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STRUCTURES IN SUPERCRITICAL SCALE-FREE PERCOLATION
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Scale-free percolation is a percolation model on Z
d which can be used

to model real-world networks. We prove bounds for the graph distance in the
regime where vertices have infinite degrees. We fully characterize transience
versus recurrence for dimension 1 and 2 and give sufficient conditions for
transience in dimension 3 and higher. Finally, we show the existence of a hi-
erarchical structure for parameters where vertices have degrees with infinite
variance and obtain bounds on the cluster density.

1. Introduction. Random graphs are mathematical models commonly used
to study real-world networks such as the world-wide web, social, financial, neu-
ral and biological networks. Many real-world networks exhibit the following two
properties:

• The small-world property: distances within the network are very small in com-
parison to the number of nodes. With “small” we mean distances are at most of
order of an iterated logarithm. Some real-world networks are even ultra-small,
meaning that the distances are at most a double logarithm.

• The scale-free property: the number of connections per node behave statistically
like a power-law. This implies that the variation is typically very high.

An example of a random graph model with these properties is the Norros–Reittu
random graph [19] [see Figure 1(A)]. This model produces a random graph
G = (V ,E) on a fixed set of vertices V , but with a random edge set E ⊂ V × V

as follows: Every vertex x ∈ V is assigned an i.i.d. random weight Wx > 0. Con-
ditioned on the weights of its end-vertices, the edge {x, y} is present in E with
probability pxy = 1 − exp(WxWy/N ), independently of the status of other possi-
ble edges (here N is a normalizing constant). See [16] for more results on inho-
mogeneous random graphs.

These two properties are important, but the structure of many real-life networks,
such as social networks, often have other features that influence the structure and
formation of networks:
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FIG. 1. Simulations of the Norros–Reittu random graph (A), long-range percolation (B) and
scale-free percolation. The size of the vertices is drawn proportionally to their weights.

• Geometric clustering: in social networks, this manifests itself because people
who are geographically close to each other are more likely to know each other,
giving rise to formation of locally concentrated clusters within the network.

• Hierarchies: again in social networks, the more “important” people are, the more
likely they know other important people, even if those people might be far away,
giving rise to hierarchies within the network.

A well-known model that has geometric clustering and the connections over
long distances required for the existence of hierarchies is long-range percolation
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[LRP, see Figure 1(B)] [3–5, 15, 21]. LRP is a percolation model that produces
random subgraphs of the graph (Zd,Zd × Z

d) wherein an edge {x, y} ∈ Z
d × Z

d

is (independently) retained with probability pxy ∝ λ/|x − y|α for some positive
constants λ and α, and removed otherwise. Thus, the connection probabilities are
monotonically decreasing in α, and increasing in λ. For many choices of d and α,
LRP has a percolation phase transition in λ, meaning that there exists λc(d,α) ∈
(0,∞) such that when λ > λc there exists an infinite cluster almost surely, whereas
when λ < λc, all clusters are almost surely finite. When α ∈ (d,2d), this model has
the clustering property, as well as something akin to the small-world property [5].
It is, however, clearly not scale-free, since the decay of the degree distribution is
faster than exponential.

Various models have been introduced in the recent years that combine three
or four of the network properties described above. We mention, for instance, the
models introduced by Aiello et al. [1], Flaxman, Frieze, and Vera [11] and Jacob
and Mörters [17].

In this paper, we consider another model that has all four properties: scale-free
percolation (SFP, also known as heterogeneous long-range percolation). SFP inter-
polates between long-range percolation and the Norros–Reittu random graph [see
Figure 1(C)]. SFP was introduced by Deijfen, van der Hofstad and Hooghiemstra
in [9]. We start with a formal definition of the model.

DEFINITION 1.1 (Scale-free percolation). Consider the graph (Zd,Zd × Z
d)

for some fixed d ≥ 1. Assign to each vertex x ∈ Z
d an i.i.d. weight Wx , where the

weights follow a power-law distribution with parameter τ − 1:

P(Wx > w) = w−(τ−1)L(w), w > 0,

where L is a slowly-varying function [i.e., L(wa)/L(w) → 1 for all a > 0 as
w → ∞, so the law of Wx is (τ − 1)-regularly varying]. Conditionally on the
weights, an edge {x, y} ∈ Z

d × Z
d is retained independently of all other edges

with probability

pxy = 1 − exp
(
−λ

WxWy

|x − y|α
)
,

where |x| = ‖x‖1 and λ,α > 0 are positive constants of the model.2 The edge is
removed otherwise. We call retained edges open, and removed edges closed. We
denote the joint probability measure of edge occupation and weights by P(λ,W)

(where the subscript W refers to the law of the weights, not the actual values) and
write just P if the parameters are clear from the context.

2We choose to work with the �1-norm because it is a practical metric, but defining SFP with respect
to any �p-norm with p ∈ [1,∞] gives qualitatively similar results.
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Before we proceed with our results, let us briefly summarize some important
features of SFP, as proved by Deijfen, van der Hofstad and Hooghiemstra [9], and
by Deprez, Hazra and Wüthrich [10].

It turns out that the following parameter is frequently useful to describe the
behaviour of SFP concisely:

(1.1) γ := α(τ − 1)

d
.

Like long-range percolation, SFP on Z
d with parameter α and i.i.d. vertex

weights whose law W is (τ − 1)-regularly varying has a percolation phase-
transition in λ at

(1.2) λc = λc(d,α,W) := inf{λ > 0|there exists an infinite cluster C∞}.
This phase transition is nontrivial, except when d ≥ 1 and γ < 2, in which case
λc = 0 and when d = 1, γ > 2, and α > 2d , in which case λc = ∞ [9]. In the
regime where SFP percolates, the infinite cluster C∞ is almost surely unique [13].
Deprez et al. show that the percolation density of SFP is continuous when α ∈
(d,2d): at λ = λc there is no infinite cluster almost surely [10].

By the choice of the power-law distribution, this model is scale-free. Indeed, the
degrees D follow a power-law of the form:

P(D > s) = s−γ �(s)

for some slowly varying function �(s) [9]. This shows that the model behaves
differently from long-range percolation. Many real-world networks are believed to
have infinite variance degree distributions. SFP has infinite variance degrees when
γ < 2. When γ < 2, SFP locally behaves like an ultra-small world [9].

Under the assumption that the weights are bounded away from 0, the probability
that an edge is open in scale-free percolation with parameters α, τ and λ stochas-
tically dominates the probability that an edge is open in long-range percolation
with parameters α and some λ′ > 0. Deprez et al. [10] use this domination to show
that SFP locally has the small-world and clustering properties when α ∈ (d,2d),
analogous to long-range percolation [5].

2. Main results.

Distances within the infinite percolation cluster. Given a graph G = (V ,E),
the graph distance on G between any x, y ∈ V is defined as

dG(x, y) = # edges in E on a shortest path from x to y,

with the conventions that dG(x, x) = 0 and dG(x, y) = ∞ if x and y are not
in the same connected component of the graph. We define the diameter of G

as the maximal distance between two vertices in G = (V ,E), that is, diamG =
maxx,y∈V dG(x, y).
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The infinite random subgraph C of (Zd,Zd × Z
d) corresponding to the infinite

component of supercritical SFP thus naturally produces a random metric on Z
d .

We write dC for this metric. We write x ∧ y for the minimum of x and y. Our first
result is the proof of a conjecture by Deijfen et al. [9].

THEOREM 2.1 (Finite diameter in the infinite-degree cases). Consider SFP
on Z

d with d ≥ 1, λ > 0, and with i.i.d. vertex weights whose law W satisfies for
some τ > 1 and some c > 0,

(2.1) P(W ≥ w) ≥ cw−(τ−1) ∧ 1, for all w > 0.

Then diamC = 2 almost surely when γ ≤ 1, and diamC ≤ d/(d − α)� almost
surely when α < d .

Note that (2.1) implies P(W < c1/(τ−1)) = 0, thus the weights are bounded
away from 0. See Figure 2(A) for an overview of the graph distances in which
we combine the results of the present paper and those of [9, 10]. Theorem 2.1
thus complements the characterization of distances. Our proof for the case α < d

is based on the proof of a similar result for long-range percolation with α < d by
Benjamini, Kesten, Peres and Schramm [3].

For the Norros–Reittu random graph, a similar result to Theorem 2.1 is known:
van den Esker et al. [12] prove that when the weights are distributed as an infinite-
mean power-law, then the diameter of the graph is almost surely 2 or 3 (more
precise results are obtained under extra conditions).

Transience and recurrence. Graph distances are one way of characterizing the
geometry of a graph. Another way of doing this is by studying the behaviour of
random walk on the graph. The notions of transience and recurrence are particu-
larly relevant.

DEFINITION 2.2 (Random walk, transience and recurrence). A simple ran-
dom walk on a locally finite graph G = (V ,E) is a sequence (Xn)

∞
n=0 with X0 ∈ V

where Xn+1 is chosen uniformly at random from the “neighbours” of Xn, that is,

Xn+1 ∈ {
x ∈ V : {x,Xn} ∈ E

}
,

independently of X0, . . . ,Xn−1. A graph is called recurrent if for every X0 a ran-
dom walk returns almost surely to its starting point X0. A graph is called transient
if it is not recurrent.

We prove the following two theorems, the results of which are summarized in
the phase diagram in Figure 2(B).

THEOREM 2.3 (Transience in d ≥ 1). Consider SFP on Z
d with d ≥ 1, i.i.d.

vertex weights whose law W satisfies (2.1), either 1 < γ < 2 or d < α < 2d , or
both, and λ > λc(d,α,W). Then the infinite cluster of SFP is transient almost
surely.
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FIG. 2. Phase diagrams. Transitions in γ and α.
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Recall Pólya’s theorem, which states that the lattice of Zd with nearest neigh-
bour edges is recurrent if and only if d ∈ {1,2}, and transient otherwise. There-
fore, transience in these dimensions shows a dramatic difference to regular lattices.
Berger [4] proved for LRP that the random walk is transient in one or two dimen-
sions if and only if α ∈ (d,2d). For SFP, the result is stronger: for any α > d , there
exists τ > 1 such that the infinite cluster is transient.

THEOREM 2.4 (Recurrence in two dimensions). Consider SFP on Z
d with

d = 2, i.i.d. vertex weights whose law W satisfies

(2.2) P(W ≥ w) ≤ cw−(τ−1), for all w ≥ 0,

for some τ > 1 and c > 0, α > 4 and λ > λc(2, α,W), and such that either τ > 2
or γ > 2, or both. Then the infinite percolation cluster is recurrent P(λ,W)-almost
surely.

Note that, as mentioned before, in dimension 1 when γ > 2 and α > 2 there
is no infinite cluster almost surely [9], so in this case a random walk is trivially
recurrent. We therefore give a full characterization of recurrence and transience
of SFP in dimension one and two, while for d ≥ 3 we only characterize it when
α < 2d or γ < 2. For nearest-neighbour percolation, it is known that the infinite
cluster is transient [14]. It would be interesting to verify whether this is true for
other percolation models on Z

d , in particular for scale-free percolation or long-
range percolation.

Geometric clustering and hierarchies. We show that SFP has the geometric
clustering property not only for α ∈ (d,2d) as shown by Deprez et al. [10], The-
orem 6, but also when 1 < γ < 2. Moreover, these clusters can be organized in
a hierarchical structure, a phenomenon that is also present in some real-life net-
works (see, e.g., [8], Chapter 13 or [2], Chapter 9). These hierarchical structures
are not only present in finite boxes, they extend throughout Zd . Indeed, the infinite
component of SFP contains an infinite subgraph exhibiting a prescribed hierarchy.
We refer to Figure 3 for a simulation of SFP on Z, where a hierarchical subgraph
is clearly visible. We introduce the notion of a hierarchically clustered tree.

DEFINITION 2.5 (Hierarchically clustered trees). Fix m ≥ 1 and x ∈ Z
d . De-

fine the box Qm(x) := x+[0,m−1]d ∩Z
d . Consider the set of trees Tx,m of all un-

rooted, connected, cycle-free subgraphs of (Qm(x),Qm(x)×Qm(x)) [i.e., trees on
Qm(x)], where each vertex v in such a tree is endowed with a weight Wv ∈ R. Fix
ρ ∈ (0,1] and K > 0. We call an element T ∈ Tx,1 an (x,1,K,ρ)-hierarchically
clustered tree if T = ({x},∅, {Wx}) (i.e., T is the isolated vertex x with a weight).
For m ≥ 2, we call an element T ∈ Tx,m an (x,m,ρ,K)-hierarchically clustered
tree if the following four properties hold:
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FIG. 3. A simulation of scale-free percolation in d = 1. The vertex-height in the figure depends on
the weight (logarithmically). α = 2, τ = 1.95, λ = 0.1.

(1) (Positive density) T contains at least a fraction ρ of all the vertices in the
box Qm(x):

|V | > ρmd.

(2) (Ultra-small world) T is an ultra-small world in the sense that

diam(T ) ≤ K max{1, log logm}.
(3) (Ordered weights) If we root T at its maximum-weight vertex, then, for any

vertex in the tree, the weights decrease step-by-step along the path from the root
to that vertex.

(4) (Spatial clustering) If we remove any given edge from T , then there exists
an m′ ≤ m (depending on T and the removed edge) such that the two trees T ′

1 =
(V ′

1,E
′
1,W

′
1) and T ′

2 = (V ′
2,E

′
2,W

′
2) that remain satisfy:

(a) at least one (say T ′
1) is an (x′,m′, ρ,K)-hierarchically clustered tree for

some x′ ∈ Qm(x), and
(b) the other (say T ′

2) has its vertex set V ′
2 disjoint with the box on which

T ′
1 is defined:

Qm′
(
x′) ∩ V ′

2 = ∅.

Note that condition (1) together with condition (2) implies that there exists
K ′ > 0, such that for all m ≥ 1

diam(T ) < K ′ log log |VT |,
so hierarchically clustered trees combine a topological and a spatial version of the
ultra-small world property.
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THEOREM 2.6 (Hierarchically clustered trees). Consider SFP on Z
d with

d ≥ 1, i.i.d. vertex weights whose law W satisfies (2.1), with 1 < γ < 2, and any
λ > 0. Let Sm denote the SFP configuration inside the cube [0,m − 1]d . There
exist ξ > 0, a density 0 < ρ ≤ 1,K > 0 and a constant m0 > 0, such that:

(1) for all m ≥ m0,

P
(
Sm contains a (0,m,ρ,K)-hierarchically clustered tree

)
≥ 1 − exp

(−ρmξ )
, and

(2) the infinite component C∞ contains a.s. an infinite, connected, cycle-free
subgraph T∞ such that if we remove any given edge from T∞, a finite and infinite
connected component remain and there exist x ∈ Z

d and m ≥ 1 such that the finite
connected component is a (x,m,ρ,K)-hierarchically clustered tree.

Related results and open questions.

Graph distance. This paper combined with [9, 10] gives bounds on the graph
distance for every value in the parameter space, but the picture is not yet complete.
We were not able to prove a nontrivial lower bound on the diameter in the regime
where γ < 2 and d > α, and it is not clear to us that the upper bound is sharp.
And in the regime α ∈ (d,2d) where γ > 2, there is a gap in the bounds on graph
distances, since there the best known bounds are [9, 10]:

lim|x|→∞P
(
c log |x| ≤ dC(0, x)

≤ c−1(
log |x|)log(2)/ log(2d/α)) = 1, for some c > 0.

What are the right asymptotics of dC(0, x) in this regime?

Hierarchical structure. In Section 6 below, we determine that the bound on ξ

in Theorem 2.6 is ξ < min{d(2 − γ )/(τ + 1), d
2 (τ + 2 −

√
(τ + 2)2 − 4(2 − γ ))}.

Biskup [5] shows a result rather similar to Theorem 2.6 on the clustering den-
sity for long-range percolation when α ∈ (d,2d), where ξ < d(2 − α). The corre-
sponding range for ξ for scale-free percolation would be ξ < d(2 − γ ). It might
be possible to extend Theorem 2.6 to hold for this regime of ξ .

Scale-free percolation on the torus. Scale-free percolation is defined as a
model on the infinite lattice Z

d . A challenging question is the study of scale-free
percolation, and in particular its critical behaviour, on the finite torus. Working
on the torus keeps the translation invariance and provides the opportunity to com-
pare the model to its nonspatial counterparts, such as the Norros–Reittu random
graph [19].

Scale-free percolation on finite boxes is strongly related to geometric variants
of the Norros–Reittu model or the Chung–Lu model. For example, Bringmann,
Keusch and Lengler [7] introduce geometric inhomogenous random graphs, which
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generalise a certain class of hyperbolic random graphs, and which could be de-
scribed as “continuous SFP on the torus”. Indeed, they do not use a grid, but place
the points randomly. In a fairly general setup, where contrary to our model, the
connection probability does not need to approach to 1 as WxWy/|x − y|α goes to
infinity; these authors prove that such graphs are ultra-small [6]. Moreover, they
claim that their results also carry over to finite boxes. Because of this more general
setup, it would be interesting (but possibly not straightforward) to see whether in
their setting hierarchically clustered trees are also present.

Organization. The proofs of the main results partly rely on a number of ele-
mentary properties of the vertex weights. We begin by proving these properties in
Section 3. In Section 4, we prove the boundedness of the graph distance for α < d

and γ ≤ 1. In Section 5, we prove the random walk results, and in Section 6 we
prove Theorem 2.6 on hierarchical clustering.

3. Preliminaries: Properties of the vertex weights. We start by introducing
some basic notation and definitions. Given two percolation configurations ω,ω′ ∈
{0,1}Zd×Z

d
, we write ω′ � ω if ω′(e) = 1 when ω(e) = 1 for all e ∈ Z

d × Z
d ,

that is, all edges that are open in ω are also open in ω′. We say that an event A is
increasing if ω ∈ A implies ω′ ∈ A for all ω′ � ω.

Given two random variables X and Y , we say that Y stochastically dominates
X if for every x ∈ R the inequality P(X > x) ≤ P(Y > x) holds, and we write
X �d Y .

LEMMA 3.1 (Stochastic domination for SFP). Let W and W ′ be random vari-
ables such that W ′ �d W . For any increasing event A,

(3.1) P(λ,W)(A) ≥ P(λ,W ′)(A).

This lemma can be proved with a straightforward coupling argument that we
leave to the reader.

We commonly use Lemma 3.1 to simplify the law of W : If the law of W satisfies
(2.1) and the law of W ′ satisfies

(3.2) P
(
W ′ ≥ w

) = cw−(τ−1), for all w ≥ c1/(τ−1),

with the same constant c as in (2.1), then (3.1) holds.
The upcoming lemmas allow us to construct a coarse-graining argument in the

proofs of Theorems 2.3 and 2.6.

LEMMA 3.2. Let W be a random variable with law given by (3.2). Let W ′′ be
a random variable with law given by

P
(
W ′′ ≥ w

) = w−(τ−1), for all w ≥ 1.(3.3)

Then, for y ≥ c1/(τ−1), the conditional law of W given {W ≥ y} is the same as the
law of yW ′′, that is, P(W ≥ x|W ≥ y) = P(yW ′′ ≥ x).
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PROOF. For x ≥ y,

P(W ≥ x|W ≥ y) =
(

y

x

)τ−1
= P

(
W ′′ ≥ x

y

)
= P

(
yW ′′ ≥ x

)
. �

LEMMA 3.3. Let {Wi}∞i=1 be an i.i.d. sequence of random variables with law
given by (3.2). Then, for all n ≥ 1 and all K2 ≥ K1 ≥ c1/(τ−1),

P

(
max

i=1,...,n
Wi ≤ K2

∣∣Wi ≥ K1 for i = 1, . . . , n
)

≤ exp
(
−n

(
K1

K2

)τ−1)
.

PROOF. Using that the weights are i.i.d., that K2 ≥ K1, and that 1 − x ≤
exp(−x), we can bound the left-hand side by(

1 −
(

K2

K1

)−(τ−1))n

≤ exp
(
−n

(
K1

K2

)τ−1)
. �

LEMMA 3.4. Fix an integer d ≥ 1 and α ∈ (0,∞) such that γ = α(τ − 1)/

d < 2. Assign to each vertex in [0,N − 1]d ⊂ Z
d an i.i.d. random variable with

law satisfying (2.1). Let EN,β be the event that the box [0,N − 1]d contains at
least logN vertices with weight larger than βNα/2. Then, for all β > 0,

P(EN,β) −→ 1, as N → ∞.

PROOF. Let Y denote the number of vertices in [0,N − 1]d with weight ex-
ceeding βNα/2. By (2.1) and independence of the weights, we have Y �d X,
where X ∼ Bin(Nd, c(βNα/2)−(τ−1)). Note that since γ < 2 we have E[X] =
cβ−(τ−1)Nd(1−γ /2) � logN and Var(X) � E[X]2. It follows by the Paley–
Zygmund inequality that (when N is sufficiently large),

P(EN,β) ≥ P(X ≥ logN) ≥ (E[X] − logN)2

Var(X) +E[X]2 −→ 1. �

We call any set that is a translate of [0,N − 1]d ⊂ Z
d an N -box. We say that

two N -boxes Q1 = v1 +[0,N −1]d and Q2 = v2 +[0,N −1]d are “k boxes away
from each other” if |v1 − v2| = kN (where we recall that | · | denotes the �1-norm).

LEMMA 3.5. Let d ≥ 1 and k ≥ 1. Consider two N -boxes Q1 and Q2 that are
k boxes away from each other. For arbitrary u1 ∈ Q1 and u2 ∈ Q2,

|u1 − u2| ≤ 3dkN.

PROOF. Let v1 and v2 be such that Q1 = v1 + [0,N − 1]d and Q2 = v2 +
[0,N − 1]d . Applying the triangle inequality twice, one obtains

|u1 − u2| ≤ |v1 − v2| + |u1 − v1| + |v2 − u2| ≤ kN + 2dN ≤ 3dkN. �
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LEMMA 3.6. Fix N ∈ N and let Q1 and Q2 be two N -boxes that are k boxes
away from each other such that Q1 = Nv1 + [0,N]d and Q2 = Nv2 + [0,N]d
with v1, v2 ∈ Z

d . Let β > 0 be given, the weights {Wx}x∈Zd be i.i.d. according to a
law satisfying (3.2), and {W ′

x}x∈Zd be i.i.d. with law (3.3). For i = 1,2, write

ui = arg max
u∈Qi

Wu.

Then

P(λ,W)

({u1, u2} is open|Wu1,Wu2 ≥ βNα/2) ≥ P(λβ2(3d)−α,W ′)
({v1, v2} is open

)
.

PROOF. Let U ∼ Unif[0,1] denote a standard uniform random variable with
c.d.f. P(U < x) = x for x ∈ [0,1]. Then, by Definition 1.1,

P(λ,W)

({u1, u2} is open|Wu1,Wu2 ≥ βNα/2)
= P

∗
(
U < 1 − exp

(
−λ

W1W2

|u1 − u2|α
)∣∣∣W1,W2 ≥ βNα/2

)
,

where the probability measure P
∗ on the right-hand side is with respect to W1 and

W2, which are i.i.d. with the same law as the elements of {Wx}x∈Zd , and an inde-
pendent random variable U ∼ Unif[0,1]. Using Lemmas 3.2 and 3.5, we bound
the right-hand side from below by

P
∗∗

(
U < 1 − exp

(
−λβ2(3d)−α W ′

1W
′
2

kα

))
,

where the probability measure P
∗∗ is with respect to W ′

1 and W ′
2 which are i.i.d.

with the same law as the elements of {W ′
x}x∈Zd and an independent random vari-

able U ∼ Unif[0,1].
On the other hand, since |v1 − v2| = k, by Definition 1.1 we also have

P(λβ2(3d)−α,W ′)
({v1, v2} is open

) = P
∗∗

(
U < 1 − exp

(
−λβ2(3d)−α W ′

1W
′
2

kα

))
.

The claim thus follows.
�

4. Distances in the infinite degree case: Proof of Theorem 2.1.

PROOF OF THEOREM 2.1(1). (The case γ ≤ 1.) By translation invariance of
the model, it suffices to show P(dC(0, x) ≤ 2) = 1. Since we assumed that the law
of W satisfies (2.1), there exists a c > 0 such that Wx ≥ c1/(τ−1) for all x ∈ Z

d

almost surely.
Fix x ∈ Z

d . For k ≥ 1, let Qk denote the box centred at x/2 with sides of length
lk := 2k|x| and let Ak := Qk \ Qk−1 with A1 := Q1. Note that there are (2d −
1)|x|d2d(k−1) vertices in Ak .
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FIG. 4. Construction for the proof of Theorem 2.1 for d = 2.

We prove that the probability that the vertex with maximal weight for every Ak

is connected to both 0 and x is strictly greater than some positive constant and let
the result follow by Borel–Cantelli. Figure 4 shows a sketch of this construction.

For each k ∈ N, let vk be the vertex in Ak with maximal weight and let Ek be

the event that vk is connected by an open edge to both 0 and x. Let ak := 2
dk

τ−1 and
denote Fk := {Wvk

≥ ak}, which is an increasing event.

Using Lemma 3.1 and Lemma 3.3 with K1 = c1/(τ−1) and K2 = 2
dk

τ−1 , we can
bound

P(λ,W)(Fk) ≥ P(λ,W ′)(Fk) ≥ 1 − exp
(−c

(
2d − 1

)|x|d2d(k−1)2− dk
τ−1 (τ−1))

(4.1)
= 1 − exp

(−c
(
1 − 2−d)|x|d)

,

where the measure P(λ,W ′) refers to a model where all weights are distributed as
in (3.2). The right-hand side of (4.1) is bounded below by some δ > 0 uniformly
in k.

Observe that |vk|, |vk − x| ≤ dlk and recall that τ > 1 and γ ≤ 1. Write ε =
c1/(τ−1). We can bound the probabilities on the events Ek by conditioning on Fk

as follows:

P(λ,W)(Ek|Fk) ≥ P(λ,W ′)(Ek|Fk) ≥ P(λ,ak)(Ek) ≥
(

1 − exp
(
− λεak

(dlk)α

))2

=
(

1 − exp
(
− λε

(d|x|)α 2dk/(τ−1)−kα

))2
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≥ 1

4

((
λε

(d|x|)α 2dk(1/(τ−1)−α/d)

)2
∧ 1

)

=
((

λε

2(d|x|)α
)2(

4d(1−γ )/(τ−1))k) ∧ 1

4

≥
((

λε

2(d|x|)α
)2)

∧ 1

4
=: η.

This bound is independent of k and of the weights {Wx}x∈Zd . It follows that
P(λ,W)(Ek|Fk) ≥ η and, therefore,

P(λ,W)(Ek) = P(λ,W)(Ek|Fk)P(λ,W)(Fk) ≥ ηδ > 0.

Observe that the events Ek are independent of each other, hence we obtain the
result for γ ≤ 1 using the lemma of Borel–Cantelli. �

PROOF OF THEOREM 2.1(2). (The case α < d .) By translation invariance it
again suffices to show that

P(λ,W)

(
dC(0, x) ≤ ⌈

d/(d − α)
⌉) = 1

for all x ∈ Z
d . Recall that the assumption (2.1) on the law of W implies that W ≥

c1/(τ−1) almost surely. Note that {dC(0, x) ≤ d/(d − α)�} is an increasing event.
Hence, by Lemma 3.1,

P(λ,W)

(
dC(0, x) ≤ ⌈

d/(d − α)
⌉) ≥ P(λ,c1/(τ−1))

(
dC(0, x) ≤ ⌈

d/(d − α)
⌉)

.

Observe that SFP with constant vertex weights is equivalent to long-range perco-
lation with the same d and α and some possibly different parameter λ′.

Benjamini et al. [3], Example 6.1, show that the diameter of the infinite cluster
in long-range percolation with α < d for any λ > 0 is equal to d/(d −α)� almost
surely. Our claim about SFP therefore follows. �

5. Transience versus recurrence.

Transience proof. The proof of Theorem 2.3 is inspired by Berger’s proof of
transience for long-range percolation [4], Theorem 1.4(II). We use in particular a
multiscale ansatz which roots back to the work of Newman and Schulman [18] for
long-range percolation.

The case 1 < γ < 2. In view of Lemma 3.1, we may assume (3.2) rather than
(2.1) without loss of generality. We show that the infinite cluster of SFP almost
surely contains a transient subgraph. The proof has two steps:
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(1) We first assume that λ is large enough. With small probability, we remove
some vertices from the graph independently of each other. Then we use a multi-
scale ansatz: we group vertices into finite boxes, and call boxes “good” or “bad”
according to the weights and edge structure inside the box. We iterate this process
by considering larger boxes, which we call good or bad according to the number
of good boxes in them and the edges between vertices in those boxes. This will
imply transience for large values of λ.

(2) To couple the original model (for any λ > λc) to the model of the first step,
we use a coarse-graining argument: We “zoom out” by considering large boxes of
vertices and only considering the vertices with maximum weight in the boxes. We
show that, with high probability, the weights of these vertices are so high, that the
graph, only defined on these vertices, dominates a graph as described in the first
step.

We use [4], Lemma 2.7, which describes a sufficient structure for a graph to be
transient. To this end, we introduce the notion of a “renormalized graph”:

We start with some notation. Given a graph G = (V ,E) and a sequence {Cn}∞n=1
let Vl(jl, . . . , j1) with l ∈ N and jn ∈ {1, . . . ,Cn} be a subset of the vertex set V .
Now let for l ≥ m:

Vl(jl, . . . , jm) =
Cm−1⋃

jm−1=1

· · ·
C1⋃

j1=1

Vl(jl, . . . , j1).

We call the sets Vl(jl, . . . , jm) bags, and the numbers Cn bag sizes.

DEFINITION 5.1. We say that the graph G = (V ,E) is renormalized for
the sequence {Cn}∞n=1 if we can construct an infinite sequence of graphs such
that the vertices of the lth stage graph are labelled by Vl(jl, . . . , j1) for all
jn ∈ {1, . . . ,Cn}, and such that for every l ≥ m > 2, every jl, . . . , jm+1, and all
pairs of distinct um,wm ∈ {1, . . . ,Cm} and um−1,wm−1 ∈ {1, . . . ,Cm−1} there
is an edge in G between a vertex in Vl(jl, . . . , jm+1, um,um−1) and a vertex in
Vl(jl, . . . , jm+1,wm,wm−1).

The underlying intuition is that every nth stage bag contains Cn (n − 1)-stage
bags, which contains again Cn−1 (n − 2)-stage bags. Every pair of (n − 2)-stage
bags in an n stage bag is connected by an edge between one of the vertices in the
bags (see Figure 5).

LEMMA 5.2 (Berger [4], Lemma 2.7). A graph renormalized for the sequence
Cn is transient if

∑∞
n=1 C−1

n < ∞.

The lemma follows from the proof of [4], Lemma 2.7.
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FIG. 5. n and (n − 1) stage bag of a renormalized graph.

PROPOSITION 5.3. Consider scale-free percolation with γ < 2 and weight
distribution satisfying (3.3). Independently of this, perform an i.i.d. Bernoulli site
percolation on the vertices of Zd , colouring a vertex “green” with probability
μ ∈ (0,1].

Then the subgraph of the infinite scale-free percolation cluster that is induced
by the green vertices has a (unique) infinite component Cλ,μ. There exists μ0 < 1
and λ0 > 0, such that Cλ,μ is transient for μ ≥ μ0 and λ ≥ λ0 almost surely.

The proof exploits a multiscale technique. Indeed, we proceed by showing that
Cλ,μ contains a renormalized subgraph that is transient. Therefore, Cλ,μ is also
transient.

PROOF OF PROPOSITION 5.3. For all n ∈ N, let

Dn := 2(n + 1)2, Cn := (n + 1)2d,

and

un := dα/2(n + 2)d(2−γ )/22(n+2)α/2(
(n + 3)!)α.

We partition the lattice Z
d into disjoint boxes of side length D1, so that each such

box contains Dd
1 vertices, and call these the 1-stage boxes. (By convention, we

call vertices of Z
d the 0-stage boxes.) We view these boxes as the vertices of

a renormalized lattice. Now cover the lattice again, grouping together (D2)
d 1-

stage boxes to form 2-stage boxes with sides of length D2. Continue in this fashion,
so that the n-stage boxes form a covering of Zd by translates of [0,

∏n
k=1 Dk −1]d .

We call a 0-stage box “good” if the vertex associated with it is green.
For every stage i ≥ 1, we define rules for a box to be “good” or “bad”, depending

only on the weights Wx and the edges of C inside the box. This implies that disjoint
boxes are good or bad independently of each other.

A 1-stage box is good if it contains at least C1 good 0-stage boxes and one of
the vertices in these boxes has weight at least u1. For each good 1-stage box, call
the maximum-weight vertex, having weight at least u1, and call it 1-dominant.

For n ≥ 2, say that an n-stage box Q is good if the following three conditions
are satisfied:

(E) At least Cn of the (n − 1)-stage boxes in Q are good.
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FIG. 6. Sketch of the renormalization in Theorem 2.3 in d = 1 for Dn = 4, Dn−1 = 3, Dn−2 = 2,
Cn = 3, Cn−1 = 2, Cn−2 = 1. “Good” boxes are marked with a solid line; “bad” boxes have a
dashed line.

(F) Any two (n − 2)-dominant vertices that are in a good (n − 1)-stage box
within the same n-stage are connected by an edge.

(G) There is an (n− 1)-dominant vertex in one of its good (n− 1)-stage boxes,
with weight at least un. Call this vertex n-dominant.

For each good n-stage box, choose the maximum weight vertex and call it the n-
dominant vertex if its weight is at least un. (A vertex may be dominant for different
values of n.) See Figure 6 for a sketch of this definition.

Note that by construction, the subgraph of C induced by the vertices that are
in a good n-stage box for every n ≥ 0 is a graph renormalized by a sequence of
bag sizes {Cn} that satisfies the transience condition of Lemma 5.2. Our aim is
therefore to show that almost surely such a subgraph exists.

Define En(v),Fn(v) and Gn(v) to be the events that conditions (E), (F) and
(G) hold for the n-stage box containing the vertex v. To simplify notation, define
En := En(0),Fn := Fn(0) and Gn := Gn(0). We write Ln(v) and Ln for the events
that the nth stage boxes containing v and 0, respectively, are good. By translation
invariance it is sufficient to show that

P

( ∞⋂
n=1

Ln

)
> 0.
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The events Ln are positively correlated, hence it is sufficient to show that

∞∏
n=1

P(Ln) > 0.

We bound

(5.1) P
(
Lc

n

) ≤ P
(
Ec

n

) + P
(
Fc

n |En

) + P
(
Gc

n|En

)
.

First, we give an upper bound for P(F c
n |En). Recall that we use the �1-norm for

distance in the definition of the edge-probabilities of SFP. The �1-distance between
two vertices in the same n-stage box is at most

d

n∏
k=1

Dk = d2n(
(n + 1)!)2

.

The probability that two good (n − 2)-stage boxes are not connected by an open
edge between its (n − 2)-dominant vertices (which have weight at least un−2) is
therefore at most

exp

(
−λd−αu2

n−2

n∏
k=1

D−α
k

)

= exp
(−λd−α(

dα/2nd(2−γ )/22nα/2[
(n + 1)!]α)22−nα(

(n + 1)!)−2α)
= exp

(−λnd(2−γ )).
There are (

Dd
nDd

n−1

2

)
< 4d(n + 1)4d

pairs of (n − 2)-stage boxes inside an n-stage box, so there can be at most 4d(n +
1)4d edges between (n−2)-dominant vertices inside a good n-stage box. It follows
by taking the union bound that

(5.2) P
(
Fc

n |En

) ≤ exp
(
d log(4) + 4d log(n + 1) − λnd(2−γ )).

We proceed by establishing an upper bound on P(Gc
n|En). There exists a con-

stant c1 > 0 such that

un−1

un

= 2−α/2
(

n + 1

n + 2

)d(2−γ )/2 1

(n + 3)α
(5.3)

≥ c1(n + 1)−α.

Note that any good n-stage box contains at least Cn (n − 1)-dominant vertices
that all have weight larger than un−1. Using (5.3), Lemma 3.3, and γ = α(τ −
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1)/d , gives for some c2 > 0 that

P
(
Gc

n|En

) ≤ exp
(
−Cn

(
un−1

un

)τ−1)

≤ exp
(
cτ−1

1 (n + 1)2d−α(τ−1))(5.4)

≤ exp
(−c2n

d(2−γ )).
The last term we bound is P(Ec

n). All (n− 1)-stage boxes are good independent
of each other with probability P(Ln−1). Let X ∼ Bin(Dd

n,P(Ln−1)) be binomially
distributed, so that P(Ec

n) = P(X < Cn). We use Chernoff’s bound that if X ∼
Bin(m,p), θ ∈ (0,1), then P(X < (1 − θ)mp) ≤ exp(−1

2θ2mp). For our model,
this obtains

P
(
Ec

n

) ≤ exp
(
−1

2

(
1 − 1

2dP(Ln−1)

)2
P(Ln−1)D

d
n

)
(5.5)

≤ exp
(−2−d−1(

2d
P(Ln−1) − 1

)2
(n + 1)2d)

.

Combining (5.1), (5.2), (5.4) and (5.5), gives that

P
(
Lc

n

) ≤ exp
(
d log(4) + 4d log(n + 1) − λnd(2−γ )) + exp

(−c2n
d(2−γ ))

+ exp
(−2−d−1(

2d
P(Ln−1) − 1

)2
(n + 1)2d)

.

If λ large enough (say larger than λ0), there exists n0 such that for n ≥ n0

(5.6) P
(
Lc

n

) ≤ 2 exp
(−c2n

d(2−γ )) + exp
(−2−d−1(

2d
P(Ln−1) − 1

)2
(n + 1)2d)

.

Define the sequence

�n := 1 − (n + 1)−3/2

and observe that

(5.7)
∞∏

n=1

�n > 0.

For any fixed n1 > n0, we can find λ0 > 0 and μ0 < 1 such that P(Ln1) ≥ �n1 ,
because Ln1 depends only on the weights and edges inside a finite box. We further
bound (5.6) for all n > n1 by

P
(
Lc

n

) ≤ exp
(−c2n

d(2−γ )) + exp
(
c3(n + 1)2d)

(5.8)
≤ (n + 1)−3/2 = 1 − �n,

where c3 is a positive constant, and choose n1 so large, that the last bound in (5.8)
holds. Thus, using (5.7), (5.8) and P(Ln) > 0 for all n, yields that

∞∏
n=1

P(Ln) =
n1∏

n=1

P(Ln)

∞∏
n=n1+1

P(Ln) ≥
n1∏

n=1

P(Ln)

∞∏
n=n1+1

�n > 0.
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With probability 1 the graph contains a cluster of good vertices that can be renor-
malized for the sequence Cn. By Lemma 5.2, this cluster is transient itself, since
showing transience for a subgraph is enough for transience on the whole graph
[20], Section 9. �

The case d < α < 2d . We need two lemmas from the literature, which are
complementary to the case α ∈ (d,2d) of Proposition 5.3 and Lemma 3.4.

LEMMA 5.4 (Deprez, Hazra and Wüthrich [10], Lemma 9). Assume γ > 1
and let α ∈ (d,2d). Choose λ > λc and let α′ ∈ [α,2d). For every μ ∈ [0,1) and
β > 0, there exists M0 ≥ 1 such that for all m ≥ M0:

P
(|Cm| ≥ βmα′/2) ≥ μ,

where Cm is the largest connected component in [0,m − 1]d .

Note that [10], Lemma 9, is proven for the exact power law distribution of the
weights in (3.3). This is not a problem, since Lemma 3.1 implies that the result
extends to a weight distribution satisfying (2.1) when c ≥ 1. For c < 1, and perco-
lation parameter λ′ > 0, we observe that the model is equivalent to the case where
c = 1 and λ = λ′c′−2/(τ−1), since if the law of W satisfies (3.2) for some c > 0

and for W ′ it holds for w ≥ 1 that P(W ′ > w) = w−(τ−1), then W
d= c−1/(τ−1)W ′.

Hence, we can scale the parameters such that c = 1 and apply Lemma 3.1.

LEMMA 5.5 (Berger [4], Lemma 2.7). Let d ≥ 1, α ∈ (d,2d) and λ > 0. Con-
sider the long-range percolation model on Z

d in which every two vertices, x and
y, are connected by an open edge with probability:

1 − exp
(
− λ

|x − y|α
)
,

independently of other edges, and every vertex is good with probability μ < 1,
independently of all other vertices.

There exist μ1 < 1 and λ1, such that if λ ≥ λ1 and μ ≥ μ1, the infinite cluster
on the good vertices is transient.

LEMMA 5.6. Consider scale-free percolation with weight distribution satis-
fying (2.1). Let Q1 and Q2 be two N -boxes that are k boxes away from each other.
Let β > 0 be given. Moreover, assume that Q1 and Q2 contain connected compo-
nents C1 and C2, respectively, of size at least βNα/2. Then

P
(
C1 connected by an open edge to C2||C1|, |C2| ≥ βNα/2)

≥ 1 − exp
(
−λ(3d)−αβ2c2/(τ−1)

kα

)
.
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PROOF. Since we assumed (2.1), all weights are at least c1/(τ−1). By
Lemma 3.5, we get for arbitrarily chosen vertices u ∈ C1, v ∈ C2 that

P
({u, v} is closed

) ≤ exp
(
−λ(3d)−αc2/(τ−1) 1

kNα

)
.

Since both clusters contain at least βNα/2 vertices, there are at least β2Nα possible
edges. We obtain

P
(
C1 not connected by an open edge to C2||C1|, |C2| ≥ βNα/2)

≤ exp
(
−λ(3d)−αc2/(τ−1) 1

kNα

)β2Nα

= exp
(
−λ(3d)−αβ2c2/(τ−1) 1

kα

)
. �

Note that this is the α ∈ (d,2d)-counterpart of Lemma 3.6.

PROOF OF THEOREM 2.3. The previous lemmas readily imply the result for
sufficiently large λ, and we are left to extend this to all λ > λc, which we achieve
via coarse-graining.

When γ < 2, let λ0 and μ0 be the values that we obtain from Proposition 5.3.
To apply the proposition for all λ > λc = 0, we partition Z

d into (hyper)cubes
of side length N (for some large N to be determined below), which we call N -
boxes. In every N -box, we identify the vertex in it with maximum weight and call
it the dominant vertex. We now choose β large enough so that λβ2(3d)−α > λ0.
Second, we call those N -boxes good that contain a vertex with weight at least
βNα/2. We choose N large enough so that the probability that an N -box is good is
larger than μ0 using Lemma 3.4. Lemma 3.6 implies that the probability that the
dominant vertices in two good N -boxes, being k boxes away from each other, are
connected, is bounded from below by P(λ0,W

′′)({v1, v2} is open), where v1, v2 ∈
Z

d such that |v1 − v2| = k, and where W ′′
1 ,W ′′

2 are i.i.d. distributed according to
(3.3). Thus, the status of the edges between dominant vertices in good N -boxes
stochastically dominates an SFP model on Z

d with parameters α, λ0 and weight-
law W ′′, combined with a site percolation of intensity μ0, exactly as described in
Proposition 5.3. We now apply Proposition 5.3 to obtain the result for the case
γ < 2.

The case α ∈ (d,2d) is analogous: When α ∈ (d,2d), let λ1 and μ1 be the
values that we obtain from Lemma 5.5. To apply the lemma, we partition Z

d into
N -boxes again. Choose β large enough, using Lemma 5.6, such that two N -boxes
being k-boxes away from each other, having clusters C1 and C2 with size at least
βNα/2 are connected by an open edge between C1 and C2 with probability at least
1 − exp(−λ1/k

α). Call the N -boxes that contain a cluster of size at least βNα/2

the good boxes. Choose N large enough so that the probability that an N -box is
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good is larger than μ1, using Lemma 5.4. We thus find that the status of the edges
between the dominant vertices of good N -boxes stochastically dominates an LRP
model on Z

d with independent edge probabilities px,y = 1 − exp(−λ1/|x − y|α),
combined with a site-percolation of intensity μ1. An application of Lemma 5.5
thus obtains the result for the case α ∈ (d,2d).

We conclude that in both cases we found a subgraph of the infinite cluster on
which the random walk is transient, and hence the random walk is transient on the
infinite cluster itself; cf. [20], Section 9. �

Recurrence proof. We verify that we can apply the following lemma.

LEMMA 5.7 (Berger [4], Theorem 3.10). Let d = 2, α ≥ 2d = 4 and let
(Pi,j )i,j∈N be a family of probabilities, such that

lim sup
i,j→∞

Pi,j

(i + j)−4 < ∞.

Consider a shift invariant percolation model on Z
2 on which the bond between

(x1, y1) and (x2, y2) is open with marginal probability P|x1−x2|,|y1−y2|. If there
exists an infinite cluster, then this cluster is recurrent.

To bound the marginal probabilities, we need a bound on the expectation of the
product of the weights.

LEMMA 5.8. Assume that the weight-distribution satisfies (2.2). Let W1,W2
be two independent copies of the random variable W .

If τ > 2, there exists a constant C > 0, such that for u ≥ 1:

E
[
(W1W2/u) ∧ 1

] ≤ Cu−1.

If τ ≤ 2, then there exists a constant C > 0, such that

E
[
(W1W2/u) ∧ 1

] ≤ C log(u)u−(τ−1).

PROOF. The proof for τ > 2 is straightforward. Observe that E[W ] < ∞,
hence

E
[
(W1W2/u) ∧ 1

] ≤ E[W ]2/u.

For τ ≤ 2, we prove the claim for weights that satisfy (3.2) for some c ≥ 1.
Lemma 3.1 then implies that the claim holds for weights that satisfy (2.2).

Let H(u) denote the distribution function of W1W2. From [9], Lemma 4.3, we
have for some C′ > 0 that

1 − H(u) ≤ C′ log(u)u−(τ−1).
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By ∫ u

1
v dH(v) ≤

∫ u

1

(
1 − H(v)

)
dv,

we obtain the result

E
[
(W1W2/u) ∧ 1

] = 1 − H(u) + 1

u

∫ u

1
v dH(v)

≤ 1 − H(u) + 1

u

∫ u

1

(
1 − H(v)

)
dv

≤ C′ log(u)u−(τ−1) + C′

u

∫ u

1
log(v)v−(τ−1) dv

≤ C′ log(u)u−(τ−1) + C′′

u
log(u)u−(τ−2)

≤ C log(u)u−(τ−1). �

PROOF OF THEOREM 2.4. Observe that the scale-free percolation measure
P(λ,W) is indeed shift invariant. According to Lemma 5.7, we need to prove that

lim sup
k→∞

k4
P

({
(0,0), (i, j)

}
is open

)
< ∞

whenever |i| + |j | = k. For convenience, we treat only (i, j) = (k,0), the other
cases follow analogously. Lemma 5.8 and the bound 1 − exp(−x) ≤ x give

lim sup
k→∞

k4
P

({
(0,0), (k,0)

}
is open

) = lim sup
k→∞

k4
E

[
1 − e−λ

W(k,0)W(0,0)
kα

]

≤ lim sup
k→∞

k4
E

[
1 − e−λ

W(k,0)W(0,0)
kα

]

≤ lim sup
k→∞

k4
E

[(
λ
W(k,0)W(0,0)

kα

)
∧ 1

]
.

For τ > 2, recall that α ≥ 2d = 4 and, therefore,

lim sup
k→∞

k4
E

[(
λ
W(k,0)W0

kα

)
∧ 1

]
≤ lim sup

k→∞
Cλk4−α ≤ Cλ < ∞.

For τ ≤ 2 and γ > 2,

lim sup
k→∞

k4
E

[
λ
W(k,0)W0

kα
∧ 1

]
≤ lim sup

k→∞
k4Cλτ−1 log

(
kα/λ

)
k−α(τ−1)

≤ lim sup
k→∞

C′ log(k)k4−α(τ−1)

= lim sup
k→∞

C′ log(k)k4−2γ

= 0. �
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6. Hierarchical clustering: Proof of Theorem 2.6. For the proof of Theo-
rem 2.6, we largely use the same two steps as for the proof of Theorem 2.3. First,
we prove the result for large values of λ on an SFP model combined with an i.i.d.
Bernoulli site percolation, but only along a sequence {mn}∞n=1 diverging to infinity.
Then we prove the result in this SFP model for all sufficiently large m. Lastly, by
a coarse graining argument, we extend the result to hold for all λ > λc = 0.

We assume the weights satisfy (3.2). Lemma 3.1 then implies that the claim
holds for weights that satisfy (2.1). We start with stating and proving a proposition
in which we consider a site-percolated version of SFP.

PROPOSITION 6.1. Consider SFP on Z
d with d ≥ 1, γ < 2, and weight dis-

tribution that satisfies (3.3). Independently of this, perform an i.i.d. Bernoulli site
percolation on the vertices of Zd , colouring a vertex “green” with probability
μ ∈ (0,1]. Denote by Cλ,μ the (unique) infinite subgraph of the infinite scale-free
percolation cluster induced by the green vertices. We call this the site-percolated
SFP.

There exist constants μ1 < 1, λ1 > 0,K,ρ > 0 and n2 ∈ N, and sequence
{mn}∞n=1 with mn ∈ N, such that for all ξ satisfying

(6.1) 0 < ξ < min
(

d(2 − γ )

τ + 1
,
d

2

(
τ + 2 −

√
(τ + 2)2 − 4(2 − γ )

))
,

the following hold:

(1) The probability that the site-percolated SFP configuration with parameters
μ ≥ μ1 and λ ≥ λ1 contains a (0,mn,ρ,K)-hierarchically clustered tree inside
the box [0,mn − 1]d , is bounded from below by

1 − 3 exp
(−ρmξ

n

)
.

(2) Site-percolated SFP with λ ≥ λ1 and μ ≥ μ1 has an infinite component
Cλ,μ almost surely. Cλ,μ contains a.s. an infinite, connected, cycle-free subgraph
T∞ such that removing an arbitrary edge yields a finite and infinite connected com-
ponent and there exist x ∈ Z

d and m ≥ 1 such that the finite connected component
is an (x,m,ρ,K)-hierarchically clustered tree.

PROOF. Let D1 be a large integer to be determined later, and let {an}∞n=1, with
an ∈ (0,1], be a sequence also to be determined later, such that

(6.2) ρ :=
∞∏

n=1

an > 0.

Let

ξ ′ ∈
(
ξ,min

(
d(2 − γ )

τ + 1
,
d

2

(
τ + 2 −

√
(τ + 2)2 − 4(2 − γ )

)))
.
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The bound ξ ′ < d
2−γ
τ+1 implies

(6.3) ζ := d − ξ ′

(α + ξ ′)(τ − 1) − (d − ξ ′)
> 1.

For all n ≥ 2, let Dn := Dζ
n−1�, so that we have the telescoping product:

(6.4) Dn ≥ D
ζ
n−1 ≥ D1

n−1∏
k=1

D
ζ−1
k ≥ D

ζn−1

1 ,

and let

un :=
n∏

k=1

D
d−ξ ′
τ−1

k and Cn := anD
d
n.

We give a sequence of graphs for Z
d by the same procedure as in Proposi-

tion 5.3. We call the vertices the 0-stage boxes. We partition the lattice Z
d into

boxes of side-length D1, so that each box contains Dd
1 vertices, and call these the

1-stage boxes. Iteratively, we group Dd
n−1 (n − 1)-stage boxes into n-stage boxes,

so that the n-stage boxes form a covering of Zd by translates of [0,
∏n

k=1 Dk −1]d .
We call a 0-stage box “good” if the associated vertex is green, and we call this

vertex “0-dominant”. For every stage n ≥ 1, we define rules for a box to be “good”
or “bad” and for a vertex to be “n-dominant” depending only on the weights Wx

and colours of the vertices and on the edges of Cλ,μ inside the box. This implies
that disjoint boxes are good or bad independently of each other.

For n ≥ 1, we inductively define that an n-stage box is good if the following
three conditions hold:

(E) At least Cn of the (n − 1)-stage boxes it contains are good.
(F) The maximum weight (n − 1)-dominant vertex in one of its good (n − 1)-

stage boxes has weight at least un. Call this vertex n-dominant. (A vertex can be
dominant for multiple stages.)

(G) All (n−1)-dominant vertices in the good (n−1)-stage boxes are connected
to the n-dominant vertex by an edge in Cλ,μ.

Define En(v),Fn(v) and Gn(v) to be the events that respectively (E), (F) and
(G) hold for the n-stage box containing the vertex v. Denote by Ln(v) the event
that the n-stage box containing v is good, that is, Ln(v) = En(v)∩Fn(v)∩Gn(v).
To simplify notation, we write En := En(0),Fn := Fn(0),Gn := Gn(0) and Ln :=
Ln(0).

On the event that Ln occurs, we can construct a graph by the following proce-
dure:

(1) Start with the set of all 0-dominant vertices inside the n-stage box contain-
ing v.
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FIG. 7. Sketch of the renormalization in Proposition 6.1 for d = 2.

(2) For every i ∈ {0, . . . , n−1} connect each i-dominant vertex v to the (i +1)-
dominant vertex inside the (i + 1)-stage box that contains v (unless this creates a
self-loop).

Figure 7 displays the first two stages of the construction. We sequence mk and
obtain a bound:

(6.5) mn :=
n∏

k=1

Dk ≥ D
ζn−1
ζ−1

1 .

We claim that the constructed connected component of the n-dominant vertex in
the n-stage box of v is a tree that satisfies the conditions given in Definition 2.5.
Since (6.2) holds, the event Lk implies that the intersection of the site-percolated
SFP configuration and the cube [0,mk − 1]d contains a tree with at least

n∏
k=1

Ck =
n∏

k=1

akD
d
k ≥ ρmd

n

vertices, which verifies Condition (1) of Definition 2.5. We obtain Condition (2)
for some K > 0 because the box-size mn as well as the number of vertices in
[0,mn − 1]d both grow double exponentially fast in n. Conditions (3) and (4)
follow straightforwardly from the construction. We therefore conclude that Propo-
sition 6.1(1) follows if we show that

(6.6) P
(
Lc

n

) ≤ 3 exp

(
−ρ

n∏
k=1

D
ξ
k

)
,
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and that Proposition 6.1(2) follows if we show that

P

( ∞⋂
n=1

Ln

)
> 0.

The events Ln are positively correlated, hence it is sufficient for assertion (2) of
the theorem that

∏∞
n=1 P(Ln) > 0, which follows from (6.6). It thus remains to

prove (6.6).
We bound

(6.7) P
(
Lc

n

) ≤ P
(
Ec

n

) + P
(
Fc

n |En

) + P
(
Gc

n|En ∩ Fn

)
,

and analyze the terms separately.
We start with proving two bounds on P(F c

n |En). The conditioning on En gives
that the sum of cluster sizes in the good (n − 1)-stage boxes is at least

∏n
k=1 Ck ≥∏n

k=1 akD
d
k . Using Lemma 3.3 with K1 = 1,K2 = un, the definition of un yields

that

(6.8) P
(
Fc

n |En

) ≤ exp

(
−u−(τ−1)

n

n∏
k=1

akD
d
k

)
= exp

(
−

n∏
k=1

akD
ξ ′
k

)
.

Similarly, the conditioning on En gives that there are at least Cn vertices with
weight at least un−1. Using Lemma 3.3 with K1 = un−1,K2 = un, the definition
of un yields that

(6.9) P
(
Fc

n |En

) ≤ exp
(−anD

d
n

(
D

− d−ξ ′
τ−1

n

)τ−1) = exp
(−anD

ξ ′
n

)
.

Note that it is not a priori clear which of these two bounds is better, since this may
depend on the choice of D1, n, τ, ξ ′ and the sequence (ak). Therefore, we use both
bounds.

We move on to P(Gc
n|En ∩ Fn). For n ≥ 2, define

(6.10) βn := unun−1

n∏
k=1

D−α
k .

Since Dn = Dζ
n−1� by definition, it follows that

Dn−1 ≥
(

1

2
Dn

)1/ζ

.

Substituting the values of un,un−1, ζ and (6.4) gives

βn

βn−1
= un

un−2
D−α

n = D
−α+ d−ξ ′

τ−1
n D

d−ξ ′
τ−1

n−1 ≥
(

1

2

)1/ζ

D
−α+ d−ξ ′

τ−1
n

(
D

(α+ξ ′)(τ−1)−(d−ξ)

d−ξ ′
n

) d−ξ ′
τ−1

=
(

1

2

)1/ζ

D
−α+ d−ξ ′

τ−1
n D

α+ξ ′− d−ξ ′
τ−1

n =
(

1

2

)1/ζ

Dξ ′
n .
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It follows that for some c > 0,

βn ≥ c

(
1

2

)(n−1)/ζ n∏
k=1

D
ξ ′
k .

The distance between two (n − 1)-dominant vertices in the same n-stage box is
at most d

∏n
k=1 Dk . There are at most Dd

n good (n − 1)-dominant vertices (having
weight at least un−1). Recalling (6.10), by the union bound and the conditioning
on En and Fn, we thus obtain that

P
(
Gc

n|En ∩ Fn

) ≤ Dd
n exp

(
−λd−αunun−1

n∏
k=1

D−α
k

)

= Dd
n exp

(−λd−αβn

)
(6.11)

≤ exp

(
d log(Dn) − cλd−α

(
1

2

)(n−1)/ζ n∏
k=1

D
ξ ′
k

)
.

Since Dn grows double exponentially fast and ξ ′ > ξ > 0, we obtain for n suffi-
ciently large (larger than n0, say), that

(6.12) P
(
Gc

n|En ∩ Fn

) ≤ exp

(
−

n∏
k=1

D
ξ
k

)
.

We move on to P(Ec
n). All (n − 1)-stage boxes are good independently of each

other with probability P(Ln−1). Let X ∼ Bin(Dd
n,P(Ln−1)). Then

P
(
Ec

n

) = P(X < Cn) = P
(
X < anD

d
n

)
.

As in (5.5), we apply Chernoff’s bound and obtain

P
(
Ec

n

) ≤ exp
(
−(P(Ln−1) − an)

2

2P(Ln−1)
Dd

n

)
,

whenever 0 <an < P(Ln−1). We now choose

(6.13) an := P(Ln−1)

(
1 − √

2D−d/2
n

n∏
k=1

D
ξ ′/2
k

)
.

We will show below that an > 0 for all n ≥ 1 and that
∏∞

n=1 an > 0, as required by
(6.2). Assuming these inequalities, we have

(6.14) P
(
Ec

n

) ≤ exp

(
−P(Ln−1)

n∏
k=1

D
ξ ′
k

)
,
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so that using P(Ln−1) > an > ρ, ξ ′ > ξ , (6.8), and (6.12) yields

P
(
Lc

n

) ≤ exp

(
−P(Ln−1)

n∏
k=1

D
ξ ′
k

)

+ exp

(
−

n∏
k=1

ak

n∏
k=1

D
ξ ′
k

)
+ exp

(
−

n∏
k=1

D
ξ
k

)
(6.15)

≤ 3 exp

(
−

n∏
k=1

ak

n∏
k=1

D
ξ
k

)
,

which gives the desired bound (6.6). For later reference, we note that if instead we
apply (6.7), (6.9) and (6.12), then we obtain for n sufficiently large:

(6.16) P
(
Lc

n

) ≤ exp

(
−P(Ln−1)

n∏
k=1

D
ξ ′
k

)
+ exp

(−anD
ξ ′
n

) + exp

(
−

n∏
k=1

D
ξ
k

)
.

All that remains is to show that an > 0 for all n ≥ 1 and that
∏∞

n=1 an > 0.
For positivity of an, it is by (6.13) sufficient to show that for some b > 0 and D1
sufficiently large:

(6.17) D−d/2
n

n∏
k=1

D
ξ ′/2
k <

1

2
√

2
D

−bζn

1 .

Since ξ ′ > 0, ζ > 1,
∏n

k=1 Dk ≤ (Dn+1/D1)
1/(ζ−1) and Dn+1 = Dζ

n� ≤ 2D
ζ
n by

(6.4), we obtain

D−d
n

n∏
k=1

D
ξ ′
k ≤ D−d

n

(
Dn+1

D1

)ξ ′/(ζ−1)

= D−d
n

(Dζ
n�

D1

)ξ ′/(ζ−1)

≤
(

2

D1

)ξ ′/(ζ−1)

D
−d+ ξ ′ζ

(ζ−1)
n .

We show that

−d + ξ ′ ζ

ζ − 1
< 0.

By definition, ξ ′ < d
2 (τ +2−

√
(τ + 2)2 − 4(2 − γ )). So we derive, after rearrang-

ing terms and dividing by
√

d , that

− 1√
d

ξ ′ +
√

d

2
(τ + 2) >

√
d

2

√
(τ + 2)2 − 4(2 − γ ).

Squaring and substituting γ = α(τ − 1)/d yield

1

d
ξ ′2 − ξ ′(τ + 2) + 2d − α(τ − 1) > 0,
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so that after rearranging

1

d

(
d − ξ ′)2

>
(
α + ξ ′)(τ − 1) − (

d − ξ ′).
Hence, we obtain the result after dividing by (d − ξ ′) and, using (6.3), substitut-
ing ζ :

1 − ξ ′

d
>

1

ζ
,

which can be inverted to give

−d + ξ ′ ζ

ζ − 1
< 0.

Hence, there exists a constant b > 0 such that, when we choose D1 sufficiently
large,

D−d/2
n

n∏
k=1

D
ξ ′/2
k <

1

2
√

2
D−bζ

n .

By (6.4), we have Dn ≥ D
ζn−1

1 , so (6.17) follows, and we may conclude that
an > 0.

Observe that
∏∞

k=1 ak > 0 if and only if
∏∞

k=1 P(Lk) > 0, since an approaches
P(Ln) double exponentially fast. Moreover, combining (6.13) and (6.17) gives

an ≥ 1

2
P(Ln−1),

so that, using (6.16), we can bound

P
(
Lc

n

) ≤ exp

(
−P(Ln−1)

n∏
k=1

D
ξ ′
k

)

(6.18)

+ exp
(
−1

2
P(Ln−1)D

ξ ′
n

)
+ exp

(
−

n∏
k=1

D
ξ
k

)
.

Define the sequence

�n := 1 − (n + 1)−3/2,

and observe that

(6.19)
∞∏

n=1

�n > 0.

For any fixed n1 > n0, we can find λ0 > 0 and μ0 < 1 such that P(Ln1) ≥ �n1 ,
because Ln1 depends only on the weights and edges inside a finite box. Since Dk
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grows double exponentially fast, we further bound (6.18) for all n > n1 by

P
(
Lc

n

) ≤ exp

(
−

(
1 − 1√

2

) n∏
k=1

D
ξ ′
k

)

+ exp
(
−1

2

(
1 − 1√

2

)
Dξ ′

n

)
+ exp

(
−

n∏
k=1

D
ξ
k

)
(6.20)

≤ (n + 1)−3/2 = 1 − �n.

We thus choose n1 so large that the last bound in (6.20) holds. Using (6.19), (6.20)
and P(Ln) > 0 for all n, yields that

∞∏
n=1

P(Ln) =
n1∏

n=1

P(Ln)

∞∏
n=n1+1

P(Ln) ≥
n1∏

n=1

P(Ln)

∞∏
n=n1+1

�n > 0.

Recalling that, by (6.13) and (6.17), this is equivalent to (6.2), the bound (6.15)
completes the proof. �

REMARK 6.2. Note that K in the above proof depends on the choice of ξ ,
that is, K = K(ξ). A short calculation shows that infξ K(ξ) = 2/| log(γ −1)| (this
is achieved at ξ, ξ ′ = 0+). This means that, for x, y in the hierarchically clustered
tree,

dC(x, y) ≤ 2(1 + ε)

| log(γ − 1)| log log‖x − y‖
for all ε > 0. We believe that this is also true w.h.p. for the other vertices in the
infinite cluster. Deijfen et al. [9], Corollary 5.4, show that asymptotically, as ‖x −
y‖ → ∞, 2/| log(γ − 1)| is indeed the correct constant.

To prove Theorem 2.6, we need extend the above claims from the specific se-
quence {mn}∞n=1 to all (sufficiently large) m ∈ N. This extension is the content of
the next lemma. After this lemma, we extend the claim to hold for all λ > 0 and
weights following a power-law given by (3.2).

LEMMA 6.3. Consider SFP on Z
d with d ≥ 1, γ < 2, and weight distribu-

tion that satisfies (3.3). Independently of this, perform i.i.d. Bernoulli site percola-
tion on the vertices of Zd , colouring a vertex “green” with probability μ ∈ (0,1].
Denote by Sm,λ,μ the SFP-realization induced by the green vertices in the box
[0,m − 1]d . We call this the site-percolated SFP.

Then there exist a density ρ > 0 and constants μ1 < 1, λ2 > 0, and K ′,m0 ∈ N,
such that for m ≥ m0, and parameters λ ≥ λ2,μ ≥ μ1, the probability that Sm,λ,μ

with parameters contains a (0,m,ρ,K ′)-hierarchically clustered tree inside the
box [0,m − 1]d is bounded from below by

1 − 3 exp
(−ρmξ )

,

whenever ξ < min(
d(2−γ )

τ+1 , d
2 (τ + 2 −

√
(τ + 2)2 − 4(2 − γ ))).
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PROOF. Let the constants μ1, λ1, ξ
′,K , the sequences {Dk}, {uk}, {Ck} and

{mk} be as in Proposition 6.1, and ζ as in (6.3). Assume μ ≥ μ1, λ ≥ λ1, and let
m be large enough (how large precisely will be determined in several steps). We
define

(6.21) n = sup{i : mi ≤ m}, and k =
⌊

m

mn

⌋
,

both depending on m, and note that n → ∞ as m → ∞. Partition the box [0, kmn]d
into kd boxes of side-length mn. We call these the n-boxes. Let v∗ be the vertex in
[0, kmn]d with maximum weight.

We use the same definition of good boxes and dominant vertices as in the proof
of Proposition 6.1. So in particular, an n-box is good if its n-dominant vertex has

weight at least un = m
(d−ξ ′)/(τ−1)
n . We define E to be the event that at least 1

2kd

n-boxes are good, F the event that Wv∗ ≥ (kmn)
(d−ξ ′)/(τ−1), and G the event that

every good n-box’s n-dominant vertex is connected by an open edge to v∗. Let
L = E ∩ F ∩ G.

Observe that the event L implies indeed that there exists a (0,m,ρ,K)-
hierarchically clustered tree. Properties (1), (3) and (4) of Definition 2.5 readily
follow from Proposition 6.1. For Property (2), we observe that, for any n ∈ N, the
diameter of the constructed tree, after connecting the separate trees via v∗, only
increases by 2 in comparison to Proposition 6.1. Hence, there exists K ′ > 0, such
that Property (2) is satisfied. We bound

(6.22) P
(
Lc) ≤ P

(
Ec) + P

(
Fc|E) + P

(
Gc|E ∩ F

)
,

and analyze the three summands term by term.
By our assumption (3.3), all (kmn)

d vertices have weight at least 1. By
Lemma 3.3,

(6.23) P
(
Fc|E) ≤ exp

(−(kmn)
ξ )

.

The �1-distance between two vertices in [0, kmn]d is bounded above by dkmn,
and the number of n-dominant vertices is at most kd . Therefore,

(6.24) P
(
Gc|E ∩ F

) ≤ kd exp
(−λd−αm

2 d−ξ ′
τ−1 −α

n k
d−ξ ′
τ−1 −α)

.

We claim that

(6.25) m
2 d−ξ ′

τ−1 −α
n k

d−ξ ′
τ−1 −α ≥ c(kmn)

ξ ′
, for some constant c > 0.

Indeed, by our choice of n and k in (6.21), Dn+1 = Dζ
n� < D

ζ
n + 1, and mn =∏n

k=1 Dk by their definitions in (6.4) and (6.5), we have

k

m
ζ−1
n

≤ Dn+1

m
ζ−1
n

≤ D
ζ
n + 1

D
ζ−1
n

∏n−1
k=1 D

ζ−1
k

= Dn

m
ζ−1
n−1

+
n∏

k=1

D
1−ζ
k .
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Iterating this gives

k

m
ζ−1
n

≤ Dn+1

m
ζ−1
n

≤ Dn

m
ζ−1
n−1

+
n∏

k=1

D
1−ζ
k

≤ Dn−1

m
ζ−1
n−2

+
n−1∏
k=1

D
1−ζ
k +

n∏
k=1

D
1−ζ
k ≤ · · · ≤ D1 +

n∑
k=1

(
k∏

l=1

Dl

)1−ζ

.

Recall that by (6.3) ζ > 1, and by (6.4)
∏k

l=1 Dl ≥ (1/D1)D
ζk/(ζ−1)
1 , so

k

m
ζ−1
n

≤ D1 +
n∑

k=1

(
k∏

l=1

Dl

)1−ζ

≤ D1 +
∞∑

k=1

(
k∏

l=1

Dl

)1−ζ

(6.26)

≤ D1 +
∞∑

k=1

D
−ζ k

1 < ∞.

Hence, we can further estimate for some c′ > 0

k ≤ c′m−1+ζ
n = c′m

−1+ d−ξ ′
(α+ξ ′)(τ−1)−(d−ξ ′)

n = c′m−1+ d−ξ ′
τ−1 (α+ξ ′− d−ξ ′

τ−1 )−1

n ,

so that

kα+ξ ′− d−ξ ′
τ−1 ≤ c′α+ξ ′− d−ξ ′

τ−1 m
−(α+ξ ′− d−ξ ′

τ−1 )+ d−ξ ′
τ−1

n ,

and finally

c′ d−ξ ′
τ−1 −ξ ′−α

(kmn)
ξ ′ ≤ m

2 d−ξ ′
τ−1 −α

n k
d−ξ ′
τ−1 −α,

from which (6.25) follows. Consequently, by (6.24),

(6.27) P
(
Gc|E ∩ F

) ≤ kd exp
(−λd−αc′ d−ξ ′

τ−1 −ξ ′−α
(kmn)

ξ ′) ≤ exp
(−(kmn)

ξ )
,

where we choose λ sufficiently large for the second bound (this determines the
value of λ2).

It remains to bound P(Ec). By Proposition 6.1, there exists ρ > 0, such that
for n large, n-boxes are good independently of each other with probability at least
1 − exp(−ρm

ξ
n). Let X ∼ Bin(kd,1 − exp(−ρm

ξ
n)). Writing out the binomial dis-

tribution, using
(n
k

) ≤ nk and 1 − exp(−x) ≤ 1, further bounding the sum by its
maximum and the number of terms, we obtain

P
(
Ec) = P

(
X <

1

2
kd

)
=

� 1
2 kd�∑
l=0

(
kd

l

)
exp

(−ρmξ
n

)kd−l(1 − exp
(−ρmξ

n

))l

≤
(

1

2
kd + 1

)
k

1
2 dkd

exp
(
−1

2
ρkdmξ

n

)

= exp
(

log
(

1

2
kd + 1

)
+ 1

2
dkd log(k) − ρ

2
kdmξ

n

)
.
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For any ε with 0 < ε < d − ξ , we can take m large enough so that (using kd−ξ ≥ 1)

(6.28) P
(
Ec) ≤ exp

(
− ρ

21+ε
(kmn)

ξ

)
.

Combining (6.22), (6.23), (6.27) and (6.28) gives that for m sufficiently large,

P

(
Skmn contains a

(
0, kmn,

ρ

2
,K

)
-hierarchically clustered tree

)

≥ 1 − 3 exp
(
− ρ

21+ε
(kmn)

ξ

)
.

From the construction, it follows that

1

2
≤ kmn

m
≤ 1,

so that for m large

P

(
Sm contains a

(
0,m,

ρ

2d+1 ,K ′
)

-hierarchically clustered tree
)

≥ P

(
Skmn contains a

(
0, kmn,

ρ

2
,K ′

)
-hierarchically clustered tree

)

≥ 1 − 3 exp
(
− ρ

21+ε

mξ

2ξ

)
≥ 1 − exp

(
− ρ

2d+1 mξ

)
,

which completes the proof. �

The last step is to extend the claim to hold for all λ > 0 and weights following
a power-law given by (3.2).

PROOF OF THEOREM 2.6. Recall that we consider SFP models with 1 <

γ < 2 and any λ > 0, and that in this setting, λc = 0 [9]. Let μ1 and λ1 be the
values that we obtain from Lemma 6.3. To apply Lemma 6.3, we partition Z

d

into N -boxes. In every N -box, we only consider the vertex with maximum weight
and call it the dominant vertex. Choose β large enough, using Lemma 3.6, such
that two N -boxes that are k-boxes apart, with dominant vertices u1 and u2 having
weight at least βNα/2, are connected by an open edge between u1 and u2 with
probability at least

P(λ1,W
′′)

({v1, v2} is open
)
,

for v1, v2 ∈ Z
d such that |v1 − v2| = k and weights W ′′ with law given by (3.2).

Define the N -boxes that contain a vertex with weight at least βNα/2 to be the
good boxes. Choose N large enough so that the probability that an N -box is good
is larger than μ1 using Lemma 3.4. Thus, the status of the edges between dominant
vertices in good N -boxes in the SFP model with parameters α,λ and weight-law W
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stochastically dominates an SFP model on Z
d with parameters α, λ1 and weight-

law W ′′ combined with a site percolation of intensity μ1, exactly as described in
Lemma 6.3. Let K ′ and ρ′ be the constants we obtain from Lemma 6.3. Observe
that

�m
N

�N
m

≥ 1

2
.

Then the assertions of Theorem 2.6 follows if we set K = K ′ and ρ = ρ′
2dNd . �
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