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Abstract. The paper establishes Horton self-similarity for a tree representation of Kingman’s coalescent process. The proof is
based on a Smoluchowski-type system of ordinary differential equations that describes evolution of the number of branches of a
given Horton–Strahler order in a tree that represents Kingman’s N -coalescent, in a hydrodynamic limit. We also demonstrate a
close connection between the combinatorial Kingman’s tree and the combinatorial level set tree of a white noise, which implies
Horton self-similarity for the latter.

Résumé. Cet article prouve l’auto-similarité à la Horton pour la représentation par arbres du processus de coalescence de Kingman.
La preuve est basée sur un système d’équations différentielles ordinaires de type Smoluchowski décrivant, dans la limite hydro-
dynamique, l’évolution du nombre de branches d’un ordre de Horton–Strahler donné dans un arbre représentant le N -coalescent
de Kingman. Nous prouvons aussi un lien étroit entre l’arbre de Kingman combinatoire et l’arbre combinatoire des ensembles de
niveaux d’un bruit blanc, ce qui implique l’auto-similarité à la Horton de ce dernier.
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1. Introduction

This study focuses on Horton self-similarity for binary rooted tree graphs. The concept is related to Horton–Strahler
ordering of the tree branches [9,16] that was introduced in hydrology in the mid-20th century to describe the dendritic
structure of river networks and has penetrated other areas of sciences since then [4,6,17]. Devroye and Kruszewski
[6] assert that “the Horton–Strahler number occur in almost every field involving some kind of natural branching
pattern”. Roughly speaking, the Horton–Strahler order corresponds to the relative importance of a branch in the tree
hierarchy. Specifically, each leaf is assigned order k = 1; and each internal vertex with offsprings of orders i and j is
assigned order k = max(i, j)+ δij , where δij is the Kronecker’s delta. A branch is defined as a sequence of connected
vertices with the same order.

Horton self-similarity refers to the geometric decay of the number Nk of branches of order k [9,14]. A trivial
example of Horton self-similarity is given by a perfect binary tree (with all leaves having the same depth) for which
Nk/Nk+1 = 2 for all 1 ≤ k < � − 1, with � being the maximal branch order in the tree. It is easily seen that for any
non-perfect binary tree Nk/Nk+1 ≥ 2, with the strict inequality holding for at least one value of k. A classical model
that exhibits non-trivial Horton self-similarity is a tree representation of critical binary Galton–Watson branching
processes [4,12,13], also known in hydrology as Shreve’s random topology model for river networks [14,15]. Ronald
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Shreve [15] has demonstrated that in this model the ratios Nk/Nk+1 converge to R = 4 as k increases. Recently,
the authors established Horton self-similarity with the same asymptotic ratio for the level set tree representation of a
homogeneous symmetric Markov chain and demonstrated that in general this representation is not equivalent to the
critical Galton–Watson tree [18]. Models that obey Horton self-similarity with ratio different from R = 2,4 are still
lacking, however, despite their demonstrated practical importance [4,10,12,19].

This study is a first step toward exploring Horton self-similarity with ratio R �= 2,4. We consider here the tree gen-
erated by Kingman’s coalescent process with N particles. The main result is a weaker form of Horton self-similarity,
called here root-Horton law. The Horton ratio is estimated numerically as R = 3.043827 . . . . We also establish a close
relation between the combinatorial tree representations of Kingman’s N -coalescent and a combinatorial level set tree
for a sequence of i.i.d. random variables (referred to as discrete white noise), which implies Horton self-similarity for
the latter. These findings add two important classes of processes – Kingman’s coalescent and discrete white noise – to
the realm of Horton self-similar systems.

The paper is organized as follows. Section 2 describes Horton–Strahler ordering of tree branches and the related
concept of Horton self-similarity. Kingman’s coalescent process and its tree representation are defined in Section 3.
The main results are summarized in Section 4. Section 5 introduces the Smoluchowski–Horton system of equations
that describes the dynamics of Horton–Strahler branches in Kingman’s coalescent. This section also establishes the
validity of the Smoluchowski–Horton equations, as well as the existence of some related quantities, in the hydrody-
namic limit. A proof of the existence of root-Horton law for Kingman’s coalescent is presented in Section 6. Section 7
demonstrates a connection between the combinatorial tree representation of Kingman’s N -coalescent process and
combinatorial level set tree of a discrete white noise. The Smoluchowski–Horton system for a general coalescent pro-
cess with collision kernel is written in Section 8. Section 9 concludes. The complete proofs of hydrodynamic limits
are given in the Appendices.

2. Self-similar trees

This section defines Horton self-similarity for rooted binary trees.

2.1. Rooted trees

A graph G = (V ,E) is a collection of vertices V = {vi}, 1 ≤ i ≤ NV and edges E = {ek}, 1 ≤ k ≤ NE . In a simple
undirected graph each edge is defined as an unordered pair of distinct vertices: ∀1 ≤ k ≤ NE,∃!1 ≤ i, j ≤ NV , i �= j

such that ek = (vi, vj ) and we say that the edge k connects vertices vi and vj . Furthermore, each pair of vertices in a
simple graph may have at most one connecting edge. A tree is a connected simple graph T = (V ,E) without cycles.
In a rooted tree, one node is designated as a root; this imposes a natural direction of edges as well as the parent-child
relationship between the vertices. Specifically, of the two connected vertices the one closest to the root is called parent,
and the other – child. Sometimes we consider trees embedded in a plane (planar trees), where the children of the same
parent are ordered.

A time oriented tree T = (V ,E,S) assigns time marks S = {si}, 1 ≤ i ≤ NV to the tree vertices in such a way that
the parent mark is always larger than that of its children. A combinatorial tree SHAPE(T ) ≡ (V ,E) discards the time
marks of a time oriented tree T , as well as possible planar embedding, and only preserves its graph-theoretic structure.

We often work with the space TN of combinatorial (not labeled, not embedded) rooted binary trees with N leaves,
and the space T of all (finite or infinite) rooted binary trees.

2.2. The Horton–Strahler orders

The Horton–Strahler ordering of the vertices of a finite rooted binary tree is performed in a hierarchical fashion, from
leaves to the root [4,10,12]. Specifically, each leaf has order k(leaf) = 1. An internal vertex p whose children have
orders i and j is assigned the order

k(p) = max(i, j) + δij , (1)

where δij is the Kronecker’s delta. Figure 1 illustrates this definition. A branch is defined as a union of connected
vertices with the same order.
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Fig. 1. Example of Horton–Strahler ordering. Two order-2 branches are depicted by heavy lines. The branch to the left from the root consists of
one vertex; the branch to the right from the root consists of two vertices.

2.3. Horton self-similarity

Let QN be a probability measure on TN and N
(QN )
k be the number of branches of Horton–Strahler order k in a tree

generated according to QN .

Definition 1. We say that a sequence of probability laws {QN }N∈N has well-defined asymptotic Horton ratios if for
each k ∈ N

+, random variables (N
(QN )
k /N) converge in probability, as N → ∞, to a constant value Nk , called the

asymptotic ratio of the branches of order k.

Horton self-similarity implies that the sequence Nk decreases in a geometric fashion as k goes to infinity. In this
work we use a particular form of decay described below.

Definition 2. A sequence {QN }N∈N of probability laws on T with well-defined asymptotic Horton ratios is said
to obey a root-Horton self-similarity law if and only if the following limit exists and is finite and positive:

limk→∞(Nk)
− 1

k = R > 0. The constant R is called the Horton exponent.

3. Coalescent processes, trees

This section reviews Kingman’s coalescent process with N particles and introduces its tree representation.

3.1. Kingman’s N -coalescent process

We start by considering a general finite coalescent process defined by a collision kernel [2,3,13]. The process be-
gins with N particles (clusters) of mass one. The cluster formation is governed by a symmetric collision rate kernel
K(i, j) = K(j, i) > 0. Namely, a pair of clusters with masses i and j coalesces at the rate K(i, j), independently of
the other pairs, to form a new cluster of mass i + j . The process continues until there is a single cluster of mass N .

Formally, for a given N consider the space P[N ] of partitions of [N ] = {1,2, . . . ,N}. Let �
(N)
0 be the initial

partition in singletons, and �
(N)
t (t ≥ 0) be a strong Markov process such that �

(N)
t transitions from partition π ∈P[N ]

to π ′ ∈ P[N ] with rate K(i, j) provided that partition π ′ is obtained from partition π by merging two clusters of π

of masses i and j . If K(i, j) ≡ 1 for all positive integer masses i and j , the process �
(N)
t is known as Kingman’s

N -coalescent process.

3.2. Coalescent tree

A merger history of Kingman’s N -coalescent process can be naturally described by a time oriented binary tree T
(N)

K
constructed as follows. Start with N leaves that represent the initial N particles and have time mark t = 0. When two
clusters coalesce (a transition occurs), merge the corresponding vertices to form an internal vertex with a time mark
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of the coalescent. The final coalescence forms the tree root. The resulting time oriented binary tree represents the
history of the process. We notice that a given unlabeled tree corresponds to multiple coalescent trajectories obtained
by relabeling of the initial particles.

Observe that the combinatorial version SHAPE(T
(N)
K ) of the Kingman’s coalescent tree is invariant under time

scaling tnew = Ctold, C > 0. Thus without loss of generality we let K(i, j) ≡ 1/N in Kingman’s N -coalescent process.
Slowing the process’s evolution N times is natural in Smoluchowski coagulation equations that describe the dynamics
of the fraction of clusters of different masses.

4. Statement of results

The main result of this paper is root-Horton self-similarity for the combinatorial tree SHAPE(T
(N)

K ) of the Kingman’s
N -coalescent process, as N goes to infinity. Specifically, let Nk denote the number of branches of Horton–Strahler
order k in the tree T

(N)
K that describes Kingman N -coalescent. We show in Section 5, Lemma 3 that for each k ≥ 1,

Nk/N converges in probability to the asymptotic Horton ratio

Nk = lim
N→∞Nk/N.

Moreover, these Nk are finite and can be expressed as

Nk = 1

2

∫ ∞

0
g2

k (x) dx,

where the sequence gk(x) solves the following system of ordinary differential equations (ODEs):

g′
k+1(x) − g2

k (x)

2
+ gk(x)gk+1(x) = 0, x ≥ 0

with g1(x) = 2/(x + 2), gk(0) = 0 for k ≥ 2. Equivalently,

Nk =
∫ 1

0

(
1 − (1 − x)hk−1(x)

)2
dx,

where h0 ≡ 0 and the sequence hk(x) satisfies the ODE system

h′
k+1(x) = 2hk(x)hk+1(x) − h2

k(x), 0 ≤ x ≤ 1

with the initial conditions hk(0) = 1 for k ≥ 1.
The root-law Horton self-similarity is proven in Section 6 in the following statement.

Theorem 1. The asymptotic Horton ratios Nk exist, are finite and satisfy the convergence limk→∞(Nk)
− 1

k = R with
2 ≤ R ≤ 4.

Numerical solution for the sequence hk provides an estimation of Horton exponent R = 3.043827 . . . and suggests
that Nk also obey a stronger version of Horton self-similarity: limk→∞(NkR

k) = N0 > 0.
Section 7.1 introduces a level set tree LEVEL(Xi) that describes the structure of the level sets of a discrete-time

function Xi , i = 1, . . . , imax. In particular, we show that there exists a one-to-one map between finite rooted planar
time oriented binary trees and sequences of the local extrema of Xi . Let W = {Wi} be a discrete white noise, that is a
process comprised of i.i.d. values with a common atomless distribution. Consider now a process W̃

(N)
i with exactly N

local maxima separated by N − 1 internal local minima such that the latter form a discrete white noise; we call W̃
(N)
i

an extended discrete white noise.
Let L

(N)
W = LEVEL(W̃

(N)
i ) be the level set tree of W̃

(N)
i and SHAPE(L

(N)
W ) be the combinatorial tree that retains the

graph-theoretic structure of L
(N)
W and drops its planar embedding as well as the time marks of the vertices. Further-

more, let T
(N)
K be the tree that corresponds to a Kingman’s N -coalescent, and let SHAPE(T

(N)
K ) be its combinatorial
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version that drops the time marks of the vertices. By construction, both the trees SHAPE(L
(N)
W ) and SHAPE(T

(N)
K ),

belong to the space TN of binary rooted trees with N leaves. Section 7.2 establishes the following equivalence.

Theorem 2. The trees SHAPE(L
(N)
W ) and SHAPE(T

(N)
K ) have the same distribution on TN .

The equivalence leads to the Horton self-similarity for discrete white noise.

Corollary 1. The combinatorial level set tree of a discrete white noise is root-Horton self similar with the same
Horton exponent R as for Kingman’s coalescent.

5. Smoluchowski–Horton ODEs for Kingman’s coalescent

Consider Kingman’s N -coalescent process and its tree representation T
(N)

K . In Section 5.1 we informally write

Smoluchowski-type ODEs for the number of Horton–Strahler branches in the coalescent tree T
(N)

K and consider the
asymptotic version of these equations as N → ∞. Section 5.2 formally establishes the validity of the hydrodynamic
limit.

5.1. Main equation

Recall that we let K(i, j) ≡ 1/N in Kingman’s N -coalescent process. Let |�(N)
t | denote the total number of clusters at

time t ≥ 0, and let η(N)(t) := |�(N)
t |/N be the total number of clusters relative to the system size N . Then η(N)(0) =

N/N = 1 and η(N)(t) decreases by 1/N with each coalescence of clusters with the rate

1

N

(
Nη(N)(t)

2

)
= η2

(N)(t)

2
· N + o(N), as N → ∞,

since 1/N is the coalescence rate for any pair of clusters regardless of their masses. Informally, this implies that the
limit relative number of clusters η(t) = limN→∞ η(N)(t) satisfies the following ODE:

d

dt
η(t) = −η2(t)

2
. (2)

The corresponding initial condition η(0) = 1 implies a unique solution η(t) = 2/(2 + t).
Next, for any k ∈ N

+ we define ηk,N (t) to be the number of clusters that correspond to branches of Horton–Strahler
order k at time t relative to the system size N . Initially, each particle represents a leaf of Horton–Strahler order 1.
Accordingly, the initial conditions are set to be, using Kronecker’s delta notation,

ηk,N (0) = δ1(k).

We describe now the evolution of ηk,N (t) using the definition of Horton–Strahler orders.
Observe that ηk,N (t) increases by 1/N with each coalescence of clusters of Horton–Strahler order k − 1 that

happens with the rate

1

N

(
Nηk−1,N (t)

2

)
= η2

k−1,N (t)

2
· N + o(N).

Thus
η2
k−1,N (t)

2 + o(1) is the instantaneous rate of increase of ηk,N (t).
Similarly, ηk,N (t) decreases by 1/N when a cluster of order k coalesces with a cluster of order strictly higher than

k with the rate

ηk,N (t)

(
η(N)(t) −

k∑
j=1

ηj,N (t)

)
· N,
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and it decreases by 2/N when a cluster of order k coalesces with another cluster of order k with the rate

1

N

(
Nηk,N(t)

2

)
= η2

k,N (t)

2
· N + o(N).

Thus the instantaneous rate of decrease of ηk,N (t) is

ηk,N (t)

(
η(N)(t) −

k∑
j=1

ηj,N (t)

)
+ η2

k,N (t) + o(1).

Now we can informally write the limit rates-in and the rates-out for the clusters of Horton–Strahler order via the
following Smoluchowski–Horton system of ODEs:

d

dt
ηk(t) = η2

k−1(t)

2
− ηk(t)

(
η(t) −

k−1∑
j=1

ηj (t)

)
(3)

with the initial conditions ηk(0) = δ1(k). Here we define ηk(t) = limN→∞ ηk,N (t), provided it exists, and let η0 ≡ 0.
Since ηk(t) has the instantaneous rate of increase η2

k−1(t)/2, the relative total number of clusters corresponding to
branches of Horton–Strahler order k is given by

Nk = δ1(k) +
∫ ∞

0

η2
k−1(t)

2
dt. (4)

This equation has a simple heuristic interpretation. Namely, according to the Horton–Strahler rule (1), a branch of
order k > 1 can only be created by merging two branches of order k − 1. In Kingman’s coalescent process these two
branches are selected at random from all pairs of branches of order k − 1 that exist at instant t . As N goes to infinity,
the asymptotic density of a pair of branches of order (k − 1), and hence the instantaneous intensity of newly formed
branches of order k, is η2

k−1(t)/2. The integration over time gives the relative total number of order-k branches. The
validity of Equation (4) is proven below in Lemma 3.

It is not hard to compute the first three terms of the sequence Nk by solving Equations (2) and (3) in the first three
iterations:

N1 = 1, N2 = 1

3
, and N3 = e4

128
− e2

8
+ 233

384
= 0.109686868100941 . . . .

Hence, we have N1/N2 = 3 and N2/N3 = 3.038953879388 . . . . Our numerical results yield, moreover,

lim
k→∞(Nk)

− 1
k = lim

k→∞
Nk

Nk+1
= 3.0438279 . . . .

5.2. Hydrodynamic limit

This section establishes the existence of the asymptotic ratios Nk as well as the validity of Equations (2), (3) and (4) in
a hydrodynamic limit. We refer to Darling and Norris [5] for a survey of formal techniques for proving that a Markov
chain converges to the solution of a differential equation.

Notice that quasilinearity of the system of ODEs in (3) implies the existence and uniqueness. Specifically, if the
first k − 1 functions η1(t), . . . , ηk−1(t) are given, then (3) is a linear equation in ηk(t). The following argument is
different from the one presented by Norris [11] for the Smoluchowski equations.

Lemma 1. Let η(N)(t) be the relative total number of clusters and η(t) be the solution to Equation (2) with the initial
condition η(0) = 1. Then∥∥η(N)(t) − η(t)

∥∥
L∞[0,∞)

→ 0

in probability as N → ∞.
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A proof of Lemma 1 is given in Appendix A. The proof is divided into steps that we briefly outline below.

• Steps I, II. We start by establishing bounds on the number of coalescences within the time interval [t, t + δ].
Specifically, fix ε0 ∈ (0,1) and take δ > 0. Given y ∈ 1

N
Z ∩ [ε0,1], let u = (

Ny
2

)
and v = (Ny−
 δy2

2 N�
2

)
. We use the

exponential Markov inequality to show that for any given t ≥ 0 and large enough N we have

P

(
δ

N2
v − (1 + δ)N−1/3 ≤ η(N)(t) − η(N)(t + δ) ≤ δ

N2
u + N−1/3

∣∣∣η(N)(t) = y

)

≥
(

1 − exp

{
−N1/6 + 4δ

ε2
0

})2

.

• Step III. The bounds of steps I, II are applied to show that

P

(∣∣∣∣η2
(N)(t)

2
+ �δη(N)(t)

∣∣∣∣ ≤ δ + (
δ−1 + 1

)
N−1/3

∣∣∣η(N)(t) = y

)

≥
(

1 − exp

{
−N1/6 + 4δ

ε2
0

})2

(5)

for N large enough, where �δf (x) := f (x+δ)−f (x)
δ

denotes the forward difference.
• Step IV. For K > 0, consider an interval [0,K] partitioned into M subintervals

[t0, t1], [t1, t2], . . . , [tM−1, tM ]
of equal length δ = K/M , where t0 = 0 and tM = K . Let ε0 = η(K)/2 = 1/(2 + K), where η(t) = 2/(2 + t) is the
solution to Equation (2) with the initial condition η(0) = 1. Consider the difference equation

�δψ(N)(ti) = −ψ2
(N)(ti)

2
+ E ′(ti) (6)

with initial condition ψ(N)(0) = 1, where the error |E ′(ti)| satisfies∣∣E ′(ti)
∣∣ ≤ δ + (

δ−1 + 1
)
N−1/3.

At this step we prove that if M is large enough and for any natural number j ≤ M function ψ(N)(ti) satisfies (6) for
all i ∈ {0,1, . . . , j − 1}, then

ψ(N)(tj ) ≥ ε0

as we take N large enough. This follows from observing that η(t) will satisfy a difference equation similar to (6),

�δη(ti) = −η2(ti)

2
+ E(ti) (7)

with |E(ti)| ≤ 1
4δ for all i ∈ {0,1, . . . ,M − 1}.

• Step V. Consider events

Ai =
{
�δη(N)(ti) = −η2

(N)(ti)

2
+ E ′(ti) and

∣∣E ′(ti)
∣∣ ≤ δ + (

δ−1 + 1
)
N−1/3

}
(8)

for all i ∈ {0,1, . . . ,M − 1}. Here we combine the results of steps III and IV and establish that with probability
greater than P(

⋂M−1
i=0 Ai) → 1 as M → ∞, η(N)(ti) satisfies the difference Equation (6) with ψ(N)(t) ≡ η(N)(t).
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• Step VI. Taking ψ(N)(t) ≡ η(N)(t), we compare the difference Equation (6) with (7), and bound the error
|η(N)(t) − η(t)| for all t ∈ [0,K]. Specifically, we show that with probability greater than P(

⋂M−1
i=0 Ai) → 1,

∥∥η(N)(t) − η(t)
∥∥

L∞[0,K] ≤ 15

4
K2/M + 4K/M + 3/M (9)

for M large enough and N ≥ M6. Therefore, letting M → ∞, we obtain∥∥η(N)(t) − η(t)
∥∥

L∞[0,K] → 0 in probability.

• Step VII. Take ε ∈ (0,1) and γ > 1, and consider K >
2(1−ε)

ε
γ . This step uses Markov inequality to show that

P
(∥∥η(N)(t) − η(t)

∥∥
L∞[K,∞)

< ε
)
> 1 − 1/γ,

which, together with the results of step VI, implies

lim sup
N→∞

P
(∥∥η(N)(t) − η(t)

∥∥
L∞[0,∞)

< ε
)≥ 1 − 1/γ.

We conclude that

lim
N→∞P

(∥∥η(N)(t) − η(t)
∥∥

L∞[0,∞)
< ε

)= 1.

Therefore we have shown that ‖η(N)(t) − η(t)‖L∞[0,∞) → 0 in probability, thus establishing Lemma 1.
We now proceed with establishing a hydrodynamic limit for the Smoluchowski–Horton system of ODEs (3). Let

ηk,N (t) := Nk(t)

N
and gk,N (t) := η(N)(t) −

∑
j :j<k

ηj,N (t).

Lemma 2. Consider the relative numbers ηk,N (t) of clusters that correspond to branches of Horton–Strahler order
k and functions ηk(t) that solve the system of equations (3) with the initial conditions ηk(0) = δ1(k). Then,∥∥ηk,N (t) − ηk(t)

∥∥
L∞[0,∞)

→ 0, ∀k ≥ 1,

in probability, as N → ∞.

A proof of Lemma 2 is given in Appendix B. Here we summarize the steps used in the proof.

• Step I. We use the setting from the proof of Lemma 1. Fix K > 0 and consider an interval [0,K] partitioned into
M subintervals

[t0, t1], [t1, t2], . . . , [tM−1, tM ]
of equal length δ = K/M , where t0 = 0 and tM = K . Let ε0 = η(K)/2 = 1/(2 + K). The total number of coales-
cences within the interval [ti , ti+1] equals N [η(N)(ti) − η(N)(ti+1)].

For any k ∈ N
+ and any i = 0,1, . . . ,M − 1 we represent the relative number of coalescences that involve the

clusters of order k within [ti , ti+1] as

ηk,N (ti+1) − ηk,N (ti) = ξ1 + ξ2 + · · · + ξm,

where ξ1, ξ2, . . . , ξm are random variables that correspond to the m coalescences (of any Horton–Strahler order)
within [ti , ti+1] in the order of occurrence. Here, each ξr can take values in 1

N
{−2,−1,0,1}; and their dependence

on k is omitted to simplify the notations. By construction, conditioned on the values {ηj,N (ti)}j , the distribution of
ξr for 1 ≤ r ≤ m is completely determined by the history Tr−1 of the preceding r − 1 transitions.
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Consider a random variable ξ with the values {−2,−1,0,1} specified by the probabilities {p(−2),p(−1),

p(0),p(1)}:
p(−2) := η2

k,N (ti)/η
2
(N)(ti),

p(1) :=
{

η2
k−1,N (ti)/η

2
(N)(ti) if k > 1,

0 if k = 1,

p(−1) := 2ηk,N (ti)gk+1,N (ti)/η
2
(N)(ti),

p(0) := 1 − p(−2) − p(−1) − p(1).

Recall the events Ai defined in (8). We notice that, conditioned on
⋂i

i′=0 Ai′ , the total variation distance between
the distribution of ξr (for a fixed 1 ≤ r ≤ m) and the distribution of ξ is of order O(δ). We use this to show that for
each k ∈N

+, there is a large enough ck > 0 and a > 0 such that

P

(∣∣∣∣[ηk,N (ti+1) − ηk,N (ti)
]− E[ξ ]δ η2

(N)(ti)

2

∣∣∣∣< ckδ
4/3

∣∣∣ i⋂
i′=0

Ai′

)

≥ 1 − exp
{−aM4} (10)

for all i = 0,1, . . . ,M − 1, 2M6 > N > M6, and M large enough.
• Step II. According to the results of step I, we obtain the following system of difference equations:

�δη1,N (ti) = −η1,N (ti)η(N)(ti) + E ′
1(ti),

(11)

�δηk,N (ti) = η2
k−1,N (ti)

2
− ηk,N (ti)gk,N (ti) + E ′

k(ti) for k ≥ 2

with the initial conditions(
η1,N (0), η2,N (0), . . . , ηk,N (0), . . .

)= (1,0,0, . . .),

where for a given ρ ∈ N and c = max1≤k≤ρ{ck} we have |E ′
k(ti)| < cδ1/3 for each 1 ≤ k ≤ ρ. Each equation in this

system holds with the probability that converges to unity as M increases.
We now compare the above difference equations (11) to the following system of difference equations that corre-

sponds to the system of ODEs (3):

�δη1(ti) = −η1(ti)η(ti) + E1(ti),
(12)

�δηk(ti) = η2
k−1(ti)

2
− ηk(ti)gk(ti) + Ek(ti) for k ≥ 2,

where gk(t) := η(t) −∑
i:i<k ηi(t), and the error

Ek(ti) = η′′
k (ci,k)

2
δ for some ci,k ∈ (ti , ti+1).

• Step III. We show that, conditioning on the event
⋂M−1

i=0 Ai , we have the following upper bound for any k ∈
{1, . . . , ρ}, all i ∈ {0,1, . . . ,M − 1}, and t ∈ (ti , ti+1):∣∣ηk,N (t) − ηk(t)

∣∣ ≤ ∣∣ηk,N (t) − ηk,N (ti)
∣∣+ ∣∣ηk,N (ti) − ηk(ti)

∣∣+ ∣∣ηk(ti) − ηk(t)
∣∣

≤ (
5K2 + 4K + 4

)
/M + (c + 1)2k δ1/3

ρ

[
e2Kρ − 1

]+ 3δ.
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We conclude that, for any k,

‖ηk,N − ηk‖L∞[0,K] → 0 in probability.

• Step IV. Finally, observe that for any ε > 0 and for K > 2 large enough so that η(K) < ε,

ηk(t) ≤ η(t) ≤ η(K) < ε for all t ≥ K

and

P
(∥∥ηk,N (t) − ηk(t)

∥∥
L∞[K,∞)

> ε
) ≤ P

(∥∥ηk,N (t)
∥∥

L∞[K,∞)
> ε

)
≤ P

(∥∥η(N)(t)
∥∥

L∞[K,∞)
> ε

)
= P

(
η(N)(K) > ε

)
≤ 2(1 − ε)

εK
.

The last bound is obtained from Markov inequality for the random variable Tm that represents the time of the mth
coalescence. Therefore, together with the result of the previous step, we have shown that for each k,

‖ηk,N − ηk‖L∞[0,∞) → 0

in probability. This completes the proof.

Finally, the last lemma in this section establishes a hydrodynamic limit for the Horton ratios.

Lemma 3. The Horton ratios Nk/N converge in probability to a finite constant Nk given by (4), as N → ∞.

A proof of Lemma 3 is given in Appendix C.

6. The root-Horton self-similarity and related results

We begin this section with preliminary lemmas and propositions, and then proceed to proving Theorem 1.
Let g1(t) = η(t) and gk(t) = η(t) − ∑

j :j<k ηj (t) be the asymptotic number of clusters of Horton–Strahler order
k or higher at time t . We can rewrite (3) via gk using ηk(t) = gk(t) − gk+1(t):

d

dt
gk(t) − d

dt
gk+1(t) = (gk−1(t) − gk(t))

2

2
− (

gk(t) − gk+1(t)
)
gk(t).

Observe that g1(t) ≥ g2(t) ≥ g3(t) ≥ · · ·. We now rearrange the terms, obtaining for all k ≥ 2,

d

dt
gk+1(t) − g2

k (t)

2
+ gk(t)gk+1(t) = d

dt
gk(t) − g2

k−1(t)

2
+ gk−1(t)gk(t). (13)

One can readily check that d
dt

g2(t) − g2
1(t)

2 + g1(t)g2(t) = 0; the above equations hence simplify as follows

g′
k+1(t) − g2

k (t)

2
+ gk(t)gk+1(t) = 0 with

g1(t) = 2

t + 2
, and gk(0) = 0 for k ≥ 2. (14)

Next, returning to the asymptotic ratios of the number of order-k branches to N , we observe that (13) implies that,
for k ≥ 2,

Nk =
∫ ∞

0

η2
k−1(t)

2
dt =

∫ ∞

0

(gk−1(t) − gk(t))
2

2
dt =

∫ ∞

0

g2
k (t)

2
dt
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since

(gk−1(t) − gk(t))
2

2
= d

dt
gk(t) + g2

k (t)

2
,

where 0 ≤ gk(t) ≤ g1(t) → 0 as t → ∞, and
∫ ∞

0
d
dt

gk(t) dt = gk(∞) − gk(0) = 0 for k ≥ 2. Let nk represent the
number of order-k branches relative to the number of order-(k + 1) branches:

nk := Nk

Nk+1
=

1
2

∫ ∞
0 g2

k (t) dt

1
2

∫ ∞
0 g2

k+1(t) dt
=

‖gk‖2
L2[0,∞)

‖gk+1‖2
L2[0,∞)

.

Consider the following limits that represent respectively the root and the ratio asymptotic Horton laws:

lim
k→∞(Nk)

− 1
k = lim

k→∞

(
k∏

j=1

nj

)− 1
k

and lim
k→∞nk = lim

k→∞
‖gk‖2

L2[0,∞)

‖gk+1‖2
L2[0,∞)

.

Theorem 1 establishes the existence of the first limit. We expect the second, stronger, limit also to exist and both
of them to be equal to 3.043827 . . . according to our numerical results. We now establish some basic facts about gk

and nk .

Proposition 1. Let gk(x) solve the ODE system (14). Then

(a) 1
2

∫ ∞
0 g2

k (t) dt = ∫ ∞
0 gk(t)gk+1(t) dt ,

(b)
∫ ∞

0 g2
k+1(t) dt = ∫ ∞

0 (gk(t) − gk+1(t))
2 dt ,

(c) limt→∞ tgk(t) = 2,

(d) nk = ‖gk‖2
L2[0,∞)

‖gk+1‖2
L2[0,∞)

≥ 2,

(e) nk = ‖gk‖2
L2[0,∞)

‖gk+1‖2
L2[0,∞)

≤ 4.

Proof. Part (a) follows from integrating (14), and part (b) follows from part (a). Part (c) is done by induction, using the
L’Hôpital’s rule as follows. It is obvious that limx→∞ tg1(t) = 2. We observed earlier that g1(t) ≥ g2(t) ≥ g3(t) ≥ · · ·.
Hence, for any k ≥ 1,

tgk(t) ≤ tg1(t) = 2t

t + 2
< 2, ∀t ≥ 0.

Also,

[tgk+1]′ = tg2
k (t)

2
− tgk(t)gk+1(t) + gk+1(t) = (gk(t) − gk+1(t))tgk(t) + (2 − tgk(t))gk+1(t)

2

implying [tgk+1]′ ≥ 0 for all t ≥ 0 as gk(t) − gk+1(t) ≥ 0 and 2 − tgk(t) > 0. Hence, tgk+1(t) is bounded and
nondecreasing. Thus, limt→∞ tgk+1(t) exists for all k ≥ 1.

Next, suppose limt→∞ tgk(t) = 2. Then by the Mean Value Theorem, for any t > 0 and for all y > t ,

gk+1(t) − gk+1(y)

t−1 − y−1
≤ sup

z:z≥t

g′
k+1(z)

−z−2
.

Taking y → ∞, obtain

gk+1(t)

t−1
≤ sup

z:z≥t

g′
k+1(z)

−z−2
.
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Therefore

lim
t→∞ tgk+1(t) = lim

t→∞
gk+1(t)

t−1
= lim sup

z→∞
g′

k+1(z)

−z−2
= lim sup

z→∞

g2
k (z)

2 − gk(z)gk+1(z)

−z−2

= lim sup
z→∞

[
z2gk(z)gk+1(z) − z2g2

k (z)

2

]
= 2 lim

t→∞ tgk+1(t) − 2

implying limt→∞ tgk+1(t) = 2. The statement (d) follows from the tree construction process. An alternative proof of
(d) using differential equations is given in the following subsection. Part (e) follows from part (a) together with Hölder
inequality

1

2
‖gk‖2

L2[0,∞)
=
∫ ∞

0
gk(t)gk+1(t) dt ≤ ‖gk‖L2[0,∞) · ‖gk+1‖L2[0,∞),

which implies
‖gk‖2

L2[0,∞)

‖gk+1‖2
L2[0,∞)

≤ 4. �

Remark 1. The statements (a) and (b) of Proposition 1 have a straightforward heuristic interpretation, similar to that
of Equation (4) above. Specifically, (a) claims that the asymptotic relative total number of vertices of order k + 1 and
above in the Kingman’s tree (left-hand side) equals twice the asymptotic relative total number of vertices of order
k + 1 and above except the vertices parental to two vertices of order k (right-hand side). This is nothing but the
asymptotic property of a binary tree – the number of leaves equals twice the number of internal nodes. The item (a)
hence merely claims that the Kingman’s tree formed by clusters of order above k is binary for any k ≥ 1. Similarly,
item (b) claims that the asymptotic relative total number of vertices of order (k + 2) and above (left-hand side) equals
the asymptotic relative total number of vertices of order (k + 1) (right-hand side). This is yet another way of saying
that the Kingman’s tree is binary.

Finally, observe that gk(t) → 0 as k → ∞. Indeed, Proposition 1 and the Dominated Convergence Theorem imply∫ ∞

0
g2

k+1(t) dt =
∫ ∞

0

(
gk(t) − gk+1(t)

)2
dt → 0 as k → ∞.

Next, following (14),

gk+1(t) =
∫ t

0
g′

k+1(y) dy =
∫ t

0

g2
k (y)

2
dy −

∫ t

0
gk(y)gk+1(y) dy → 0 as k → ∞.

6.1. Rescaling to [0,1] interval

Let

hk(x) = (1 − x)−1 − (1 − x)−2gk+1

(
2x

1 − x

)
for x ∈ [0,1). Then h0 ≡ 0, h1 ≡ 1, and the system of ODEs (14) rewrites as

h′
k+1(x) = 2hk(x)hk+1(x) − h2

k(x) (15)

with the initial conditions hk(0) = 1.
Observe that the above quasilinearized system of ODEs (15) has hk(x) converging to h(x) = 1

1−x
as k → ∞,

where h(x) is the solution to Riccati equation h′(x) = h2(x) over [0,1), with the initial value h(0) = 1. Specifically,
we have proven that gk(x) → 0 as k → ∞. Thus

hk(x) = (1 − x)−1 − (1 − x)−2gk+1

(
2x

1 − x

)
→ h(x) = 1

1 − x
.



Horton self-similarity of Kingman’s coalescent tree 1081

Observe that h2(x) = (1+e2x)/2, but for k ≥ 3 finding a closed form expression becomes increasingly hard. Given
hk(x), Equation (15) is a linear first-order ODE in hk+1(x); its solution is given by hk+1(x) =Hhk(x) with

Hf (x) =
[

1 −
∫ x

0
f 2(y)e−2

∫ y
0 f (s) ds dy

]
· e2

∫ x
0 f (s) ds . (16)

Hence, the problem we are dealing with concerns the asymptotic behavior of an iterated non-linear functional. More-
over, since (15) is a quasilinearized system of ODEs, it extends to all of [0,∞) with the same sequence of solutions
hk(x) obtained from iterating H in (16). In particular,

hk+1(1) =Hhk(1) =
[

1 −
∫ 1

0
h2

k(y)e−2
∫ y

0 hk(s) ds dy

]
· e2

∫ 1
0 hk(s) ds .

Here the quantity nk rewrites in terms of hk as follows

nk =
‖1 − hk+1/h‖2

L2[0,1]
‖1 − hk/h‖2

L2[0,1]
.

Using the setting of (15), we give an ODE proof to Proposition 1(d). To do so, we first need to prove the following
lemma.

Lemma 4.

‖1 − hk+1/h‖L2[0,1] = ‖hk+1/h − hk/h‖L2[0,1].

Proof. Observe that

h′
k+1(x) + (

hk+1(x) − hk(x)
)2 = h2

k+1(x).

We now use integration by parts to obtain∫ 1

0

(hk+1(x) − hk(x))2

h2(x)
dx =

∫ 1

0

h2
k+1(x)

h2(x)
dx −

∫ 1

0

h′
k+1(x)

h2(x)
dx

=
∫ 1

0

h2
k+1(x)

h2(x)
dx + 1 − 2

∫ 1

0

hk+1(x)

h(x)
dx

=
∫ 1

0

(1 − hk+1(x))2

h2(x)
dx

since 1/h(x) = 1 − x. �

Alternative proof of Proposition 1(d). Notice that h ≥ · · · ≥ hk+1 ≥ hk ≥ · · · ≥ h0 ≡ 0, which follows from g1(t) ≥
g2(t) ≥ g3(t) ≥ · · ·. The Lemma 4 implies

‖1 − hk+1/h‖2
L2[0,1] = ‖hk+1/h − hk/h‖2

L2[0,1]

=
∫ 1

0

[
(1 − hk/h) − (1 − hk+1/h)

]2
dx

= ‖1 − hk+1/h‖2
L2[0,1] + ‖1 − hk/h‖2

L2[0,1] − 2
∫ 1

0
(1 − hk/h)(1 − hk+1/h)dx
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and therefore

‖1 − hk/h‖2
L2[0,1] = 2

∫ 1

0
(1 − hk/h)(1 − hk+1/h)dx

= 2‖1 − hk+1/h‖2
L2[0,1] + 2

∫ 1

0
(hk+1/h − hk/h)(1 − hk+1/h)dx

≥ 2‖1 − hk+1/h‖2
L2[0,1]

yielding 2 ≤ ‖1−hk/h‖2
L2[0,1]

‖1−hk+1/h‖2
L2[0,1]

= nk as in Proposition 1(d). �

It is also true that one can improve Proposition 1(d) to make it a strict inequality since one can check that

h(x) > · · · > hk+1(x) > hk(x) > · · · > h0(x) ≡ 0 for x ∈ (0,1).

6.2. Proof of the existence of the root-Horton limit

Here we present the proof of our main Theorem 1. It is based on Lemma 5 and Lemma 6 that will be proven in the
following two subsections.

Lemma 5. If the limit limk→∞ hk+1(1)

hk(1)
exists, then limk→∞(Nk)

− 1
k = limk→∞(

∏k
j=1 nj )

− 1
k also exists, and

lim
k→∞(Nk)

− 1
k = lim

k→+∞

(
1

hk(1)

)− 1
k = lim

k→∞
hk+1(1)

hk(1)
.

Lemma 6. The limit limk→∞ hk+1(1)

hk(1)
≥ 1 exists, and is finite.

Theorem 1. The limit limk→∞(Nk)
− 1

k = limk→∞(
∏k

j=1 nj )
− 1

k = R exists. Moreover, R = limk→∞ hk+1(1)

hk(1)
, and 2 ≤

R ≤ 4.

Proof. The existence and finiteness of limk→∞ hk+1(1)

hk(1)
established in Lemma 6 is the precondition for Lemma 5 that

in turn implies the existence and finiteness of the limit limk→∞(Nk)
− 1

k as needed for the root-Horton law. Finally,
2 ≤ R ≤ 4 follows from Proposition 1. �

6.3. Proof of Lemma 5 and related results

Proposition 2.

∥∥1 − hk+1(x)/h(x)
∥∥2

L2[0,1] ≤ 1

hk+1(1)
≤ ∥∥1 − hk(x)/h(x)

∥∥2
L2[0,1].

Proof. Integrating from 0 to 1 both sides of the equation

h′
k+1(x)

h2
k+1(x)

= 1 − (hk+1(x) − hk(x))2

h2
k+1(x)

we obtain 1
hk+1(1)

= ∫ 1
0

(hk+1(x)−hk(x))2

h2
k+1(x)

dx as hk+1(0) = 1.
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Hence,

1

hk+1(1)
=
∫ 1

0

(hk+1(x) − hk(x))2

h2
k+1(x)

dx ≥
∫ 1

0

(hk+1(x) − hk(x))2

h2(x)
dx =

∫ 1

0

(
1 − hk+1(x)

h(x)

)2

dx

by Lemma 4, proving the first inequality.
Now,

1

hk+1(1)
= ∥∥1 − hk(x)/hk+1(x)

∥∥2
L2[0,1] ≤ ∥∥1 − hk(x)/h(x)

∥∥2
L2[0,1]

thus completing the proof. �

Proof of Lemma 5. If the limit limk→∞ hk+1(1)

hk(1)
exists and is finite, then limk→∞( 1

hk(1)
)− 1

k must also exist and be
finite. Hence the existence and finiteness of

lim
k→∞(Nk)

− 1
k = lim

k→∞

(∫ 1

0

(
1 − hk(x)

h(x)

)2

dx

)− 1
k

follows from Proposition 2. �

6.4. Proof of Lemma 6 and related results

In this subsection we use the approach developed by Drmota [8] to prove the existence and finiteness of
limk→∞ hk+1(1)

hk(1)
≥ 1. As we observed earlier this result is needed to prove the existence, finiteness, and positivity

of limk→∞(Nk)
− 1

k = limk→∞(
∏k

j=1 nj )
− 1

k , the root-Horton law.

Definition 3. Given γ ∈ (0,1]. Let

Vk,γ (x) =
{

1
1−x

for 0 ≤ x ≤ 1 − γ ,

γ −1hk(
x−(1−γ )

γ
) for 1 − γ ≤ x ≤ 1.

Note that sequences of functions hk(x) and Vk,γ (x) can be extended beyond x = 1.
Here are some observations we make about the above defined functions.

Observation 1. Vk,γ (x) are positive continuous functions satisfying

V ′
k+1,γ (x) = 2Vk+1,γ (x)Vk,γ (x) − V 2

k,γ (x)

for all x ∈ [0,1] \ (1 − γ ), with initial conditions Vk,γ (0) = 1.

Observation 2. Let γk = hk(1)
hk+1(1)

. Then

Vk,γk
(1) = hk+1(1) (17)

and

Vk,γ (1) = γ −1hk(1) ≥ hk+1(1) whenever γ ≤ γk. (18)

Observation 3.

Vk,γ (x) ≤ Vk+1,γ (x)

for all x ∈ [0,1] since hk(x) ≤ hk+1(x).
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Observation 4. Since h1(x) ≡ 1 and γ1 = h1(1)
h2(1)

,

h2(x) ≤ V1,γ1(x) =
{

1
1−x

for 0 ≤ x ≤ 1 − γ1,

γ −1
1 = h2(1) for 1 − γ1 ≤ x ≤ 1.

The above observation generalizes as follows.

Proposition 3.

hk+1(x) ≤ Vk,γk
(x) =

{
1

1−x
for 0 ≤ x ≤ 1 − γk ,

γ −1
k hk(

x−(1−γk)
γk

) for 1 − γk ≤ x ≤ 1.

In order to prove Proposition 3 we will need the following lemma.

Lemma 7. For any γ ∈ (0,1) and k ≥ 1, function Vk,γ (x) − hk+1(x) changes its sign at most once as x increases
from 1−γ to 1. Moreover, since Vk,γ (1−γ ) = h(1−γ ) > hk+1(1−γ ), function Vk,γ (x)−hk+1(x) can only change
sign from nonnegative to negative.

Proof. This is a proof by induction with base at k = 1. Here V1,γ (x) = 1
γ

is constant on [1 − γ,1], while h2(x) =
(1 + e2x)/2 is an increasing function, and

V1,γ (1 − γ ) = h(1 − γ ) > h2(1 − γ ).

For the induction step, we need to show that if Vk,γ (x) − hk+1(x) changes its sign at most once, then so does
Vk+1,γ (x) − hk+2(x). Since both sequences of functions satisfy the same ODE relation (see Observation 1), we have

d

dx

[(
Vk+1,γ (x) − hk+2(x)

) · e−2
∫ x

1−γ hk+1(y) dy]
= (

2Vk+1,γ (x) − Vk,γ (x) − hk+1(x)
) · (Vk,γ (x) − hk+1(x)

) · e−2
∫ x

1−γ hk+1(y) dy
,

where hk+1(x) ≤ Vk+1,γ (x) by definition of Vk+1,γ (x), and Vk,γ (x) ≤ Vk+1,γ (x) as in Observation 3.
Now, let

I (x) :=
∫ x

1−γ

(
2Vk+1,γ (s) − Vk,γ (s) − hk+1(s)

) · (Vk,γ (s) − hk+1(s)
) · e−2

∫ s
1−γ hk+1(y) dy

ds.

Then (
Vk+1,γ (x) − hk+2(x)

) · e−2
∫ x

1−γ hk+1(y) dy = Vk+1,γ (1 − γ ) − hk+2(1 − γ ) + I (x).

The function 2Vk+1,γ (x) − Vk,γ (x) − hk+1(x) ≥ 0, and since Vk,γ (x) − hk+1(x) changes its sign at most once,
then I (x) should change its sign from nonnegative to negative at most once as x increases from 1 − γ to 1. Hence

Vk+1,γ (x) − hk+2(x) = (
Vk+1,γ (1 − γ ) − hk+2(1 − γ ) + I (x)

) · e2
∫ x

1−γ hk+1(y) dy

should change its sign from nonnegative to negative at most once as

Vk+1,γ (1 − γ ) = h(1 − γ ) > hk+2(1 − γ ). �

Proof of Proposition 3. Take γ = γk in Lemma 7. Then function hk+1(x) − Vk,γk
(x) should change its sign from

nonnegative to negative at most once within the interval [1 − γk,1]. Hence, Vk,γk
(1 − γk) > hk+1(1 − γk) and

hk+1(1) = Vk,γk
(1) imply hk+1(x) ≤ Vk,γk

(x) as in the statement of the proposition. �

Now we are ready to prove the monotonicity result.
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Lemma 8.

γk ≤ γk+1 for all k ∈N
+.

Proof. We prove it by contradiction. Suppose γk ≥ γk+1 for some k ∈N
+. Then

Vk,γk
(x) ≤ Vk,γk+1(x) =

{
1

1−x
for 0 ≤ x ≤ 1 − γk+1,

γ −1
k+1hk(

x−(1−γk+1)

γk+1
) for 1 − γk+1 ≤ x ≤ 1

and therefore

hk+1(x) ≤ Vk,γk
(x) ≤ Vk,γk+1(x) ≤ Vk+1,γk+1(x)

as hk+1(x) ≤ Vk,γk
(x) by Proposition 3.

Recall that for x ∈ [1 − γk+1,1],
V ′

k+1,γk+1
(x) = 2Vk,γk+1(x)Vk+1,γk+1(x) − V 2

k,γk+1
,

where at 1 − γk+1 we consider only the right-hand derivative. Thus for x ∈ [1 − γk+1,1],
d

dx

(
Vk+1,γk+1(x) − hk+2(x)

)= A(x) + B(x)
(
Vk+1,γk+1(x) − hk+2(x)

)
,

where A(x) = 2Vk+1,γk+1(x) − Vk,γk+1(x) − hk+1(x) ≥ 0, B(x) = 2hk+1(x) > 0, and

Vk+1,γk+1(1 − γk+1) − hk+2(1 − γk+1) = h(1 − γk+1) − hk+2(1 − γk+1) > 0.

Hence

Vk+1,γk+1(1) − hk+2(1) ≥ Vk+1,γk+1(1 − γk+1) − hk+2(1 − γk+1) > 0

arriving to a contradiction since Vk+1,γk+1(1) = hk+2(1). �

Corollary. Limit limk→∞ γk exists.

Proof. Lemma 8 implies γk is a monotone increasing sequence, bounded by 1. �

Proof of Lemma 6. Lemma 6 follows immediately from an observation that hk+1(1)

hk(1)
= 1

γk
. �

7. Relation to the tree representation of white noise

This section establishes a close connection between the combinatorial tree of Kingman’s N -coalescent and the com-
binatorial level set tree of a discrete white noise.

7.1. Level set tree of a discrete-time function

We start with recalling basic facts about tree representation of a discrete-time function; for details and further results
see [18]. Consider a function Xi with discrete time index i = 0,1, . . . , imax and values distributed without atoms
over R. Let Xt ≡ X(t) be a function of continuous time t ∈ [0, imax] obtained from Xi by linear interpolation of its
values. The level set Lα(Xt ) is defined as the pre-image of the function values above α:

Lα(Xt ) = {t : Xt ≥ α}.
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Fig. 2. Function Xt (panel (a)) with a finite number of local extrema and its level set tree LEVEL(X) (panel (b)).

The level set Lα for each α is a union of non-overlapping intervals; we write |Lα| for their number. Notice that
|Lα| = |Lβ | as soon as the interval [α,β] does not contain a value of local maxima or minima of Xt and 0 ≤ |Lα| ≤ n,
where n is the number of the local maxima of Xt .

The level set tree LEVEL(Xt ) is a planar time oriented binary tree that describes the topology of the level sets Lα as
a function of threshold α, as illustrated in Figure 2. Namely, there are bijections between (i) the leaves of LEVEL(Xt )

and the local maxima of Xt , (ii) the internal (parental) vertices of LEVEL(Xt ) and the local minima of Xt (excluding
possible local minima at the boundary points), and (iii) the pair of subtrees of LEVEL(Xt ) rooted at a local minima
X(t∗) and the first positive excursions (or meanders bounded by t = 0 or t = N ) of X(t) − X(t∗) to right and left of
t∗. Each vertex in the tree is assigned a mark equal to the value of the local extrema according to the bijections (i) and
(ii) above. This makes the tree time oriented according to the threshold α. It is readily seen that any function Xt with
distinct values of consecutive local minima corresponds to a binary tree LEVEL(Xt ). We refer to [18] for discussion
of some subtleties related to this construction as well as for further references.

7.2. Tree representation of white noise

Let W
(N)
j , j = 1, . . . ,N − 1, be a discrete white noise that is a discrete time process comprised of N − 1 i.i.d. random

variables with a common atomless distribution. Consider now an auxiliary process W̃
(N)
i , i = 1, . . . ,2N − 1 such that

it has exactly N local maxima and N − 1 internal local minima W̃
(N)
2j = W

(N)
j , j = 1, . . . ,N − 1. We call W̃

(N)
i an

extended white noise; it can be constructed, for example, as follows:

W̃
(N)
i =

⎧⎨⎩W
(N)
i/2 for even i,

max(W
(N)

max(1, i−1
2 )

,W
(N)

min(N−1, i+1
2 )

) + 1 for odd i.
(19)

Let L
(N)
W = LEVEL(W̃

(N)
i ) be the level set tree of W̃

(N)
i and SHAPE(L

(N)
W ) be a (random) combinatorial tree that re-

tains the graph-theoretic structure of L
(N)
W and drops its planar embedding as well as the vertex marks. By construction,

L
(N)
W has exactly N leaves.

Lemma 9. The distribution of SHAPE(L
(N)
W ) on TN is the same for any atomless distribution F of the values of the

associated white noise W
(N)
j .

Proof. The condition of atomlessness of F is necessary to ensure that the level set tree is binary with probability 1.
By construction, the combinatorial level set tree is completely determined by the ordering of the local minima of the
respective trajectory, independently of the particular values of its local maxima and minima. We complete the proof
by noticing that the ordering of W

(N)
j is the same for any choice of atomless distribution F . �
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Let T
(N)
K be the tree that corresponds to a Kingman’s N -coalescent, and let SHAPE(T

(N)
K ) be its combinatorial

version that drops the time marks of the vertices. Both the trees SHAPE(L
(N)
W ) and SHAPE(T

(N)
K ), belong to the space

TN of binary rooted trees with N leaves.

Theorem 2. The trees SHAPE(L
(N)
W ) and SHAPE(T

(N)
K ) have the same distribution on TN .

The proof below uses the duality between coalescence and fragmentation processes [1]. Recall that a fragmentation
process starts with a single cluster of mass N at time t = 0. Each existing cluster of mass m splits into two clusters
of masses m − x and x at the splitting rate St (m,x), 1 < m ≤ N , 1 ≤ x < N . A coalescence process on N particles
with time-dependent collision kernel Kt(x, y), 1 ≤ x, y < N is equivalent, upon time reversal, to a discrete-mass
fragmentation process of initial mass N with some splitting kernel St (m,x). See Aldous [1] for further details and the
relationship between the dual collision and splitting kernels in general case.

Proof of Theorem 2. We show that both the examined trees have the same distribution as the combinatorial tree of a
fragmentation process with mass N and a splitting kernel that is uniform in mass: St (m,x) = S(t).

Kingman’s N -coalescence with kernel K(x,y) = 1 is dual to the fragmentation process with splitting kernel [1,
Table 3]

St (m,x) = 2

t (t + 2)
.

This kernel is independent of the cluster mass, which means that the splitting of mass m is uniform among the
m − 1 possible pairs {1,m − 1}, {2,m − 2}, . . . , {m − 1,1}. The time dependence of the kernel does not affect the
combinatorial structure of the fragmentation tree (and can be removed by a deterministic time change).

The level set tree L
(N)
W can be viewed as a tree that describes a fragmentation process with the initial mass N

equal to the number of local maxima of the trajectory W̃
(N)
i . By construction, each subtree of L

(N)
W with n leaves

corresponds to an excursion (or meander, if we treat one of the boundaries) with n local maxima. This subtree (as
well as the corresponding excursion or meander) splits into two by the internal global minimum of W̃

(N)
i at the

corresponding time interval.
The global minimum splits the series W̃

(N)
i into two, to the left and right of the minimum, with ML and (N − ML)

local maxima, respectively. Since the local minima of W̃
(N)
i form a white noise, the distribution of ML is uniform on

[1,N − 1]. Next, the internal vertices of the level set tree of the left (or right) time series correspond to its ML − 1
(or N − ML − 1) internal local minima that form a white noise (with the distribution different from that of the initial
white noise W

(N)
j ). Hence, the subsequent splits of masses (number of local maxima) continues according to a discrete

uniform distribution. And so on down the tree.
Hence, the combinatorial level set tree of W̃

(N)
i has the same distribution as a combinatorial tree of a fragmentation

process with uniform mass splitting. This completes the proof. �

Remark 2. We notice that the dual splitting kernels for multiplicative and additive coalescences [1, Table 3] only
differ by their time dependence, and are equivalent as functions of mass. Hence, the combinatorial structure of the
respective trees is the same.

Corollary 1. The combinatorial level set tree of a discrete white noise W(N) is root-Horton self similar with the same
Horton exponent R as that for Kingman’s N -coalescent.

Proof. Recall the operation of tree pruning R(T ) : T → T that cuts the leaves of a finite tree T and removes possible
resulting nodes of degree 2 [4,18]. By definition, pruning corresponds to index shift in Horton statistics: Nk → Nk−1,
k > 1. It has been shown in [18] that

R
[

LEVEL
(
W̃

(N)
i

)]= LEVEL
(
W

(N)
j

)
.

Hence, Horton self-similarity for one of these processes implies that for the other. The Horton self-similarity for the
extended white noise W̃ (N) follows directly from Theorem 2. �
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8. General coalescent processes

The ODE approach introduced in this paper can be extended to the coalescent kernels other than K(i, j) ≡ 1. For that
we need to classify the relative number ηk(t) of clusters of order k at time t according to the cluster masses. Namely,
let ηk,m(t) be the average number of clusters of order k and mass m ≥ 2k at time t . Then

ηk(t) =
∞∑

m=2k

ηk,m(t).

In the case of a symmetric coalescent kernel K(i, j) = K(j, i) the Smoluchowski–Horton ODEs can be written
asymptotically as

d

dt
ηk,m(t) =

k−1∑
i=1

m−2i∑
μ=2k

ηk,μ(t)ηi,m−μK(μ,m − μ)

+ 1

2

∑
m1+m2=m

m1,m2≥2k−1

ηk−1,m1(t)ηk−1,m2(t)K(m1,m2)

− ηk,m(t)

∞∑
m̃=2i

K(m, m̃)

( ∞∑
i=1

ηi,m̃(t)

)
(20)

with the initial conditions η1,1(0) = 1 and ηk,m(0) = 0 for all (k,m) �= (1,1).
Observe that when K(i, j) ≡ 1, summing the above equations (20) over index m produces the Smoluchowski–

Horton ODE (3) for the average relative number of order-k branches ηk(t) in Kingman’s coalescent process.

9. Discussion

This paper establishes the root-Horton self-similarity (Section 6, Theorem 1) for Kingman’s N -coalescent process, as
N goes to infinity. We also demonstrate (Section 7.1, Theorem 2) the distributional equivalence of the combinatorial
trees of Kingman’s N -coalescent to that of a discrete extended white noise with N local maxima, hence extending the
self-similarity results to a tree representation of a discrete white noise (Section 7, Corollary 1).

Combining the results of this study with that of Burd et al. [4] and Zaliapin and Kovchegov [18] one observes that
Horton self-similarity is a property of tree representation for (i) white noise, (ii) symmetric random walk, (iii) critical
binary Galton–Watson branching process, and (iv) Kingman’s N -coalescent. The listed processes are believed to
closely depict physical and biological mechanisms of diverse origin and are commonly used as essential building
blocks in scientific modeling. The results of this study and those in [4,18] thus provide at least a partial explanation
for the omnipresence of Horton self-similarity in observed and modeled branching structures. This study seems to be
the first that rigorously establishes Horton self-similarity with Horton exponent different from R = 2,4.

Our Theorem 1 establishes a weak, root-law, convergence of the asymptotic ratios Nk , while we believe that
the stronger (ratio and geometric) forms of convergence are also valid. These stronger Horton laws are usually
considered in the literature (e.g., [7,9,12,18]). It seems important to show rigorously at least the ratio-Horton law
(limk→∞ Nk/Nk+1 = R > 0).

The Smoluchowski–Horton equations (3) that form a core of the presented method and their equivalents (14) and
(15) seem to be promising for further more detailed exploration. Indeed, one may hope that the approach that refers
explicitly to the Horton–Strahler orders might effectively complement conventional analysis of cluster masses. The
analysis of the Smoluchowski–Horton systems can be done within the ODE framework, similarly to the present study,
or within the nonlinear iterative system framework (see (16)). The latter approach is still to be explored.

Finally, it is noteworthy that the analysis of multiplicative and additive coalescents according to the general
Smoluchowski–Horton system (20) appears, after a certain series of transformations, to follow many of the steps
implemented in this paper for Kingman’s coalescent, with the ODE system being replaced by a suitable PDE one.
These results will be published elsewhere.
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Appendix A: Proof of Lemma 1

We split the proof into smaller steps.
• Step I. Fix ε0 ∈ (0,1) and take δ > 0. We show below that, given η(N)(t) = y ∈ 1

N
Z ∩ [ε0,1], the number of

coalescences during the time interval [t, t + δ] does not exceed δ
N

(
Ny
2

)+ N2/3 with high probability. Specifically, we
use an exponential Markov inequality (Chernoff’s bound) with exponent s > 0 to bound the probability that a sum of
δ
N

(
Ny
2

)+ N2/3 exponential inter-arrival times with the rate not exceeding 1
N

(
Ny
2

)
adds up to less than δ. Let ζi be the

arrival time of ith coalescence and u = (
Ny
2

)
. Then

P

(
N
[
η(N)(t) − η(N)(t + δ)

]
>

δ

N
u + N2/3

∣∣∣η(N)(t) = y

)

= P

(� δ
N

u+N2/3�∑
i=1

ζi < δ

∣∣∣η(N)(t) = y

)

≤ esδ

(1 + sN
u

)
δ
N

u+N2/3

≤ exp

{
sδ −

(
δ

N
u + N2/3

)(
sN

u
− s2N2

u2

)}

= exp

{
− s

u
N5/3 + δs2

u
N + s2

u2
N8/3

}

as ln(1 + x) > x − x2 for x > 0. Taking s = N1/2 in the above inequality, we obtain

P

(
N
[
η(N)(t) − η(N)(t + δ)

]
>

δ

N
u + N2/3

∣∣∣η(N)(t) = y

)

= exp

{
− 1

u
N13/6 + δN2

u
+ N11/3

u2

}

= exp

{
− 2

Ny(Ny − 1)
N13/6 + 2δN2

Ny(Ny − 1)
+ 4N11/3

(Ny)2(Ny − 1)2

}

= exp

{
− 2

y(y − 1/N)
N1/6 + 2δ

y(y − 1/N)
+ 4N−1/3

(y)2(y − 1/N)2

}

≤ exp

{
−2N1/6 + 2δ

ε0(ε0 − 1/N)
+ 4N−1/3

ε2
0(ε0 − 1/N)2

}

≤ exp

{
−N1/6 + 4δ

ε2
0

}
(21)

for N large enough.
• Step II. From Step I we know that, given η(N)(t) = y ∈ 1

N
Z∩ [ε0,1], there are no more than

δ

N

(
Ny

2

)
+ N2/3 = δy2

2
N − δy

2
+ N2/3

≤ δy2

2
N + N2/3
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coalescing pairs during [t, t + δ] with probability exceeding 1 − exp{−N1/6 + 4δ

ε2
0
}. In this case the exponential rates

of inter-arrival times during [t, t + δ] must be at least

1

N

(
Ny − 
 δy2

2 N� − 
N2/3�
2

)

= 1

N

(
Ny − 
 δy2

2 N�
2

)
− Ny − 
 δy2

2 N� − 1/2 − 
N2/3�/2

N

⌈
N2/3⌉

≥ 1

N

(
Ny − 
 δy2

2 N�
2

)
−
(

y − δy2

2

)⌈
N2/3⌉

≥ 1

N

(
Ny − 
 δy2

2 N�
2

)
− N2/3

for N large enough. We now use exponential Markov inequality to bound the conditional probability that there are

fewer than δ
N

(Ny−
 δy2

2 N�
2

)− (1 + δ)N2/3 coalescents in [t, t + δ]. Specifically, we bound the probability that a sum of

δ
N

(Ny−
 δy2

2 N�
2

)− (1 + δ)N2/3 independent exponential random variables of rate not less than 1
N

(Ny−
 δy2

2 N�
2

) − N2/3

is greater than δ.

Set v = (Ny−
 δy2

2 N�
2

)
. Since we are interested in the values of δ � 1, then

(1 − δ)2 N2y2

2
≤ v =

(
Ny − 
 δy2

2 N�
2

)
≤ u =

(
Ny

2

)
≤ N2y2

2
. (22)

Exponential Markov inequality with exponent s > 0 implies

P

(
N
[
η(N)(t) − η(N)(t + δ)

]
<

δ

N
v − (1 + δ)N2/3

∣∣∣∣N [η(N)(t) − η(N)(t + δ)] ≤ δ
N

u + N2/3

η(N)(t) = y

)

≤ e−sδ

(1 − sN

v−N5/3 )
δ
N

v−(1+δ)N2/3

≤ exp

{
−sδ +

(
δ

N
v − (1 + δ)N2/3

)(
sN

v − N5/3
+ s2N2

(v − N5/3)2

)}

≤ exp

{(
1

1 − N5/3/v
− 1

)
sδ − s(1 + δ)N5/3

v − N5/3
+
(

δ

N
v − (1 + δ)N2/3

)
s2N2

(v − N5/3)2

}
≤ exp

{
sδN5/3/v

1 − N5/3/v
− s(1 + δ)N5/3

v
+ δvs2N

(v − N5/3)2

}
as −x − x2 < ln(1 − x) for x ∈ (0, 1

2 ). Take s = N1/2 to obtain

P

(
N
[
η(N)(t) − η(N)(t + δ)

]
<

δ

N
v − (1 + δ)N2/3

∣∣∣∣N [η(N)(t) − η(N)(t + δ)] ≤ δ
N

u + N2/3

η(N)(t) = y

)

= exp

{
δN13/6/v

1 − N5/3/v
− (1 + δ)N13/6

v
+ δvN2

(v − N5/3)2

}
≤ exp

{
2δN1/6

(1 − δ)2y2 − 2N−1/3
− 2(1 + δ)N1/6

y2
+ 2δy2

((1 − δ)2y2 − 2N−1/3)2

}
≤ exp

{
2N1/6

y2

[
δ

(1 − δ)2 − 2N−1/3/y2
− (1 + δ)

]
+ 3δy2

(1 − δ)4y4

}
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≤ exp

{
−N1/6

y2
+ 3δ

(1 − δ)4y2

}
≤ exp

{
−N1/6 + 4δ

ε2
0

}
(23)

for N large enough, by using (22).
Thus, multiplying the probabilities of complement events in (21) and (23) we obtain

P

(
δ

N2
v − (1 + δ)N−1/3 ≤ η(N)(t) − η(N)(t + δ) ≤ δ

N2
u + N−1/3

∣∣∣η(N)(t) = y

)

≥
(

1 − exp

{
−N1/6 + 4δ

ε2
0

})2

for any given t ≥ 0 and y ∈ 1
N
Z∩ [ε0,1].

• Step III. Let �δf (x) := f (x+δ)−f (x)
δ

denote the forward difference. Now, as we already pointed out in (22),

(1 − δ)2
N2η2

(N)(t)

2
≤ v ≤ u ≤ N2η2

(N)(t)

2
.

Hence,

P

(∣∣∣∣η2
(N)(t)

2
+ �δη(N)(t)

∣∣∣∣≤ δ + (
δ−1 + 1

)
N−1/3

∣∣∣η(N)(t) = y

)

≥ P

(
(1 − δ)2

η2
(N)(t)

2
− (

δ−1 + 1
)
N−1/3 ≤ −�δη(N)(t) ≤ η2

(N)(t)

2
+ δ−1N−1/3

∣∣∣η(N)(t) = y

)
≥ P

(
δ

N2
v − (1 + δ)N−1/3 ≤ η(N)(t) − η(N)(t + δ) ≤ δ

N2
u + N−1/3

∣∣∣η(N)(t) = y

)

≥
(

1 − exp

{
−N1/6 + 4δ

ε2
0

})2

(24)

for N large enough. The first inequality above uses the fact that

(1 − δ)2
η2

(N)(t)

2
>

η2
(N)(t)

2
− δ.

This is equivalent to

(−2 + δ)
η2

(N)(t)

2
> −1,

which is always true since η(N)(t) ≤ 1 and δ > 0.
• Step IV. For K > 0, consider an interval [0,K] partitioned into M subintervals

[t0, t1], [t1, t2], . . . , [tM−1, tM ]
of equal length δ = K/M , where t0 = 0 and tM = K . Here M may depend on N .

Let ε0 = η(K)/2 = 1/(2 + K), where η(t) = 2/(2 + t) is the solution to the equation (2) with the initial condition
η(0) = 1. Consider the following difference equation

�δψ(N)(ti) = −ψ2
(N)(ti)

2
+ E ′(ti) (25)
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with initial condition ψ(N)(0) = 1, where the error |E ′(ti)| satisfies∣∣E ′(ti)
∣∣ ≤ δ + (

δ−1 + 1
)
N−1/3.

Claim 1. If M is large enough, then the following is true as we take N large enough. For any natural number j ≤ M ,
if function ψ(N)(ti) satisfies (25) for all i ∈ {0,1, . . . , j − 1}, then

ψ(N)(tj ) ≥ ε0.

Indeed, if we take N ≥ M6, then∣∣E ′(ti)
∣∣ ≤ δ + (

δ−1 + 1
)
N−1/3 ≤ K/M + 1/(KM) + 1/M2.

Now, since η(t) = 2/(2 + t) is the solution to Equation (2) with the initial condition η(0) = 1, η(t) will satisfy

�δη(ti) = −η2(ti)

2
+ E(ti)

for all i ∈ {0,1, . . . ,M − 1}, where E(ti) = η′′(ci )
2 δ = η3(ci )

4 δ for some ci ∈ (ti , ti+1). Hence, as η(t) ≤ 1 for all t ≥ 0,
|E(ti)| ≤ 1

4δ.
Consider the error quantities εi := ψ(N)(ti) − η(ti). We have

εi+1 = ψ(N)(ti+1) − η(ti+1)

=
[
ψ(N)(ti) − ψ2

(N)(ti)

2
δ + E ′(ti)δ

]
−
[
η(ti) − η2(ti)

2
δ + E(ti)δ

]

=
[
η(ti) + εi − (η(ti) + εi)

2

2
δ + E ′(ti)δ

]
−
[
η(ti) − η2(ti)

2
δ + E(ti)δ

]

= (
1 − η(ti)δ

)
εi − ε2

i

2
δ + δ

(
E ′(ti) − E(ti)

)
,

where |E ′(ti)−E(ti)| ≤ 5
4K/M +1/(KM)+1/M2 < CK/M if M > 1, with CK = 5

4K + 1
K

+1. Since η(ti) > η(K)

for all i ∈ {0,1, . . . ,M − 1},

|εi+1| ≤
(
1 − η(K)K/M

)|εi | + ε2
i

2
K/M + KCK/M2.

Taking M large enough so that KCK/M < 2η(K), we can prove by induction that

|εi | ≤ iKCK/M2. (26)

Indeed, ε0 = 0, and if |εi | ≤ iKCK/M2, then

|εi+1| ≤ (
1 − η(K)K/M

)|εi | + ε2
i

2
K/M + KCK/M2

= |εi | +
(|εi | − 2η(K)

)|εi |K/(2M) + KCK/M2

≤ |εi | +
(
iKCK/M2 − 2η(K)

)|εi |K/(2M) + KCK/M2

≤ |εi | + KCK/M2

≤ (i + 1)KCK/M2,

which completes the induction step.
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The inequality (26) is therefore valid for all i ∈ {0, . . . ,M − 1}, implying

|εi | ≤ MKCK/M2 =
5
4K2 + K + 1

M
< ε0 (27)

for M large enough.
Recall that ε0 = η(K)/2 = 1/(2 + K). Then, by (27),

ψ(N)(tj ) = η(tj ) + εj ≥ η(K) − ε0 = ε0

for all j ∈ {0,1, . . . ,M − 1}. This proves the above Claim 1.
• Step V. Consider events

Ai =
{
�δη(N)(ti) = −η2

(N)(ti)

2
+ E ′(ti) and

∣∣E ′(ti)
∣∣ ≤ δ + (

δ−1 + 1
)
N−1/3

}
(28)

for all i ∈ {0,1, . . . ,M − 1}. Then inequality (24) rewrites as

P
(
Aj |η(N)(tj ) = y

)≥
(

1 − exp

{
−N1/6 + 4δ

ε2
0

})2

for any y ∈ 1
N
Z∩ [ε0,1].

Claim 1 implies that
⋂j−1

i=0 Ai is contained in the event {η(N)(tj ) ∈ [ε0,1]}, and therefore, using the Markov prop-
erty, we obtain

P

(
Aj

∣∣∣ j−1⋂
i=0

Ai

)
=

∑
y:y∈ 1

N
Z∩[ε0,1]

P

(
Aj

∣∣∣η(N)(tj ) = y,

j−1⋂
i=0

Ai

)
P

(
η(N)(tj ) = y

∣∣∣ j−1⋂
i=0

Ai

)

=
∑

y:y∈ 1
N
Z∩[ε0,1]

P
(
Aj

∣∣∣η(N)(tj ) = y
)
P

(
η(N)(tj ) = y

∣∣∣ j−1⋂
i=0

Ai

)

≥
(

1 − exp

{
−N1/6 + 4δ

ε2
0

})2

as
∑

y:y∈ 1
N
Z∩[ε0,1] P(η(N)(tj ) = y|⋂j−1

i=0 Ai) = P(η(N)(tj ) ∈ [ε0,1]|⋂j−1
i=0 Ai) = 1. Hence, since we have taken

N ≥ M6,

P

(
M−1⋂
i=0

Ai

)
≥

(
1 − exp

{
−N1/6 + 4δ

ε2
0

})2M

≥
(

1 − exp

{
−M + 4K

ε2
0M

})2M

→ 1 as M → ∞. (29)

We established that with probability greater than P(
⋂M−1

i=0 Ai) → 1 as M → ∞, η(N)(ti) satisfies difference equa-
tion (25) with ψ(N)(t) ≡ η(N)(t).

• Step VI. Rewriting (27) for ψ(N)(t) ≡ η(N)(t), we see that with probability of at least P(
⋂M−1

i=0 Ai) → 1,∣∣η(N)(ti) − η(ti)
∣∣ = |εi | < ε0
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for all i ∈ {0,1, . . . ,M − 1}. Now, if t ∈ (ti , ti+1), then∣∣η(N)(t) − η(t)
∣∣ ≤ ∣∣η(N)(t) − η(N)(ti)

∣∣+ ∣∣η(N)(ti) − η(ti)
∣∣+ ∣∣η(ti) − η(t)

∣∣
≤ (

η(N)(ti) − η(N)(ti+1)
)+

(
5

4
K2 + K + 1

)/
M + (

η(ti) − η(ti+1)
)

= η(N)(ti) − η(ti) + η(ti+1) − η(N)(ti+1) +
(

5

4
K2 + K + 1

)/
M + 2

(
η(ti) − η(ti+1)

)
≤ 3

(
5

4
K2 + K + 1

)/
M + 2

(
η(ti) − η(ti+1)

)
≤ 3

(
5

4
K2 + K + 1

)/
M + δ

as

2
(
η(ti) − η(ti+1)

)= 2δ
d

dt
η(ci) = δη2(ci) ≤ δ for some ci ∈ [ti , ti+1]. (30)

Here we used the facts that η(N)(t) and η(t) are decreasing functions and η(t) = 2/(2 + t) is the solution to
Equation (2). Thus with probability greater than P(

⋂M−1
i=0 Ai) → 1,

∥∥η(N)(t) − η(t)
∥∥

L∞[0,K] ≤
(

15

4
K2 + 3K + 3

)/
M + K/M = 15

4
K2/M + 4K/M + 3/M (31)

for M large enough and N ≥ M6.
Therefore, letting M → ∞, we have shown that∥∥η(N)(t) − η(t)

∥∥
L∞[0,K] → 0 in probability.

• Step VII. Take ε ∈ (0,1) and γ > 1. Let Tm be the time when the first m = �(1 − ε)N� clusters merge. The
expectation for the time Tm is

E[Tm] = N(
N
2

) + N(
N−1

2

) + · · · + N(
N−m+1

2

) = 2m

N − m
.

If we take K >
2(1−ε)

ε
γ , then η(K) < η(

2(1−ε)
ε

γ ) < η(2(1 − ε)/ε) = ε, and for any t ≥ K , |η(N)(t) − η(t)| > ε

implies η(N)(t) > ε > η(t) > 0. Thus, by Markov’s inequality,

P
(∥∥η(N)(t) − η(t)

∥∥
L∞[K,∞)

> ε
) ≤ P

(
η(N)(K) > ε

)= P(Tm > K)

≤ 2(1 − ε)

εK
< 1/γ. (32)

Now, we take M > ( 15
4 K2 + 4K + 3)/ε. Then, by (31),

P
(∥∥η(N)(t) − η(t)

∥∥
L∞[0,K] < ε

)≥ P

(
M−1⋂
i=0

Ai

)
,

and

P
(∥∥η(N)(t) − η(t)

∥∥
L∞[0,∞)

< ε
) ≥ P

(∥∥η(N)(t) − η(t)
∥∥

L∞[0,K] < ε
)

+ P
(∥∥η(N)(t) − η(t)

∥∥
L∞[K,∞)

< ε
)− 1
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≥ P

(
M−1⋂
i=0

Ai

)
+ (1 − 1/γ ) − 1

→ 1 − 1/γ

as we let M → ∞. Hence,

lim sup
N→∞

P
(∥∥η(N)(t) − η(t)

∥∥
L∞[0,∞)

< ε
)≥ 1 − 1/γ

for any given γ > 1. Thus

lim
N→∞P

(∥∥η(N)(t) − η(t)
∥∥

L∞[0,∞)
< ε

)= 1.

Therefore we have shown that ‖η(N)(t) − η(t)‖L∞[0,∞) → 0 in probability. �

Appendix B: Proof of Lemma 2

• Step I. We will use the setting from the proof of Lemma 1. Fix K > 0 and consider an interval [0,K] partitioned
into M subintervals

[t0, t1], [t1, t2], . . . , [tM−1, tM ]
of equal length δ = K/M , where t0 = 0 and tM = K . Let ε0 = η(K)/2 = 1/(2 + K).

Once again, let η(N)(t) denote the relative total number of clusters. For i = 0,1, . . . ,M − 1, the total number of
coalescences within the interval [ti , ti+1] equals N [η(N)(ti)− η(N)(ti+1)]. Take N > M6. The probability of the event⋂M−1

i=0 Ai , where Ai was defined in (28), was bounded below in (29) as follows

P

(∣∣∣∣N[
η(N)(ti) − η(N)(ti+1)

]− δN
η2

(N)(ti)

2

∣∣∣∣≤ δ2N + (1 + δ)N2/3 ∀i = 0,1, . . . ,M − 1

)

= P

(
M−1⋂
i=0

Ai

)
≥
(

1 − exp

{
−M + 4K

ε2
0M

})2M

→ 1

as M → ∞. Recall also that P(mint∈[0,K] η(N)(t) > ε0|⋂M−1
i=0 Ai) = 1.

Recall that ηk,N (t) is the number of clusters corresponding to branches of Horton–Strahler order k at time t relative
to the system size N , and gk,N (t) := η(N)(t) −∑

j :j<k ηj,N (t). Let

XN := 1

N
�1(Z+) ∩ {

x ∈ �1(R) : ‖x‖1 ≤ 1
}

=
{
x = (x1, x2, . . .) : xk ∈ 1

N
Z+ ∀k, and

∑
k

xk ≤ 1

}
.

Here,

η̄N (t) := (
η1,N (t), η2,N (t), . . .

) ∈ XN

and η(N)(t) =∑∞
k=0 ηk,N (t) = ‖η̄N (t)‖1.

For each m ≥ 0 we define events

Bm,ti :=
{∣∣∣∣m − δN

η2
(N)(ti)

2

∣∣∣∣ ≤ δ2N + (1 + δ)N2/3
}

(33)
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and

Dm,ti := {
N
[
η(N)(ti) − η(N)(ti+1)

] = m
}
.

Now observe that for any integer i ≥ 0, event Ai defined in (28) can be expanded as follows

Ai =
{
�δη(N)(ti) = −η2

(N)(ti)

2
+ E ′(ti) and

∣∣E ′(ti)
∣∣ ≤ δ + (

δ−1 + 1
)
N−1/3

}

=
⋃
m≥0

{
N
[
η(N)(ti) − η(N)(ti+1)

] = m and

∣∣∣∣m − δN
η2

(N)(ti)

2

∣∣∣∣≤ δ2N + (1 + δ)N2/3
}

=
⋃
m≥0

[Bm,ti ∩ Dm,ti ]

=
⋃

x∈XN

⋃
m≥0

[{
η̄N (ti) = x

}∩ Bm,ti ∩ Dm,ti

]
. (34)

For integer i ≥ 0, consider all x ∈XN such that

P

(
η̄N (ti) = x

∣∣∣ i−1⋂
i′=0

Ai′

)
> 0. (35)

Next, for each x ∈ XN satisfying (35), consider all integer m ≥ 0 such that

P
(
Bm,ti |η̄N (ti) = x

)
> 0. (36)

Finally for each x ∈ XN satisfying (35) and for each integer m ≥ 0 satisfying (36), consider the event Dm,ti . For any
integer k > 0 we can represent the coalescences that involve the clusters of order k within [ti , ti+1] as

ηk,N (ti+1) − ηk,N (ti) = ξ1 + ξ2 + · · · + ξm,

where ξ1, ξ2, . . . , ξm are random variables that correspond to the m coalescences (of any Horton–Strahler order) within
[ti , ti+1] in the order of occurrence. Here, each ξr can take values in 1

N
{−2,−1,0,1}; and their dependence on k is

omitted to simplify the notations. By construction, conditioning on
⋂i−1

i′=0 Ai′ , {η̄N (ti) = x}, Bm,ti , and Dm,ti for
values x and m satisfying (35) and (36), the distribution of ξr for 1 ≤ r ≤ m is completely determined by the history
Tr−1 of the preceding r − 1 transitions. Also, we have the following bounds:

(1) A transition that decreases ηk,N (t) by 2/N has probability

pl(−2) ≤ P

(
ξr = −2/N

∣∣∣ i−1⋂
i′=0

Ai′ ,
{
η̄N (ti) = x

}
,Bm,ti ,Dm,ti ,Tr−1

)
≤ pu(−2),

where

pl(−2) :=
{(

Nxk−2m
2

)
/
(
N‖x‖1

2

)
if Nxk − 2m ≥ 2,

0 otherwise,

and pu(−2) := (
Nxk+m

2

)
/
(
N‖x‖1−m

2

)
.

(2) A transition that increases ηk,N (t) by 1/N has probability

pl(1) ≤ P

(
ξr = 1/N

∣∣∣ i−1⋂
i′=0

Ai′,
{
η̄N (ti) = x

}
,Bm,ti ,Dm,ti ,Tr−1

)
≤ pu(1),
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where

pl(1) :=
{(

Nxk−1−2m
2

)
/
(
N‖x‖1

2

)
if Nxk−1 − 2m ≥ 2,

0 otherwise,

and pu(1) := (
Nxk−1+m

2

)
/
(
N‖x‖1−m

2

)
if k > 1, and if k = 1, we let pl(1) = pu(1) = 0.

(3) A transition that decreases ηk,N (t) by 1/N has probability

pl(−1) ≤ P

(
ξr = −1/N

∣∣∣ i−1⋂
i′=0

Ai′ ,
{
η̄N (ti) = x

}
,Bm,ti ,Dm,ti ,Tr−1

)
≤ pu(−1),

where pl(−1) := max{(Nxk−2m),0}(N ∑∞
j=k+1 xj −m)

(
N‖x‖1

2 )
and pu(−1) := (Nxk+m)(N

∑∞
j=k+1 xj +m)

(
N‖x‖1−m

2 )
.

Next, for x and m satisfying (35) and (36), define probabilities

p(−2) := x2
k /‖x‖2

1, p(1) :=
{

x2
k−1/‖x‖2

1 if k > 1,
0 if k = 1,

p(−1) := 2xk

∑∞
j=k+1 xj

‖x‖2
1

,

and p(0) := 1 − p(−2) − p(−1) − p(1). Let ξ be a random variable with the values {−2,−1,0,1} specified by the
probabilities {p(−2),p(−1),p(0),p(1)}. Also let ξ+ = ξ · 1ξ>0 and ξ− = ξ · 1ξ<0.

Observe that we have conditioned on a sub-event of
⋂i

i′=0 Ai′ . Indeed, by (34)

i−1⋂
i′=0

Ai′ ∩ Bm,ti ∩ Dm,ti ⊆
i⋂

i′=0

Ai′ .

Here, since P(η(N)(ti) ∈ [ε0,1]|⋂i−1
i′=0 Ai′) = 1 and x satisfies (35),

η(N)(ti) = ‖x‖1 ≥ ε0,

and therefore

pl(−2) = p(−2) +O(δ) and pu(−2) = p(−2) +O(δ),

pl(1) = p(1) +O(δ) and pu(1) = p(1) +O(δ),

pl(−1) = p(−1) +O(δ) and pu(−1) = p(−1) +O(δ).

Indeed, since the values x and m satisfy (35) and (36),∣∣∣∣m − δN
‖x‖2

1

2

∣∣∣∣≤ δ2N + (1 + δ)N2/3

as in (33). Hence, m =O(δN). Therefore, conditioning on
⋂i−1

i′=0 Ai′ , {η̄N (ti) = x}, Bm,ti , and Dm,ti for values x and
m satisfying (35) and (36), we have

pl(−2) − p(−2) =
(
Nxk−2m

2

)(
N‖x‖1

2

) − x2
k

‖x‖2
1

= −4‖x‖1xk
m
N

+ 4‖x‖1
m2

N2 + 2‖x‖1
m

N2 + (xk − ‖x‖1)
xk

N

‖x‖2
1(‖x‖1 − 1/N)

=O(δ)
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when Nxk − 2m ≥ 2,

pu(−2) − p(−2) =
(
Nxk+m

2

)(
N‖x‖1−m

2

) − x2
k

‖x‖2
1

= 2(x2
k‖x‖1 + xk‖x‖2

1)
m
N

+ x2
k ‖x‖1−xk‖x‖2

1
N

+ (‖x‖2
1−x2

k )m2

N2 − (‖x‖2
1+x2

k )m

N2

(‖x‖1 − m
N

)(‖x‖1 − m+1
N

)‖x‖2
1

= O(δ),

pl(1) − p(1) =
(
Nxk−1−2m

2

)(
N‖x‖1

2

) − x2
k−1

‖x‖2
1

= −4‖x‖1xk−1
m
N

+ 4‖x‖1
m2

N2 + 2‖x‖1
m

N2 + (xk−1 − ‖x‖1)
xk−1
N

‖x‖2
1(‖x‖1 − 1/N)

= O(δ)

when Nxk−1 − 2m ≥ 2,

pu(1) − p(1) =
(
Nxk−1+m

2

)(
N‖x‖1−m

2

) − x2
k−1

‖x‖2
1

= 2(x2
k−1‖x‖1 + xk−1‖x‖2

1)
m
N

+ x2
k−1‖x‖1−xk−1‖x‖2

1
N

+ (‖x‖2
1−x2

k−1)m
2

N2 − (‖x‖2
1+x2

k−1)m

N2

(‖x‖1 − m
N

)(‖x‖1 − m+1
N

)‖x‖2
1

= O(δ),

pl(−1) − p(−1) = (Nxk − 2m)(N
∑∞

j=k+1 xj − m)(
N‖x‖1

2

) − 2xk

∑∞
j=k+1 xj

‖x‖2
1

= −2‖x‖1(xk + 2
∑∞

j=k+1 xj )
m
N

+ 2 xk

N

∑∞
j=k+1 xj + 4‖x‖1

m2

N2

(‖x‖1 − 1
N

)‖x‖2
1

= O(δ)

when Nxk − 2m ≥ 0,

pu(−1) − p(−1) = (Nxk + m)(N
∑∞

j=k+1 xj + m)(
N‖x‖1−m

2

) − 2xk

∑∞
j=k+1 xj

‖x‖2
1

= 2‖x‖1(2xk

∑∞
j=k+1 xj + xk‖x‖1 + ‖x‖1

∑∞
j=k+1 xj )

m
N

(‖x‖1 − m
N

)(‖x‖1 − m+1
N

)‖x‖2
1

+ 2xk‖x‖1
∑∞

j=k+1 xj
1
N

+ 2(‖x‖1 − xk

∑∞
j=k+1 xj )

m2

N2 − 2xk

∑∞
j=k+1 xj

m

N2

(‖x‖1 − m
N

)(‖x‖1 − m+1
N

)‖x‖2
1

= O(δ).

Finally, if Nxk − 2m < 2, then
x2
k

‖x‖2
1

<
2(m+1)

N‖x‖2
1

≤ 2(m+1)

Nε2
0

= O(δ), and if Nxk − 2m < 0, then
2xk

∑∞
j=k+1 xj

‖x‖2
1

≤ 4m
N‖x‖1

≤
4m
Nε0

= O(δ).

Next, let ξ+
r = ξr · 1ξr>0 and ξ−

r = ξr · 1ξr<0. Then

ηk,N (ti+1) − ηk,N (ti) = X+ + X−,

where

X+ = ξ+
1 + ξ+

2 + · · · + ξ+
m
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and

X− = ξ−
1 + ξ−

2 + · · · + ξ−
m .

Next, for any λ+, λ− ≥ 0 and s ∈ [0,1] consider

E

[
esN[λ+X++λ−X−]

∣∣∣ i−1⋂
i′=0

Ai′,
{
η̄N (ti) = x

}
,Bm,ti ,Dm,ti

]

=
m∏

r=1

E

[
esN[λ+ξ+

r +λ−ξ−
r ]
∣∣∣ i−1⋂
i′=0

Ai′ ,
{
η̄N (ti) = x

}
,Bm,ti ,Dm,ti ,Tr−1

]
,

where for all r ,

E

[
esN[λ+ξ+

r +λ−ξ−
r ]
∣∣∣ i−1⋂
i′=0

Ai′ ,
{
η̄N (ti) = x

}
,Bm,ti ,Dm,ti ,Tr−1

]

≤ e−2λ−spu(−2) + e−λ−spu(−1) + eλ+spu(1) + (
1 − pl(−2) − pl(−1) − pl(1)

)
≤ e−2λ−sp(−2) + e−λ−sp(−1) + eλ+sp(1) + p(0) + Cδ

= E
[
es[λ+ξ++λ−ξ−]]+ Cδ

for a large enough C > 0. Hence,

E

[
esN[λ+X++λ−X−]

∣∣∣ i−1⋂
i′=0

Ai′,
{
η̄N (ti) = x

}
,Bm,ti ,Dm,ti

]
≤ (

E
[
es[λ+ξ++λ−ξ−]]+ Cδ

)m
.

Therefore, by the exponential Markov inequality with the exponent s, for all x and m satisfying (35) and (36),

P

(
N
[
λ+X+ + λ−X−

] ≥ E
[
λ+ξ+ + λ−ξ−]m + m14/15

∣∣∣ i−1⋂
i′=0

Ai′ ,
{
η̄N (ti) = x

}
,Bm,ti ,Dm,ti

)

≤ E

[
esN[λ+X++λ−X−]

∣∣∣ i−1⋂
i′=0

Ai′ ,
{
η̄N (ti) = x

}
,Bm,ti ,Dm,ti

]
e−s(E[λ+ξ++λ−ξ−]m+m14/15)

≤ (
E
[
es[λ+ξ++λ−ξ−]]+ Cδ

)m
e−s(E[λ+ξ++λ−ξ−]m+m14/15)

= (
E
[
es(λ+[ξ+−E[ξ+]]+λ−[ξ−−E[ξ−]])]+ e−sE[λ+ξ++λ−ξ−]Cδ

)m
e−sm14/15

= (
1 + E

[
s
(
λ+[ξ+ − E

[
ξ+]]+ λ−[ξ− − E

[
ξ−]])]+ Cδ +O

(
s2 + sδ

))m
e−sm14/15

= (
1 + Cδ +O

(
s2 + sδ

))m
e−sm14/15

≤ exp
{
m
[
Cδ +O

(
s2 + sδ

)]− sm14/15} as s, δ → 0.

Next, taking 2M6 > N > M6 and M large enough, and plugging s = 2Cδm1/15 = O(M−2/3) (as M → ∞) into
the above exponential Markov inequality, we obtain

P

(
N
[
λ+X+ + λ−X−

] ≥ E
[
λ+ξ+ + λ−ξ−]m + m14/15

∣∣∣ i−1⋂
i′=0

Ai′ ,
{
η̄N (ti) = x

}
,Bm,ti ,Dm,ti

)

≤ exp
{−Cδm +O

(
M11/3)}

≤ exp
{−AM4} (37)
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for sufficiently small positive A < CK2ε2
0/2 ≤ CK2η2

(N)(ti)/2 and sufficiently large M as we conditioned on Bm,ti ,

e.g. let A = CK2ε2
0/10.

The exponential in M4 lower bound on

P

(
N
[
λ+X+ + λ−X−

] ≤ E
[
λ+ξ+ + λ−ξ−]m − m14/15

∣∣∣ i−1⋂
i′=0

Ai′ ,
{
η̄N (ti) = x

}
,Bm,ti ,Dm,ti

)

follows via a symmetrical argument. Specifically, for C > 0 large enough, and all s ∈ [0,1],

E

[
e−sN[λ+X++λ−X−]

∣∣∣ i−1⋂
i′=0

Ai′,
{
η̄N (ti) = x

}
,Bm,ti ,Dm,ti

]
≤ (

E
[
e−s[λ+ξ++λ−ξ−]]+ Cδ

)m
.

Therefore, taking s = 2Cδm1/15 =O(M−2/3), we obtain

P

(
N
[
λ+X+ + λ−X−

] ≤ E
[
λ+ξ+ + λ−ξ−]m − m14/15

∣∣∣ i−1⋂
i′=0

Ai′ ,
{
η̄N (ti) = x

}
,Bm,ti ,Dm,ti

)

≤ E

[
e−sN[λ+X++λ−X−]

∣∣∣ i−1⋂
i′=0

Ai′ ,
{
η̄N (ti) = x

}
,Bm,ti ,Dm,ti

]
es(E[λ+ξ++λ−ξ−]m−m14/15)

≤ (
E
[
e−s[λ+ξ++λ−ξ−]]+ Cδ

)m
es(E[λ+ξ++λ−ξ−]m−m14/15)

= (
1 + Cδ +O

(
s2 + sδ

))m
e−sm14/15

≤ exp
{
m
(
Cδ +O

(
s2 + sδ

))− sm14/15}
≤ exp

{−Cδm +O
(
M11/3)}

≤ exp
{−AM4} (38)

for sufficiently small positive A < CK2ε2
0/2 ≤ CK2η2

(N)(ti)/2 and sufficiently large M .
Thus, plugging λ+ = λ− = 1 into (37) and (38), we obtain the following inequality. For each k and M large enough,

there exists a > 0 such that

P

(∣∣(ηk,N (ti+1) − ηk,N (ti)
)− E[ξ ]m/N

∣∣ < m14/15/N

∣∣∣ i−1⋂
i′=0

Ai′ ,
{
η̄N (ti) = x

}
,Bm,ti ,Dm,ti

)

≥ 1 − exp
{−aM4}

for all i = 0,1, . . . ,M − 1 and all x and m satisfying (35) and (36).
Now, (34) implies for any event F ,

P

(
F

∣∣∣ i⋂
i′=0

Ai′

)
=

∑
x,m

P

(
F

∣∣∣ i−1⋂
i′=0

Ai′ ,
{
η̄N (ti) = x

}
,Bm,ti ,Dm,ti

)

× P

({
η̄N (ti) = x

}∩ Bm,ti ∩ Dm,ti

∣∣∣ i⋂
i′=0

Ai′

)
,

where, by (34),

∑
m,x

P

({
η̄N (ti) = x

}∩ Bm,ti ∩ Dm,ti

∣∣∣ i⋂
i′=0

Ai′

)
= 1.
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Therefore, since here m14/15/N = O(M−4/3), δ2 = O(M−2), and (1 + δ)N−1/3 = O(M−2), there is a large
enough ck > 0 such that

P

(∣∣∣∣[ηk,N (ti+1) − ηk,N (ti)
]− E[ξ ]δ η2

(N)(ti)

2

∣∣∣∣< ckδ
4/3

∣∣∣ i⋂
i′=0

Ai′

)

=
∑
x,m

P

(∣∣∣∣[ηk,N (ti+1) − ηk,N (ti)
]− E[ξ ]δ η2

(N)(ti)

2

∣∣∣∣< ckδ
4/3

∣∣∣ i−1⋂
i′=0

Ai′ ∩
{
η̄N (ti) = x

}∩ Bm,ti ∩ Dm,ti

)

× P

({
η̄N (ti) = x

}∩ Bm,ti ∩ Dm,ti

∣∣∣ i⋂
i′=0

Ai′

)

≥
∑
x,m

P

(∣∣∣∣[ηk,N (ti+1) − ηk,N (ti)
]− E[ξ ]m/N

∣∣∣∣< m14/15/N

∣∣∣ i−1⋂
i′=0

Ai′ ∩
{
η̄N (ti) = x

}∩ Bm,ti ∩ Dm,ti

)

× P

({
η̄N (ti) = x

}∩ Bm,ti ∩ Dm,ti

∣∣∣ i⋂
i′=0

Ai′

)

≥ 1 − exp
{−aM4} (39)

for all i = 0,1, . . . ,M − 1, 2M6 > N > M6, and M large enough, as

i−1⋂
i′=0

Ai′ ∩ Bm,ti ∩ Dm,ti ⊆
i⋂

i′=0

Ai′ .

• Step II. Observe that as we condition on {η̄N (ti) = x} ∩ Bm,ti ∩ Dm,ti in (39),

E[ξ ] = −2
η2

k,N (ti)

η2
(N)(ti)

+ η2
k−1,N (ti)

η2
(N)(ti)

(1 − δ1,k) − 2ηk,N (ti)gk+1,N (ti)

η2
(N)(ti)

= η2
k−1,N (ti)

η2
(N)(ti)

(1 − δ1,k) − 2
ηk,N (ti)gk,N (ti)

η2
(N)(ti)

and ∣∣∣∣mN − δ
η2

(N)(ti)

2

∣∣∣∣≤ δ2 + (1 + δ)N−1/3.

Thus, (39) will imply the following system of difference equations with the initial conditions and the error bound as
mentioned below.

�δη1,N (ti) = −η1,N (ti)η(N)(ti) + E ′
1(ti),

(40)

�δηk,N (ti) = η2
k−1,N (ti)

2
− ηk,N (ti)gk,N (ti) + E ′

k(ti) for k ≥ 2

with the initial conditions(
η1,N (0), η2,N (0), . . . , ηk,N (0), . . .

)= (1,0,0, . . .),



1102 Y. Kovchegov and I. Zaliapin

where for a given ρ ∈N and c = max1≤k≤ρ{ck} we have |E ′
k(ti)| < cδ1/3 for each 1 ≤ k ≤ ρ. Here, for each k, the kth

equation holds with probability of at least

1 −
M∑
i=0

[
1 − P

(
i⋂

i′=0

Ai′

)
· (1 − exp

{−aM2/3})]

≥ 1 − M

[
1 − P

(
M−1⋂
i′=0

Ai′

)
· (1 − exp

{−aM2/3})]

≥ 1 − M

[
1 −

(
1 − exp

{
−M + 4K

ε2
0M

})2M(
1 − exp

{−aM2/3})]

≥ 1 + M exp
{−aM2/3}− M

[
1 −

(
1 − exp

{
−M + 4K

ε2
0M

})2M]
→ 1 as M → ∞.

Finally, the same error propagation analysis as in Step IV in the proof of Lemma 1 is applied to compare the above
difference equations (40) to the difference equations that correspond to the following system of ODEs

d

dt
η1(t) = −η1(t)η(t),

d

dt
ηk(t) = η2

k−1(t)

2
− ηk(t)gk(t) for k ≥ 2

with the initial conditions(
η1(0), η2(0), . . . , ηk(0), . . .

)= (1,0,0, . . .),

where gk(t) := η(t) −∑
i:i<k ηi(t). The above system of ODEs can be converted into the following system of differ-

ence equations

�δη1(ti) = −η1(ti)η(ti) + E1(ti),
(41)

�δηk(ti) = η2
k−1(ti)

2
− ηk(ti)gk(ti) + Ek(ti) for k ≥ 2

with the error

Ek(ti) = η′′
k (ci,k)

2
δ for some ci,k ∈ (ti , ti+1).

Here |E1(ti)| = |η′′
1 (ci,1)|

2 δ < 3
4δ as η′′

1(t) = −[η1(t)η(t)]′ = 3
2η1(t)η

2(t).
The error for k > 1 is

∣∣Ek(ti)
∣∣ = |η′′

k (ci,k)|
2

δ ≤ k + 2

2
δ

as

η′′
k (t) =

[
η2

k−1(t)

2
− ηk(t)gk(t)

]′

= ηk−1(t)η
′
k−1(t) − η′

k(t)gk(t) − ηk(t)g
′
k(t)



Horton self-similarity of Kingman’s coalescent tree 1103

= ηk−1(t)

(
η2

k−2(t)

2
− ηk−1(t)gk−1(t)

)
−
(

η2
k−1(t)

2
− ηk(t)gk(t)

)
gk(t)

− ηk(t)

(
−η2

k(t)

2
− η1(t)η(t) +

∑
i:2≤i<k

[
η2

i−1(t)

2
− ηi(t)gi(t)

])
and for each i, |ηi(t)| ≤ 1 and |gi(t)| ≤ 1.

• Step III. Next, we notice that the error propagates as in (27), iteratively producing for each k ∈N
+,

εk,i := ηk,N (ti) − ηk(ti) =O
(
M−1).

Indeed, if εi = η(N)(ti) − η(ti), then conditioning on the event
⋂M−1

i=0 Ai , the approximation error εi was shown to
satisfy |εi | ≤ iKCK/M2.

Let d1 := 3
4 , and for k > 1, dk := k+2

2 . Then |Ek(ti)| ≤ dkδ. Next let ε0,i := 0 for all i. Also, we observe that
εk,0 = 0 for all k ≥ 0 because of the same initial conditions in systems (40) and (41).

From the difference equations (40) and (41), we have the error propagating as follows

εk,i+1 = εk,i + δ

(
η2

k−1,N (ti)

2
− η2

k−1(ti)

2

)
− δ

(
ηk,N (ti)gk,N (ti) − ηk(ti)gk(ti)

)
+ δ

(
E ′

k(ti) − Ek(ti)
)

= εk,i + δ

(
ηk−1(ti)εk−1,i + ε2

k−1,i

2

)

− δ

((
ηk(ti) + εk,i

)[
εi −

k−1∑
k′=1

εk′,i

]
+ gk(ti)εk,i

)

+ δ
(
E ′

k(ti) − Ek(ti)
)

and therefore

|εk,i+1| ≤ |εk,i | + δ|εk−1,i | + δ
ε2
k−1,i

2
+ δ

[
|εi | +

k∑
k′=1

|εk′,i |
]

+ δεk,i

[
|εi | +

k−1∑
k′=1

|εk′,i |
]

+ cδ4/3 + δ2dk. (42)

The inequality (42) is crucial for proving the following statement by induction. We claim that for each integer
ρ > 0 and M large enough,

|εk,i | ≤ (c + 1)2k δ1/3

ρ

[
(1 + 2δρ)i − 1

]
for all k ∈ {1, . . . , ρ} and i = 0,1, . . . ,M − 1.

The basis step follows from the initial conditions ε0,i = 0 and εk,0 = 0. The inductive step is obtained from (42) as
follows. Suppose for a choice of k ∈ {1, . . . , ρ} and i,

|εk′,j | ≤ (c + 1)2k′ δ1/3

ρ

[
(1 + 2δρ)j − 1

]
for all j = 0,1, . . . ,M − 1 whenever k′ < k, and

|εk,j | ≤ (c + 1)2k δ1/3

ρ

[
(1 + 2δρ)j − 1

]
whenever j ≤ i.
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Observe that

δ

k∑
k′=1

|εk′,i | ≤ δρ(c + 1)2k δ1/3

ρ

[
(1 + 2δρ)i − 1

]
and hence

|εk,i | + δ|εk−1,i | + δ

k∑
k′=1

|εk′,i | + cδ4/3 ≤ (c + 1)2k δ1/3

ρ

[
(1 + δ/2 + δρ)(1 + 2δρ)i − 1

]− C1δ
4/3

≤ (c + 1)2k δ1/3

ρ

[
(1 + 2δρ)i+1 − 1

]− C1δ
4/3,

with C1 = (c + 1)2k−1ρ−1 + (c + 1)2k − c > 0. At the same time, all other terms in (42) are estimated from above by
functions that have higher powers of δ:

δ
ε2
k−1,i

2
≤ (c + 1)222k−3 δ5/3

ρ2

[
e2Kρ − 1

]2
,

δ|εi | ≤ δ2CK,

δεk,i |εi | ≤ CK(c + 1)2k δ7/3

ρ

[
e2Kρ − 1

]
,

δεk,i

k−1∑
k′=1

|εk′,i | ≤ (c + 1)222k δ5/3

ρ

[
e2Kρ − 1

]2
,

where we used the observation (1 + 2δρ)i ≤ (1 + 2δρ)M ≤ e2Kρ . This implies that

|εk,i+1| ≤ (c + 1)2k δ1/3

ρ

[
(1 + 2δρ)i+1 − 1

]
for M large enough, and therefore δ small enough, thus proving the claim. Hence

|εk,i | ≤ (c + 1)2k δ1/3

ρ

[
(1 + 2δρ)i − 1

]≤ (c + 1)2k δ1/3

ρ

[
e2Kρ − 1

]=O
(
δ1/3)

for any ρ and all k ∈ {1, . . . , ρ}.
Therefore, conditioning on the event

⋂M−1
i=0 Ai , we have the following upper bound for any k ∈ {1, . . . , ρ} and for

all i ∈ {0,1, . . . ,M − 1}. If t ∈ (ti , ti+1), then∣∣ηk,N (t) − ηk(t)
∣∣ ≤ ∣∣ηk,N (t) − ηk,N (ti)

∣∣+ ∣∣ηk,N (ti) − ηk(ti)
∣∣+ ∣∣ηk(ti) − ηk(t)

∣∣
≤ 2

(
η(N)(ti) − η(N)(t)

)+ (c + 1)2k δ1/3

ρ

[
e2Kρ − 1

]+ ∣∣ηk(ti) − ηk(t)
∣∣

≤ 2
(
η(N)(ti) − η(N)(ti+1)

)+ (c + 1)2k δ1/3

ρ

[
e2Kρ − 1

]+ ∣∣ηk(ti) − ηk(t)
∣∣

= 2
(
η(N)(ti) − η(ti)

)+ 2
(
η(ti+1) − η(N)(ti+1)

)+ 2
(
η(ti) − η(ti+1)

)
+ (c + 1)2k δ1/3

ρ

[
e2Kρ − 1

]+ ∣∣ηk(ti) − ηk(t)
∣∣

≤ (
5K2 + 4K + 4

)
/M + (c + 1)2k δ1/3

ρ

[
e2Kρ − 1

]+ 3δ
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as the net change |ηk,N (t) − ηk,N (ti)| in the number of clusters of order k is dominated by twice the net change
η(N)(ti) − η(N)(t) in the total number of clusters. We also used

η(N)(ti′) − η(ti′) ≤
(

5

4
K2 + K + 1

)/
M for all i′ ∈ {0,1, . . . ,M}

shown in (27),

2
(
η(ti) − η(ti+1)

)≤ δ

shown in (30), and that there exists c′
i ∈ (ti , ti+1) such that

∣∣ηk(ti) − ηk(t)
∣∣= (t − ti )

∣∣∣∣ d

dt
ηk

(
c′
i

)∣∣∣∣= (t − ti )

∣∣∣∣η2
k−1(c

′
i )

2
− ηk

(
c′
i

)
gk

(
c′
i

)∣∣∣∣≤ 2δ.

Thus, for any k,

‖ηk,N − ηk‖L∞[0,K] → 0 in probability.

• Step IV. Finally, observe that for any ε > 0 and for K > 2 large enough so that η(K) < ε,

ηk(t) ≤ η(t) ≤ η(K) < ε for all t ≥ K

and, by (32),

P
(∥∥ηk,N (t) − ηk(t)

∥∥
L∞[K,∞)

> ε
) ≤ P

(∥∥ηk,N (t)
∥∥

L∞[K,∞)
> ε

)
≤ P

(∥∥η(N)(t)
∥∥

L∞[K,∞)
> ε

)
= P

(
η(N)(K) > ε

)
≤ 2(1 − ε)

εK
.

Thus, together with the previous step, we have shown that for each k,

‖ηk,N − ηk‖L∞[0,∞) → 0

in probability. �

Appendix C: Proof of Lemma 3

Observe that when we plug in λ+ = 1 and λ− = 0 into (37) and (38), we obtain that in the difference equations
(40), the number of emerging clusters of Horton–Strahler order j within the time interval [ti , ti+1] divided by N

is

p(1)m +O(m14/15)

N
= η2

j−1,N (ti)

2
· δ +O

(
δ4/3)

for all i = 0,1, . . . ,M − 1, δ = K/M , and m satisfying∣∣∣∣m − δN
η2

(N)(ti)

2

∣∣∣∣≤ δ2N + (1 + δ)N2/3,
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with probability approaching 1 exponentially fast as 2M6 > N > M6 → ∞. Here

K
δ

−1∑
i=0

η2
j−1,N (ti)

2
· δ

converges almost surely to
∫ K

0
η2
j−1,N (t)

2 dt as δ → 0.
Hence, for j ≥ 2, the total number Nj(K) of emerging clusters of Horton–Strahler order j within the time interval

[0,K] divided by N is

Nj(K)/N =
∫ K

0

η2
j−1,N (t)

2
dt +O

(
δ1/3)

with probability approaching 1 as M → ∞.
Fix ε > 0. We established that ‖ηj,N − ηj‖L∞[0,K] → 0 in probability. Then∣∣∣∣∫ K

0

η2
j−1(t)

2
dt −

∫ K

0

η2
j−1,N (t)

2
dt

∣∣∣∣≤ K

2
‖ηj−1 + ηj−1,N‖L∞[0,K] · ‖ηj−1 − ηj−1,N‖L∞[0,K] → 0.

Thus, |Nj(K)/N − ∫ K

0
η2
j−1(t)

2 dt | < ε with probability PK,ε,N → 1 as N → ∞.
Now, for K > 2(1 − ε)/ε,∫ ∞

K

η2
j−1(t)

2
dt ≤

∫ ∞

K

η2(t)

2
dt =

∫ ∞

K

2

(t + 2)2
dt = 2

K + 2
< ε

and

P
(
η(N)(K) < ε

)≥ 1 − 2(1 − ε)

εK
.

Therefore, the total number of emerging clusters of Horton–Strahler order j within [0,∞) time interval divided by
N satisfies

P

(∣∣∣∣Nj/N −
∫ ∞

0

η2
j−1(t)

2
dt

∣∣∣∣< 3ε

)

≥ P

((
Nj − Nj(K)

)
/N < ε,

∣∣∣∣Nj(K)/N −
∫ K

0

η2
j−1(t)

2
dt

∣∣∣∣< ε

)

≥ min

{
P
((

Nj − Nj(K)
)
/N < ε

)
,P

(∣∣∣∣Nj(K)/N −
∫ K

0

η2
j−1(t)

2
dt

∣∣∣∣< ε

)}
≥ min

{
1 − 2(1 − ε)

εK
,PK,ε,N

}
→ 1 − 2(1 − ε)

εK

as N → ∞.
Thus, since we can take K as large as we want,

P

(∣∣∣∣Nj/N −
∫ ∞

0

η2
j−1(t)

2
dt

∣∣∣∣< 3ε

)
→ 1. �
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