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The asymptotic behavior of the stochastic gradient algorithm using bi-
ased gradient estimates is analyzed. Relying on arguments based on dynamic
system theory (chain-recurrence) and differential geometry (Yomdin theorem
and Lojasiewicz inequalities), upper bounds on the asymptotic bias of this al-
gorithm are derived. The results hold under mild conditions and cover a broad
class of algorithms used in machine learning, signal processing and statistics.

CONTENTS
1. Introduction . . . . . . . . . . . e 3255
2. Mainresults . . . . . .. e e e e 3256
3. Stochastic gradient search with Markovian dynamics . . . . .. ... ... .. ... .... 3262
4. Application to reinforcement learning . . . . . . ... ... L Lo oL 3264
5. Proof of part (i) of Theorem 2.1 . . . . . . . . . . . . . . e 3267
6. Proof of parts (ii), (iii) of Theorem 2.1 . . . . .. ... ... ... ... ... . ..., 3269
7. Proof of Theorem 3.1 . . . . . . . . . . . . e 3277
8. Proof of Theorem 4.1 . . . . . . . . . . . . e e 3279
Appendix A . . . L e 3289
Appendix B . . . .. 3296
Acknowledgments . . . . . . ... 3302
References . . . . . . . . . e e 3302

1. Introduction. Many problems in automatic control, system identification,
signal processing, machine learning, operations research and statistics can be
posed as a stochastic optimization problem, that is, as a minimization (or max-
imization) of an unknown objective function whose values are available only
through noisy observations. Such a problem can be solved efficiently by stochastic
gradient search (also known as the stochastic gradient algorithm). Stochastic gra-
dient search is a procedure of the stochastic approximation type which iteratively
approximates the minima of the objective function using a statistical or Monte
Carlo estimator of the gradient of the objective function. Often, the estimator is
biased, since unbiased gradient estimation is usually either too computationally
expensive or not available at all. As a result of using biased gradient estimates, the
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stochastic gradient search is also biased, that is, the algorithm does not converge
to the minima, but to their vicinity. In order to interpret the results produced by
such an algorithm and to tune the algorithm’s parameters (e.g., to achieve a better
bias/variance tradeoff and a better convergence rate), it is important to study the
asymptotic behavior and the asymptotic bias of the algorithm iterates.

Despite its practical and theoretical importance, the asymptotic behavior of
stochastic gradient search using biased gradient estimates (also referred to as bi-
ased stochastic gradient search) has not attracted much attention in the literature.
To the best of the authors’ knowledge, this has only been analyzed in [11, 15, 16]
and [14]. Although these results provide a good insight, they hold under restrictive
conditions which are very hard to verify for complex stochastic gradient algo-
rithms. Moreover, unless the objective function is of a simple form (e.g., convex
or polynomial), none of these papers offers explicit bounds on the asymptotic bias
of the algorithm iterates.

In this paper, we provide an original analysis of the asymptotic behavior of bi-
ased stochastic gradient search. Using arguments based on dynamic system theory
(chain-recurrence) and differential geometry (Yomdin theorem and Lojasiewicz
inequalities), we prove that the algorithm iterates converge to a vicinity of the set
of minima. Relying on the same arguments, we also derive upper bounds on the
radius of the vicinity (i.e., on the asymptotic bias of the algorithm iterates). Our
results hold under mild and easily verifiable conditions and cover a broad class of
complex stochastic gradient algorithms. We illustrate here how these results can
be applied to the asymptotic analysis of a popular policy-gradient (reinforcement)
learning algorithm proposed in [2]. In [33] (an extended version of this paper),
these results have also been used to evaluate the asymptotic bias of an adaptive
population Monte Carlo method and the asymptotic bias of recursive maximum
split-likelihood estimation procedure for hidden Markov models.

The rest of this paper is organized as follows. The main results are presented
in Section 2, where the biased stochastic gradient search is analyzed. In Section 3,
these general results are applied to stochastic gradient algorithms with Markovian
dynamics. In Section 4, we apply the results of Sections 2 and 3 to a policy-gradient
algorithm. The results presented in Sections 2—4 are proved in Sections 5-8.

2. Main results. In this section, the asymptotic behavior of the following al-
gorithm is analyzed:

2.1 Ont1=0p —an(V f(6n) + &), n>0.

Here, f: R% — R is a differentiable function, while {an}n>0 1s a sequence of pos-
itive real numbers. ) is an R%-valued random variable defined on a probability
space (€2, F, P), while {&,},>0 is an R% -yalued stochastic process defined on the
same probability space. To allow more generality, we assume that for each n > 0,
&, is arandom function of 8y, ..., 6,. In the area of stochastic optimization, recur-
sion (2.1) is known as a stochastic gradient search or stochastic gradient algorithm.
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The recursion minimizes the objective function f(-). The term V f(6,) + &, is in-
terpreted as an estimator of the gradient V f(6,), &, representing the estimator’s
noise. For further details, see [27, 30] and references given therein.

Throughout the paper, the following notation is used. || - || and d(-, -) stand for
the Euclidean norm and the distance induced by the Euclidean norm (respectively).
For t € (0, 00) and n > 0, a(n, t) is the integer defined as

k—1
a(n,t) =max{k >n: Z“i St}.

i=n
S and f(S) denote the sets of stationary points and critical values of f(-), that is,
(2.2) S={9€Rd9:Vf(8)=0}, f(S)={f©):0eS}.

For 6 € R%, 7(-;0) is the solution to the ODE do/dt = —V f(0) satisfying
7 (0; 8) = 6. R denotes the set of chain-recurrent points of this ODE, thatis, 8 € R
if and only if for any §, ¢t € (0, 0o0), there exist an integer N > 1, real numbers
H,...,ty €[t,00) and vectors ¥y, ..., 0y € R (each of which can depend on 6,
8, t) such that

(2.3) |1 =0l =34, |7 (v On) — 6 <6, 19k+1 — 7w (tx; )| < 8

for1 <k <N.

Elements of R can be considered as limits to slightly perturbed solutions to the
ODE d6/dt = —V f(8). As the piecewise linear interpolation of sequence {6, },>0
falls into the category of such solutions, the concept of chain-recurrence is tightly
connected to the asymptotic behavior of stochastic gradient search. In [3, 4], it has
been shown that for unbiased gradient estimates, all limit points of {8, },>0 belong
to R and that each element of R can potentially be a limit point of {6,},>0 with a
nonzero probability.

If f(-) is Lipschitz continuously differentiable, it can be established that S C R.
If additionally f(S) is of a zero Lebesgue measure (which holds when f(S) is dis-
crete or when f(-) is dp-times continuously differentiable), then S = R. However,
if f(-) is only Lipschitz continuously differentiable, then it is possible to have
R\S # @ (see [18], Section 4). Hence, in general, a limit point of {8, },>0 isin R
but not necessarily in S. For more details on chain-recurrence, see [3, 4, 11] and
references therein. Given these results, it will prove useful to involve both R and
S in the asymptotic analysis of biased stochastic gradient search.

The algorithm (2.1) is here analyzed under the following assumptions.

ASSUMPTION 2.1. lim,_, 0, =0and ) ;2 ya, = 00.

ASSUMPTION 2.2. {&,},>0 admits the decomposition &, = ¢, + n, for each
n > 0. {¢uln>0 and {nu}y>0 are R9% -valued stochastic processes [defined on
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(2, F, P)] which satisty
k

> aigi

i=n

2.4) lim  max

=0, lim sup ||, < oo
n—>®p<k<a(n,t) n—o00

almost surely on {sup,,~( |6, || < oo} for any 7 € (0, 00).
ASSUMPTION 2.3.a.  V f(-) is locally Lipschitz continuous on R%
ASSUMPTION 2.3.b.  f(-) is p-times differentiable on R% where p > dj.
ASSUMPTION 2.3.c.  f(-) is real-analytic on R%

REMARK. Due to Assumption 2.1, a(n, t) is well defined and finite for all
te€(0,00),n>0.

Assumption 2.1 corresponds to the step-size sequence {o, },>0 and is commonly
used in the asymptotic analysis of stochastic gradient algorithms. It is satisfied if
oy, =n"%forn > 1, wherea € (0, 1].

Assumption 2.2 is a noise condition. It can be interpreted as a decomposition of
the gradient estimator’s noise {&,},>0 into a zero-mean sequence {,},>0 (wWhich
is averaged out by step-sizes {&,},>0) and the estimator’s bias {n,},>0. Assump-
tion 2.2 is satisfied if {¢,},>0 is a martingale-difference or mixingale sequence,
and if {n, },>0 are continuous functions of {6, },,>0. It also holds for gradient search
with Markovian dynamics (see Section 3). If the gradient estimator is asymptoti-
cally unbiased (i.e., lim;,—, o 17, = 0 almost surely), Assumption 2.2 reduces to the
Kushner—Clark condition, the weakest noise assumption under which the almost
sure convergence of (2.1) can be demonstrated.

Assumptions 2.3.a, 2.3.b and 2.3.c are related to the objective function f(-) and
its analytical properties. Assumption 2.3.a is involved in practically any asymp-
totic result for stochastic gradient search (as well as in many other asymptotic
and nonasymptotic results for stochastic and deterministic optimization). Although
much more restrictive than Assumption 2.3.a, Assumptions 2.3.b and 2.3.c hold for
a number of algorithms routinely used in engineering, statistics, machine learning
and operations research. In Section 4, Assumptions 2.3.b and 2.3.c are shown to
hold for a policy-gradient algorithm. In [33], the same assumptions are verified
for an adaptive population Monte Carlo method and for recursive maximum split-
likelihood estimation in hidden Markov models. In [31], Assumption 2.3.c (which
is a special case of Assumption 2.3.b) has been shown to hold for recursive max-
imum (full) likelihood estimation in hidden Markov models. In [32], the same
assumption has also been verified for supervised and temporal-difference learn-
ing, online principal component analysis, Monte Carlo optimization of controlled
Markov chains and recursive parameter estimation in linear stochastic systems.
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Compared to Assumption 2.3.a, Assumptions 2.3.b and 2.3.c allow some so-
phisticated results from differential geometry to be applied to the asymptotic anal-
ysis of stochastic gradient search. More specifically, Yomdin theorem (a qualitative
version of the Morse—Sard theorem; see [34] and Proposition 6.1 in Section 6) can
be applied to functions satisfying Assumption 2.3.b, while Lojasiewicz inequali-
ties (see [23, 24]; see also Proposition 6.2 in Section 6) hold for functions verifying
Assumption 2.3.c. Using the Yomdin theorem and Lojasiewicz inequalities, a more
precise characterization of the asymptotic bias of the stochastic gradient search can
be obtained [see Parts (ii) and (iii) of Theorem 2.1].

In order to state the main results of this section, we need some further notation.
Let n denote the asymptotic magnitude of the gradient estimator’s bias {n,},>0,
that is,

2.5 n = limsup ||, .
n—oo

Moreover, for a compact set Q C R% | et A ¢ denote the event

(2.6) Ao =liminf(6, € 0} = | J ({6 € 0.
n=0k=n

With this notation, our main result on the asymptotic bias of the recursion (2.1)
can be stated as follows.

THEOREM 2.1. Suppose that Assumptions 2.1 and 2.2 hold. Let Q C R% be
any compact set. Then the following are true:

1) If f () satisfies Assumption 2.3.a, there exists a (deterministic) nondecreas-
ing function Yr¢ : [0, 00) — [0, 00) [independent of n and depending only on f(-)]
such that lim; .0 Yo (t) = Y0 (0) =0 and

2.7 limsupd (6, R) < ¥o(n)
n—o0
almost surely on A .
(i1) If f(-) satisfies Assumption 2.3.b, there exists a real number K o € (0, 00)
[independent of n and depending only on f(-)] such that

(2.8) limsup |V £ (6,)| < Kon?’?,
n—oQ
(2.9) limsup f(6,) — liminf f(6,) < Kon?
n— 00 n—00

almost surely on A g, where g = (p —dg)/(p — 1).
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(iii) If f(-) satisfies Assumption 2.3.c, there exist real numbers rg € (0, 1),
Lo € (0, 00) [independent of n and depending only on f(-)] such that

(2.10) limsupd(6,,S) < Lgn'?,
n— oo
(2.11) limsup||V £ (6,)| < Lon'/?,
n— o0
(2.12) limsupd(f(en), f(S)) <Lgn
n—oo

almost surely on A g.

Theorem 2.1 is proved in Sections 5 and 6, while its global version is provided
in Appendix A.

REMARK. If Assumption 2.3.b (or Assumption 2.3.c) is satisfied, then S = R.
Hence, under Assumption 2.3.b, (2.7) still holds if R is replaced with S.

REMARK. Function ¥¢(-) depends on f(-) in two ways. First, it depends on
f(-) through R and its geometric properties. Second, it depends on f(-) through
upper bounds of ||V f(-)|| and Lipschitz constants of V f(-). An explicit construc-
tion of ¥ (-) is provided in the proof of Part (i) of Theorem 2.1 (Section 5).

REMARK. Like ¥ (-), constants Ko and Lo depend on f(-) through upper
bounds of ||V f(-)|| and Lipschitz constants of V f(-). K¢ and L ¢ also depend on
f () through the Yomdin and Lojasiewicz constants (quantities Mg, M1 g, M> o
specified in Propositions 6.1, 6.2). Explicit formulas for Ky and L are included
in the proof of Parts (ii) and (iii) of Theorem 2.1 (Section 6).

According to the literature on stochastic optimization and stochastic approxima-
tion, stochastic gradient search with unbiased gradient estimates (the case when
n = 0) exhibits the following asymptotic behavior. Under mild conditions, se-
quences {6, },>0 and { f(6,)}»>0 converge to R and f(R) (respectively), that is,

(2.13) Jlim d(0,.R)=0,  lim d(f (). f(R))=0

almost surely on {sup, - |6, || < oo} (see [4], Proposition 4.1, Theorem 5.7, which
hold under Assumptions 2.1, 2.2, 2.3.a). Under more restrictive conditions, se-
quences {6, },>0 and { f (6,)},>0 converge to S and a point in f(S) (respectively),
that is,

(2.14) nll)ngo d,,8)=0, nli)ngo V£, =0,

(215 lim d(f(n), £(S) =0,  limsup f(6,) =liminf f (6,)

n—oo
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almost surely on {sup,- [|6,] < oo} (see [4], Corollary 6.7, which holds under

Assumptions 2.1, 2.2, 2.3.b). The same asymptotic behavior occurs when As-

sumptions 2.1, 2.3.a hold and {£,},>0 is a martingale-difference sequence (see

[9], Proposition 1). When the gradient estimator is biased (the case where n > 0),

(2.13)—(2.15) are not true any more. Now, the quantities

(2.16) limsupd(6,,R), limsup|V £ (6,)
n—oo

n—oo

’

(2.17)  limsupd(f(©y), f(R)), limsup f(6,) — liminf £ (6,)

are strictly positive and depend on 7 (it is reasonable to expect these quantities to
decrease in 1 and to tend to zero as n — 0). Hence, the quantities (2.16), (2.17)
and their dependence on 1 can be considered as a sensible characterization of
the asymptotic bias of the gradient search with biased gradient estimation. In the
case of algorithm (2.1), such a characterization is provided by Theorem 2.1. The
theorem includes relatively tight, explicit bounds on the quantities (2.16), (2.17) in
the terms of the gradient estimator’s bias n and analytical properties of f(-).

The results of Theorem 2.1 are of a local nature. They hold only on the event
where algorithm (2.1) is stable (i.e., where sequence {6,},>0 belongs to a com-
pact set Q). Stating results on the asymptotic bias of stochastic gradient search in
such a local form is quite sensible due to the following reasons. The stability of
stochastic gradient search is based on well-understood arguments which are rather
different from the arguments used here to analyze the asymptotic bias. Moreover
(and more importantly), as demonstrated in Appendix A, it is relatively easy to get
a global version of Theorem 2.1 by combining the theorem with stability results
for stochastic approximation (e.g., with the results of [12]). It is also worth men-
tioning that local asymptotic results are quite common in the areas of stochastic
optimization and stochastic approximation (e.g., most of the results of [7], Part II,
similarly as Theorem 2.1, hold only on set A g).

Stochastic gradient search with biased gradient estimation has found many ap-
plications in areas such as statistical inference, system identification and machine
learning (see, e.g., [8, 13, 17, 27-29] and reference cited therein). However, to the
best of the authors’ knowledge, the asymptotic properties of biased stochastic gra-
dient search and biased stochastic approximation have only been studied in [11],
Section 5.3, [15, 16], [14], Section 2.7. The results obtained in these papers pro-
vide a good insight into the asymptotic behavior of the biased gradient search but
are based on restrictive conditions. They only hold if f(-) is unimodal or if {6, },,>0
belongs to the domain of an asymptotically stable attractor of d6/dt = —V f(0).
Additionally, they do not provide any explicit bound on the asymptotic bias of the
stochastic gradient search unless f(-) is of a simple form (e.g., convex or polyno-
mial). Unfortunately, in the case of complex stochastic gradient algorithms (such
as those studied in Section 4 and [33]), f(-) is usually multimodal with lot of
unisolated local extrema and saddle points. For such algorithms, not only it is hard
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to verify the assumptions adopted in [11], Section 5.3, [15, 16], [14], Section 2.7,
but these assumptions are likely not to hold at all.

Relying on the chain-recurrence, Yomdin theorem and Lojasiewicz inequali-
ties, Theorem 2.1 overcomes the described difficulties. The theorem allows the
objective function f(-) to be multimodal (with manifolds of unisolated extrema
and saddle points) and does not require d6/dt = —V f(6) to have an asymptot-
ically stable attractor which is infinitely often visited by {6,},>0. In addition to
this, Theorem 2.1 provides relatively tight, explicit bounds on the asymptotic bias
of algorithm (2.1).

3. Stochastic gradient search with Markovian dynamics. In order to illus-
trate the results of Section 2 and to set up a framework for the analysis carried
out in Section 4 and [33], we apply Theorem 2.1 to stochastic gradient algorithms
with Markovian dynamics. These algorithms are defined by the following differ-
ence equation:

3.1 Opt1="0n —ay (F(ena Zny1) + 7711)7 n>0.

In this recursion, F : R% x R% — R% is a Borel-measurable function, while
{an}n>0 1s a sequence of positive real numbers. 6y is an R% _valued random vari-
able defined on a probability space (2, F, P). {Z,},>0 is an R% -valued stochas-
tic process defined on (€2, F, P), while {1, },>0 is an R% -valued stochastic pro-
cess defined on the same probability space. {Z,},>0 is a Markov process con-
trolled by {6,},>0, that is, there exists a family of transition probability kernels
{TIg(-, ) : 6 € R%} defined on R% such that

(3.2) P(Z,4+1 € Bl Zo, ...,0n, Zy) =11y, (Z,, B)

almost surely for any Borel-measurable set B C R% and n > 0. {nn}n>0 are ran-
dom functions of {6,},>0, that is, n, is a random function of 6y, ..., 6, for each
n > 0. In the context of stochastic gradient search, F (6, Z,+1) + 1, represents an
estimator of the gradient V f(6,).

The algorithm (3.1) is analyzed under the following assumptions.

ASSUMPTION 3.1. 3% ja, = 00, 302 g2 < 00 and 300 |ty — yp1| <
Q.

ASSUMPTION 3.2.  There exist a differentiable function f : R% — R and a
Borel-measurable function F : R% x R% — R% such that V f(-) is locally Lips-
chitz continuous and

(3.3) F0,2) = Vf®)=F®,z)— (IIF)®,2)

for each § € R%, z € R%, where (I1F)(0,z) = [ F(0,2)T1y(z, dz).
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ASSUMPTION 3.3. For any compact set Q C R%, there exists a Borel-
measurable function ¢¢ :R% — [1, 00) such that
max{| F©@, 2, | F©, 2, [(TF)©, ]} < po(2),
[(MFYO',2) = MF)(E".2) | < po(2)]6" = 6"
forall 8,6',6” € Q, z € R%. Moreover,

sup E(<P2Q(Zn+1)1{rQ>n}|90 =0,Zy=2) <0

n>0

for all # € R%, 7 € R%, where 7 is the stopping time defined by 79 = inf({n >
0:6, ¢ Q}U{oo}).

ASSUMPTION 3.4.  limsup,_, o, ||7all < 0o almost surely on {sup,,~¢ [0x]l <
oo}.

Let R, S and f(S) have the same meaning as in Section 2 for the objective
function f(-) now specified in Assumption 3.2. Moreover, let n and A o have the
same meaning as in (2.5), (2.6). Then our results on the asymptotic behavior of the
recursion (3.1) read as follows.

THEOREM 3.1. Suppose that Assumptions 3.1-3.4 hold. Let f(-) be the func-
tion specified in Assumption 3.2, and let Q C R% be any compact set. Then the
following are true:

1) If f() satisfies Assumption 2.3.a, Part (i) of Theorem 2.1 holds.
(i) If f () satisfies Assumption 2.3.b, Part (ii) of Theorem 2.1 holds.
(i) If f () satisfies Assumption 2.3.c, Part (iii) of Theorem 2.1 holds.

Theorem 3.1 is proved in Section 7, while its global version is provided in Ap-
pendix B.

Assumption 3.1 is related to the sequence {&;},>0. It is satisfied if o, = 1/n
for n > 1, where a € (1/2, 1] is a constant. Assumptions 3.2 and 3.3 correspond
to the stochastic process {Z,},>0 and are standard for the asymptotic analysis
of stochastic approximation algorithms with Markovian dynamics. Basically, As-
sumptions 3.2 and 3.3 require the Poisson equation associated with algorithm (3.1)
to have a solution which is Lipschitz continuous in 6. They hold if the following
are satisfied: (i) I1g(-, -) is geometrically ergodic for each 0 € R%  (ii) the conver-
gence rate of ITj (-, -) is locally uniform in €, and (iii) ITg(-, -) is locally Lipschitz
continuous in & on R% (for further details, see [7], Chapter 11.2, [26], Chapter 17,
and references cited therein). Assumptions 3.2 and 3.3 have been introduced by
Métivier and Priouret in [25] (see also [7], Part II), and later generalized by Kush-
ner and his co-workers (see [22] and references cited therein). However, none of
these results cover the scenario where biased gradient estimates are used. The-
orem 3.1 fills this gap in the literature on stochastic optimization and stochastic
approximation.



3264 V. B. TADIC AND A. DOUCET

4. Application to reinforcement learning. In this section, Theorems 2.1 and
3.1 are applied to the asymptotic analysis of a popular policy-gradient search
algorithm for average-cost Markov decision problems introduced in [2]. Policy-
gradient search is one of the most important classes of reinforcement learning (for
further details see, e.g., [8, 28]).

In order to define controlled Markov chains with parametrized randomized
control and to formulate the corresponding average-cost decision problems, we
use the following notation. dgp > 1, Ny > 1, Ny > 1 are integers, while X =
{I,...,Ny}and Y ={l1,..., Ny}. ¢(x, y) is a nonnegative (real-valued) function
of (x,y) € X x Y. p(x’|x, y) and gg(y|x) are nonnegative (real-valued) functions
of (0, x,x",y) e R% x X x X x ) with the following properties: gg(y|x) is dif-
ferentiable in O for each § € R%, x € X, y ey, and

oWy =1 Y q(Vix)=1

x'eX y'ey

for the same 8, x, y. For 6 € R {(Xg, Yf)}nzo is an X x Y-valued Markov chain
which is defined on a (canonical) probability space (€2, F, Py) and satisfies

)

Py(Xpy =x Y =YXy =x.Y) =y)=qo(y|x") p(x’

foreach x,x’ € X, y,y € Y. f(-) is a function defined by
- 9 o
4.1 1® =n1ggoEe( Z«zs (x7.Y) )

for & € R% 2 With this notation, an average-cost Markov decision problem with
parameterized randomized control can be defined as the minimization of f(-). In
the literature on reinforcement learning and operations research, {X Z}nzo are re-
ferred to as a controlled Markov chain, while {Y,? }n>0 are called control actions.
p(x'|x, y) is referred to as the (chain) transition probability, while gg (y|x) is called
the (control) action probability. For further details on Markov decision processes,
see [8, 28] and references cited therein.

Since f(-) and its gradient rarely admit a closed-form expression, f(-) is mini-
mized using methods based on stochastic gradient search and Monte Carlo gradi-
ent estimation. Such a method can be derived as follows. Let s¢ (x, y) be the score
function defined by

Voge (y|x)

so(%. )= go(y1x)

Notice that f(6) is well defined when {X7},,>¢ is irreducible.
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for 0 e R%, x e X, yeY. If {(Xﬁ, Y,f)}nzo is geometrically ergodic, we have
f©) =1lim,_, o0 Eg(¢ (XY, Y?)) and

n’>-n

n—1
. 0 o 0 0
Vf(6)= lim Eq («zb(Xn, Y,) ZO 0 (Xis Yo ,)>
1=
[see the proof of Lemma 8.2 and in particular (8.4), (8.7)]. Hence, quantity

Xz’Yr? Z n i’ n z)

is an asymptotically unbiased estimator of V f (0) However it can have a very
large variance for large n so that the term sy(X? m_ir Y, _ l) is “discounted” by A,
where A € [0, 1) is a constant referred to as the discounting factor. This leads to
the following gradient estimator:

4.2) (X5 ¥) ZA‘ (Xo—i- Y-

This gradient estimator (4.2) is biased and its bias is of the order O (1 — 1) when
A — 1 (see Lemma 8.2). Combining gradient search with the estimator (4.2), we

get the policy-gradient algorithm proposed in [2]. This algorithm is defined by the
following difference equations:

Wig1 =AW, + 56, (Xn+1, Yug1),
Ont1 =0 —on®(Xni1, Yur1) What, n>0.

In the recursion (4.3), {a,},>0 is a sequence of positive reals, while 6y, Wy € R
are any (deterministic) vectors. {X,},>1 and {Y,},>1 are X’ and ) valued stochas-
tic processes (respectively) generated through the following Monte Carlo simula-
tions:

(4.3)

“44) Xn4110n, Xn, Yus ..., 00, Xo, Yo ~ p(|Xn, Yn),

Yot X041, 60, X, Yo ..., 00, X0, Yo ~ g6, (| Xns1), n>0,
where X € X, Yy € Y are deterministic quantities. Hence, {(X,,, ¥,)},>1 satisfies
P(Xn41=x, Yus1 = Y100, Xn, Y, ..., 00, Xo, Y0) = qo, (y|x) p(x|Xn, ¥»)

forallx e X,ye)Y,n>1.
Algorithm (4.3) is analyzed under the following assumptions.
ASSUMPTION 4.1. Forall § € R%, {Xg}nzo is irreducible and aperiodic.

ASSUMPTION 4.2. Forall e R¥%, x € X, y e, so(x,y) is well defined
(and finite). Moreover, for each x € X', y € Y, s9(x, y) is locally Lipschitz contin-
uous in 6 on R%
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ASSUMPTION 4.3.a. Foreachx € X,y € ), go(y|x) is p-times differentiable
in 6 on R%, where p > dj.

ASSUMPTION 4.3.b. Foreachx € X, y € Y, go(y|x) is real-analytic in 6 on
R,

Assumption 4.1 is related to the stability of the controlled Markov chain
{Xg}nzo- In this or similar form, it is often involved in the asymptotic analysis
of reinforcement learning algorithms (see, e.g., [8, 28]). Assumptions 4.2, 4.3.a
and 4.3.b correspond to the parameterization of the action probabilities gg (y]x).
They are satisfied for many commonly used parameterizations (such as natural,
exponential and trigonometric).

Let R, S and f(S) have the same meaning as in Section 2 for the objective
function f(-) now defined in (4.1). Moreover, let A have the same meaning as
in (2.6). Then our results on the asymptotic behavior of the recursion (4.3) read as
follows.

THEOREM 4.1.  Suppose that Assumptions 3.1, 4.1 and 4.2 hold. Let Q C R%
be any compact set. Then the following are true:

(i) There exists a (deterministic) nondecreasing function Yo : [0, 00) —
[0, 00) [independent of ) and depending only on ¢(x,y), p(x'|x,y), go(y|x)]
such that lim; 0 Yo (t) = Y (0) =0 and
limsupd(6,, R) < ¥o(l —A)

n—o0
almost surely on A .
(i) If Assumption 4.3.a is additionally satisfied, there exists a real num-
ber K¢ € (0, 00) [independent of A and depending only on ¢(x,y), p(x'|x,y),
qo (¥|x)] such that

limsup| V £ (6,)] < Ko(1 — 2)7/2,
n—oo

limsup f(6,) — liminf f (6,) < Ko (1 —1)?

n—oo

almost surely on Ao, where q = (p —dp)/(p — 1).

(iii) If Assumption 4.3.b is additionally satisfied, there exist real numbers rg €
(0, 1), Ly € (0, 00) [independent of A and depending only on ¢ (x,y), p(x'|x,y),
qo (¥|x)] such that

limsupd(6,,S) < Lo(1 —1)"2,

n—oo

limsup |V £(6,)] < Lo(1 —)"2,
n—oo

limsupd(f(6n), f(S)) < Lo(1—2)

almost surely on A g.
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Theorem 4.1 is proved in Section 8.

REMARK. Function ¥¢(-) depends on ¢ (x,y), p(x’|x,y), gg(y|x) through
function f(-) defined in (4.1) and its properties. It also depends on p(x’|x, y),
go (¥|x) through the properties of {(Xz, Y,? )In>0 (see Lemma 8.1). Additionally,
it depends on ¢(x,y), go(y|x) through upper bounds on |¢(x, y)|, |lse(x, )|l
Further details can be found in the proofs of Lemmas 8.1, 8.2 and Theorem 4.1
(Section 8).

REMARK. Like ¥¢(-), constants K and L depend on ¢ (x, y), p(x'|x, y),
qo(y|x) through function f(-) [defined in (4.1)] and its properties. Ko and Lg
also depend on ¢ (x, y), p(x’|x, y), go(y|x) through the ergodicity properties of
{(Xg, Y,?)},,Zo. Moreover, Ko and Lo depend on ¢(x,y), p(xX'|x,y), go(y|x)
through upper bounds on |¢ (x, y)|, ||se(x, y)||. For further details, see the proofs
of Lemmas 8.1, 8.2 and Theorem 4.1 (Section 8).

Although gradient search with “discounted” gradient estimation (4.2) is widely
used in reinforcement learning (apart from policy-gradient search, temporal-
difference and actor-critic learning also rely on the same approach), the available
literature does not give a quite satisfactory answer to the problem of its asymp-
totic behavior. To the best of the present authors’ knowledge, the existing results
do not offer even the guarantee that the asymptotic bias of recursion (4.3) goes to
zero as A — 1 (i.e., that {6, },>0 converges to a vicinity of S whose radius tends
to zero as A — 1). The paper [20] can be considered as the strongest result on
the asymptotic behavior of reinforcement learning with “discounted” gradient es-
timation. However, [20] only claims that a subsequence of {6,},>0 converges to
a vicinity of S whose radius goes to zero as A — 1. The main difficulty stems
from the fact that reinforcement learning algorithms are so complex that the exist-
ing asymptotic results for biased stochastic gradient search and biased stochastic
approximation [11], Section 5.3, [15, 16], [14], Section 2.7, cannot be applied. Re-
lying on the results presented in Sections 2 and 3, Theorem 4.1 overcomes these
difficulties. Under mild and easily verifiable conditions, Theorem 4.1 guarantees
that the asymptotic bias of algorithm (4.3) converges to zero as A — 1 [Part (i)].
Theorem 4.1 also provides relatively tight, polynomial bounds on the rate at which
the bias goes to zero [Parts (ii), (iii)].

5. Proof of part (i) of Theorem 2.1. In this section, we rely on the following
notation. For a set A € R% and ¢ € (0, 00), let V;(A) be the e-vicinity of A, that
is, Ve(A) = {0 e R% :d(H, A) < e}. For € R% and y € [0, 00), let F), (6) be the
set defined by

F,(0)={-Vf©O) +09:9cR® |9|<y)
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[notice that F),(0) is a set-valued function of 0]. For y € [0, 00), let &, be
the family of solutions to the differential inclusion d6/dt € F, (), that is, &,
is the collection of absolutely continuous functions ¢ : [0, 00) — R% satisfy-
ing do(t)/dt € F),(¢(t)) almost everywhere (in 7) on [0, 00). For a compact
set O C R9% and y €10,00), let Hp,, be the largest invariant set of the differ-
ential inclusion d6/dt € F),(0) contained in Q, that is, Hp , is the largest set
‘H with the following property: For any 6 € H, there exists a solution ¢ € &,
such that ¢(0) =6 and () € H for all ¢ € [0, c0). For a compact set Q C R
and y € [0, 00), let Rg,, be the set of chain-recurrent points of the differential
inclusion d6/dt € F,(0) contained in Q, that is, 6 € Rg,, if and only if for
any 6,1t € (0, 00), there exist an integer N > 1, real numbers t1, ...,y € [t, 00)
and solutions ¢, ...,y € ®, (each of which can depend on 6,4, ¢) such that
¢(0) e Hp,y for 1 <k <N and

lo1(0) — 0] <3, lon(tn) — 0] <8, lek (k) — r1(0)]| < 8

for 1 <k < N. For more details on differential inclusions and their solutions, in-
variant sets and chain-recurrent points, see [1, 5] and references cited therein.

LEMMA 5.1.  Suppose that Assumption 2.3.a holds. Then, given a compact set
Q C R% | there exists a nondecreasing function @0 :[0,00) — [0, 00) such that

lim, 0po(¥) =¢0(0) =0and Rg,, € Vy, ) (R) forall y € [0, o0).

PROOF. Let O C R% be any compact set. Moreover, let ¢ : [0, 00) —
[0, 00) be the function defined by ¢ (0) =0 and

do(y) =sup({d(®,R):6 e Rg., } U{0})

for y € (0,00). Then it is easy to show that ¢o(-) is well defined and satisfies
Ro.y S Voo (R) for all y € [0, 00). It is also easy to check that F),(6) C
F5(0) for all 6 € R v,8 € [0, 00) satisfying y < §. Consequently, ®, C &g,
Hoy SHos, Ro,y S Rp,s forall y,§ [0, 00) satisfying y < 8. Thus, ¢o(-)
is nondecreasing. Moreover, [6], Theorem 3.1, implies that given ¢ € (0, c0),
there exists a real number yg(¢e) € (0, 00) such that Rp , € V.(R) for all y €
[0, yo(¢)). Therefore, pp(y) < e forall € € (0, 00), y € [0, yg(e)). Consequently,
limy oo (y) = $o(0) =0. [

PROOF OF PART (i) OF THEOREM 2.1. Let Q C R% be any compact set
and let ¥¢ : [0,00) — [0, 00) be the function defined by Vo (t) = ¢o(2t) for
t € [0,00) [¢g(-) is specified in the statement of Lemma 5.1]. Then, due to
Lemma 5.1, ¥o(-) is nondecreasing and lim; o ¥ ¢ (t) = ¥ (0) = 0. Moreover,
owing to Assumption 2.2, there exists an event Ng € F such that the following
holds: P(Ng) =0 and (2.4) is satisfied on Ag \ Ng for all € (0, 00). Let w be
an arbitrary sample in Ao \ Ng. To prove Part (i) of Theorem 2.1, it is sufficient
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to show (2.7) for w. Notice that all formulas that follow in the proof correspond
to w.
If n = 0, then [4], Proposition 4.1, Theorem 5.7, imply that all limit points of
{6,}n>0 are included in R. Hence, (2.7) holds when n = 0.
Now, suppose 1 > 0. Then there exists ng > 0 (depending on w) such that 9, €
O, Inanll < 2n for n > ng. Therefore,
Ontr1 — 6
T 4 G =—(V S (6a) + 1) € Fay(6)

n
for n > ng. Consequently, [5], Proposition 1.3, Theorem 3.6, imply that all limit
points of {6,},>0 are contained in R 2,. Combining this with Lemma 5.1, we
conclude that the limit points of {6, },>0 are included in V¢Q(2TI)(R) =Vyom (R).
Thus, (2.7) holds when n > 0. [

6. Proof of parts (ii), (iii) of Theorem 2.1. In this section, the following no-
tation is used. ¢ is the random variable defined by

¢ =limsup|V f(6)].
n—oo

For t € (0,00) and n > 0, ¢1 ,(t), $2.,(t), $»(t) are the random quantities defined
as
a(n,t)—1

1) =—(VIO)) Y a(VFO) V),

1
Bon(t) = /0 (V£ (6 + 5@atnry — 60) — V) Caury — 6n) ds.

Gn(t) = P1,0(1) + P20 (1).
Then it is straightforward to show that

a(n,t)—1 a(n,t)—1
f(0a<n,;>)—f(6’n)=—||Vf(9n)|}2 Z ai—(Vf(Gn))T Z a;&;
+ ¢ (1)
6.1 a(n.t)—1
s—||Vf(9n)||(UVf<9n)|| > ai—

i=n

a(n,t)—1

> i

i=n

)

+ |fn (1) |
for ¢t € (0, 00), n > 0. Moreover, Assumption 2.1 implies

a(n,t)—1 a(n,t)

© Jin 3 = i Y =
i=n i=n

for ¢ € (0, 00).
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We also need the following additional notation. The Lebesgue measure is de-
noted by m(-). For a compact set Q C R% and ¢ € (0, 00), A, is the set defined
by

(6.3) Age=1{f0):0€0,|VfO)| <&l

In order to treat Assumptions 2.3.b, 2.3.c in a unified way and to provide a uni-
fied proof of Parts (ii), (iii) of Theorem 2.1, we introduce the following assumption.

ASSUMPTION 6.1. There exists a real number s € (0, 1] and for any compact
set O C R% there exists a real number Mg €[1,00) such that m(Ag ) < Mge’
for all ¢ € (0, 00).

PROPOSITION 6.1. Suppose that Assumption 2.3.b holds. Let Q C R% be
any compact set. Then there exists a real number Mg € [1, 00) [depending only on
F O] suchthatm(Ag.¢) < Moef forall e € (0, 00) (q is specified in the statement
of Theorem 2.1).

PROOF. The proposition is a particular case of Yomdin theorem [34], Theo-
rem 1.2. O

PROPOSITION 6.2.  Suppose that Assumption 2.3.c holds. Let Q C R% be any
compact set. Then the following are true:

(i) There exists a real number Mg € [1, 00) [depending only on f(-)] such
that m(Ag.¢) < Mge for all € € (0, 00).

(i1) There exist real numbers rg € (0, 1), My o, M> ¢ € [1,00) [depending
only on f(-)] such that

64) d©,5) =M o|VIO|C,  d(f©), [(S)=M0|VI®)]
forall 0 € Q [S and f(S) are specified in (2.2)].

PROOF. Let Q C R% be any compact set. Owing to Lojasiewicz (ordinary) in-
equality (see [10], Theorem 6.4, Remark 6.5), there exist real numbers rp € (0, 1),
M o € [1, 00) such that the first inequality in (6.4) holds for all & € Q. More-
over, due to Lojasiewicz gradient inequality (see [21], Theorem LI, page 775), we
have the following: For any a € f(Q) ={f(0) : 6 € Q}, there exist real numbers
30,0 €(0,1),vp.4€(1,2], Ng 4 €1, 00) such that

(6.5) |f(6) —a| < Ng.a|Vf©®)]"

for all 6 € Q satisfying | f(0) —a| <8¢.q.

Now, we show by contradiction that f(SN Q) ={f(#) :0 € SN O} has finitely
many elements. Suppose the opposite. Then there exists a sequence {,},>0in SN
Q such that { f (9,)},>0 contains infinitely many different elements. Since SN Q
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is compact, {¢},},>0 has a convergent subsequence {f’n}nzo such that { f (5‘”)},20
also contains infinitely many different elements. Let ¢ = lim,,_, o 5n, a= f(@).
As 8p,q > 0, there exists an integer ng > 0 such that |f(z§n) —al <8¢, forn > ny.
Since Vf(f}n) =0 for n > 0, (6.5) implies f(f)n) = a for n > ng. However, this is
impossible, since { f (5,,)},120 has infinitely many different elements.

Let ng be the number of elements in f(S N Q), while {a; : 1 <i <ng} are the
elements of (SN Q). For1 <i <ng,let

Bpi={0€Q:|VfO)| <1, f)€ @ —80.4a+380.4a)}

while By = U?fl Bgi, eg =inf{||[V ()] : 0 € O\ Bg}. As Bg is open and
SN Q C By, we have gp > 0.

Let Cy,p € [1,00) be an upper bound of |f(-)| on Q. Moreover, let Cr g =
max|<j<n, Ng.a» M2 o= 2max{8é16~'1,Q, éz,Q}. Then, if 6 € By, we have

d(f©). f(5) = min |f6)—ai] < max Noo[Vf@)]""
<i<n <i<ng
< Coo|VFO| =Moo |VO)]
[notice that [V f(0)|| < 1,vpq >1].1If0 € Q\ Bg, we get

d(f6). f(S) = min |16)—ai| <265 Crol VI O)] < M0V /O]
[notice that | f(0) —a;| < 26‘1,Q, IV f(0)|l > ep]l. Hence, the second inequality in

(6.4) holds for all 8 € Q.
Let Mo =2M; gng. Owing to the second inequality in (6.4), we have

ng
Ag.e €[S @) — Mo ge, f(ai) + M g¢]
i=1

for each ¢ € (0, 00). Consequently, m(Ag ) < 2M> gnge = Mge for all ¢ €
(0,00). O

LEMMA 6.1. Let Assumptions 2.1 and 2.2 hold. Then there exists an event
Ng € F such that P(Ny) =0 and

k
6.6 li £l <t
(6.6) imsup max ;ﬂaz& <n
(6.7) Tim |f Bus1) — £ O)| =0

on {sup, > [|6n || < 00} \ No for all t € (0, 00). Moreover, given a compact set Q C
R% | there exists a real number C 1,0 € [1, 00) [independent of n and depending
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only on f(-)] such that
(6.8) lim sup maX !f(Gk) F @) =Crt(p+n),

n—oo n<k
(6.9) limsup|e, (1) < C1. o> (¢ + n)?
n—oo
on Ao \ Ny forall t € (0, 00).

PROOF. Owing to Assumption 2.2, there exists No € F such that the following
holds: P(No) = 0 and (2.4) is satisfied on {sup, - [|0,]| < oo} \ Ny for all 7 €
(0, 00). Moreover, we have

£ i Gi Zal; +rmax||nj||

k
+ > ailnil < max

n<j<a(n,t)

forO<n <k<a(n,t),t €(0,00). Consequently,

Zatsz

limsup max

<limsup max
n—oo n<k<a(n,t)

+t hm max Il
n—oo n<k<a(n,t)|?

Zal;l

on {sup, > |6, [| < 0o} \ No for ¢ € (0, 00).
Let Q C R% be any compact set, while C o € [1,00) stands for a Lipschitz

constant of f(-), V f(-) on Q. Moreover, let Cj g = 2C 0, while w is an arbitrary
sample from A \ Np. In order to prove the lemma, it is sufficient to show that
(6.7)—(6.9) hold for w and any ¢ € (0, 0o). Notice that all formulas which follow
in the proof correspond to w.

Let ¢ € (0, 00) be any real number. Then there exists ng > 0 (depending on w,
g)suchthat 6, € Q, ||V f(6,)| < ¢+ ¢ for n > ng (notice that these relations hold
for all but finitely many n). Therefore,

k—1

16k — 6, <Zaz|}Vf(9)||+

i=n

Eill <t(p+e)+ max

n<j<a(n,t)

Zal&

forng <n <k <a(n,t),t € (0,00). Combining this with (6.6), we get

i=n

limsup max |[|6x — O, <t(p+n+e)

n—oo n<k<a(n,t)

for ¢t € (0, 00). Then the limit process ¢ — 0 yields

limsup max |6 — 0, <t(¢p +1n)

n—oo n<k<a(n,t)

for ¢t € (0, 0o0) [notice that ¢ € (0, 00) is any real number]. As

| £(6) — f)] < Collbk — bnll
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for k > n > ng (notice that 8,, € Q for n > ng), we have

limsup ~max |f(6) —f(6)| < Cot(@+m =Ciot@+n)

n—oo n=<k

for ¢ € (0, 00). Since

| f Ons1) — f(On)] < _max |f(9k) VECH]

for t € (0, o0) and sufficiently large n [notice that a(n, ) > n + 1 for sufficiently
large n], we conclude

linnl)solép|f(9n+1) — f(6)| < Cot(p+1n)

for ¢t € (0, 00). Then the limit process + — 0 implies (6.7). Moreover, we have

a(n,t)—1

61| < Col| VIO D ill6; — 6l

i=n

tIIVf(9)|| max 16k — Onll,

2.0 ()] < CollOuny —Oull> <Co  max |6k — 6,

n<k<a(n,t)

for n > ng, t € (0, 00). Therefore,
limsup|gy ()] < Cot’¢(@+n),  limsup|go.(t)| < Cot*(¢ +n)?
n—00 n—o0
for ¢ € (0, 0c0). Hence,
limsup|e, (1)| <2Cot*(¢ +m)* = C1,0*(¢ + )’
n—oo

fort € (0,00). O

LEMMA 6.2. Let Assumptions 2.1, 2.2 and 6.1 hold. Then, given a compact
set Q C R% | there exists a real number C2,0 € [1,00) [independent of n and
depending only on f(-)] such that
(6.10) limsup f(6,) — hmlnff(G ) < Ca o1’

n—oo

on Ao \ Ny (s is specified in Assumption 6.1).

PROOF. Let QO C R% be any compact set, while C o stands for an upper bound
of [V f()|l on Q. Moreover, let C2 9 =4M . In order to avoid considering sepa-
rately the cases n = 0 and n > 0, we show
(6.11) limsup f (6, )—11m1nff(8 ) < Cro(e+n)°

n—oo
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on Ag \ Ny for all ¢ € (0, 00). Then (6.10) follows directly from (6.11) by letting
e— 0.

Inequality (6.11) is proved by contradiction: Suppose that there exist a sample
w € Ao\ Ng and a real number ¢ € (0, 00) such that (6.11) does not hold for them.
Notice that all formulas which follow in the proof correspond to w.

Lety =2(¢ +1),8 =Mgy*, while

u==58/(Cro(Co+mn). v=y*/(4C1o(Co+m?),  T=min{u,v/2}.

Since {6, },>0 is bounded and (6.11) is not satisfied, there exist real numbers a, b €
R (depending on w, €) such that b — a > 2§ and such that inequalities f(6,) < a,
f(6x) > b hold for infinitely many n, k > 0 [notice that C2 g (e + n)* > 25]. As
m(Ag,y) < Mgy® =4, there exists a real number ¢ such that c ¢ Ap , and a <
¢ < b — ¢ [otherwise, (a, b — ) C Ag ¢, which is impossible as (b — §) —a > §].
Let ng =0, while
Ik =min{n >ng_y: f(0,) <c},
ng =min{n > Iy : £(6,) > b},
my =max{n <ng: f(6,) <c}

for kK > 1. It can easily be deduced that sequences {lx}k>1, {mk}k>1, {ni}k>1 are
well defined and satisfy Iy < my < ng < x4+ and

f(emk) <c< f(gmk-i-l),
fOn) = fOm) =b—c, min  f(6,) > ¢

mp<n<nj

(6.12)

for k > 1. Moreover, Lemma 6.1 implies
6.13) lim | f Bmr1) — f 6| =0,
k— 00

(6.14) limsup  max )|f(9j)—f(6mk)|§C1,QI(C~'Q+n)§8<b—c

k—oo0 Mp=<j=<a(mg,t

[to get (6.14), notice that 6, € Q for all but finitely many n and that ¢ < CQ].
Owing to (6.14) and the second inequality in (6.12), there exists kg > 1 such that
a(my, T) < ng for k > ko.> Then the last inequality in (6.12) implies f (04(mn,7)) =
¢ for k > ko, while limy_, oo f (6, ) = ¢ follows from (6.13) and the first inequality
in (6.12). Since ||V f(0)] > y for any 6 € Q satisfying f(6) = ¢ (due to the way ¢

31t a(my, t) > ny for infinitely many k, then (6.14) yields
Lminf(f(6n,) — f(Om)) <8 <b—c.
k—00

However, this contradicts the second inequality in (6.12).
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is selected), we have liminfy_, o |V f(6,,,) | > y. Consequently, Lemma 6.1 and
(6.2) yield

a(mg,7)—1 a(mg,t)—1
1}{minf<||Vf(9mk)|| Yooai—| D i ) =ty —mz=ty/2>0
- i=my i=my
(notice that n < y/2). Therefore,
a(my,t)—1 a(my,t)—1
liminf [V £ )] (}}Vf(emk)|| Yoowi—| Y ) > 7y%/2.
oo i=my i=my
Combining this with Lemma 6.1 and (6.1), we get
lim Sup(f(ea(mk,t)) - f(emk))
k— 00
a(my,t)—1 a(my,t)—1
< —1}(minf}}Vf(9mk)|| <|}Vf(9mk)|| Yoowi—| > ik )
o i=my i=my
+ lim sup| @y, (7))
k—00

<—ty224Ciot? @+ 1) <0

[notice that ¢ < C‘Q, CLQTZ(C’Q + 1) < y2/4]. However, this is not possible, as
S Baimy.v)) = ¢ > f(On,) for each k > ko. Hence, (6.11) is true. [J

LEMMA 6.3. Let Assumptions 2.1 and 2.2 hold. Then, given a compact set
0cC R% | there exists a real number C3,0 € (0, 1) [independent of n and depend-
ing only on f(-)] such that

(6.15) limsup f (6,) — liminf £ (6,) = C3,04°
on (Ag \ No) N {¢p > 2n}.

PROOF. Let Q C R% be any compact set, while C3 9 =1/(64C1,p) and T =
1/(16C1,p). Moreover, let w be an arbitrary sample from (Ao \ No) N {¢ > 2n}.
In order to prove the lemma’s assertion, it is sufficient to show that (6.15) holds
for w. Notice that all formulas which follow in the proof correspond to w.

Let ng =0 and

ng=min{n > ni_1 : |[VfOn)|| > ¢ — 1/k}
for k > 1. Obviously, sequence {n}x>0 is well defined and satisfies

V£ =¢.

lim
k— 00
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Then Lemma 6.1 and (6.2) yield
a(ng,t)—1

%@ilz,fllwwnuﬂ<||Vf<9nk>l> > ai-

i=ny

a(ng,t)—1

> wid

i=ny

)

= 1@ —n) = T¢*/2> 0.
Combining this with Lemma 6.1 and (6.1), we get

limsup(f (Oane.t)) — f(On))

k— o0

a(ng,t)—1

> g

i=ny

a(ng,t)—1

< min 9011970013 -

i=ny

+ lim sup|¢n, (7)|

k— 00

<—1¢*/2+ Cro7°( + 1) < —C3,04°
(notice that n < ¢). Consequently,
limsup f(0,) — liminf f(6,) > —likmsup(f(ea(nk,f)) — f(6n)) = C3.00°.
—00

n—oo

Hence, (6.15) is true. [

PROPOSITION 6.3. Suppose that Assumptions 2.1, 2.2 and 6.1 hold. Let
0cC R% pe any compact set. Then there exists a real number K g € [1, 00) [inde-
pendent of n and depending only on f(-)] such that

limsup||V £ (6,)] < Kon*/?,
n—oo

(6.16)
limsup f(6,) — liminf /' (6,) < Ko n'

n—oo

on Ag \ Ny.

PROOF. Let Q C R% be any compact set, while C o € [1,00) stands for an
upper bound of ||V f(-)|| on Q. Moreover, let K 9 = max{2, C‘Q, C3,0}. Obviously,
it is sufficient to show ¢ < Kon* /2 on A \ Ny [notice that the second inequality
in (6.16) is a direct consequence of Lemma 6.2].

Owing to Lemmas 6.2, 6.3, we have C3,Q¢2 < Cy0n° on (Ag \ No) N{¢ >
2n}. Therefore, ¢ < (Ca2,0/C3.0)"*1°/?> < Kon®/? on (Ag \ No) N {¢ > 2n)}.
Moreover, ¢ <2n < I(Qns/2 on (Ag\ No)N{¢ <2n,n <1} (notice that s /2 < 1),
while ¢ < Co < Kon®/? on (Ag \ No) N {¢ <2n,n > 1}. Thus, ¢ < Kon*/?
indeed holds on Ag \ No. U

PROOF OF PARTS (ii), (iii) OF THEOREM 2.1. Part (ii) of the theorem di-
rectly follows from Propositions 6.1, 6.3, while Part (iii) is a direct consequence
of Propositions 6.2, 6.3. [J
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7. Proof of Theorem 3.1. The following notation is used in this section. For
0 eR%, z e R%, Ey - (-) denotes the conditional expectation given 8y =6, Zy = z.
Forn > 1, ¢&,, &, are the random variables defined by

(7.1) ¢n =Fn, Zn+1) — Vf(6n), En =Cn + M,
while &1, {2., £3., are random variables defined as

gl,n = F(en, Zn-H) - (HF)(Gna Zn),
Con = (TLF) (6, Zy) — (TLF) (Bu—1, Zn),

G =—(TF)On, Zys1).

Then it is straightforward to verify that algorithm (3.1) admits the form (2.1).
Moreover, using Assumption 3.2, it is easy to show

k k k k
Yo=Y ailii+ Y @b+ Y (i —air1)ia,
i=n i=n i=n i=n

+ k1838 — 2n 3 n—1

(7.2)

forl <n <k.

PROOF OF THEOREM 3.1. Let Q C R% be any compact set and ]\Q be the

event defined by 1~\Q =(2o{0n € Q}. Then, owing to Assumptions 3.1 and 3.3,
we have

00

(7.3) Ey ; (Z(ag +a,%+1)(p2Q(Zn+l)I{tQ>n}) <00,
n=0
00

(7.4) Ey ; <Z oy, — Oln+1|(P2Q(Zn+1)I{rQ>n}) <00
n=0

for all € R%, 7 ¢ R%,
Let F, =o{6o, Zo, ..., 04, Z,} for n > 0. Since {rg > n} € F, forn >0, As-
sumption 3.2 implies

Eg - (C1nlizg>n)| Fn) = (Eo.2(F On, Zus D\ Fn) — (UF) Ons Zn)) I(zp=n)
=0
almost surely for each 6 € R%, z € R%, n > 0. Assumption 3.3 also yields
1810 M {zg>ny <00 (Zn) lixg>n—1} + 90 (Zn+1) I{zp>n)
for n > 0. Combining this with (7.3), we get
o o0
E9,z <Z Ol% ”;Ln ||21{7:Q>n}> =< 2E0,z (Z(arzz + a2+l)§02Q(Zn+l)I{rQ>n}>
n=0 n=0

< 0
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for all & € R%, 7z € R%. Then, using the Doob ~theorem, we conclude that
Y neo@l1nlizy>n) converges almost surely. As Ag C {rg > n} for n > 0,

Y oo nl1,, converges almost surely on 1~\Q.4
Due to Assumption 3.3, we have

16221113, < 00 (Z)N16n = On-11l13,,
< an—190(Z) (| F bn=1, Zp)|| + 101 13,
< on_190(Zp)(00(Zn) + 1n-1 II)I;\Q
< 20001 (9% (Zn) + ln—11%) I3

for n > 1 [notice that ¢ (z) > 1 forany z € Rdl]. Thus,

J 0
Y anllCnlllz, <23 antni1 (95 (Zarn) + i1 1?)15,

n=0

00
Z oy +0‘n+1 (pQ(Zn+l)I{tQ>n}

o0

+supllnal* 15, Y (o + o)
n=0 n=0

(notice that 20,041 < a% + aﬁ +1). Then Assumption 3.4 and (7.3) imply that
Y02 anla,, converges almost surely on [\Q.
Owing to Assumption 3.3, we have
18300115, < 00(Zns D15, < 05 (Zus 1) I(rg=n)

for n > 0. Hence,

Zan+1 ”;311” IAQ = Zan+1§0Q(zn+l>I{rQ>n}7
n=0 n=0

o o0
> lon = et llS3alllz , < D lan = ans 1195 (Zne D) Izgn)-

Corr}bining this with (7.3), (7.4), we conclude lim,,, oo @;+183,, = 0 almost surely
on Ag. We also deduce that fozo(an — oy+1)83,, converges almost surely on
Ag. Since Z?,o:o an 1, thil an o, converge aerost surely on A g, (7.2) implies
that 02 o, ¢, also converges almost surely on Ag. As Q is any compact set in
R, > o0 0 @n&, converges almost surely on {sup,>¢ 6nll < 0o}. Consequently,

4Notice that Yoo ltnlirg=n) = Xl ®nt1n o0 Ag.
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Assumption 3.4 yields that {&,},>0 defined in (7.1) satisfies Assumption 2.2. Then
the theorem’s assertion directly follows from Theorem 2.1. [

8. Proof of Theorem 4.1. In this section, we use the following notation. ¢ (v),
sg (v) are the functions defined by

p() =9 (x,y), so(v) =sp(x, y)
ford e R% v=(x,y) € X x Y.Forf e R%, {VF},-0, (WI},>0 and {Z0},,>¢ are

stochastic processes defined by
0 6 yo 6 0 6 0 0 wo
Vn =(X Y, )’ Wn—H =)“/Vn +S9(Vn)’ ZnZ(Vn’Wn)

n’-n

for n > 0, where Wg € R% is a (deterministic) vector (notice that {Vne >0,
{Zg }n>0 are Markov chains). Moreover, for 6 € R% ro(+|-) and vg(+) are the tran-
sition kernel and invariant probability of {Vne },,20,5 while ITg (-, -) is the transition
kernel of {Zﬁ}nzo.6 For 6 e R%  n >0, rg (-|-) is the nth transition probability of
{VZ},=0, while

7y (v|v) = rg (V'Iv) — v (V)

for e R% v v e X x), n>0. Additionally, the functions n(-), F(:,-) are
defined by

n@®=>y_ Y  MNo@)igv)se()g(v) — Vf(6),

n=0v,0eXxy
F6,z) =¢@w)w —n(0)

for 6 € R%, 7z = (v, w) € (X x Y) x R% 7 {Z,}n>0, {nn}n> are the stochastic
processes defined as

Zn:(Xn’ Yn’ Wn), ﬂn=77(9n)

for n > 0. Then it is straightforward to show that the algorithm (4.3) is of the same
form as the recursion studied in Section 3 [i.e., {6,},>0, {Mn}n>0, F(, ), (-, )
defined in Section 4 and here admit (3.1), (3.2)].

We will use the following additional notation. N, is the integer defined by N, =
NNy, while e € RMv is the vector whose all components are one. For v € X' x
YV, e(v) € RV is the vector representation of [,(-), while ¢ € RMv is the vector

5Under Assumption 4.1, vy (-) exists and is unique (the details are provided in Lemma 8.1). The
transition 7¢(-|-) can be defined by rg(v'|v) = go (¥'|x")p(x'|x,y) for v = (x,y) € X x Y, v/ =
&, y)eX x ).

514 (-, -) can be defined by Mg(z, {v'} x B) = Ig(Aw + sg(v")rg(v'|v) for z = (v, w) € (X x
Y) x R% and a Borel-measurable set B C R%

7Under Assumptions 4.1, 4.2, f(-) is differentiable (the details are provided in Lemma 8.2).
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representation of ¢>(-).8 For 6 e R%, Ry € RNVv*Mv and vy € RM are the transition
matrix and the invariant probability vector of { Vne }n20,9 while 1§9 =Ry — eng . For
0 e R%, 1< j <dp,sg ;(-) is the jth component of s (-), while Sy ; € RNv>*N jg
the diagonal matrix representation of sg_; (.10

LEMMA 8.1. Suppose that Assumptions 4.1 and 4.2 hold. Let Q C R% be any
compact set. Then the following are true:

1) {Vne In>0 is geometrically ergodic for each 6 € R% . Moreover, there exist
real numbers ¢¢ € (0, 1), Cy,g € [1, 00) (independent of 1) such IIRZII < Ci,0¢p
forall® € Q,n>0.

(ii) There exists a real number C3 ¢ € [1, 00) (independent of 1) such that

R, — R/} <Ca |0 — 6"

(8.1 max{||vy — vy~ |,

(8.2) IRy, — R || < Capel 0" — 0"

forall9',0" € Q,n >0.
(iii) vy is differentiable on R% . Moreover, Vgvg is locally Lipschitz continuous
on R% .
(iv) If Assumption 4.3.a is satisfied, vg is p times differentiable on R% .
(v) If Assumption 4.3.b is satisfied, vg is real-analytic on R%

PROOF. (i) For 6 € R% n > 0, let Py () and pg(-) be the nth transition
probability and the invariant probability of {Xg}nzo. Moreover, for € R%, v =
(x,y) e X x Y, let Vg(v) = go(¥|x) o (x). Then it is straightforward to verify

r W) = (V) = 3 e (Y 1X) (ph (¥ 1) — e (x)) p(x"1x, y)

x"eXx

for@ e R%, v=(x,y) e X x Y, v =(x',y) e X x Y, n>0. Therefore,

T W) =B (V) < D e (V1) | (& 1x") — e (¥) [ p (", ¥)
x"eXx

< Ny max|pj (x'[x") — po (x)|
x"eX

forall 0 e R%, v=(x,y) e X x Y, v = (x',y) € X x Y, n > 0. Combining
this with Assumption 4.1, we conclude that {V,f In>0 1s geometrically ergodic for
each 6 € R% . We also conclude that Vg (+) is the invariant probability of {Vng }n>0

8For v = (x,y) € X x Y, element i of e(v) is one if i = (x — 1) Ny + y and zero otherwise. For
the same v, ¢ (v) is element (x — 1) Ny +y of ¢.

9Forv=(x,y) € X x Y, v =(x',y) € X x ¥, rg(v'|v) is entry ((x — DNy +y, (x'—DNy+y)
of Ry, while vy (v) is element (x — 1) Ny + y of vy.

OFor v = (x,y) € X x Y, s9,j (v) isentry (x — )Ny +y, (x —1)Ny +) of S, ;. The off-diagonal
elements of Sy ; are zero.
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for each @ € R% | that is, vg(v) = D9 (v) = go (¥|x) e (x) for 0 e R% v = (x,y) €
X x ).

For 6 € R%, let pg = minyey ve(x)/3. Then we have 0 < py < 1/(3N,),
po < vg(v)/3 for all 8 € R4 v € V. Moreover, for any 6 € R% _ there exists an
integer ng > 0 such that |rj; (v'|v) —ve (V')| < pg for each v, v' € V, n > ny. Hence,
ry (V'|v) = ve(v') — pg = 2pp forall 6 € R% v, v' €V, n > ng. Additionally, As-
sumption 4.2 implies that for each v,v" € V, n > 0, rj (v'|v) is locally Lipschitz
continuous in & on R% ! Consequently, for any 6 € R% | there exists a real num-
ber 8y € (0, 1) such that |y’ (v'|v) — rg® (v'|v)| < pp for all ¥ € R%, v, 0" €V
satisfying || — 6| < 8. Thus, ry’ (v'|v) > r,? (v'|v) — pg > pp for each & € R%,
v, v’ €V satisfying || — 0] < &g. Since

AWl = X A0 ) 2 00 Y R ) = g

v'ey v’ey

for any © € R%, v,v' € V, n > ng satisfying |9 — 0] < 89, we conclude
rﬂ(v |v) > pyg for the same 9, v, V', n.

Let By = {0 € R% : |9 — 0| < 8} for 6 € R%. As {Bo}ocp 1s an open
covering of Q, there exists a finite set QO C O such that Upe o By D Q. Let
flg = max, 5 ng, o =ming g5 pp, &g = (1 — po)'/¢. Since each element of
Q is also an element of one of {BQ}QGQ, we have rj (v'|v) > pg for all 0 € Q,

v, v eV, n> sz.lz Then standard results of Markov chain theory (see, e.g., [26],
Theorem 16.0.2) imply

g (v'[v) — v (V)] < (1 = pg)"/"e < &,

forall@ e Q,v,v eV, n>0.
Leteg = 552, C1,0 = Ny. Then we have

(8.3) |RZ| < N, val}ézzlvxxy|17§’(v/|v)|§ Ny&l = C1,0¢3

forall6 € Q,n > 0.

(ii) Let g be the N,th standard unit vector in RM (i.e., the first N, — 1 elements
of g are zero, while the last element of g is one) and, for A € RV»*Nv_let G(A)
be the N, x N, matrix obtained when the last row of I — AT is replaced by e’
(here, I is the N, x N, unit matrix). Additionally, let QOUXN” ={A e RNvNo
det(G(A)) # 0} and, for A € QéV“XN”, let h(A) = (G(A))_lg. Then it is easy
to conclude that Q(])V »>No §s an open set [notice that det(G(A)) is a polynomial
function of the entries of A]. It is also easy to deduce that A (-) is well defined and

UNotice that, due to Assumption 4.2, gg (y|x) is locally Lipschitz continuous in € for each x € X,
y € Y and that rg (+]+) is a polynomial function of p(-|-,-), go (:|-).
21 € By and © € Q, then ny <ing andrg(v [v) > py = pgp forn > ny.
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real-analytic on Qév vXNy [notice that due to the Cramer’s rule, all elements of 4 (A)
are rational functions of the entries of A].

Let P, Mo pe the set of Ny x N, geometrically ergodic stochastic matri-
ces. Then each P € Py “No has a unique invariant probability vector. Moreover,
the invariant probability vector of P € PN“XN” is the unique solution to the lin-
ear system of equations G(P)x = g, where x € R"v is the unknown. Hence,
det(G(P)) # 0 for each P € Py so Py N < @ffv Mo,

Owing to (i), Ry € Py ™" for each 8 € R%. Thus, vy = h(Ry) for all § € R%.
Moreover, due to Assumption 4.2, Ry is locally Lipschitz continuous on R% 13
Since A(-) is real-analytic on Qév N and Py Ny - Q XN s locally Lips-
chitz continuous on R% .

Let C~‘1,Q € [1,00) be a Lipschitz constant of Rg, vy on Q, while C‘z,Q €
[1,00) is an upper bound of the sequence {ne’é}nzl. Moreover, let Cp g =

3851 C% QC‘LQC'Q, - Itis straightforward to verify

n
Rg/‘f'l Rg/‘)‘l Z Rl,(RQ’ — Ry — e(vygr — vgn) )R;// i

for §’,0” € R%, n > 0. Combining this with (8.3), we get
| R — ReH | < ZHRQ/ LIRS I (IRer — Rovll + lver — vor))

<2C7 Cio(n+ Deg[6' —6"|
< Ca0ep 0" —0"|
foreach 6’,0” € Q, n > 0. Therefore,
|RE — RE| < | RS — RE|| + llver — verll
<C1o(2CT (Cagnely ' +1)]0" — 0"
< Cyol0"—0"|
forall #/,0” € Q, n > 0 (notice that R = RE — ev]).
(iii) Due to (i), Ry € P, WMo for each 6 € R%, Hence, vy = h(Rp) for all

6 € R% . Moreover, owing to Assumption 4.2, Ry is differentiable on R% and its
first-order derivatives are locally Lipschitz continuous on the same space.'* As

h(-) is real-analytic on Qé\] v>No and Pév No Q(])v vNo 0 is differentiable on

I3Notice that rg (v'|v) = g9 (' |x") p(x|x, y) for v = (x, y), v/ = (x’, y') and that gy (y|x) is locally
Lipschitz continuous in 6.
14Notice that Vgrg (v'[v) = sp(x, y)qe (¢ |x) p(x'|x, y) for v = (x, y), v/ = (', y).
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R% . The same arguments also imply that Vv, is locally Lipschitz continuous
on R%

(iv), (v) If Assumption 4.3.a is satisfied, then Ry is p times differentiable on
R%  and consequently, vg is p times differentiable on R%, too.!> Similarly, if
Assumption 4.3.b is satisfied, then Ry is real-analytic on R%  and therefore, Vg 1S
also real-analytic on R%. [J

LEMMA 8.2.  Suppose that Assumptions 4.1 and 4.2 hold. Let Q C R% be any
compact set. Then the following are true:

(1) f() is differentiable and V f (-) is locally Lipschitz continuous.
(i1) There exists a real number C3 ¢ € [1,00) (independent of A) such that
@)l = C3,0(1 =) forall 6 € Q.
(iii) If Assumption 4.3.a is satisfied, f(-) is p times differentiable.
(iv) If Assumption 4.3.b is satisfied, f(-) is real-analytic.

PROOF. (i), (iii), (iv) Owing to Lemma 8.1, we have
(8.4) FO) = lim Eg(¢(Vi)= Y. ¢@usv)=¢"v
veX x)y

for all & € R% . Then these parts of the lemma directly follow from Lemma 8.1:
(ii) For each 1 < j < dp, let Cy € [1, 00) be an upper bound of || Sy ;|| on Q.
For e R% v e X x YV, n >0, let us also define

(8.5) @ v)= Y o)y ),
VeXx)y
(8.6) hO)=Y"" Y ¢ v)se(v)ve ().

n=0v,0eXx)y

Owing to Lemma 8.1, f,(8, v) converges to f(8) as n — oo uniformly in (6, v)
on O x (X x )). Due to the same lemma, A4 (-) is well defined on Q [notice that
when 6 € Q, each term in the sums in (8.5), (8.6) tends to zero at the rate s”Q].
Moreover, it is straightforward to show

Vo (6, v0) = %( > ¢<vn><1"[re(v,-|v,-_1>>)

Ulyeens v, EX XY i=1
= Vorg(vilvi—1) \ [ &
(8.7) = > ¢<vn)(2—)<1"[re<vi|vi_1>)
Vs Un €X' XY io rovilvi-1) i=1

S e () () (v o)

i=1vveXxy

I5Notice that Rg € P(I)VUXN“ - Q(I)V” XN”, vg = h(Ry) forall 0 € R% . Notice also that h(-) is real-

analytic on Qév XNy,
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for all 0 € R%, vg € X x Y, n > 1. Therefore,
(8.8) ) fu(0.v)=> e WRLSy Ry 'dp=> e (W)R; 'Sy iRy
i=1 i=0

for 6 e Rd9, veX x)V,1<j<dy,n=>1,where Bejfn(e, v) is the jth component
of Vg f,,(6, v). We also have

n—1

(8.9) > el (W)R; T Sp,jRhe =0
i=0
for0 eR¥% veX x Y, 1 <j<dp,n=> 1.16 Hence,
n—1 ) n—1 ) )
Z eT(v)Rg_’ Sg,jevgqﬁ = v9T¢ Z eT(v)Rg_’ So,jRhe =0
i=0 i=0

for0eR% veX x), 1< Jj <dp,n>1 (notice that Rée = ¢e). Therefore,

] n—1 ) .
3 fa0.v) =" e" (R, Sy iRy
i=0

for0eR% veX xY, 1< j <dp,n > 1. Additionally, we have

o) n—1 00
hj@) =Y vy S iRyp="> e (v)evy Sy jRod+ Y v So,iRh¢
n=0 i=0 i=n
for0 eR% veX x), 1< Jj <dp, n > 1 [notice that eT(v)e = 1], where 4 (0)
is the jth component of #(6). Thus,

. n—1 N ) . o0 .
9 fnO,0) —hj@) = e (VR Sy jRhp — > vl Sy iRy
i=0 i=n

forOeR% veX xY, 1< j <dp,n > 1. Then Lemma 8.1 implies

) n—1 . . )
197 fu(0,0) —h;©)] < lloll]le)|I1So.; 1 Y |REI RS |
i=0

0
+ M vellllSe,ll Y | R |

1=n

- CoCioldlel
< CQCIZ,Q||¢||’18'& + TQQ

167¢ ¢ = e, then f; (0, v) is identically one, while Vy f,, (0, v) is identically zero. Hence, (8.8) re-
duces to (8.9) when ¢ =e.
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forall0 e Q,ve X xY,1<j<dy,n>1.Hence, Vg f,(0, v) converges to 1(0)
as n — oo uniformly in (6, v) on Q x (X x ). Therefore, V f(6) = h(0) for all
6 € R% (notice that Q is any compact set). Consequently,

o0 0
nj©) = N'vj Sp jRj¢—h;j0)=— (1—1")vj Sp ;R
n=0 n=0

for 0 e R%, 1 < j <dy, where 7 ;j(0) is the jth component of 7(6). Combining
this with Lemma 8.1, we get

;O] < lpllvallllSo. 1l Y (1—2") | Rg |

n=0
_ o0
<CoCroll¢ll D (1—1")e},
n=0
- éQCl,QH¢”(1 —A)
= (1—-¢9)?

forall & € Q, 1 < j <dp. Then we conclude that there exists a real number C3 ¢ €
[1, co) with the properties specified in (ii). [

LEMMA 8.3. Suppose that Assumptions 4.1 and 4.2 hold. Let Q C R% be any
compact set. Then the following are true:

(1) There exist real numbers 6o € (0, 1), C4 ¢ € [1,00) (possibly depending
on A) such that

[(TT"F)(0,2) = Vf@)] < Ca.0ndp (1 + [[wll),
[("F)(0".2) = V£(0')) = (M"F)(0".2) = V£ (6"))]
< C4,ondp |0 — 0" (1 + [[wl]),

forall9,60,6" € Q,z=(x,y,w) e X xY xR¥ n>0.
(i1) There exits a real number Cs g € [1,00) (possibly depending on M) such
that

Wat 1l Iizg=ny < Cs,o(1 + [[Woll)
foralln >0 (7 is specified in Assumption 3.3).
PROOF. (i) For each 1 < j < djy, let C~’1,Q € [1,00) be an upper bound of

|Se, j Il on Q and a Lipschitz constant of Sy, ; on the same set. Moreover, let C~‘2,Q =
3C1,0C1,0C2,0Ny, C3,0 =2C5 (1 — SQ)_I, while 69 = max{A, egp}.
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Owing to Lemma 8.1, we have
(8.10) [R5S6.i Ro | < [R5 150,51 Ro | < C:.0¢0,
®.11) [vg Sa.i Ryl < [v3 1110, 11 Ro | = C2.0
forall® € Q, 1< j <dp, k,[ > 1. Due to the same lemma, we also have
[RG5S, Ryr = RiorSor R | = | Ry = R[S0 5 1| R |
812 RGNS = Sor 11 Ry |
+ | Rg 11S67. 11| Ry — Rey |
< Cgebl0' — "]
forall 6',0” € Q, 1 < j <dpy, k,l > 1. In addition to this, Lemma 8.1 implies
[vgSer.j Ry — verSor. i Ry | < [vg — vl 1Ser. 1 R |
+ 1vg 1S, = Sor. ;1 Ry |
+ [var 1S 11 Ry = Ry
<G00 6"
foreach 0’,0” € Q, 1 < j <dp, > 1. Moreover, it is straightforward to show
(IT"F)(0.2) = —n(0) + Eo(#(V, )W, IV = v, Wg = w)

n—1
=-n<e>+Ee(¢<v,f>(vw+zw'sew:»)\vg =v)

i=0

(8.13)

=—n<e>+"i S AR s () ()

i=00v'vV'eXxy

Z d(V)rg (v'|v)
vVeX xy

foro e R%, 7z = (v,w) e (X x)) x R9%  n > 1. Therefore,

n—1

(T"Fj)(0.2) =—n;j0) + Y _ A'e" )Ry 'Sy jRy¢p + A"} we” (v) Ry

i=0
for e RY%, z = (v, w) € (X x V) x R¥, 1 < j <dp,n > 1.Here, F;(0,2),n;(0)
are the jth components of F (0, z), n(9), while ¢; is the jth standard unit vector
in R% . Moreover, we have

o0
A fO)=—n;O) + > A"v] Ss iR}
n=0
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for 0 € R%, 1 < j < dp, where 8/ f(0) is the jth component of V f(6). Since

el (ve=1, Iég =R — eng and

Saje= Y @0 = 3 (X A0l Jar) =0

veX x) xeX ‘ye)y

for@e]Rd@,veXxy,lfjfdg,nzo,nweget
n—1 n—1

3 f(O)=—n;O) + > v S iRy + D> Avj Sp, ,ev9¢+2x’ "' Se. i Rhg
i=0 i=0 i=n

n—1 00
=—n;©)+ Y Mel (v)ev] So jRyp + Y A'v] Sp iRy

i=0 i=n

for the same 6, v, j, n. Consequently,

n—1 oo}

(II"F;)(0,2) — 3/ f(©) =D Ael (VR 'Sy jRhp — > A'v] Sp, iRy
i=0 i=n
+ A”ejrweT(v)quS

for e R%, z=(v,w) e (X xY) xR¥ 1< j<dg,n=>1.Then (8.10), (8.11)
imply

(TT"F;)(6,2) — 87 £(0)]

n—1
< liplle@)] YA |RE™ So.; Ry

i=0

(8.14) + llgl ZA’ |va So. ;i Ry | + 2" ¢l e | RE | Ilwll

n
< 62,Q<le’s"g"' + ZM’s"Q +k”||w||>
i=1

i=n

< C3,0n8p (1 + [lwl)

7Notice that 3",y 95 go (y1x) = 8} (X ey g9 (y1x)) = 0. Notice also that vg (v) = gg (y|x) 1 (x)
for v=(x,y) € X x Y, where gy (x) is the invariant probability of {Xz}nzo [see the proof of Part
(1) of Lemma 8.1].
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forall € Q,z= (v, w) e (X xY) xR¥ 1< j<dy, n>1.Similarly, (8.12),
(8.13) yield

(" F}) (0", 2) =87 £(6)) — (" F}) (6", 2) — 37 £(6"))]

n—1
<lpllfe)| > A | Ry Sor, iRy — R Sor i Riy|
i=0

00
+ Il )"i VYZS /. 'I'éi/ —VT//S //’-ﬁi//
(8.15) Z “ 990", j g 9307, j Ry H

1=n

+ 1Ml |e) | Ilwll| Ry — Ry |

n o0
<Cyole’ —0"| (Zx"sg"' +Y Mel +/\"||w||)
i=1

1=n

< C3,gnéy 16" = 6" (1 + wl)

forall /,6” € Q,z= (v, w) € (X x V) x R%, 1 < j <dy, n> 1. Using (8.14),
(8.15), we conclude that there exist real numbers §p, C4, ¢ With properties speci-
fied in (i).

(ii) Let Cs,9 = C’LQ(I — )71 [C‘LQ is specified in the proof of (i)]. Then, due
to Assumption 4.2, we have

n
AHIWo 4+ A" sg,(Xig1, Yig1)
i—0

||Wn+1||I{TQ>n} = I{rQ>n}

n
<VHIWoll 4+ Crp Y A"
i=0

< Cs,o(1+1IWoll)

forn>0. O

PROOF OF THEOREM 4.1. For6 e R%, 7 = (v, w) € (X x )) x R% let

o

F0.2)=) ((I"F)©.2) =V f©®). ¢ =1+|w].

n=0

Then, using Lemma 8.3, we conclude that for each 6 € R% z7eX x) x R%,
F (0, 7) is well defined and satisfies (ITF)(, z) = Yo ((ITMF) (0, 2) — V(O)).
Thus, Assumption 3.2 holds. Relying on Lemma 8.3, we also deduce that for any
compact set Q C R%, there exists a real number C’Q € [1, co) (possibly depending
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on A) such that
max{[|F(6,2)], |[F©.2)]. [(TTF)@®.2)|} < Coo().
|(TEY O, 2) — (ME) 0", 2)| < Copz) |6’ — 6"

E(9*(Zns)zg=nm|00 =0, Zo = z) < Cop*(2)

’ ’

’

forall 6,0,0” € 0, z€ X x Y x R%_ Hence, Assumptions 3.3 is satisfied, too.
Moreover, Lemma 8.2 yields

n=Tlimsup [[n,[| < C30(1 = 1)
n— oo
on Ag (notice that C3 o does not depend on A). Then the theorem’s assertion
directly follows from Theorem 3.1 and Parts (i), (iii), (iv) of Lemma 8.2. [J

APPENDIX A

In this section, a global version of Theorem 2.1 is presented. This result is based
the following assumptions.

ASSUMPTION A.1.  f(-) is uniformly lower bounded [i.e., infy_pa, f(0) >
—o00], and V f(-) is (globally) Lipschitz continuous. Moreover, there exist real
numbers ¢ € (0, 1), p € [1, o0) such that |V f ()] > c for all 6 € R satisfying
191 = p.

ASSUMPTION A.2. {&,},>0 admits the decomposition &, = ¢, + n, for each
n >0, where {¢,},> and {n,},>0 are R% -valued stochastic processes satisfying
J
(A.1) nll)ngog(en) max

r =0, limsup g(6,) |7l < 00
n<j<a(n,t) n—o00

;i
i=n

almost surely for any ¢ € (0, 00). In addition, there exists a real number § € (0, 1)
such that

(A2) Jim A O) ||l <8
almost surely. Here, g, h : R% — (0, 00) are the (scaling) functions defined by

Ivr®) | iflel=p,

p— _1 ==
g =([vr®|+1)", h(9) = 0 otherwise

for € R% (p is specified in Assumption A.1).
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Assumption A.1 is a stability condition. In this or a similar form, it is involved
in practically any stability analysis of stochastic gradient search and stochas-
tic approximation (see, e.g., [7, 11, 14] and references cited therein). This as-
sumption is restrictive, as it requires V2 f(-) to be uniformly bounded. Assump-
tion A.l also requires V f(-) to grow at most linearly as 8 — oo. Using ran-
dom projections, these restrictive conditions can considerably be relaxed (see
[14, 33)).

Assumption A.2 is a noise condition and can be considered as a global ver-
sion of Assumption 2.2. Assumption A.2 requires the gradient of the objective
function f(-) (asymptotically) to cancel the effect of the gradient estimator’s error
{&,}n>0. Assumption A.2 is true whenever (2.4) holds almost surely. It is also sat-
isfied for stochastic gradient search with Markovian dynamics (see Theorem B.1,
Appendix B). Assumption A.2 and the results based on it (Theorem A.1, below)
are motivated by the scaled ODE approach to the stability analysis of stochastic
approximation [12].!8

Our results on the stability and asymptotic bias of algorithm (2.1) are provided
in the next theorem.

THEOREM A.1. Suppose that Assumptions 2.1, A.1 and A.2 hold. Then the
following are true:

(1) There exists a compact (deterministic) set Q C R% such that P(Ag) =1
[A g is specified in (2.6)].

(i1) There exists a (deterministic) nondecreasing function iy : [0, c0) — [0, 00)
[independent of n and depending only on f(-)] such that lim;_.q ¥ (t) = ¥ (0) =0
and

limsupd(6,, R) < ¥ (n)
n—oQo

almost surely.
(iii) If f(-) satisfies Assumption 2.3.b, there exists a real number K € (0, 00)
[independent of n and depending only on f(-)] such that

limsup||V £ (6,)| < Kn4/?, limsup f(6,) — liminf £(6,) < Kn4
n—00 n—00 n—00

almost surely (q is specified in the statement of Theorem 2.1).

18The main difference between [12] and the results presented here is the choice of the scaling
functions. The scaling adopted in [12] is (asymptotically) proportional to ||#]|. In this paper, the
scaling is (asymptotically) proportional to ||V f(6)]|.
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(iv) If f(-) satisfies Assumption 2.3.c, there exist real numbers r € (0, 1), L €
(0, 00) [independent of n and depending only on f ()] such that

limsup|V £ (6n)| < Ln'72,
n—oo

limsupd(f(6,), f(S)) < Ln,

limsupd(6,,S) < Ln"

n—oo

almost surely.

PROOF. Owing to Assumption A.I, there exists a real number Ci ell, 00)
such that the following are true: (i) f(6) > —C | forall € R% and (ii) fO) < C 1
for any 6 € R% satisfying ||| < p + 1. Moreover, due to Assumption A.2, there
also exists an event Ng € F with the following properties: (i) P(Ng) = 0, and
(i) (A.1), (A.2) hold on N for all ¢ € (0, c0).

Lete=(1-6)/6,T = 2C e~ ¢ 2 and let ¢ 1[0, 00) — [0, 00) be the function
defined by

¢ () =sup{|Vf(©O)]:60eRY, 0] <z}

for z € [0, 00). As V f(-) is locally Lipschitz continuous, ¢ (-) is locally Lipschitz
contint}lous, too. ¢ (-) is also nonnegative and satisfies ||V f(0)| < ¢ (]|€]]) for all
0 e R%,

For z € [0, 00), let A(-; z) be the solution to the ODE dz/dt = 2¢ (z) satisfying
A(0; 2) = z. As 2¢(-) is nonnegative and locally Lipschitz continuous, A(:; -) is
well defined and locally Lipschitz continuous (in both arguments) on [0, 00) X
[0, c0). We also have

(A.3) rMt;2)=z+ 2fot¢()»(s; 2))ds

for all ¢, z € [0, 00). Then there exists p; € [1, c0) such that p; > p + 1 and such
that |A(t;z)| < p; forallt €[0,T], z € [0, p + 1].
Letpo=p1+1,0={0 € R% - 19| < P2}, while A is the event defined by

—thUP 101l < p} = ﬂ U 101l < p}.
m=0n=m
Let also C; € [1, co0) stand for a (global) L1psch1tz constant of V f(-) and for an
upper bound of ||Vf( )|| on Q. Finally, let C3 2C, exp(2C2) Cs= 12C1C2C3,
while T =4~ C4 Lec2,
In order to prove the theorem’s assertion, it is sufficient to show N§ C A (i.e.,

to establish that on N, [|6,]| < p for all, but finitely many n).! To prove this,

]9Assumption 2.2 is a consequence of Assumption A.2 and, therefore, Parts (ii)—(iv) directly follow
from Part (i) and Theorem 2.1.
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we use contradiction. We assume that ||6, ]| > p2 for infinitely many » and some
w € Nj. Notice that all formulas which follow in the proof correspond to w.
Owing to (A.1), (A.2), there exists an integer k1 > 0 (depending on w) such that

Zalé‘l

for n > k1. Due to Assumption 2.1 and (A.1), we also have

(A.S5) nli)ngog(en)”an;n” :nll)ngog(en)”annn” =0.

(A4) g(6,) max

n<j<a(m,T)

<7’ @) 1all <8

Since

gONOnr1 — Onll < an + gO) oSl + g@n) oy |l

for n > 0, Assumption 2.1 and (A.5) imply lim,— 0 £(6,)|6n+1 — Bn |l = 0. Then
(6.2) implies that there exists an integer k; > 0 (depending on w) such that

a(n,t)—1

(A.6) Yo oai=(1—-91, g1 —Oull <7
i=n
forn > kj.
Let kg = max{ky, k2}. Moreover, let [y, mg, ng be the integers defined as follows.
If w € A (ie., if ||6,]| < p for infinitely many n), let

(A7) lo=min{n > ko : |6,—1] < p},
(A.8) mo=min{n > ly: |6, > p2}.
(A.9) no =max{n <mg: |6,—1ll < p}.

Otherwise, if w € A€ (i.e., if ||6, || < p for finitely many n), let
lo=max{n > 0:[6,_1]| < p}, mo = 00, no = max{ko, lo}.

Then we have kg < ng <mg and |6, | = p for ng <n < my.

Let ¢,(7), ¢1..(7), $2.,(r) have the same meaning as in Section 6. Now, the
asymptotic properties of ¢, (t) are analyzed. As ||6,] > p for ng <n < mgp, (A.4)
implies

J J
(A.10) +Y aillnill < t7g 7 O + 8 [ VO

i=n i=n

J
< Zaiii

i=n

J
> ai&i
i=n

for no <n < j < min{mo, a(n, T)} [notice that ||n;|| < SIIV f(6;)| when [6;] >
0]. Therefore,
IVFOD| < [VFOEI|+]VFO)—Vf6n)
<[V O]+ C2116; —6all
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j-1
> ik

i=n

~ ]_1 ~
<|VfO)|+C2 D i VO] +Ca

i=n

j—1
<|VFOD) |+ Car?g ™' O0) +2C2 ) i |V £ (6

1=n

for no <n < j < min{mg — 1, a(n, 7)}.20 Combining this with the Bellman—
Gronwall inequality (see, e.g., [11], Appendix B), we deduce

j—1
IVF@N] < (IVFo) ]+ 6zr2g“<9n>>exp<2@z Zm)

< (V@) + Cat?e ' 60))(1 + C37)
<[ V£6)| + (C3t + Cat? + C2C37%) g (6)
<|V£©G)| + Carg ()

for ng <n < j <min{mg — 1, a(n, v)}.>' Then (A.10) implies

J
<t2g 7 O+ 8(|VFO)] + Catg™ O)) Y e

1=n

(A.11)

J
Z%‘Si
<8t V£ ()] +2Cat?g " 6))

for ng <n < j <min{mog, a(n, v)}. Consequently,

j—1
16, —0all <> | VFO) ] +

i=n

j—1
Zaiéi'

~ j_l ~
<(IVf@n]+ c4rg—1<9n))<2a,- + ar> +2C42g 7 (6))

1=n

(A.12)
<3t ()

2ONotice that 7, T are defined as t = 41 C‘;lsc2, T = 261571072. Notice also T < 1 < T since
C1,Cse[l,00), ¢ c€(0,1).

2INotice that Z{;nl aj <t <1 when n < j <a(n,t). Notice also g71(9n) > [V f(6p)]| and
exp(2Cy1) <2Chtexp(2Cy) = C3t.
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for ng <n < j <min{mg — 1, a(n, t)} (notice that § < 1, 6‘4t < 1/4). Therefore,

a(n,t)—1

p1a@|<Co| VO] D @il —6nll

i=n
a(n,t)—1

<3Crg 'O VG| Y ai <3Ct7g (00

i=n
for n > ng satisfying a(n, t) < mg. We also have
[#2.0(©)] < Collfanv) = Oull < 927782 (6)
for n > ng satisfying a(n, t) < mg. Thus,
(A.13) ¢ (0)] < Ca’g™*(6,)
when n > ng, a(n, T) < mg. Additionally, as a result of (A.6), (A.11), we get

a(n,t)—1

Y ai&

i=n

a(n,t)—1

Ve Y. ai-

i=n

>(1=8-e)|VsE|

—2C4t?g ™" (6))
=5eT|Vf(0,)| —2C4t%g1(0n)
> 367V £ (6]
when n > ng, a(n, t) < mg.?*> Then (6.1), (A.13) imply

FBagnry) — F(6) < =36t |V F (62| + Cat’g2(6,)

(A.14) 5
< —et|VFG)| < —stc?

for n > ng satisfying a(n, t) < mo.23

Let {ni}x>0 be the sequence recursively defined by nyy1 = a(ng, v) for k > 0.
Now, we show by contradiction w € A (i.e., ||0,|| < p for infinitely many n). We
assume the opposite. Then mg = oo and |6, || > p for n > ng, while (A.14) implies
S Onyy) — f(Ony) < —etc? for k > 0. Hence, limg_, oo f(6y,) = —o0. However,
this is impossible due to Assumption A.1. Thus, w € A (i.e., ||6, ]| < p for infinitely
many n). Therefore, mg, nog are defined through (A.7), and thus, [|6,,—1] < p,
0m |l > p2. Combining this with (A.6), we conclude

-1 joud
||9n0_9n071” <tg (Qno—l)ST(C2+1)§ 1/2
22Notice that 1 — 8 = 6¢, & > sc > 2C47. Notice also that 267 ||V £ (0,)|| = eT||V f ()| + eTc >

2@4r2g_1(6n) forng <n <my.
23Notice that 2||V f 0u) 112 = |V L@ 1> + ec? > Catg2(6y) for ng < n < my.
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[notice that ||V £ (6n,—1)|l < C2, Cat < 1/4]. Consequently,
(AIS) ”0}10” =< ”9n0—1 ” + ”9}10 - en()—l ” =p + 1/2 < p2.

Hence, ng < mo, f(6y,) < C‘l.

Let ig, jo be the integers defined by jo = max{j > 0:n; <mo}, io =nj,. Then
we have ng <igp=nj, <njyr1 =mo < a(ip, t). As aresult of this and (A.12), we
get

16y — Bigll <3787 (B1p) <37(C2+ 1) <1/2
[notice that ||V f(6;,) ] < C», Crt < 1/12]. Consequently,
(A.106) 16ioll = 1Omoll — 18mg — Oigll = p2 — 1/2 > p1.

Let {¥n}n>0, 60(-) have the same meaning as in Section 5. Now, we show by
contradiction that y;, — y,, > T. We assume the opposite. Then (A.10), (A.15)
imply

i1
160 = 116,11 < 16l + D i [V £ 6] +

i=ng

e

i=ng

j—1
< 10noll + 7287 Ong) +2 > | VL6 |
(A.17) i=no
j—1
<p+1+23 ao(loil)

i=ng

t
<p+1+2 [ o(|0o)])ds

yllo

for t € [y, ¥j+1), no < j =< io.>* Applying the comparison principle (see [19],
Section 3.4) to (A.3), (A.17), we conclude [|6p(t)|| < A(t — Ynos p + 1) < p1 for
all # € [¥ny, Viol- Thus, [|6;,1l = [|60(¥iy) |l < p1. However, this is impossible, due to
(A.16). Hence, y;, — ¥n, = T. Consequently,

Jo—1
(A.18) T <Yip—Vno= D (Ynjp1 — Yu;) < JoT
=0

. . I’lj+1—]
(notice that nj, = io, Yn;,, — Vn;, = Zi:nj o <1).

2As j <ig < mo, we have yj — yng < ¥iy — Yo < T and j < min{mg — 1, a(ng, T)}. We also
have t2g ™1 (6py) < 72(Co + 1) < 1/2.
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Owing to (A.14), we have f(9nj+1) — f(@nj) < —erctfor0 < Jj < jo. Combin-
ing this with (A.18), we get
f(eio) = f(en_,'o) = f(eno) - J.OS'L'C2 = C~‘1 - 8C2T =< —él-

However, this is impossible, since f(6) > —C’l for all & € R% . Hence, ||6,| > 02
for finitely many n. [

APPENDIX B
In this section, a global version of Theorem 3.1 is presented. This result is based
the following assumptions.
ASSUMPTION B.1. There exists a Borel-measurable function ¢ : R% —
[1, o) such that

max{| F (8, 2)|, | F(©,2)|

(MF)0, 2|} <e@(|VFO)] +1),
|(MF)O',2) = (TF) (0", 2)| < p2)]6" — 6"
forall 0,60’,0” € R%, 7 ¢ R% . In addition, one has

sup E(9*(Zn)|6o =6, Zo =z) < 00

n>0

forall @ e R%, 7 € R%.

9 k]

ASSUMPTION B.2. 15, =n(6,) for n > 0, where n : R — R is a continu-
ous function. Moreover, there exists a real number § € (0, 1) such that ||n(0)] <
SIVF@)| forall 6 € R% satisfying [|6|| > p (p is specified in Assumption A.1).

Assumption B.1 is a global version of Assumption 3.3. In a similar form, it is
involved in the stability analysis of stochastic approximation carried out in [7],
Section II.1.9. Assumption B.2 is related to the bias of the gradient estimator. It
requires the bias {n,},>0 to be a deterministic function of the algorithm iterates
{6,}n>0. As demonstrated in Section 4 and [33], this is often satisfied in practice.
Assumption B.2 can be considered as one of the weakest conditions under which
the stability of the perturbed ODE d6/dt = —(V f(8) + n(0)) can be shown.

Our results on the stability and asymptotic bias of algorithm (3.1) are provided
in the next theorem.

THEOREM B.1. Suppose that Assumptions 3.1, 3.2, A.1, B.1 and B.2 hold.
Let f(-) be the function specified in Assumption 3.2. Then the following are true:

(1) If f() satisfies Assumption 2.3.a, Part (i) of Theorem A.1 holds.
(1) If f () satisfies Assumption 2.3.b, Part (ii) of Theorem A.1 holds.
(iii) If f () satisfies Assumption 2.3.c, Part (iii) of Theorem A.1 holds.
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PROOF. Let g(-), h(-) be the functions defined in Assumption A.2. Then, due
to Assumption B.2, g(6)n(0) is uniformly bounded in 6 R% , while h@)n@O) <6
for all § € R% satisfying |0 > p. Let C € [1, 00) stand for a (global) Lip-
schitz constant of V f(-) and for an (global) upper bound of g(-)n(:). Define
T =1/(18C?) and let {£y}n>0, {C1,n}n=0s {82,100, {€3,n}n=0 have the same mean-
ing as in the proof of Theorem 3.1, while 7, is the stopping time defined by

T =min({j = n:g0)g"" (6;) > 3} U {oo})
for n > 0. Finally, for § € R%, 7 € R%, let Ey ;(-) denote the conditional mean

given g =6, Zo = z.
As a direct consequence of Assumptions 3.1, B.1, we get

o
Ey . (Z a%ﬁoz(zn—kl)) <00

n=0

forall € R%, 7 € R%. We also have

gOINnl = 9(Zny1) +1 =20(Zn11)

for n > 0. Consequently,
(B.1) 1im @, @(Zng1) = lim @812l =0

almost surely.

Let {my}r>0 be the sequence recursively defined by mo = 0 and myy; =
a(my, t) for k > 0. Moreover, let F,, = a{6y, Zo, ...,0,, Z,} for n > 0. Due to
Assumption 3.2, we have

Eg - (0n)¢1,j I1z,= )1 Fj)

almost surely for each 6 € R¥ zeR%: 0<n< Jj (notice that {t,, > j} is measur-
able with respect to F;). Moreover, Assumption B.1 implies

O i 1z,> 1y < 80 O (P(Z)) + 9(Zj+1)) (1~ )
<3(p(Zj) +e(Zj11))
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for 0 <n < j. Then, as a result of Doob inequality, we get

J 2
E max aeONe | T
9,Z<”<J'<a(n,7:) i:%—%—l i8(On)1i {fn>1})
J 2
<E max o 00N i T
B 0’Z<n<j<a(n,r) i:;'_l i8On)81,i Iz, >y )

a(n,t)—1
54E9,z< > a?gz(emnm,i||21{Tn>i}>

i=n+1

a(n,t)
572Ee,z< > a?(wZ(z,-)ﬂoz(zm)))
i=n+1

for all 9 € R%, z e R%, n > 0. Combining this with Assumptions 3.1, B.1, we

deduce
E 2 0 ma . T .
e (kX:;)g ( mk)mk<j<§nk+1 l.:Xm:kal;l’l {ka>1})
o0
= 72E9’Z<Z(O‘i2 +ai2+l)(p2(zi+l)) <00
n=0
for each 6 € R%, z € R%, n > 0. Therefore,
J
(Bz) kll>nolo g(emk)mk<n}2§1k+l iZXm:k aié‘l,i I{fmk>j} =0

almost surely.
Since o, 0,41 = O(a,%), Oy — Opg] = O(aﬁ) for n — oo (see the proof of The-
orem 3.1), Assumptions 3.1, B.1 yield

o
Eo . <Z anan+l¢2(zn+l)) < 00,

n=0
(0,0)
EO,Z(Z lotn — Qg1 |(p2(zn+l)> < oo
n=0
for all § € R% ,Z € R%, Additionally, due to Assumptions B.1, B.2, we have
g0, i iz, jy < 8O)Q(Z)NO; — 01l l{z,>j—1)
<aj—180)9(ZH)(|FOj=1. Z)| + Inj=11)I{z,> j;
<o 1808 0 )9(Z)(9(Z)) + C) I, )
<6Ca;_19*(Z))
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for 0 <n < j [notice that ¢(z) > 1 for any z € R%]. We also have

O i~y < 808 ONO(Z ) (1= jy < 30(Zj11) <3¢*(Zj11)

for 0 <n < j. Hence,

J J
gO| Y witnillig=j < Y. aigO)2.illlir,>i)
i=n+l i=n+1

J
<6C Y wieit19*(Zig1),

i=n

J
g(On) Iiz,> ) < Z l; — i 118 @)183,i 1 iz, >

i=n+1

J
> (i —ait1)83

i=n+1

j
<3 > i —ip1l9*(Zig1)

i=n+1
for 0 <n < j. Consequently,
J

Jim g (6,) max i:%;rlolifz,i I(z,> j)
(B.3) |
J

= nlggog(e”)l}lff . X;Ll(ai —i+1)83,i | liz,>j3 =0

1=n

almost surely [notice that ajy/a; = O(1) for j — oo]. Moreover, (B.1) yields
(B.4) Jim (@) maxej 163,11 i, ) =0

almost surely. Combining (B.1)—(B.4) with (7.2), we deduce

J
B.5 lim g(6 G| D>y =0
(B.5) kingog( nk)mksr?gzﬁl i;k *iGi | > )

almost surely.
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Owing to Assumptions A.1, B.2, we have

g O =1y <g O+ |V Bj+1) = VL) | (r,~ )
<g (6 +C||9,-+1 — Ol Iz, )

<g 1(0 )+CZal”Vf(9)HI{Tn>] +C

i=n

Zazfz

i=n

{ta>J}

J
+ Czai”ni||l{t,,>j}

i=n

J
I{r,=jy +2C? Zaig_l(Gi)I{rn>j}

i=n

<g '@ +C

J
> aig;
i=n

for 0 < n < j [notice that ||n(0)| < Cg~'(#) for each # € R%]. Combining this
with the Bellman—Gronwall inequality (see, e.g., [11], Appendix B), we conclude

Tn>j}>

Zazgt

(91+1)1 (>} = <g 6,) +C max

n<j<a(n,t)

j—1
- exp <2C2 Z oci)

i=n

Zalgl

< 2g‘1(0n><1 +Cg(0n) _max

<a(n,t)

fn>j}>

for 0 <n < j <a(n, t).” Then (B.5) yields

(B.6) limsup g(6,) max g~ ' (011, >y <2
k—00 Mg =] <Mp+1
almost surely.

Let Ng be the event where (B.5) or (B.6) does not hold. Then, in order to prove
the theorem’s assertion, it is sufficient to show that (A.1), (A.2) are satisfied on
N for any t € (0, 00). Let w be any sample in N, while ¢ € (0, o0) is any real
number. Notice that all formula which follow in the proof correspond to w.

Due to Assumption B.2, we have

limsup g (0|17 < € < 00, limsup 2(6p)[Inall <6 < 1.

n—oo n—0o0o

25Notice that Z/ a; <tforn < j<a(n,t). Notice also that exp(ZCzr) <exp(l/2) <2.
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Moreover, Assumption 3.1 and (6.2), (B.6) imply that there exists an integer kg > 0
(depending on w) such that ka“ ! o >1/2and
J

> aig

i=my

B.7)  gOm)

Ly >y <7 80m)g ' Oj1D I, ~j) <3

for k > ko, my < j < mgq1. As 1, > n for n > 0, we conclude 1,,, > my4 for
k > ko.?® Consequently, I, > jy =1 for k = ko, mi < j < mg1. Combining this
with (B.7), we get g(0n,) <3g(0;+1) and

g 0141 = & N Om) — [V Oj+1) — V6
> ¢ Omy) — Cll0j+1 — 6nll

J
> Om) —C Y | VO

i=my

J
—C Y ailnl

i=my

J

(B.8) -C g

i=my
J

Z e

i=my

J
> ¢ (Om) —2C* Y wig T O — C

i=my

> ¢ ) (1 —6C%t — C1)

>371¢710,,)

for k > ko, mg < j < my41.2” Hence, 371g(On,) < g(6;) < 3g(Om,) for k > ko,
mp < j < Mgy1.

Let ng = my,, while k(n) = max{k > 0:my <n}, m(n) = my(,) forn > 0. Then
(B.8) implies g(0,) < 38Omn))> &Om) < 38(Om,,,) for n > ng, k > ko [notice
that k(n) > ko, miu) < n < mymu)+1 when n > nol. Hence, g(0,) < Cy, kg (0m,)
for n > ng, k > m(n), where C,, j = 3¥=*kW+1 28 Gince

k(j)  mgy1—1

27N k(H —km)r< YN a,<Za,<t

k=k(n)+1 i=my

261f 7, < my 1, then 7y, = j and g(e,nk)g—l(ej)l{,mk>j,1} = g(Om,)8 1 (8;) > 3 for some j
satisfying my < j <myjp4.

27Notice that g_l(G,-) < 3g_1(49mk), Z%i“q a; <t when k > kg, my <i < my41. Notice also
that 6C%7 =1/3, Ct < 1/3.

Z8Notice that g(n)g ™ Gn) < 3. 8 Om(n))g ™" Omy) < 3¥7*® when n > ng, k > m(n). Notice
also g(Bn) = (808~ Omn))) (€ Om(n)) 8" Oy )8 Omy)-
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for no <n < j <a(n,t), we conclude k(j) — k(n) < 2t/t for the same n, j.
Consequently,

J k(j) mpy1—1 n—1 J
gl D aiti|=gOn| D D wli— Y wli+ Y, OtiCi'
i=n k=k(n) i=my i=m(n) i=m(j)
k(j)—1 My —1
< > CuskgOm| Y. il

k=k(n) i=my
n—1
+ Cokm&8Ommm)| D aili
i=m(n)
J
+ Cosk(HEOm())| D @ili
i=m(j)

[
<C@t) max  gOm)| Y il
mp<l<mj1

fe(n) <k i=mi

|

for no <n < j <a(n,t),> where C(t) = (2t/t + 3)3%/7*3. Since 1, > my41
for k > kg (i.e., I{ka>j} =1 for k > ko, my < j <mypy1), (B.5) implies
j

nll)ngo g(6,) max =0

n<j<a(n,t)

o; g
n

=

[notice that lim,,_, o, k(n) = o0]. Hence, (A.1), (A.2) hold. [
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