions 2.2, 2.3 and 2.4. Fix n0 such that {z ∈ R
d : |z− z0| ≤ R} ⊂ En0 . Then there exist

η > 0 and some ball B ⊂R
d such that for all n ≥ n0 and for all V ∈ B(Rd), for all k ≥ 1,

inf
x:|x−x0|<η

P [X
T

[n]
k

∈ V | X
T

[n]
k − = x] ≥ 1

	nSd
ελ(V ∩ B), (2.9)

where λ denotes the Lebesgue measure on R
d .
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As a consequence of Proposition 2.6, the local Doeblin condition (2.4) holds with C = {x ∈R
d : |x − x0| < η},

β = λ(B)ε

	nSd
∧ 1 and ν(dy) = 1

λ(B)
1B(y)dy. (2.10)

Notice that the set C is not a ‘petite’ set in the sense of Meyn and Tweedie (1993) [11].

Remark 2.7. It is important to have a control on the radius η of the set C, because return times to C will serve as
candidates for regeneration times. Such a control is possible if the jump height function c(z, x) is Lipschitz continuous
in x, uniformly in z, i.e. Lc := supz:|z−z0|≤R Lc(z) < ∞, where Lc(z) has been introduced in Assumption 2.1 2. In this
case we can choose

η = A(R ∧ 1
2K

)

4(1 + Lc)
∧ r, (2.11)

see Lemma 5.1 in Section 5 below, and see the end of Section 5 for a proof of (2.11).

We close this section with two examples.

Example 2.8 (Growth-fragmentation processes). In reminiscence to Krell [6] (2015), we consider a one-dimensional
growth-fragmentation-type process Xt which is solution of

dXt = dt +
∫
R+×R+

[
κ(z) − 1

]
ψ(Xt−)1{u≤f (Xt−)/z}N(dt,dz,du).

The ingredients of the above equation are

– the intensity measure μ(dz) = 1R+(z)e−z dz;
– a 1-Lipschitz function ψ : R+ → [a, b] which is a smooth version of a ∨ x ∧ b for 0 < a < b < ∞. The function ψ

is supposed to be increasing, such that ψ(x) ≡ x for all x ∈ [l,L] for some fixed thresholds a < l < L < b;
– an increasing, bounded Lipschitz function f : R+ → R+ with f (x) > 0 for all x;
– a function κ :R+ →]δ,1], C2, Lipschitz continuous, with κ(0) = 1 and κ ′(z) �= 0 for all z > 0.

Such a process serves e.g. as a model for the size of a marked Escherichia coli cell. The drift g(x) = 1 implies that
cells grow at deterministic rate 1. Notice that there is no diffusive part here. At a jump time, a cell of size l ≤ x ≤ L is
replaced by a cell of size κ(z)x, and jumps happen at rate γ (z, x) = f (x) 1

z
which is strictly positive for z, x > 0.

It is straightforward to check that for this model, Assumptions 2.1–2.4 hold. The details are given at the end of
Section 5.

Example 2.9. We consider the one-dimensional case d = 1 with μ(dz) = dz. Throughout this example, x0 and r will
be fixed and ψ and f will be bounded 1-Lipschitz functions such that ψ(x) > 0 for all x and |f (x)| ≥ f > 0 for all
x such that |x − x0| ≤ r .

1. Suppose that c(z, x) = [1 − e−|z|]f (x) and γ (z, x) = 1
|z|e

−|z|ψ(x). Then Assumption 2.1 holds, which can be seen
as in Example 2.8 above. It is evident that Assumptions 2.2 and 2.3 hold. Finally, in order to check Assumption 2.4,
fix R and z0 such that |z0| ≥ R + a, for some a > 0. Then | ∂c

∂z
(z0, x)| = |f (x)e−|z0|| ≥ A with A = f e−|z0|,

implying item 1. of Assumption 2.4. In order to check item 2. we notice that

∣∣∣∣
(

∂c

∂z
(z0, x)

)−1∣∣∣∣
∣∣∣∣∂2c

∂z2
(z, x)

∣∣∣∣ = e|z0|

|f (x)|
∣∣f (x)

∣∣e−|z| ≤ e|z0|−a =: K,

for all z such that |z − z0| ≤ R. Item 3. clearly holds by continuity of ∂c
∂z

(z, x) in z and in x.
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2. We suppose now that c(z, x) = f (x)[1 + z2]−1 and γ (z, x) = κ(z)ψ(x), where κ and ψ are continuous functions
taking values in some interval [l, r], with 0 < l < r < ∞. Then Assumptions 2.1–2.3 hold. In order to check
Assumption 2.4, fix z0 and R such that |z0| ≥ R + a, for some a > 0. Then for all x such that |x − x0| ≤ r ,∣∣∣∣∂c

∂z
(z0, x)

∣∣∣∣ =
∣∣∣∣f (x)

2z0

(z2
0 + 1)2

∣∣∣∣ ≥ A

with A = 2f |z0|
(z2

0+1)2 . In the same way it can be seen that items 2. and 3. of Assumption 2.4 hold.

2.3. Lyapunov condition

The set C = {x ∈ R
d : |x − x0| < η} appearing in the local Doeblin condition (2.4) and (2.9) will play the role of a

small set in the sense of Nummelin [12] (1978) and Meyn–Tweedie [10] (1993). In order to be able to profit from the
lower bound (2.9), we have to show that (X

T
[n]
k −)k comes back to the set C infinitely often. For that sake, we introduce

a Lyapunov condition in terms of the continuous time process, inspired by Douc, Fort and Guillin [3] (2009).

Assumption 2.10. There exists a continuous function V : Rd → [1,∞[ which belongs to the domain D(L)of the
extended generator L of the process, an increasing concave positive function � : [1,∞[→ (0,∞) and a constant
b < ∞ such that for any x ∈R

d ,

LV (x) ≤ −� ◦ V (x) + b1C′(x), (2.12)

where C′ = {x ∈R
d : |x − x0| < η/2}, η as in Proposition 2.6.

This Lyapunov condition implies that V (Xt) evolves as a nonnegative supermartingale as long as Xt is in R
d \ C′.

Hence a.s. the process Xt with starting point x /∈ C′ will enter the set C′ in finite time. This implies that the process
comes back to the set C′ = {x : |x − x0| < η/2} infinitely often. The choice of η/2 is on purpose and will be explained
by Proposition 3.3 below.

We discuss in Section 4 examples where (2.12) is verified.

Remark 2.11. Notice that since � is increasing strictly positive and since V takes values in [1,∞[, (2.12) implies in
particular that

LV (x) ≤ −c + b1C′(x), (2.13)

for c = �(1) > 0. This is (2.12) for a constant function � ≡ c. We will use (2.13) in order to show that (Xt )t≥0 is
positive Harris recurrent, in Section 3.3 below.

For the function � of (2.12) put

H�(u) =
∫ u

1

ds

�(s)
, u ≥ 1, (2.14)

and

r�(s) = r(s) = � ◦ H−1
� (s). (2.15)

Then Theorem 4.1 of Douc, Fort and Guillin [3] (2009) implies that for any δ > 0 and putting τC′(δ) := inf{t ≥ δ :
Xt ∈ C′},

Ex

∫ τC′ (δ)

0
r(s)ds ≤ V (x) + b

�(1)

∫ δ

0
r(s)ds. (2.16)
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In most of the cases, we will deal with the case �(v) = cvα for some fixed 0 ≤ α < 1 and c > 0. In this case, it is
easy to see that

r(s) = c
[
c(1 − α)s + 1

] α
1−α , and thus r(s) ∼ Cs

α
1−α , as s → ∞, (2.17)

where C = c[c(1 − α)] α
1−α , giving rise to polynomial rates of convergence.

2.4. Main results

Theorem 2.12. Grant Assumptions 2.1, 2.2, 2.3, 2.4 and 2.10.

1. The process X is recurrent in the sense of Harris having a unique invariant probability measure m such that
� ◦ V ∈ L1(m). The invariant probability measure m is the unique solution of∫

Rd

Lψ(x)m(dx) = 0, (2.18)

for all ψ ∈ C2(Rd) being of compact support.
2. Moreover, for any measurable function f ∈ L1(m), we have

1

t

∫ t

0
f (Xs)ds → m(f )

as t → ∞, Px -almost surely for any x ∈ R
d .

The above ergodic theorem is an important tool e.g. for statistical inference based on observations of the process
X in continuous time. In this direction, the following deviation inequality is of particular interest. Recall that ν is the
measure given in the local Doeblin condition (2.4).

Theorem 2.13. Grant the Assumptions 2.1, 2.2, 2.3, 2.4 and 2.10 with �(v) = cvα , for some 0 ≤ α < 1 and c ≥ 1.
Put p = 1/(1 − α). Let f ∈ L1(m) with ‖f ‖∞ < ∞, x be any initial point and 0 < δ < ‖f ‖∞. Then for all t ≥ 1 the
following inequality holds:

Px

(∣∣∣∣1

t

∫ t

0
f (Xs)ds − m(f )

∣∣∣∣ > δ

)
≤ K(p,ν,X)V (x)t−(p−1)

×
{

1
δ2(p−1) ‖f ‖2(p−1)∞ if p ≥ 2,

1
δp ‖f ‖p∞ if 1 < p < 2

}
. (2.19)

Here K(p,ν,X) is a positive constant, different in the two cases, which depends on p,ν and on the process X, but
which does not depend on f , t , δ.

Finally, we obtain the following quantitative control of the convergence of ergodic averages.

Proposition 2.14. Grant the Assumptions 2.1, 2.2, 2.3, 2.4 and 2.10 with �(v) = cvα , for some 0 ≤ α < 1 and c ≥ 1.
Then for any x, y ∈R

d ,∥∥∥∥1

t

∫ t

0
Ps(x, ·)ds − 1

t

∫ t

0
Ps(y, ·)ds

∥∥∥∥
TV

≤ C
1

t

(
V (x)(1−α) + V (y)(1−α)

)
, (2.20)

where C > 0 is a constant. In particular, if α ≥ 1
2 , then∥∥∥∥1

t

∫ t

0
Ps(x, ·)ds − m

∥∥∥∥
TV

≤ C
1

t
V (x)(1−α). (2.21)
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We continue Example 2.8 and show that Theorem 2.12, Theorem 2.13 and Proposition 2.14 hold for growth-
fragmentation processes as considered there.

Example 2.15 (Example 2.8 continued). We continue the discussion of the growth-fragmentation model introduced
in Example 2.8. We have already checked that Assumptions 2.1, 2.2, 2.3, 2.4 hold. It remains to check Assumption 2.10
with �(v) = cvα , for some 0 ≤ α < 1. It is evident that in the dynamics of the growth-fragmentation process there is a
competition between the deterministic growth rate of one cell, which is always 1, and pushes the process up, and the
jumps, which make the process go down.

Recall that η was given in (2.11). We introduce V (x) = x2 + 1 and choose x0 = 0. We will show at the end of
Section 5 that under the following condition∫ ∞

0

1

z

(
1 − κ(z)

)
e−z dz >

2

ψ(η/2)
, (2.22)

we have

LV ≤ −c(V − 1)1/2, (2.23)

for all x > η/2. Therefore, condition (2.13) holds with �(v) = c
√

v − 1, and as a consequence, Theorem 2.12, Theo-
rem 2.13 and Proposition 2.14 hold.

Example 2.16. We continue Example 2.9 item 2. in the case when x0 = 0 and σ ≡ 0. We suppose additionally that〈
x,g(x)

〉 ≤ −c|x|1+α − D|x|
for all x ∈ R \ C′, where D := supx∈R |f (x)|ψ(x)

∫ ∞
−∞

1
1+z2 κ(z)dz. We show at the end of Section 4 below that in

this case for V (x) = |x| + 1, LV (x) ≤ −c|x|α , for all x /∈ C′, and therefore, (2.13) holds with �(v) = c(v − 1)α ,
implying that Theorem 2.12, Theorem 2.13 and Proposition 2.14 hold.

The proofs of Theorems 2.12 and 2.13 and of Proposition 2.14 relies on the regeneration method that we are going
to introduce now.

3. Regeneration for the chain of big jumps

3.1. Regeneration times

We show how the lower bound

�(x,dy) ≥ 1C(x)βν(dy)

of (2.4) for the jump kernel, with the choice of parameters in (2.10), allows us to introduce regeneration times for the
process X.

We start ‘splitting’ the jump transition kernel �(x,dy) of (2.3) in the following way. Since �(x,dy) ≥
β1C(x)ν(dy), we may introduce a split kernel Q((x,u),dy), which is a transition kernel from R

d × [0,1] to R
d ,

defined by

Q
(
(x,u),dy

) =

⎧⎪⎨
⎪⎩

ν(dy) if (x,u) ∈ C × [0, β],
1

1−β
(�(x,dy) − βν(dy)) if (x,u) ∈ C ×]β,1],

�(x,dy) if x /∈ C.

(3.1)

Notice that∫ 1

0
Q
(
(x,u),dy

)
du = �(x,dy);



Ergodicity for multidimensional jump diffusions 1145

it is in this sense that Q((x,u),dy) can be considered as ‘splitting’ the original transition kernel � by means of the
additional ‘color’ u.

We now show how to construct a version of the process X recursively over time intervals [T [n]
k , T

[n]
k+1[, k ≥ 0. We

start at time t = 0 with X0 = x and introduce the process Zt defined by

Zt = x +
∫ t

0
g(Zs)ds +

∫ t

0
σ(Zs)dWs +

∫ t

0

∫
Ec

n

∫ ∞

0
c(z,Zs−)1u≤γ (z,Zs−)N(ds,dz,du).

For t < T
[n]
1 , we clearly have Zt = Xt . Notice also that T

[n]
1 is independent of the r.h.s. of the above equation and

exponentially distributed with parameter 	n. We put X
T

[n]
1 − := Z

T
[n]
1 − (notice that Z

T
[n]
1

= Z
T

[n]
1 −, since Z almost

surely does not jump at time T
[n]
1 ). On X

T
[n]
1 − = x′, we do the following.

1. We choose a uniform random variable U1, uniformly distributed on [0,1], independently of anything else.
2. On U1 = u, we choose a random variable V1 ∼ Q((x′, u),dy) and we put

X
T

[n]
1

:= V1. (3.2)

We then restart the above procedure with the new starting point V1 instead of x.
We will write Xt for the d + 1-dimensional process with additional color Uk , defined by

Xt =
∑
k≥0

1[T [n]
k ,T

[n]
k+1[(t)(Xt ,Uk),

i.e. Xt = (Xt ,Uk) on each interval [T [n]
k , T

[n]
k+1[, keeping trace of the additional color Uk .

Remark 3.1. Notice that the above splitting procedure does not even use the strong Markov property of the underlying
process. It only uses the independence properties of the driving Poisson random measure.

This new process is clearly Markov with respect to its filtration, and by abuse of notation we will not distinguish
between the original filtration F introduced in Section 2 and the canonical filtration of Xt . In this richer structure,
where we have added the component Uk to the process, we obtain regeneration times for the process X. More precisely,
write

A := C × [0, β]
and put

R0 := 0, Rk+1 := inf
{
T [n]

m > Rk : X
T

[n]
m − ∈ A

}
. (3.3)

Then we clearly have

Proposition 3.2.

(a) XRk
∼ ν(dx)1[0,1](u)(du) on Rk < ∞, for all k ≥ 1.

(b) XRk+· is independent of FRk− on Rk < ∞, for all k ≥ 1.
(c) If Rk < ∞ for all k, then the sequence (XRk

)k≥1 is i.i.d.

It is clear that in this way the speed of convergence to equilibrium of the process is determined by the moments of
the extended stopping times Rk . In the next section we show that the drift condition of Assumption 2.10 ensures in
particular that Rk < ∞ Px -almost surely for any x.

3.2. Existence of moments of the regeneration times

Recall the local Doeblin condition (2.4), the definition of the set C = {x : |x − x0| < η} and of C′ = {x : |x − x0| <

η/2}. Let τC′(δ) = inf{t ≥ δ : Xt ∈ C′} be the first hitting time of C′ after time δ. Recall that condition (2.12) implies
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that

Ex

∫ τC′ (δ)

0
r(s)ds ≤ V (x) + b

�(1)

∫ δ

0
r(s)ds, (3.4)

where r is given as in (2.15), by Theorem 4.1 of Douc, Fort and Guillin [3] (2009).
In particular, equation (2.16) implies that τC′ < ∞ Px -surely for all x. We show that this implies that the regener-

ation times Rk introduced in (3.3) above are finite almost surely. Recall that T
[n]
k are the successive jump times of the

dominating Poisson point process N [n] having rate 	n. The regeneration times Rk are expressed in terms of the jump
chain X

T
[n]
k −, k ≥ 0. We have to ensure that the control of return times to C′ for the continuous time process imply

analogous moments for the jump chain.
The main idea is to show that once the continuous time process has reached C′, it takes some time to exit from C.

Taking 	n, the rate of the dominating Poisson process, sufficiently large, the probability that a jump T
[n]
k arises during

this time, i.e. before exiting from C, can then be made arbitrarily large.

Proposition 3.3. There exists n0, such that for any n ≥ n0,

inf
x∈C′ Px(XT

[n]
1 − ∈ C) ≥ 1

2
. (3.5)

Remark 3.4. The choice 1
2 in the above lower bound is arbitrary, by choosing larger values of n, we could achieve

any bound 1 − ε on the right hand side of (3.5).

Proof. Before starting the proof, let B be such that |g(x)|∨|σ(x)| ≤ B(1+|x|), ∀x ∈R
d . Since g and σ are supposed

to be globally Lipschitz continuous, such a constant B clearly exists.
Recall the process Zt defined by

Zt = x +
∫ t

0
g(Zs)ds +

∫ t

0
σ(Zs)dWs +

∫ t

0

∫
Ec

n

∫ ∞

0
c(z,Zs−)1u≤γ (z,Zs−)N(ds,dz,du)

and recall that for any t < T
[n]
1 , Zt = Xt . Recall also that T

[n]
1 is independent of the r.h.s. of the above equation,

exponentially distributed with parameter 	n. Now let x ∈ C′. We are looking for an upper-bound on

Px[XT
[n]
1 − /∈ C] = Px[ZT

[n]
1 − /∈ C] ≤ Px

[|Z
T

[n]
1 − − x| > η/2

]
.

Clearly, Px[|Zt − x| ≥ η
2 ] ≤ 2

η
Ex[|Zt − x|], and we will therefore establish upper bounds on Ex[|Zt − x|]. More

precisely, we shall prove that there exist constants d1 and d2 such that

sup
x∈C′

Ex

(|Zt − x|) ≤ d1
√

ted2t . (3.6)

In the sequel, we will be mainly interested in the small time behavior of the above control, i.e. the leading control in t

of the above formula is the term
√

t – see also (3.11) below.
In order to prove (3.6), we proceed in two steps. In a first step, we obtain a control on Ex(supt≤T |Zt |). In a second

step, we shall consider the deviation Ex(|Zt − x|).
Step 1. We first fix some T > 0 and introduce Z∗

T = supt∈[0,T ] |Zt |. Put moreover τN = inf{t ≥ 0 : Z∗
t ≥ N}. Then

for any fixed N ≥ 1,

Ex

[
Z∗

T ∧τN

] ≤ |x| + Ex

[
sup
t≤T

∣∣∣∣
∫ t

0
σ(Zs∧τN

)dWs

∣∣∣∣
]

+ Ex

[∫ T

0

∣∣g(Zs∧τN
)
∣∣ds

]

+ Ex

[∫ T ∧τN

0

∫
Ec

n

∫ ∞

0

∣∣c(z,Zs−)
∣∣1u≤γ (z,Zs−)N(ds,dz,du)

]



Ergodicity for multidimensional jump diffusions 1147

≤ |x| + Ex

[
sup
t≤T

∣∣∣∣
∫ t

0
σ(Zs∧τN

)dWs

∣∣∣∣
]

+ Ex

[∫ T

0

∣∣g(Zs∧τN
)
∣∣ds

]

+ Ex

[∫ T ∧τN

0

∫
Ec

n

∫ ∞

0

∣∣c(z,Zs−)
∣∣1u≤γ (z,Zs−)N(ds,dz,du)

]
.

We follow the arguments of the proof of Theorem 1.2 of Graham [5] (1992) and use the Burkholder–Davis–Gundy
inequality in order to get

Ex

[
sup
t≤T

∣∣∣∣
∫ t

0
σ(Zs∧τN

)dWs

∣∣∣∣
]

≤ C(1)Ex

[(∣∣∣∣
∫ T

0
σ 2(Zs∧τN

)ds

∣∣∣∣
)1/2]

.

But ∣∣σ(Zs∧τN
)
∣∣ ≤ B

(
1 + |Zs∧τN

|) ≤ B
(
1 + Z∗

T ∧τN

)
.

This implies that

Ex

[
sup
t≤T

∣∣∣∣
∫ t

0
σ(Zs∧τN

)dWs

∣∣∣∣
]

≤ C(1)B
√

T
[
1 + ExZ

∗
T ∧τN

]
.

The same argument shows that

Ex

[∫ T

0

∣∣g(Zs∧τN
)
∣∣ds

]
≤ Ex

[∫ T

0
B
(
1 + |Zs∧τN

|)ds

]
≤ BT

[
1 + ExZ

∗
T ∧τN

]
.

Finally, we upper bound

Ex

[∫ T ∧τN

0

∫
Ec

n

∫ ∞

0

∣∣c(z,Zs−)
∣∣1u≤γ (z,Zs−)N(ds,dz,du)

]

= Ex

[∫ T

0

∫
Ec

n

∫ ∞

0

∣∣c(z,Zs−)
∣∣1u≤γ (z,Zs−) dz dμ(z)du

]

≤ T sup
x

∫
Ec

n

∣∣c(z, x)
∣∣γ (z, x)dμ(z) ≤ T sup

x

∫
Rd

∣∣c(z, x)
∣∣γ (z, x)dμ(z)

and put

D1 = sup
x

∫
Rd

∣∣c(z, x)
∣∣γ (z, x)dμ(z) + [

C(1) + 1
]
B, D2 = [

C(1) + 1
]
B. (3.7)

Now, fix some parameter 0 < a < 1 and choose T < 1 sufficiently small such that D2
√

T ≤ a and such that moreover
D1

√
T < 1. Notice that since T < 1, we have

√
T ≥ T .

Therefore, resuming the above steps,

Ex

[
Z∗

T ∧τN

] ≤ |x| + D1
√

T + D2
√

T Ex

(
Z∗

T ∧τN

) ≤ |x| + 1 + aEx

(
Z∗

T ∧τN

)
.

Since a < 1, we obtain

Ex

[
Z∗

T ∧τN

] ≤ 1

1 − a

(|x| + 1
)
,



1148 E. Löcherbach and V. Rabiet

and letting N → ∞ implies the same upper bound

Ex

[
Z∗

T

] ≤ 1

1 − a

(|x| + 1
)
. (3.8)

Iterating the above procedure and using the Markov property, we obtain

Ex

[
sup

(n−1)T ≤t≤nT

|Zt |
]

≤
(

n∑
k=1

1

(1 − a)k

)
1 + 1

(1 − a)n
|x| ≤ 1

a
elog( 1

1−a
)n
[
1 + |x|]. (3.9)

Now fix t > 0 and let n be such that (n − 1)T ≤ t ≤ nT . Hence n ≤ t/T + 1 and

Ex

[|Zt |
] ≤ Ex

[
sup

(n−1)T ≤t≤nT

|Zt |
]

≤ 1

a
elog( 1

1−a
)( t

T
+1)

[
1 + |x|].

Observing that |x| ≤ |x0| + η/2 for x ∈ C′, it follows from (3.9) that for c1 = c1(x0, η) = 1
a
elog( 1

1−a
)(1 + |x0| + η/2)

and c2 = log( 1
1−a

) · 1
T

,

sup
x∈C′

Ex

[|Zt |
] ≤ c1e

c2t , (3.10)

for all t ≥ 0 (let us emphasize that we are interested here in the case where t is ‘small,’ so the exponential behavior of
this upper bound is not a concern in our framework).

Step 2. In order to prove (3.6), we now iterate the arguments that led to (3.8) and obtain in the same way

Ex

[
sup
t≤T

|Zt − x|
]

≤ 1

1 − a
D1

√
T
(
1 + |x|),

but now we keep the factor
√

T explicitly since it will be important later.
Using a telescopic sum and the Markov property gives

Ex

[
sup

(n−1)T ≤t≤nT

|Zt − x|
]

≤
n∑

k=1

Ex

[
sup

(k−1)T ≤t≤kT

|Zt − Z(k−1)T |
]

≤ D1
√

T

1 − a

n∑
k=1

Ex

[
1 + |Z(k−1)T |].

By (3.10), for all k ≤ n, Ex[1 + |Z(k−1)T |] ≤ 1 + c1e
c2nT ≤ [1 + c1]ec2nT , if x ∈ C′. Hence

sup
x∈C′

Ex

[
sup

(n−1)T ≤t≤nT

|Zt − x|
]

≤ D1
√

T

1 − a
n[1 + c1]ec2nT .

Using that nec2nT ≤ c3e
c3nT for some constant c3, and using the same trick that allowed to deduce (3.10) from (3.9),

this implies (3.6), for suitable constants d1 and d2.
Now, we choose n such that 	n > d2. Recall that T

[n]
1 is independent from (Zt )t , exponentially distributed with

parameter 	n. Moreover, almost surely, Z does not jump at T
[n]

1 . Therefore,

Ex

[|Z
T

[n]
1 − − x|] = Ex

[|Z
T

[n]
1

− x|] ≤
∫ +∞

0
d1

√
ted2t	ne

−	nt dt

= 	nd1

∫ +∞

0

√
te−(	n−d2)t dt = 	nd1

	( 3
2 )

(	n − d2)
3
2

= 	nd1

√
π

2

1

(	n − d2)
3
2

(3.11)

for every x ∈ C′. We choose n0 such that for all n ≥ n0,

	nd1

√
π

2

1

(	n − d2)
3
2

<
η

4
(3.12)
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and obtain

sup
x∈C′

Px[XT
[n]
1 − /∈ C] ≤ sup

x∈C′
Px

[
|Z

T
[n]
1 − − x| ≥ η

2

]

≤ sup
x∈C′

2

η
Ex

[|Z
T

[n]
1 − − x|] <

1

2
. �

Let S1 = inf{T [n]
k , k ≥ 1 : X

T
[n]
k − ∈ C}. Then the above arguments imply the following statement.

Corollary 3.5. Px(S1 < ∞) = 1 for all x.

Proof. We introduce the following sequence of stopping times.

t1 = τC′ , s1 = inf
{
T

[n]
k : T [n]

k > t1
}
, . . . ,

tl = inf
{
s ≥ sl−1 : Xs ∈ C′}, sl = inf

{
T

[n]
k : T [n]

k > tl
}
.

The above stopping times are all finite almost surely. We put

τ∗ = inf{l : Xsl− ∈ C}.
Then, using (3.5), for any x ∈ R

d ,

Px(τ∗ ≥ n0) ≤
(

1

2

)n0

,

which shows that τ∗ < ∞ Px -almost surely for all x. In particular,

S1 ≤ sτ∗ < ∞
Px -almost surely for all x. �

In case that �(v) = cvα for some fixed 0 ≤ α < 1, by (2.17) we know that r(s) ≤ Csα/(1−α), and in this case (2.16)
provides a polynomial control obtained for the first entrance time in C′. We now show that this polynomial control
remains true for S1.

Proposition 3.6. Grant Assumption 2.10 with �(v) = cvα , for some 0 ≤ α < 1 and c ≥ 1. Then there exists a constant
C such that

Ex

(
S

1
1−α

1

) ≤ CV (x). (3.13)

Proof. We adopt the notations of the proof of Corollary 3.5 and start with some preliminary considerations concerning
the rate function introduced in (2.17) above.

0. For rate functions as in (2.17), the most important technical feature is the following sub-additivity property

r(t + s) ≤ C
(
r(t) + r(s)

)
, (3.14)

for t, s ≥ 0 and C a positive constant. We shall also use that for (2.17),

r(t + s) ≤ r(t)r(s), (3.15)

for all t, s ≥ 0, which follows from the sub-linearity of R+ � x 
→ ln(1 + x) and the fact that the constant c in the
formula of r(s) in (2.17) is strictly larger than 1. 1

1Supposing that c ≥ 1 is actually no restriction, since we might multiply (2.12) by any suitably large constant.
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1. Since r(s) ≥ c[c(1 − α)]α/(1−α)sα/(1−α) by (2.17), it is sufficient to show that

Ex

∫ sτ∗

0
r(s)ds ≤ C̃V (x), (3.16)

for a suitable constant C̃, in order to prove (3.13) . Indeed, (3.16) and the fact that S1 ≤ sτ∗ imply that

Ex

∫ S1

0
sα/(1−α) ds ≤ C̃V (x).

Then (3.13) follows, since
∫ S1

0 sα/(1−α) ds = CS
1

1−α

1 .
We are going to prove (3.16) in the next steps. In what follows, C will denote a constant that might change from

line to line and even within the same line.
2. We start by studying Ex

∫ s1
0 r(s)ds, where s1 = inf{T [n]

k : T
[n]
k > τC′ }. Recall that 	n is the rate of the Poisson

process associated to T
[n]
k , k ≥ 1. Then by definition of s1,

Ex

∫ s1

0
r(s)ds = Ex

∫ τC′

0
r(s)ds + Ex

∫ s1

τC′
r(s)ds ≤ V (x) + Ex

∫ s1

τC′
r(s)ds,

where we have used (2.16) with δ = 0.
Now, using that s1 − τC′ is independent of FτC′ , exponentially distributed with parameter 	n, and using (3.15),

Ex

∫ s1

τC′
r(s)ds = ExEXτ

C′

∫ s1−τC′

0
r(τC′ + s)ds

≤ ExEXτ
C′

∫ s1−τC′

0
r(τC′)r(s)ds

= Ex

(
r(τC′)

)
ExEXτ

C′

(∫ s1−τC′

0
r(s)ds

)

= Ex

(
r(τC′)

)
ExEXτ

C′

(∫ ∞

0
	ne

−	nt

[∫ t

0
r(s)ds

]
dt

)
= C1Ex

(
r(τC′)

)
,

where C1 = ∫ ∞
0 	ne

−	nt [∫ t

0 r(s)ds]dt < ∞.

Notice that limt→∞ r(t)∫ t
0 r(s)ds

= 0, by (2.17). This implies that there exists a suitable constant C such that

r(t) ≤ C +
∫ t

0
r(s)ds, for all t ≥ 0. (3.17)

Therefore,

Ex

(
r(τC′)

) ≤ C + Ex

∫ τC′

0
r(s)ds ≤ C + V (x),

by (2.16) with δ = 0, implying that

Ex

∫ s1

0
r(s)ds ≤ C1 · C + C1V (x) ≤ [C1C + C1]V (x), (3.18)

where we have used that V (x) ≥ 1.
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3. In a next step we consider the following situation. Let x ∈ C′, then t1 = 0 and t2 = inf{t ≥ s1 : Xt ∈ C′}. Since
s1 is independent of the process, exponentially distributed with parameter 	n, we may apply (2.16) in order to obtain,
for x ∈ C′,

Ex

∫ t2

0
r(s)ds =

∫ ∞

0
	ne

−	nt

(
Ex

∫ τC′ (t)

0
r(s)ds

)
dt

≤
∫ ∞

0
	ne

−	nt

(
V (x) + b

c

∫ t

0
r(s)ds

)
dt

≤ V (x) + C(	nb, c), (3.19)

where C(	nb, c) is a constant depending on 	n,b and c = �(1), since t 
→ ∫ t

0 r(s)ds is of polynomial growth and
therefore integrable with respect to 	ne

−	nt dt . As a consequence,

sup
x∈C′

Ex

∫ t2

0
r(s)ds < ∞. (3.20)

4. We now use r(t + s) ≤ r(t)r(s) in order to obtain a control of Ex

∫ tτ∗
0 r(s)ds. We certainly have

Ex

∫ tτ∗

0
r(s)ds = Ex

∫ t1

0
r(s)ds +

∑
n≥1

Ex

∫ tn+1

tn

r(s)ds1{n<τ∗}

≤ V (x) +
∑
n≥1

Ex

(
1{n−1<τ∗}

∫ tn+1−tn

0
r(tn + s)ds

)
. (3.21)

Since r(tn + s) ≤ r(tn)r(s), we may continue as follows.

Ex

∫ tτ∗

0
r(s)ds ≤ V (x) +

∑
n≥1

Ex

(
1{n−1<τ∗}r(tn)

∫ tn+1−tn

0
r(s)ds

)

= V (x) +
∑
n≥1

Ex

(
1{n−1<τ∗}r(tn)EXtn

∫ t1

0
r(s)ds

)

≤ V (x) +
∑
n≥1

Ex

(
1{n−1<τ∗}r(tn)V (Xtn)

)
, (3.22)

where we have used (2.16) and the fact that 1{n−1<τ∗} is Fsn−1 -measurable. Now, Xtn belonging to C′, we can upper-
bound V (Xtn) ≤ supx∈C′ V (x) =: ‖V ‖∞,C′ , and obtain

Ex

∫ tτ∗

0
r(s)ds ≤ V (x) + ‖V ‖∞,C′

∑
n≥1

Ex

(
1{n−1<τ∗}r(tn)

)
. (3.23)

We use that by definition of the stopping times tn, tn = t1 + tn−1 ◦ θt1 , where θt1 denotes the shift operator on
D(R+,Rd). But

r(tn) = r(t1 + tn−1 ◦ θt1) ≤ r(t1)r(tn−1 ◦ θt1),

due to (3.15). Using the Markov property with respect to t1 and the fact that Xt1 ∈ C′, we obtain

Ex

(
1{n−1<τ∗}r(tn)

) ≤ Exr(t1) sup
y∈C′

Ey

(
r(tn−1)1{n−2<τ∗}

)
. (3.24)
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Using (3.17), the first factor can be treated as follows

Exr(t1) ≤ C + Ex

∫ t1

0
r(s)ds ≤ C + V (x) ≤ [C + 1]V (x), (3.25)

since V (x) ≥ 1.
We are now going to treat the second factor. For that sake, let p ∈] 1−α

α
∨ 1, 1

α
[, and q ≥ 1 with 1

p
+ 1

q
= 1. Then,

using that P(n − 2 < τ∗) ≤ ( 1
2 )n−2,

Ey

(
1{n−2<τ∗}r(tn−1)

) ≤ Ey

(
rp(tn−1)

)1/p
(

1

2

)(n−2)/q

. (3.26)

We use the precise form of r given in (2.17) and obtain, using Hölder’s inequality, the fact that αp
1−α

> 1 and writing
that tn−1 = t1 + (t2 − t1) + · · · + (tn−1 − tn−2),

rp(tn−1) ≤ (n − 1)
αp

1−α
−1[rp(t1) + · · · + rp(tn−1 − tn−2)

]
. (3.27)

Our intention is now to show that for all t , rp(t) ≤ C
∫ t

0 r(s)ds, for a suitable constant C. In order to do so,
recall that by (2.17), rp(t) ≤ Ct

α
1−α

p , as t → ∞. Since p < 1/α, we have α
1−α

p − 1 ≤ α
1−α

1
α

− 1 = α
1−α

. Moreover,
α

1−α
p > 1, since p > 1−α

α
. Therefore,

t
α

1−α
p = 1

α
1−α

p − 1

∫ t

0
s

α
1−α

p−1 ds = 1
α

1−α
p − 1

∫ t

0
s

α
1−α ds ≤ C

∫ t

0
r(s)ds,

implying the desired assertion.
As a consequence we may upper bound each term appearing in (3.27) by rp(t1) ≤ C

∫ t1
0 r(s)ds, . . . , rp(tn−1 −

tn−2) ≤ C
∫ tn−1−tn−2

0 r(s)ds and obtain, for a new constant C,

rp(tn−1) ≤ C(n − 1)
αp

1−α
−1

(∫ t1

0
r(s)ds + · · · +

∫ tn−1−tn−2

0
r(s)ds

)
.

Using successively the Markov property at times 0, t1, t2, . . . , tn−2 and that Xti ∈ C′, for 1 ≤ i ≤ n − 2, we obtain

Eyr
p(tn−1) ≤ C(n − 1)

αp
1−α sup

z∈C′
Ez

∫ t2

0
r(s)ds.

Finally, by (3.20), supz∈C′ Ez

∫ t2
0 r(s)ds < ∞, and therefore

sup
y∈C′

(
Eyr

p(tn−1)
)1/p ≤ C(n − 1)

α
1−α .

Coming back to (3.23) and using (3.24)–(3.26), we conclude that, for a suitable constant C,

Ex

∫ tτ∗

0
r(s)ds ≤ V (x) + CV (x)

∑
n≥1

(
1

2

) n−2
q

(n − 1)
α

1−α ≤ C̃V (x).

5. We conclude as follows. For a constant C that might change from line to line,

Ex

∫ sτ∗

0
r(s)ds = Ex

∫ tτ∗

0
r(s)ds + Ex

∫ sτ∗

tτ∗
r(s)ds

≤ CV (x) +
∑
n≥1

Ex1{τ∗=n}
∫ sn

tn

r(s)ds
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≤ CV (x) +
∑
n≥1

Ex1{τ∗>n−1}r(tn)
∫ sn−tn

0
r(s)ds

≤ CV (x) +
∑
n≥1

Ex

[
1{τ∗>n−1}r(tn) sup

y∈C′
Ey

∫ s1

0
r(s)ds

]

≤ CV (x) +
(

sup
y∈C′

Ey

∫ s1

0
r(s)ds

)∑
n≥1

Ex

[
1{τ∗>n−1}r(tn)

]
≤ CV (x) + C

∑
n≥1

Ex1{τ∗>n−1}r(tn),

where we have used that r(tn + s) ≤ r(tn)r(s), the Markov property with respect to tn and the fact that by (3.18),

sup
y∈C′

Ey

∫ s1

0
r(s)ds < ∞.

The last sum
∑

n≥1 Ex1{τ∗>n−1}r(tn) is treated as (3.23), and this concludes our proof. �

The above result implies an analogous control for moments of the regeneration times Rk of (3.3). More precisely,
we can now define

Sl = inf
{
T

[n]
k > Sl−1 : X

T
[n]
k − ∈ C

}
, l ≥ 2,

and let

R1 = inf{Sl : Ul ≤ β}, Rk+1 = inf{Sl > Rk : Ul ≤ β}. (3.28)

An analogous argument as the one used in the proof of Proposition 3.6 then implies the following theorem.

Theorem 3.7. Grant Assumption 2.10 with �(v) = cvα , for some 0 ≤ α < 1, and let p = 1/(1 − α). Then

ExR
p

1 ≤ CV (x). (3.29)

We are now ready to prove Theorems 2.12 and 2.13.

3.3. Proofs of Theorems 2.12 and 2.13

Proof of Theorem 2.12. Let

m(O) := E

∫ R2

R1

1O(Xs)ds,

for any measurable set O . By the strong law of large numbers, any set O with m(O) > 0 is visited i.o. Px -almost
surely by the process X, for any starting point (x,u) ∈ R

d × [0,1]. Hence, the process is recurrent in the sense of
Harris, and by the Kac occupation time formula, m is the unique invariant measure of the process (unique up to
multiplication with a constant).

Now, recall that ν is of compact support, hence V ∈ L1(ν). Recall that by Remark 2.11, the Lyapunov condition
(2.12) holds in particular for a constant function � ≡ �(1) = c, i.e. �(v) = cvα with α = 0. Using (3.29) in the case
α = 0, we obtain m(Rd × [0,1]) = E(R2 − R1) = EνR1 ≤ cν(V ) < ∞. This implies that X is positive recurrent.

The invariant measure m of the original process X is the projection onto the first coordinate of m. In particular, X

is also positive Harris recurrent, and m can be represented as

m(f ) = E

∫ R2

R1

f (Xs)ds.
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The ergodic theorem is then simply a consequence of the positive Harris property of X. Finally, the fact that � ◦ V ∈
L1(m) is an immediate consequence of (2.12), based on Dynkin’s formula. �

Proof of Theorem 2.13. Theorem 2.13 follows from Theorem 5.2 of Löcherbach and Loukianova (2013) in [8]
together with Proposition 3.6. �

We finally proceed to the proof of Proposition 2.14.

Proof of Proposition 2.14. Let X and Y be a copies of the process, issued from x (from y respectively) at time 0.
Let R1 and R′

1 be the respective regeneration times. Using the same realization Vk for X and for Y (recall (3.2)), it is
clear that R1 and R′

1 are shift-coupling epochs for X and for Y , i.e. XR1+· = YR′
1+·. If follows then from Thorisson

[14] (1994), see also Roberts and Rosenthal [13] (1996), Proposition 5, that∥∥∥∥1

t

∫ t

0
Ps(x, ·)ds − 1

t

∫ t

0
Ps(y, ·)ds

∥∥∥∥
TV

≤ C
1

t

(
Ex(R1) + Ey

(
R′

1

))
. (3.30)

Recall that p = 1/(1 − α). Then

Ex(R1) ≤ (
ExR

p

1

)1/p ≤ c
(
V (x)

)(1−α)
.

Now, if α ≥ 1
2 , then 1 − α ≤ α and therefore,

Ex(R1) ≤ c� ◦ V (x) ∈ L1(m).

In this case, we can integrate (3.30) against m(dy) and obtain the second part of the assertion. �

4. Discussing the Lyapunov condition

In this section, we discuss in an informal way several easily verifiable sufficient conditions implying Assumption 2.10
with �(v) = cvα,0 ≤ α < 1. These conditions will involve different coefficients of the process. Recall that the in-
finitesimal generator L of the process X is given for every C2-function ψ with compact support on R

d by

Lψ(x) = 1

2

∑
i,j

aij (x)
∂2

∂xi ∂xj

ψ(x) + g(x)∇ψ(x) +
∫
Rd

[
ψ
(
x + c(z, x)

) − ψ(x)
]
γ (z, x)μ(dz),

where a = σσ ∗. In order to grant Assumption 2.10, we are seeking for conditions implying that

LV ≤ −cV α(x) + b1C′(x), (4.1)

for some 0 ≤ α < 1, b, c > 0. Recall that C′ = {x : |x − x0| <
η
2 } has been introduced in (2.10) above; the radius η

comes from the local Doeblin condition established in Proposition 2.6.

Example 4.1. If we choose for instance V (x) = |x − x0|2 and α = 1
2 it suffices to impose that for all x ∈ R

d \ C′,

Tr
(
σσ ∗)+ 2

〈
g(x), x − x0

〉+ ∫
Rd

〈
2(x − x0) + c(z, x), c(z, x)

〉
γ (z, x)μ(dz) ≤ −c|x − x0| (4.2)

and

sup
x∈C′

∫
Rd

〈
2(x − x0) + c(z, x), c(z, x)

〉
γ (z, x)μ(dz) < +∞. (4.3)
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We now discuss several concrete sufficient conditions implying (4.1). In this context, it is interesting to notice that
the influence of the different coefficients can be quite different. Some coefficients can work in a favorable way in order
to ensure (4.1). In that case we will say that they are ‘pushing’ the diffusion into the set C′. Other coefficients might
play a neutral role or even work against (4.1). Since we have three natural parts of coefficients (diffusion part, drift
and the jump part), we will discuss here the following cases: ‘pushing’ with the jumps only, ‘pushing’ with jumps and
drift together and ‘pushing’ with the drift only.

Pushing with the jumps

We choose V (x) = |x − x0|2 + 1 and will impose both global and local conditions with respect to z.
1. Global condition with respect to z. ∀z ∈R

d , ∀x ∈ R
d \ C′,〈

c(z, x) + 2(x − x0), c(z, x)
〉 ≤ 0. (4.4)

Moreover we impose that

sup
x∈C′

∫
E

∣∣〈c(z, x) + 2(x − x0), c(z, x)
〉∣∣γ (z, x)μ(dz) < ∞. (4.5)

2. Local conditions with respect to z on some set K. There exists a set K such that the following holds.

1. there exists ξ > 0 such that for all x ∈R
d \ C′,∫

K

∣∣c(z, x)
∣∣γ (z, x)μ(dz) > ξ. (4.6)

2. There exists ζ ∈ (0,1] such that for all z ∈ K and for all x ∈ R
d \ C′

〈
c(z, x) + 2(x − x0), c(z, x)

〉 ≤ −ζ
∣∣c(z, x) + 2(x − x0)

∣∣∣∣c(z, x)
∣∣. (4.7)

3. For all z ∈ K and for all x ∈ R
d \ C′,∣∣c(z, x)

∣∣ ≤ |x − x0|. (4.8)

Notice that this last condition implies in particular that |c(z, x) + 2(x − x0)| ≥ |x − x0|.
Let us write JV for the jump part of the infinitesimal generator of the process X, i.e. JV (x) = ∫

E
(V (x +c(z, x))−

V (x))γ (z, x)μ(dz). Then under the above conditions (4.4)–(4.8), for all x ∈R
d \ C′,

JV (x) =
∫

E

(
V
(
x + c(z, x)

) − V (x)
)
γ (z, x)μ(dz)

=
∫

E

〈
c(z, x) + 2(x − x0), c(z, x)

〉
γ (z, x)μ(dz)

≤ −ζ

∫
K

∣∣c(z, x) + 2(x − x0)
∣∣∣∣c(z, x)

∣∣γ (z, x)μ(dz)

≤ −ζ |x − x0|
∫
K

∣∣c(z, x)
∣∣γ (z, x)μ(dz)

≤ −ζ |x − x0|ξ = −c
(
V (x) − 1

) 1
2 = −� ◦ V (x) (4.9)

with c = ζ ξ > 0 and �(v) = c(v − 1)
1
2 .

Remark 4.2.

1. Using the Cauchy–Schwarz inequality, (4.4) implies that for all z ∈ R
d and for all x ∈ R

d \C′, |c(z, x)| ≤ 2|x−x0|.
In particular for all x ∈R

d \ C′, supz∈Rd |c(z, x)| < +∞.
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2. Condition (4.8) is a condition on the size of jumps ensuring that, at least for choices of z belonging to K, jumps
are bounded from above by the distance to the point x0. This implies that for starting points x close to C′, there is
a possibility for the process to jump into C′.

3. There is a simple geometric interpretation of the conditions (4.7) and (4.8). Indeed, they lead to the (effective)
condition〈

c(z, x) + 2(x − x0), c(z, x)
〉 ≤ −ζ |x − x0|

∣∣c(z, x)
∣∣

or

2
〈
(x − x0), c(z, x)

〉 + ∣∣c(z, x)
∣∣2 ≤ −ζ |x − x0|

∣∣c(z, x)
∣∣.

On the one hand, this implies that 〈(x − x0), c(z, x)〉 ≤ − ζ
2 |x − x0||c(z, x)|, which means that c(z, x) belongs to

the convex cone of direction (x0 − x) and angle arccos( ζ
2 ). On the other hand, using (4.8), the following condition

2
〈
(x − x0), c(z, x)

〉 + ∣∣c(z, x)
∣∣|x − x0| ≤ −ζ |x − x0|

∣∣c(z, x)
∣∣

is a sufficient (but not necessary) condition which leads to 〈(x − x0), c(z, x)〉 ≤ − (1+ζ )
2 |x − x0||c(z, x)|. In other

words, it suffices that c(z, x) belongs to the convex cone of direction (x0 − x) and angle arccos( (1+ζ )
2 ).

In (4.9) above, we have only achieved a control on the jump part of the infinitesimal generator LV of the process X.
We impose the following additional conditions on the diffusion coefficient σ and on the drift vector g implying that the
continuous part AV (x) = 1

2

∑
1≤i,j≤d aij (x)

∂2V (x)
∂xi ∂xj

+ g(x)∇V (x) is negligible with respect to the jump part JV (x).
We suppose

sup
x∈Rd

Tr
(
σσ ∗(x)

)
< ∞ and � = sup

x∈Rd :|x−x0|≥η/2

|Tr(σ (x)σ ∗(x))|
|x − x0| < ∞. (4.10)

Moreover, we suppose that

ζ ξ > �. (4.11)

Finally, concerning the drift part, we assume that〈
x − x0, g(x)

〉
< 0 for all x ∈ R

d \ C′. (4.12)

Proposition 4.3. Under conditions (4.4)–(4.8), (4.10), (4.11) and (4.12), for V (x) = |x − x0|2 + 1, we have

LV (x) ≤ −c
[
V (x) − 1

] 1
2 ,

for all x ∈R
d \ C′, where c = ζ ξ − �. Moreover, supx∈C′ |LV (x)| < ∞.

Pushing with both jumps and drift part

The conditions we made on the jump mechanism in the above paragraph are of course very strong. In this paragraph,
we will therefore consider that these conditions hold only for x belonging to some set E1. Moreover, we will suppose
that the drift coefficient contributes to force the diffusion into C′ when x belongs to another set E2.

More precisely, we suppose that E1 ⊂R
d \ C′ and take E2 such that E1 ∪ E2 =R

d \ C′.
We will impose the global condition (4.4) and (4.5), but we aim to weaken the conditions (4.6), (4.7) and (4.8) and

impose them only for x ∈ E1. For x ∈ E2, we assume additionally that

Tr
(
σσ ∗)+ 2

〈
g(x), x − x0

〉 ≤ −c|x − x0|. (4.13)
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Finally, we suppose that

sup
x∈Rd

Tr
(
σσ ∗(x)

)
< ∞, that � = sup

x∈E1

|Tr(σ (x)σ ∗(x))|
|x − x0| < ∞, (4.14)

that (4.11) holds and

〈
x − x0, g(x)

〉
< 0 for all x ∈ E1. (4.15)

Then under the above conditions,

LV (x) ≤ −c
[
V (x) − 1

] 1
2 ,

for all x ∈R
d \ C′, and supx∈C′ |LV (x)| < ∞.

Example 4.4. We continue Example 2.9 item 1. and take x0 = 0. We suppose additionally that for all x ∈ R \ C′,
|f (x)| ≤ |x| and sgn(f (x)) = − sgn(x). Finally, we impose (4.10) and (4.12).

Put E1 = [−M − η
2 ] ∪ [ η

2 + M] and choose K = [a, a + 2R] in such a way that
∫
K[1 − e−|z|]dz = 1

2 . It follows
from our assumptions on γ and c that for all (z, x) ∈K × E1

γ (z, x) ≥ γ > 0 and f (x) ≥ f > 0. (4.16)

Moreover, we assume that

f · γ > 2
�

ζ
. (4.17)

It is clear that (4.6) is verified for all x ∈ E1, and, moreover, that the jumps are strong enough to ensure the drift
condition even in presence of the Brownian part.

Since |f (x)| ≤ |x| for all x /∈ C′, (4.8) is satisfied. Finally (4.4) follows from the fact that sgn(f (x)) = − sgn(x),
for all x /∈ C′, and (4.7) follows with ζ = 1.

Pushing only with the drift

In order to exploit the effect of a drift vector, it might be suitable to consider a different Lyapunov function as we are

going to explain in the present section. Let for example x0 = 0 and V (x) = |x| + 1 =
√

x2
1 + · · · + x2

d + 1. Then

∇V (x) = x

|x| ,
∂2

∂i ∂j

V (x) = δij

|x| − xixj

|x|3 .

Due to Assumption 2.1 item 4., we know that

sup
x

∫
E

∣∣c(z, x)
∣∣γ (z, x)μ(dz) =: D < ∞.

We suppose moreover that σ is bounded and take D sufficiently large such that |aij | < D, where a = σσ ∗.
We denote by |x|1 = |x1| + · · ·+ |xd | the L1-norm on R

d and use that 1√
d
|x|1 ≤ |x|. We impose the following drift

condition on g. For every x /∈ C′,
〈
x,g(x)

〉 ≤ −c|x|1+α − D|x| − dD, (4.18)
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for some 0 ≤ α < 1. Then it is immediate to see that for all x /∈ C′,

LV (x) ≤ D

2

(
d

|x| +
∑

1≤i,j≤d

|xi ||xj |
|x|3

)
+ 〈x,g(x)〉

|x| +
∫

E

∣∣c(z, x)
∣∣γ (z, x)μ(dz)︸ ︷︷ ︸
≤D

= D

2

(
d

|x| + |x|21
|x|3

)
+ 〈x,g(x)〉

|x| + D

≤ dD

|x| + 〈x,g(x)〉
|x| + D

≤ dD

|x| − 1

|x|
(
c|x|1+α + D|x| + dD

)+ D ≤ −c|x|α.

5. Proofs

In the following, B(x, r) = {y ∈ R
d : |y − x| < r} denotes the ball with radius r and center x ∈ R

d . Moreover, for
B ∈R

d×d×d , we shall write |||B||| for the associated operator norm ; we will also denote by dg(a) the differential of a
function g at a. The main ingredient of the proof of Proposition 2.6 is the following result.

Lemma 5.1. Let �x(z) = x + c(z, x), K = {z : |z − z0| ≤ R},�x(K) = {�x(z), z ∈ K} and ax = x + c(z0, x) =
�x(z0). Put

ρ = A

2

(
R ∧ 1

2K

)
. (5.1)

Then there exists η > 0 such that

B

(
ax0 ,

ρ

2

)
⊂

⋂
x∈B(x0,η)

�x(K). (5.2)

Moreover, for all x such that |x − x0| ≤ r , we have B(ax,ρ) ⊂ �x(K), and there exists Kx ⊂K such that z 
→ �x(z)

is a C1-diffeomorphism from Kx to B(ax,ρ).

Remark 5.2. The ball B appearing in (2.9) can be chosen as B = B(ax0 , ρ/2) with ρ as in (5.1) and ax0 = x0 +
c(z0, x0).

We will first admit this lemma and show how we can use it to prove Proposition 2.6.

Proof of Proposition 2.6. We admit Lemma 5.1 and take K = {z : |z − z0| ≤ R} as there. As a consequence, there
exists a ball B(x0, η) such that for all x ∈ B(x0, η), B(ax0 ,

ρ
2 ) ⊂ �x(K). Choose K′′ ⊂ K such that �x : K′′ →

B(ax0 ,
ρ
2 ) is a C1-diffeomorphism for all x ∈ B(x0, η).2 Since for all (z, x) ∈ K × B(x0, η), γ (z, x)h(z) ≥ ε, we now

have ∫
En

1V

(
ψx(z)

)
γ (z, x)dμ(z) ≥ ε

∫
K ′′

1V

(
ψx(z)

)
dz = ε

∫
B(ax0 ,

ρ
2 )

1V (y)
∣∣J

ψ−1
x

(y)
∣∣dy.

Put z = ψ−1
x (y), then

∣∣J
ψ−1

x
(y)

∣∣ = 1

|Jψx (z)|
= 1

|det(∇zc(z, x))|

2Indeed, from Lemma 5.1, there exists K′ ⊂ K such that �x : K′ → B(ax,ρ) is a C1-diffeomorphism, and since B(ax0 ,
ρ
2 ) ⊂ B(ax,ρ), there

exists K′′ ⊂ K′ ⊂K such that �x :K′′ → B(ax0 ,
ρ
2 ) is a C1-diffeomorphism.



Ergodicity for multidimensional jump diffusions 1159

and, using Hadamard’s Inequality,

∣∣det
(∇zc(z, x)

)∣∣ ≤
d∏

i=1

∣∣∂zi
c(z, x)

∣∣.
As a consequence, we obtain∫

En

1V

(
ψx(z)

)
γ (z, x)dμ(z) ≥ ε

Sd
λ

(
V ∩ B

(
ax0,

ρ

2

))
(5.3)

which, together with (2.5), ends the proof. �

It remains to give a proof of Lemma 5.1. This proof goes through several intermediate steps which are given now.

Lemma 5.3. Let g :Rd →R
d be a C2-function such that

1. g(0) = 0,
2. (dg)(0) = Id,
3. there exist R,K > 0 such that for all z ∈ B(0,R),

∑
i,j,k

∣∣∣∣ ∂2gk

∂zi ∂zj

(z)

∣∣∣∣ ≤ K.

Put R̃ = R ∧ 1
2K

. Then B(0, R̃
2 ) ⊂ g(B(0, R̃)).

Proof. The third condition allows to apply the Mean Value Inequality to z 
→ (dg)(z) since∣∣∣∣∣∣d(dg)(z)
∣∣∣∣∣∣ ≤ K, ∀z ∈ B(0,R).

Therefore, with R̃ = R ∧ 1
2K

,

∥∥dg(z) − Id
∥∥ = ∥∥dg(z) − dg(0)

∥∥ ≤ K|z| ≤ 1

2
, ∀z ∈ B(0, R̃).

Let now y ∈ B(0, R̃
2 ) and set h : B(0, R̃) → R

d , z 
→ h(z) := y + z − g(z). We have

∥∥dh(z)
∥∥ = ∥∥Id − dg(z)

∥∥ ≤ 1

2
, ∀z ∈ B(0, R̃).

Using again the Mean Value Inequality, we obtain for all z, z′ ∈ B(0, R̃),

∣∣h(z) − h
(
z′)∣∣ ≤ 1

2

∣∣z − z′∣∣.
In particular |h(z)| ≤ 1

2 |z − z′| + |h(z′)|, so |h(z)| ≤ 1
2 |z| + |h(0)| = 1

2 |z| + |y| < R̃, for all z ∈ B(0, R̃).

This last result highlights two facts. First, h is an 1
2 -contraction from the complete space B(0, R̃) into itself, so the

fixed-point theorem gives us the existence of z ∈ B(0, R̃) such that h(z) = z, and, secondly, the range of h defined

on B(0, R̃) is B(0, R̃). So we have in fact the existence of z ∈ B(0, R̃) such that h(z) = z, or equivalently, g(z) = y,
which ends the proof. �

Remark 5.4.

1. g is in fact a C1-diffeomorphism from V = B(0, R̃) ∩ g−1(B(0, R̃
2 )) to B(0, R̃

2 ).

2. We could have chosen R̃ = R ∧ 1−ε′
K

for any ε′ ∈ ]0,1[.
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Lemma 5.5. Let A be a d × d matrix such that

∀y ∈ R
d, |Ay| ≥ K|y|.

Then

B(Au,KR̃) ⊂ A
(
B(u, R̃)

)
.

Proof. Notice first that A is clearly invertible. Let now y ∈ B(Au,KR̃). Then for v ∈R
d ,

|v| = ∣∣A(
A−1v

)∣∣ ≥ K
∣∣A−1v

∣∣,
so, with v = y − Au,

KR̃ ≥ |y − Au| ≥ K
∣∣A−1(y − Au)

∣∣ = K
∣∣A−1y − u

∣∣,
or, equivalently, R̃ ≥ |A−1y − u| implying that A−1y ∈ B(u, R̃) and y ∈ A(B(u, R̃)). �

We now have the following extension of Lemma 5.3.

Proposition 5.6. Let f :Rd →R
d a C2-function and a ∈R

d such that

1. |df (a)y| ≥ A|y| for all y ∈ R
d ,

2. there exist R,K > 0 such that for all y ∈ B(a,R),

∥∥(df (a)
)−1∥∥∑

i,j

∣∣∣∣ ∂2f

∂zi ∂zj

(y)

∣∣∣∣ ≤ K

d
.

Then, with R̃ = R ∧ 1
2K

,

B

(
f (a),A

R̃

2

)
⊂ f

(
B(a, R̃)

)
.

Proof. (1) We use Lemma 5.3 with

g(z) = (
df (a)

)−1(
f (a + z) − f (a)

)
.

All hypotheses needed in Lemma 5.3 are satisfied since

∂2g

∂zi ∂zj

(z) = (
df (a)

)−1 ∂2f

∂zi ∂zj

(a + z).

Thus

B

(
0,

R̃

2

)
⊂ g

(
B(0, R̃)

)
.

(2) Since f (y) = df (a)g(y − a) + f (a), using Lemma 5.5,

B

(
0,A

R̃

2

)
⊂ df (a)

(
B

(
0,

R̃

2

))
⊂ df (a)g

(
B(0, R̃)

)
,

where we have used the preceding step in order to obtain the last inclusion. Therefore,

B

(
f (a),A

R̃

2

)
⊂ f

(
B(a, R̃)

)
. �
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We are now able to prove Lemma 5.1.

Proof of Lemma 5.1. (1) Let x ∈ B(x0, r). We can apply Proposition 5.6 with a = z0, f = �x which gives ρ =
A
2 (R ∧ 1

2K
) such that

B(ax,ρ) ⊂ �x

(
B

(
z0,

2ρ

A

))
⊂ �x(K),

where we recall that K = B(z0,R). Since our conditions are uniform in x, the radius ρ will be the same for all
x ∈ B(x0, r).

(2) The previous point implies in particular that

B(ax0 , ρ) ⊂ �x0(K).

Since x 
→ �x(z0) is continuous, there exists η with r > η > 0 such that

|x − x0| < η �⇒ ∣∣�x(z0) − �x0(z0)
∣∣ <

ρ

2
. (5.4)

Therefore,⋂
y∈B(x0,η)

B(ay, ρ) ⊂ �x(K),

so it is sufficient to prove that

B

(
ax0 ,

ρ

2

)
⊂

⋂
y∈B(x0,η)

B(ay, ρ)

which can be seen as follows. Let y ∈ B(ax0 ,
ρ
2 ) and x ∈ B(x0, η), then

|ax − y| ≤ |ax0 − y| + |ax − ax0 |
= |ax0 − y| + ∣∣�x(z0) − �x0(z0)

∣∣
<

ρ

2
+ ρ

2
= ρ,

so y ∈ B(ax,ρ), for every x ∈ B(x0, η) and the statement is proved. �

Proofs of Remarks 2.7 and 5.2. Recall that we have imposed the additional hypothesis Lc = supz∈K Lc(z) < ∞.
Since ∣∣c(z, x) − c(z, y)

∣∣ ≤ Lc(z)|x − y|, ∀x, y ∈R
d ,∀z ∈ E,

it is sufficient to set

η = ρ

2(1 + Lc)
∧ r,

in order to grant (5.4). �

We finish this section showing that the growth-fragmentation model introduced in Section 2 satisfies our assump-
tions.

Proof of Example 2.8. We show that Example 2.8 satisfies our Assumptions 2.1–2.4.
Indeed, items 1. and 2. of Assumption 2.1 follow immediately.
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In order to check points 3. and 4. of Assumption 2.1, the main point is that for any fixed x and for small z,
γ (z, x)|c(z, x)| = f (x)ψ(x) 1

z
[1 − κ(z)] ∼ f (x)ψ(x)κ ′(0), which is integrable in z ∈ [0, δ], for any δ > 0. Assump-

tion 2.2 holds on {x ≥ 0 : |x −x0| < r} for any x0 ≥ 0 and r > 0, since f (x) > 0 for any x. We are now going to check
Assumption 2.4. In order to check (2.6), note that

∂zc(z0, x) = ψ(x)κ ′(z0),

implying that (2.6) holds with

A = κ ′(z0) inf
x:|x−x0|<r

ψ(x) ≥ κ ′(z0)a. (5.5)

Moreover, (2.7) holds due to the non-degeneracy of κ ′(z) �= 0 for all z > 0, with a constant K only depending on z0
and on R, but not on x0, nor on r . Finally, (2.8) trivially holds. ψ being 1-Lipschitz, we have that Lc(z) = κ(z), and
therefore Lc = supz:|z−z0|<R Lc(z) = supz:|z−z0|<R κ(z), implying that the radius η given in (2.11) can be chosen as

η = C(z0,R)a ∧ r, (5.6)

where C(z0,R) is a constant depending on K and on Lc, but not on x0 nor on r .
Finally, we give the proof of (2.23): Indeed,

LV (x) = 2x +
∫ ∞

0
e−z

[
2x + c(z, x)

]
c(z, x)γ (z, x)dz,

with c(z, x) = (κ(z) − 1)ψ(x) and γ (z, x) = f (x) 1
z
. But for x > η/2, using that (κ(z) − 1)2 ≤ |κ(z) − 1|, since

|κ(z) − 1| ≤ 1,[
2x + c(z, x)

]
c(z, x) = 2x

(
κ(z) − 1

)
ψ(x) + (

κ(z) − 1
)2

ψ2(x)

≤ −2x
∣∣κ(z) − 1

∣∣ψ(x) + ∣∣κ(z) − 1
∣∣ψ(x)x

= −ψ(η/2)x
∣∣κ(z) − 1

∣∣,
since ψ(η/2) ≤ ψ(x) ≤ x for all x ≥ η/2.

As a consequence,

LV (x) ≤ −x

[
ψ

(
η

2

)∫ ∞

0

1

z

(
1 − κ(z)

)
e−z dz − 2

]
= −cx = −c

(
V (x) − 1

)1/2
,

where c = ψ(
η
2 )

∫ ∞
0

1
z
(1 − κ(z))e−z dz − 2 > 0 by assumption (2.22). �
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