
The Annals of Applied Probability
2017, Vol. 27, No. 4, 2455–2514
DOI: 10.1214/16-AAP1264
© Institute of Mathematical Statistics, 2017

ASYMPTOTIC LOWER BOUNDS FOR OPTIMAL TRACKING:
A LINEAR PROGRAMMING APPROACH

BY JIATU CAI∗, MATHIEU ROSENBAUM† AND PETER TANKOV∗

Universtité Paris Diderot (Paris 7)∗ and Ecole Polytechnique†

We consider the problem of tracking a target whose dynamics is modeled
by a continuous Itô semi-martingale. The aim is to minimize both deviation
from the target and tracking efforts. We establish the existence of asymptotic
lower bounds for this problem, depending on the cost structure. These lower
bounds can be related to the time-average control of Brownian motion, which
is characterized as a deterministic linear programming problem. A compre-
hensive list of examples with explicit expressions for the lower bounds is
provided.
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1. Introduction. We consider the problem of tracking a target whose dynam-
ics (X◦

t ) is modeled by a continuous Itô semi-martingale defined on a filtered prob-
ability space (�,F, (Ft )t≥0,P) with values in Rd such that

(1.1) dX◦
t = bt dt + √

at dWt , X◦
0 = 0.

Here, (Wt) is a d-dimensional Brownian motion and (bt ), (at ) are predictable pro-
cesses with values in Rd and Sd+, the set of d × d symmetric positive definite
matrices, respectively. An agent observes X◦

t and adjusts her position in order to
follow X◦

t . However, she has to pay certain intervention costs for position adjust-
ments. The objective is to stay close to the target X◦

t while minimizing the tracking
efforts. This problem arises naturally in various situations such as discretization of
option hedging strategies [16, 17, 52], management of an index fund [33, 48], con-
trol of exchange rate [12, 45], portfolio selection under transaction costs [2, 31, 49,
53], trading under market impact [4, 42, 44] or illiquidity costs [46, 51]. The aim
of this paper is to describe precisely and in full generality how the problem of op-
timally tracking the continuous Itô semi-martingale X◦ can be reduced to the local
problem of controlling a Brownian motion in the setting when the cost of position
adjustments is small. This simplifies the original problem and in many cases leads
to an explicit solution.

More precisely, let (Y
ψ
t ) be the position of the agent determined by the con-

trol ψ , with Y
ψ
t ∈ Rd and let (Xt) be the deviation of the agent from the target

(X◦
t ), so that

(1.2) Xt = −X◦
t + Y

ψ
t .

Let H0(X) be the penalty functional for the deviation from the target and H(ψ)

the cost incurred by the control ψ up to a finite horizon T (see below for precise
definitions). Then the aim of the agent is to minimize the aggregate cost:

(1.3) J (ψ) = H0(X) + H(ψ)

over a set of admissible strategies to be described in detail below.
The functional J (ψ) is a random variable, and the set of real-valued random

variables is only partially ordered, so that the problem of minimizing J (ψ) over
the set of admissible strategies does not make sense a priori. Even if one is inter-
ested in minimizing the expectation of J (ψ), this problem rarely admits an explicit
solution. In this paper, we propose an asymptotic framework where the tracking
costs are small and derive a pathwise lower bound for (1.3) under this setting.
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More precisely, we introduce a parameter ε tending to zero and consider a fam-
ily of cost functionals Hε(ψ). For example, we can have Hε(ψ) = εβψ H(ψ) for
some constant βψ , but different components of the cost functional may also scale
with ε at different rates. For each ε > 0, we define the controlled deviation pro-
cess:

(1.2-ε) X
ε

t = −X◦
t + Y

ψε

t ,

and the aggregate cost functional

(1.3-ε) J ε(ψε)= H0
(
X

ε)+ Hε(ψε).
The main result of this paper states that there exists β∗ > 0 explicitly determined

by the cost structure H0 and (Hε)ε>0 such that for all δ > 0 and any sequence of
admissible strategies {ψε, ε > 0}, we have

(1.4) lim
ε→0+P

[
1

εβ∗ J ε(ψε)≥
∫ T

0
It dt − δ

]
= 1,

where It is the optimal cost of the time-average (ergodic) control problem of Brow-
nian motion with parameters frozen at time t (see the statements of Theorems 2.1
and 3.1–3.4 for a precise formulation for different control types).

The small-cost framework therefore allows to obtain pathwise asymptotic
bounds on the functional J ε in terms of the time-average control problem of Brow-
nian motion (TACBM) with constant parameters, and thus gives a sense to the
problem of pathwise minimization of the tracking costs. In many practically im-
portant cases (see Examples 4.3–4.7), we are able to solve explicitly the TACBM
problem. Moreover, in a companion paper [13], we show that for the examples
where the TACBM problem admits an explicit solution, the lower bound is tight
(see Remark 3.1).

Our result enables us to revisit the asymptotic lower bounds for the discretiza-
tion of hedging strategies in [16, 17]. In these papers, the lower bounds are deduced
by using subtle inequalities. Here, we show that these bounds can be interpreted in
a simple manner through the time-average control problem of Brownian motion.

The TACBM problem also arises in the study of utility maximization under
transaction costs; see [2, 44, 49, 53]. This is not surprising since at first order,
these problems and the tracking problem are essentially the same; see Section 5.
In the above references, the authors derive the PDE associated to the first-order
correction to the maximal expected utility in the frictionless market, which turns
out to be the HJB equation associated to the time-average control of Brownian
motion. Inspired by [36] and [41], our approach, based on weak convergence of
empirical occupation measures, is very different from the PDE-based method and
enables us to treat more general situations. Contrary to [36], where the lower bound
holds under expectation, we obtain pathwise lower bounds. Compared to [41], we
are able to treat impulse control and general dynamics for the target.
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The paper is organized as follows. In the rest of the Introduction, we describe
precisely the control strategies of the agent and the corresponding cost functionals,
and introduce the necessary notation. In Section 2, we introduce our asymptotic
framework, state the main result and provide a heuristic derivation of the lower
bound in the case of combined regular and impulse control. Various extensions are
then discussed in Section 3. In Section 4, we provide an accurate definition for the
time-average control of Brownian motion using a relaxed martingale formulation
and collect a comprehensive list of explicit solutions in dimension one. The con-
nection with utility maximization with small market frictions is made in Section 5
and the proofs are given in Sections 6, 7 and 8.

Deviation penalty and cost functionals. As is usually done in the literature
(see, e.g., [32, 43]), we consider a penalty H0(X) for the deviation from the target
of additive form:

H0(X) =
∫ T

0
rtD(Xt) dt,

where (rt ) is a random weight process and D(x) a deterministic function. For
example, we can take D(x) = 〈x,�Dx〉 where �D is positive definite and 〈·, ·〉
is the inner product in Rd . On the other hand, depending on the nature of the
costs, the agent can either control her speed at all times or jump towards the target
instantaneously. The control ψ and the cost functional H(ψ) belong to one of the
following classes:

1. Impulse control. There is a fixed cost component for each action, so the agent
has to intervene in a discrete way. The class AI of admissible controls contains all
sequences {(τj , ξj ), j ∈ N∗} where {τj , j ∈ N∗} is a strictly increasing sequence
of stopping times representing the jump times and satisfying limj→∞ τj = +∞,
and for each j ∈ N∗, ξj ∈ Rd is a Fτj

-measurable random vector representing the
size of j th jump. The position of the agent is given by1

Yt = ∑
0<τj≤t

ξj

and the cumulated cost is then given by

H(ψ) = ∑
0<τj≤T

kτj
F (ξj ),

where (kt ) is a random weight process and F(ξ) > 0 is the cost of a jump with size
ξ �= 0. If we take kt = 1 and F(ξ) = ∑d

i=1 1{ξ i �=0} where ξ i is the ith component
of ξ , then H(ψ) represents the total number of actions on each component over
the time interval [0, T ]; see [16, 17]. If F(ξ) =∑d

i=1 1{ξ i �=0} +∑d
i=1 Pi |ξ i | where

Pi ≥ 0, we say that the cost has a fixed component and a proportional component.

1We assume that Y0 = 0 to simplify notation only. Our arguments and results remain unchanged if
the agent starts from a “legacy value” Y0 �= 0.
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2. Singular control. If the cost is proportional to the size of the jump, then
infinitesimal displacement is also allowed and it is natural to model (Yt ) by a pro-
cess with bounded variation. In this case, the class AS of admissible controls con-
tains all couples (γ,ϕ) where ϕ is a progressively measurable increasing process
with ϕ0− = 0, which represents the cumulated amount of intervention and γ is
a progressively measurable process with γt ∈ � := {n ∈ Rd |∑d

i=1 |ni | = 1} for
all t ≥ 0, which represents the distribution of the control effort in each direction.
In other words, ϕt = ∑d

i=1 ‖Y i‖t where ‖ · ‖ denotes the absolute variation of a
process, and γ i

t is the Radon–Nikodym derivative of Y i
t with respect to ϕt . The

position of the agent is given by

Yt =
∫ t

0
γs dϕs,

and the corresponding cost is usually given as (see, e.g., [31, 53])

H(ψ) =
∫ T

0
htP (γt ) dϕt ,

where (ht ) is a random weight process and we take (for example) P(γ ) = 〈P, |γ |〉
with P ∈ Rd+ and |γ | = (|γ 1|, . . . , |γ d |)�. The vector P = (P1, . . . ,Pd)� repre-
sents the coefficients of proportional costs in each direction.

3. Regular control. Most often, the process (Yt ) is required to be absolutely
continuous with respect to time; see, for example, [44, 51] among many others. In
this case, the class AR of admissible controls contains all progressively measurable
integrable processes u with values in Rd , representing the speed of the agent, the
position of the agent is given by

Yt =
∫ t

0
us ds,

and the cost functional is

H(ψ) =
∫ T

0
ltQ(ut ) dt,

where (lt ) is a random weight process and, for example, Q(u) = 〈u,�Qu〉 with
�Q a positive definite matrix. Comparing to the case of singular control where the
control variables are (γt ) and (ϕt ); here, we optimize over (ut ).

4. Combined control. It is possible that several types of control are available to
the agent. In that case, ψ = (ψ1, . . . ,ψn) where for each i, ψi belongs to one of
the classes introduced before. For example, in the case of combined regular and
impulse control (see [45]), the position of the agent is given by

Yt = ∑
0<τj≤t

ξj +
∫ t

0
us ds,
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while the cost functional is given by

H(ψ) = ∑
0<τj≤T

kτj
F (ξj ) +

∫ T

0
ltQ(ut ) dt.

Similarly, one can consider other combinations of controls.

1.1. Notation. For a complete, separable, metric space S, we define C(S) the
set of continuous functions on S, Cb(S) the set of bounded, continuous functions
on S, M(S) the set of finite nonnegative Borel measures on S and P(S) the set of
probability measures on S. The sets M(S) and P(S) are equipped with the topol-
ogy of weak convergence. Finally, C2

0(Rd) denotes the set of twice continuously
differentiable real functions on Rd with compact support, equipped with the norm:

‖f ‖C2
0
= ‖f ‖∞ +

d∑
i=1

‖∂if ‖∞ +
d∑

i,j=1

∥∥∂2
ij f

∥∥∞.

2. Tracking with combined regular and impulse control. Instead of giving
directly a general result, which would lead to a cumbersome presentation, we focus
in this section on the tracking problem with combined regular and impulse control.
This allows us to illustrate our key ideas. Other situations, such as singular control,
are discussed in Section 3.

2.1. Assumptions and statement of the main result. In the case of combined
regular and impulse control, a tracking strategy (u, τ, ξ) is given by a progressively
measurable process u = (ut )t≥0 with values in Rd and (τ, ξ) = {(τj , ξj ), j ∈ N∗},
with (τj ) an increasing sequence of stopping times and (ξj ) a sequence of random
variables with values in Rd such that ξj is Fτj

-measurable for j = 1,2, . . . . The
process (ut ) represents the speed of the agent. The stopping time τj represents
the timing of jth jump and ξj the size of the jump. The tracking error obtained by
following the strategy (u, τ, ξ) is given by

Xt = −X◦
t +

∫ t

0
us ds + ∑

0<τj≤t

ξj .

We recall that X◦ is a continuous Itô semi-martingale of the form (1.1). From now
on, we require that its coefficients satisfy the following assumption.

ASSUMPTION 2.1 (Model). The processes (at ) and (bt ) are continuous and
(at ) is positive definite on [0, T ].

At any time, the agent is paying a cost for maintaining the speed ut and each
jump ξj incurs a positive cost. We are interested in the following type of cost
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functional:

J (u, τ, ξ) =
∫ T

0

(
rtD(Xt) + ltQ(ut )

)
dt + ∑

j :0<τj≤T

(
kτj

F (ξj ) + hτj
P (ξj )

)
,

where T ∈ R+ and (rt ), (lt ), (kt ) and (ht ) are random weight processes satisfying
the following assumption.

ASSUMPTION 2.2 (Optimization criterion). The parameters of the cost func-
tional (rt ), (lt ), (kt ) and (ht ) are continuous and positive on [0, T ].

REMARK 2.1. The continuity property in Assumptions 2.1 and 2.2 is essential
for our method since it allows to reduce our optimization problem to a sequence of
local problems with constant coefficients. Note that the random weight processes
(rt ), (lt ), (kt ) and (ht ) are not assumed to be adapted.

The cost functions D, Q, F , P are deterministic lower semicontinuous func-
tions which satisfy the following homogeneity property:

D(εx) = εζDD(x), Q(εu) = εζQQ(u),
(2.1)

F(εξ) = εζF F (ξ), P (εξ) = εζP P (ξ),

for any ε > 0 and

ζD > 0, ζQ > 1, ζF = 0, ζP = 1.

Note that here we slightly extend the setting of the previous section by introducing
two functions F and P which typically represent the fixed and the proportional
costs (applied to impulse controls), respectively.

In this paper, we essentially have in mind the case where

D(x) = 〈
x,�Dx

〉
, Q(u) = 〈

u,�Qu
〉
,

F (ξ) =
d∑

i=1

Fi1{ξ i �=0}, P (ξ) =
d∑

i=1

Pi

∣∣ξ i
∣∣,

with Fi,Pi ∈ R+ such that

(2.2) min
i

Fi > 0,

and �D,�Q ∈ Sd+. Note that in this situation, we have ζD = ζQ = 2.
We now explain our asymptotic setting where the costs are small. To this end,

we introduce a family of optimization functionals (J ε)ε>0. For each ε > 0, the
functional J ε is defined by

J ε(uε, τ ε, ξε)=
∫ T

0

(
rtD

(
X

ε

t

)+ εβQltQ
(
uε

t

))
dt

(2.3) + ∑
j :0<τε

j ≤T

(
εβF kτε

j
F
(
ξε
j

)+ εβP hτε
j
P
(
ξε
j

))
,
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where βQ, βF and βP are positive constants and

X
ε

t = −X◦
t +

∫ t

0
uε

s ds + ∑
j :0<τε

j ≤t

ξ ε
j .

Our first main result is a precise asymptotic relation between J ε and the time-
average impulse-regular control problem of Brownian motion with constant pa-
rameters. In the case of combined impulse and regular control considered in this
section, the dynamics of the controlled Brownian motion is given by

(2.4) Xs = √
aWs +

∫ s

0
uν dν + ∑

0<τj≤s

ξj ,

and the time-average control problem can be formulated as

IE(a, r, l, k, h) = inf
(τj ,ξj ,u)

lim
S→∞

1

S
E

[∫ S

0

(
rD(Xs) + lQ(us)

)
ds

(2.5)
+ ∑

0<τj≤S

(
kF (ξj ) + hP (ξj )

)]
,

where the subscript E stands for expectation and the infimum is computed over
u ∈ AR and (τj , ξj ) ∈ AI .

At the level of generality that we are interested in, we need to consider a relaxed
formulation of the above control problem, as a linear programming problem on
the space of measures. Following [37], we introduce for each control (u, ξ) the
occupation measures:

μt(H1) = 1

t
E

∫ t

0
1H1(Xs, us) ds, H1 ∈ B

(
Rd ×Rd),

ρt (H2) = 1

t
E

∑
0<τj≤t

1H2(Xs−, ξj ), H2 ∈ B
(
Rd ×Rd).

Assuming that these measures do not depend on time, we get that

lim
S→∞

1

S
E

[∫ S

0

(
rD(Xs) + lQ(us)

)
ds + ∑

0<τj≤S

(
kF (ξj ) + hP (ξj )

)]

=
∫
Rd×Rd

(
rD(x) + lQ(u)

)
μ(dx × du)

+
∫
Rd×Rd

(
kF (ξ) + hP (ξ)

)
ρ(dx × dξ).

On the other hand, by Itô’s formula, for any f ∈ C2
0 ,

f (Xt) = f (X0) + √
a

∫ t

0
f ′(Xs) dWs +

∫ t

0
Aaf (Xs,us) ds

(2.6)
+ ∑

0<τj≤t

Bf (Xτj−, ξj ),
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where

Aaf (x,u) = 1

2

∑
i,j

aij ∂
2
ij f (x) + 〈

u,∇f (x)
〉
,

Bf (x, ξ) = f (x + ξ) − f (x).

Taking expectation in (2.6) and assuming that the law of Xt does not depend on t ,
we see that under adequate integrability conditions the measures μ and ρ satisfy
the constraint:∫

Rd×Rd
Aaf (x,u)μ(dx × du) +

∫
Rd×Rd

Bf (x, ξ)ρ(dx × dξ) = 0.(2.7)

Therefore, the time-average control problem of Brownian motion (2.4)–(2.5) is
closely related to the problem of computing

I (a, r, l, k, h) = inf
μ,ρ

∫
Rd×Rd

(
rD(x) + lQ(u)

)
μ(dx × du)

(2.8)
+
∫
Rd×Rd

(
kF (ξ) + hP (ξ)

)
ρ(dx × dξ),

with (μ,ρ) ∈ P(Rd × Rd) × M(Rd × Rd \ {0}) satisfying the constraint (2.7)
for any f ∈ C2

0 . We will see in Section 4.2 that this is essentially an equivalent
characterization of the time-average control problem (2.4)–(2.5). In Example 4.6,
we consider a particular case for which I and the optimal solution μ∗, ρ∗ can be
explicitly determined. To give a precise formulation of our first main result, we
introduce two additional assumptions.

ASSUMPTION 2.3 (Regularity of linear programming). The function I =
I (a, r, l, k, h) defined by (2.7)–(2.8) is measurable.

ASSUMPTION 2.4 (Asymptotic framework). The cost functionals are lower
semicontinuous functions which satisfy the homogeneity property (2.1) and there
exists β > 0 such that

(2.9)
βF

ζD + 2 − ζF

= βP

ζD + 2 − ζP

= βQ

ζD + ζQ

= β.

Moreover, inf‖x‖=1 D(x) > 0, inf‖u‖=1 Q(u) > 0 and inf‖ξ‖=1 F(ξ) > 0.

REMARK 2.2. Let us comment briefly on the above assumptions. Assump-
tion 2.3 is necessary to avoid pathological cases. In most examples, the function I

is continuous (see Examples 4.3–4.7). Assumption 2.4 ensures that all components
of the cost functional have similar order of magnitude in the limit.

Second, we introduce the following notion.
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DEFINITION 2.1. Let {Z, (Zε)ε, ε > 0} be random variables on the same
probability space (�,F,P). We say that Zε is asymptotically bounded from below
by Z in probability if

∀δ > 0, lim
ε→0

P
[
Zε > Z − δ

]= 1.

We write lim infε→0 Zε ≥p Z.

We now give the version of our main result for the case of combined regular and
impulse control.

THEOREM 2.1 (Asymptotic lower bound for combined regular and impulse
control). Under Assumptions 2.1, 2.2, 2.3 and 2.4, we have

(2.10) lim inf
ε→0

1

εβζD
J ε(uε, τ ε, ξε)≥p

∫ T

0
I (at , rt , lt , kt , ht ) dt,

for any sequence of admissible tracking strategies {(uε, τ ε, ξε) ∈AR ×AS, ε > 0}.
By Lemma D.1, the following corollary holds.

COROLLARY 2.1. We have

lim inf
ε→0

1

εζDβ
E
[
J ε(uε, τ ε, ξε)]≥ E

[∫ T

0
I (at , rt , lt , kt , ht ) dt

]
.

2.2. Heuristic derivation of the main result. We start with the expression (2.3)
for the family of optimization functionals. The key step is to decompose the track-
ing problem into a sequence of local problems. More precisely, let {tεk = kδε, k =
0,1, . . . ,Kε} be a partition of the interval [0, T ] with δε → 0 as ε → 0. Then we
can write

J ε(uε, τ ε, ξε)=
Kε−1∑
k=0

(∫ tεk +δε

tεk

(
rtD

(
X

ε

t

)+ εβQltQ
(
uε

t

))
dt

+ ∑
j :tεk <τε

j ≤tεk +δε

(
εβF kτε

j
F
(
ξε
j

)+ εβP hτε
j
P
(
ξε
j

)))

=
Kε−1∑
k=0

1

δε

(∫ tεk +δε

tεk

(
rtD

(
X

ε

t

)+ εβQltQ
(
uε

t

))
dt

+ ∑
j :tεk <τε

j ≤tεk +δε

(
εβF kτε

j
F
(
ξε
j

)+ εβP hτε
j
P
(
ξε
j

)))(
tεk+1 − tεk

)

=
Kε−1∑
k=0

jε
tεk

(
tεk+1 − tεk

)
,
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with

jε
tεk

= 1

δε

(∫ tεk +δε

tεk

(
rtD

(
X

ε

t

)+ εβQltQ
(
uε

t

))
dt

+ ∑
j :tεk <τε

j ≤tεk +δε

(
εβF kτε

j
F
(
ξε
j

)+ εβP hτε
j
P
(
ξε
j

)))
.

As ε tends to zero, we expect to have

J ε(uε, τ ε, ξε)�
∫ T

0
jε
t dt.

We are hence led to study jε
t as ε → 0, which is closely related to the time-

average control problem of Brownian motion. To see this, consider the following
rescaling of X

ε
over the horizon (t, t + δε]:

X̃ε,t
s = 1

εβ
X

ε

t+ε2βs, s ∈ (
0, T ε],

where T ε = ε−2βδε and β > 0 is to be determined. We use the superscript t to
indicate that the scaled systems correspond to the horizon (t, t + δε]. Then the
dynamics of X̃ε,t is given by (see [50], Proposition V.1.5)

X̃ε,t
s = X̃

ε,t
0 +

∫ s

0
b̃ε,t
ν dν +

∫ s

0

√
ã

ε,t
ν dW̃ ε,t

ν +
∫ s

0
ũε,t

ν dν + ∑
0<τ̃

ε,t
j ≤s

ξ̃ ε
j ,

with

b̃ε,t
s = −εβbt+ε2βs, ãε,t

s = at+ε2βs, W̃ ε,t
s = − 1

εβ
(Wt+ε2βs − Wt),

and

ũε,t
s = εβuε

t+ε2βs
, ξ̃ ε

j = 1

εβ
ξε
j , τ̃

ε,t
j = 1

ε2β

(
τ ε
j − t

)∨ 0.

Note that (W̃ ε,t
s ) is a Brownian motion with respect to F̃ε,t

s = Ft+ε2βs . Abusing
notation slightly, we write

dX̃ε,t
s = b̃ε,t

s ds +
√

ã
ε,t
s dW̃ ε,t

s + ũε,t
s ds

(2.11)

+ d

( ∑
0<τ̃

ε,t
j ≤s

ξ̃ ε
j

)
, s ∈ (

0, T ε].
Using the homogeneity properties (2.1) of the cost functions, we obtain

jε
t = 1

T ε

(∫ T ε

0

(
εβζDrt+ε2βsD

(
X̃ε,t

s

)+ εβQ−ζQβlt+ε2βsQ
(
ũε,t

s

))
ds

+ ∑
0<τ̃

ε,t
j ≤T ε

(
εβF −(2−ζF )βkt+ε2β τ̃

ε,t
j

F
(̃
ξε
j

)+ εβP −(2−ζP )βht+ε2β τ̃
ε,t
j

P
(̃
ξε
j

)))
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� 1

T ε

(∫ T ε

0

(
εβζDrtD

(
X̃ε,t

s

)+ εβQ−ζQβltQ
(
ũε,t

s

))
ds

+ ∑
0<τ̃

ε,t
j ≤T ε

(
εβF −(2−ζF )βktF

(̃
ξε
j

)+ εβP −(2−ζP )βhtP
(̃
ξε
j

)))
.

The second approximation can be justified by the continuity of the cost coefficients
rt , lt , kt and ht .

Now, if there exists β > 0 such that (2.9) is satisfied, then we have

jε
t � εβζDI ε

t ,

with

I ε
t = 1

T ε

(∫ T ε

0

(
rtD

(
X̃ε,t

s

)+ ltQ
(
ũε,t

s

))
ds

(2.12)

+ ∑
0<τ̃

ε,t
j ≤T ε

(
ktF

(̃
ξε
j

)+ htP
(̃
ξε
j

)))
.

By suitably choosing δε , we have

δε → 0, T ε → ∞.

It follows that b̃ε,t
s � 0 and ãε,t

s � at for s ∈ (0, T ε]. Therefore, we expect that, as
ε → 0, the process (2.11) behaves approximately as a controlled Brownian motion
with diffusion matrix at , and the functional I ε

t satisfies

(2.13) I ε
t � IPW(at , rt , lt , kt , ht ),

where IPW is a deterministic function defined by

IPW(a, r, l, k, h) = inf
(u,τ,ξ)

lim sup
S→∞

1

S

[∫ S

0

(
rD(Xs) + lQ(us)

)
ds

(2.14)

+ ∑
0≤τj≤S

(
kF (ξj ) + hP (ξj )

)]
,

where the subscript PW stands for pathwise and the infimum is computed over
admissible control strategies u ∈ AR and (τ, ξ) ∈AI , and

(2.15) Xs = √
aWs +

∫ s

0
ur dr + ∑

0≤τj≤s

ξj .

We may also expect (see, e.g., [8, 25, 26]) that the optimal value IPW corre-
sponding to the long-term average pathwise criterion is equal to optimal value of
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the long-term average expected criterion:

IE(a, r, l, k, h) = inf
(u,τ,ξ)

lim sup
S→∞

1

S
E

[∫ S

0

(
rD(Xs) + lQ(us)

)
ds

(2.16)

+ ∑
0≤τj≤S

(
kF (ξj ) + hP (ξj )

)]
,

where, once again, u ∈AR and (τ, ξ) ∈ AI . Therefore, we expect that as ε → 0:

J ε �
∫ T

0
jε
t dt � εβζD

∫ T

0
I ε
t dt � εβζD

∫ T

0
IE
t dt,

where IE
t = IE(at , rt , lt , kt , ht ).

REMARK 2.3. The approach of weak convergence is classical for proving in-
equalities similar to (2.13), in particular in the study of heavy traffic networks (see
[40], Section 9, for an overview). The usual weak convergence theorems enable
one to show that the perturbed system converges in the Skorokhod topology to the
controlled Brownian motion as ε tends to zero. However, since the time horizon
tends to infinity, this does not immediately imply the convergence of time-average
cost functionals like I ε

t .
In [41], the authors consider pathwise average cost problems for controlled

queues in the heavy traffic limit, where the control term is absolutely continu-
ous. They use the empirical “functional occupation measure” on the canonical
path space and characterize the limit as a controlled Brownian motion. The same
method has also been used in [11] in the study of single class queueing networks.

However, this approach cannot be applied directly to singular/impulse controls
for which the tightness of the occupation measures is difficult to establish. In fact,
the usual Skorokhod topology is not suitable for the impulse control term:

Ỹ ε
t := ∑

0<τ̃ε
j ≤t

ξ̃ ε
j .

Indeed, in the case of singular/impulse control, the component {Ỹ ε} is generally
not tight under the Skorokhod topology. For example (see [39], page 72), consider
the family (Y ε

t ) where the function Y ε
t equals zero for t < 1 and jumps upward

by an amount
√

ε at times 1 + iε, i = 0,1, . . . , ε−1/2 until it reaches the value
unity. The natural limit of Y ε is of course 1{t≥1} but this sequence is not tight in
the Skorokhod topology. The nature of this convergence is discussed in [34] and a
corresponding topology is provided in [28].

This difficulty could be avoided by introducing a random time change af-
ter which the (suitably interpolated) control term becomes uniformly Lipschitz,
and hence converges under the Skorokhod topology. This technique is used in
[9, 10, 39] to study the convergence of controlled queues with discounted costs.
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This seems to be a possible alternative way to extend the approach of [41] to singu-
lar/impulse controls. Nevertheless, the analysis would probably be quite involved.

Instead of proving the tightness of control terms (Ỹ ε
t ) in weaker topologies, we

shall use an alternative characterization of the time-average control problem of
Brownian motion. In [36], the authors characterize the time-average control of a
Jackson network in the heavy traffic limit as the solution of a linear program. The
use of occupation measure on the state space instead of the path space turns out
to be sufficient to describe the limiting stochastic control problem. However, the
optimization criterion is not pathwise.

In this paper, we use a combination of the techniques in [36] and [41] to obtain
pathwise lower bounds.

3. Extensions of Theorem 2.1 to other types of control. In this section, we
consider the case of combined regular and singular control and those with only
one type of control. In particular, we will see that in the presence of singular con-
trol, the operator B is different. Formally, we could give similar results for the
combination of all three controls or even in the presence of several controls of the
same type with different cost functions and scaling properties. To avoid cumber-
some notation, we restrict ourselves to the cases meaningful in practice, which are
illustrated by explicit examples in Section 4.

3.1. Combined regular and singular control. When the fixed cost component
is absent, that is F = 0, impulse control and singular control can be merged. In that
case, the natural way to formulate the tracking problem is to consider a strategy
(uε, γ ε, ϕε) with uε a progressively measurable process as before, γ ε

t ∈ � and
(ϕε

t ) a possibly discontinuous nondecreasing process such that

X
ε

t = −X◦
t +

∫ t

0
uε

s ds +
∫ t

0
γ ε
s dϕε

s ,

and

J ε(uε, γ ε, ϕε)=
∫ T

0

(
rtD

(
X

ε

t

)+ εβQltQ
(
uε

t

))
dt +

∫ T

0
εβP htP

(
γ ε
t

)
dϕε

t .

Using similar heuristic arguments as those in the previous section, we are led to
consider the time-average control of Brownian motion with combined regular and
singular control:

I (a, r, l, h) = inf
(u,γ,ϕ)

lim sup
S→∞

1

S
E

[∫ S

0

(
rD(Xs) + lQ(us)

)
ds

(3.1)

+
∫ S

0
hP (γs) dϕs

]
,

where

(3.2) Xs = √
aWs +

∫ s

0
ur dr +

∫ s

0
γr dϕr .
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The corresponding linear programming problem is given by

I (a, r, l, h) = inf
(μ,ρ)

∫
Rd×Rd

(
rD(x) + lQ(u)

)
μ(dx × du)

(3.3)
+
∫
Rd×�×R+

δ

hP (γ )ρ(dx × dγ × dδ),

with (μ,ρ) ∈ P(Rd ×Rd)×M(Rd ×�×R+) satisfying the following constraint:∫
Rd×Rd

Aaf (x,u)μ(dx × du)

(3.4)
+
∫
Rd×�×R+

δ

Bf (x, γ, δ)ρ(dx × dγ × dδ) = 0, ∀f ∈ C2
0
(
Rd),

where

Aaf (x,u) = 1

2

∑
ij

aij ∂
2
ij f (x) + 〈

u,∇f (x)
〉
,

Bf (x, γ, δ) =
{〈

γ,∇f (x)
〉
, δ = 0,

δ−1(f (x + δγ ) − f (x)
)
, δ > 0.

We introduce a version of Assumption 2.4 adapted to the present setting.

ASSUMPTION 3.1 (Asymptotic framework). The cost functionals D, Q and P

are lower semicontinuous functions which satisfy the homogeneity property (2.1)
and there exists β > 0 such that

(3.5)
βP

ζD + 2 − ζP

= βQ

ζD + ζQ

= β.

Moreover, inf‖x‖=1 D(x) > 0, inf‖u‖=1 Q(u) > 0 and infγ∈� P (γ ) > 0.

We have the following theorem.

THEOREM 3.1 (Asymptotic lower bound for combined regular and singular
control). Assume that I (a, r, l, h) is measurable, that the parameters (rt ), (lt )

and (ht ) are continuous and positive, that Assumption 2.1 holds true and that
Assumption 3.1 is satisfied for some β > 0. Then

(3.6) lim inf
ε→0

1

εβζD
J ε(uε, γ ε, ϕε)≥p

∫ T

0
I (at , rt , lt , ht ) dt,

for any sequence of admissible tracking strategies {(uε, γ ε, ϕε) ∈ A, ε > 0}.

Adapting the proofs of Theorem 2.1 and Theorem 3.1 in an obvious way, we
easily obtain the following bounds when only one control is present.
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3.2. Impulse control. Consider a family of strategies (τ ε, ξε)ε>0 ⊂ A, to-
gether with the associated family of aggregate cost functionals:

J ε(τ ε, ξε)=
∫ T

0
rtD

(
X

ε

t

)
dt + ∑

0<τε
j ≤T

(
εβF kτε

j
F
(
ξε
j

)+ εβP hτε
j
P
(
ξε
j

))
,

and deviation processes

X
ε

t = −X◦
t + ∑

0<τε
j ≤t

ξ ε
j .

Once again, we introduce the version of Assumption 2.4 adapted to the present
context.

ASSUMPTION 3.2 (Asymptotic framework). The cost functionals D, F and P

are lower semicontinuous functions which satisfy the homogeneity property (2.1)
and there exists β > 0 such that

(3.7)
βF

ζD + 2 − ζF

= βP

ζD + 2 − ζP

= β.

Moreover, inf‖x‖=1 D(x) > 0, and inf‖ξ‖=1 F(ξ) > 0.

The following theorem holds true.

THEOREM 3.2 (Asymptotic lower bound for impulse control). Let I =
I (a, r, k, h) be given by

I (a, r, k, h) = inf
(μ,ρ)

∫
Rd

rD(x)μ(dx) +
∫
Rd×Rd\{0}

(
kF (ξ) + hP (ξ)

)
ρ(dx × dξ),

with (μ,ρ) ∈ P(Rd) ×M(Rd ×Rd \ {0}) satisfying the following constraint:∫
Rd

Aaf (x)μ(dx) +
∫
Rd×Rd\{0}

Bf (x, ξ)ρ(dx × dξ) = 0, ∀f ∈ C2
0
(
Rd),

where

Aaf (x) = 1

2

∑
i,j

aij ∂
2
ij f (x), Bf (x, ξ) = f (x + ξ) − f (x).

Assume that I (a, r, k, h) is measurable, that the parameters (rt ), (kt ) and (ht ) are
continuous and positive, that Assumption 2.1 holds true, and that Assumption 2.4
is satisfied for some β > 0. Then

lim inf
ε→0

1

εβζD
J ε(τ ε, ξε)≥p

∫ T

0
I (at , rt , kt , ht ) dt.

See Example 4.5 for a closed form solution of I .
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3.3. Singular control. Consider a family of strategies (γ ε, ϕε)ε>0 ⊂ A to-
gether with the associated family of aggregate cost functionals:

J ε(γ ε,ϕε)=
∫ T

0
rtD

(
X

ε

t

)
dt +

∫ T

0
εβP htP

(
γ ε
t

)
dϕε

t ,

and deviation processes

X
ε

t = −X◦
t +

∫ t

0
γ ε
s dϕε

s .

Assumption 2.4 now takes the following form.

ASSUMPTION 3.3 (Asymptotic framework). The cost functionals D and P

are lower semicontinuous functions which satisfy the homogeneity property (2.1)
with inf‖x‖=1 D(x) > 0 and infγ∈� P (γ ) > 0. We define β > 0 by

(3.8)
βP

ζD + 2 − ζP

= β.

The following theorem holds true.

THEOREM 3.3 (Asymptotic lower bound for singular control). Let I =
I (a, r, h) be given by

I (a, r, h) = inf
(μ,ρ)

∫
Rd

rD(x)μ(dx) +
∫
Rd×�×R+

δ

hP (γ )ρ(dx × dγ × dδ),

with (μ,ρ) ∈ P(Rd) ×M(Rd × � ×R+) satisfying the following constraint:∫
Rd

Aaf (x)μ(dx)

+
∫
Rd×�×R+

δ

Bf (x, γ, δ)ρ(dx × dγ × dδ) = 0, ∀f ∈ C2
0
(
Rd),

where

Aaf (x) = 1

2

∑
ij

aij ∂
2
ij f (x),

Bf (x, γ, δ) =
{〈

γ,∇f (x)
〉
, δ = 0,

δ−1(f (x + δγ ) − f (x)
)
, δ > 0.

Assume that I (a, r, h) is measurable, that the parameters (rt ) and (ht ) are con-
tinuous and positive, that Assumption 2.1 holds true and that Assumption 2.4 is
satisfied for some β > 0. Then

lim inf
ε→0

1

εβζD
J ε(γ ε,ϕε)≥p

∫ T

0
I (at , rt , ht ) dt.

See Example 4.4 for a closed form solution of I .
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3.4. Regular control. Consider a family of strategies (uε)ε>0 ⊂ A together
with the associated family of aggregate cost functionals

J ε(uε)=
∫ T

0

(
rtD

(
X

ε

t

)+ εβQltQ
(
uε

t

))
dt,

and deviation processes

X
ε

t = −X◦
t +

∫ t

0
uε

s ds.

Assumption 2.4 takes the following form.

ASSUMPTION 3.4 (Asymptotic framework). The cost functionals D and Q

are lower semicontinuous functions which satisfy the homogeneity property (2.1)
with inf‖x‖=1 D(x) > 0 and inf‖u‖=1 Q(u) > 0. We define β > 0 by

(3.9)
βQ

ζD + ζQ

= β.

The following theorem holds true.

THEOREM 3.4 (Asymptotic lower bound for regular control). Let I =
I (a, r, l) be given by

I (a, r, l) = inf
μ

∫
Rd×Rd

(
rD(x) + lQ(u)

)
μ(dx, du),

with μ ∈ P(Rd ×Rd) satisfying the following constraint:∫
Rd×Rd

Aaf (x,u)μ(dx, du) = 0, ∀f ∈ C2
0
(
Rd),

where

Aaf (x,u) = 1

2

∑
i,j

aij ∂
2
ij f (x) + 〈

u,∇f (x)
〉
.

Assume that I (a, r, l) is measurable, that the parameters (rt ) and (lt ) are con-
tinuous and positive on [0, T ], that Assumption 2.1 holds true and that Assump-
tion 2.4 is satisfied for some β > 0. Then

lim inf
ε→0

1

εβζD
J ε(uε)≥p

∫ T

0
I (at , rt , lt ) dt.

See Example 4.3 for a closed form solution of I .
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REMARK 3.1 (Upper bound). It is natural to wonder whether the lower
bounds in our theorems are tight and if it is the case, what are the strategies that
attain them. In the companion paper [13], we show that for the examples pro-
vided in Section 4, there are closed form strategies attaining asymptotically the
lower bounds. For instance, in the case of combined regular and impulse control,
it means that there exist (uε,∗, τ ε,∗, ξ ε,∗) ∈ A such that

lim
ε→0

1

εβζD
J ε(uε,∗, τ ε,∗, ξ ε,∗)→p

∫ T

0
I (at , rt , lt , kt , ht ) dt.

These optimal strategies are essentially time-varying versions of the optimal strate-
gies for the time-average control of Brownian motion.

4. Interpretation of lower bounds and examples. Our goal in this section is
to provide a probabilistic interpretation of the lower bounds in Theorems 2.1, 3.1,
3.2, 3.3 and 3.4, which are expressed in terms of linear programming. In particu-
lar, we want to connect them with the time-average control problem of Brownian
motion. To our knowledge, there is no general result available for the equivalence
between time-average control problem and linear programming. Partial results ex-
ist in [8, 22, 35, 36, 38] but do not cover all the cases we need. Here, we provide
a brief self-contained study enabling us to also treat the cases of singular/impulse
controls and their combinations with regular control. We first introduce controlled
martingale problems and show that they can be seen as a relaxed version of the
controlled Brownian motion (2.4). Then we formulate the time-average control
problem in this martingale framework. We finally show that this problem has an
equivalent description in terms of infinite dimensional linear program. While es-
sential ingredients and arguments for obtaining these results are borrowed from
[35] and [37], we provide sharp conditions which guarantee the equivalence of
these two formulations.

4.1. Martingale problem associated to controlled Brownian motion. In [2, 44,
49, 53], the authors obtain a HJB equation in the first-order expansion for the value
function of the utility maximization problem under transaction costs, which essen-
tially provides a lower bound for their control problems. They mention a connec-
tion between the HJB equation and the time-average control problem of Brownian
motion; see also [23]. Here, we wish to rigorously establish an equivalence be-
tween the linear programs in our lower bounds and the time-average control of
Brownian motion. This leads us to introduce a relaxed version for the controlled
Brownian motion. We shall see that the optimal costs for all these formulations
coincide in the examples provided in the next section.

We place ourselves in the setting of [37], from which we borrow and rephrase
several elements, and assume that the state space E and control spaces U and V

are complete, separable, metric spaces. For a complete, separable metric space S,
we define L(S) the set of nonnegative Borel measures � on S × [0,∞) such that
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�(S×[0, t]) < ∞ for all t ≥ 0. For any such measure and for any t > 0, �t denotes
the restriction of � to S×[0, t]. Consider an operator A : D ⊂ Cb(E) → C(E×U)

and an operator B : D ⊂ Cb(E) → C(E × V ).

DEFINITION 4.1 (Controlled martingale problem). A triplet (X,�,�) with
(X,�) an E×P(U)-valued process and � an L(E×V )-valued random variable is
a solution of the controlled martingale problem for (A,B) with initial distribution
ν0 ∈ P(E) if there exists a filtration (Ft ) such that the process (Xt ,�t ,�t )t≥0 is
(Ft )-progressive, X0 has distribution ν0 and for every f ∈D,

f (Xt) −
∫ t

0

∫
U

Af (Xs,u)�s(du)ds

(4.1)
−
∫
E×V ×[0,t]

Bf (x, v)�(dx × dv × ds)

is an Ft -martingale.

We now consider two specific cases for the operators A and B , which will
be relevant in order to express our lower bounds. Furthermore, we explain why
these specific choices of A and B are connected to combined regular and singu-
lar/impulse control of Brownian motion.

EXAMPLE 4.1 (Combined regular and impulse control of Brownian motion).
Let D = C2

0(Rd) ⊕R and define A : D → C(E × U) and B : D → C(E × V ) by

Af (x,u) = 1

2

∑
i,j

aij ∂
2
ij f (x) + 〈

u,∇f (x)
〉
,(4.2)

Bf (x, ξ) = f (x + ξ) − f (x).(4.3)

Here, E = Rd , U = Rd and V = Rd \ {0}. We call any solution of this martingale
problem the combined regular and impulse control of Brownian motion.

Indeed, consider the following process:

Xt = X0 + √
aWt +

∫ t

0
us ds + ∑

0<τj≤t

ξj ,

where W is a standard Brownian motion on a filtered probability space (�,F,

(F)t ,P), (ut ) is a (Ft )-progressively measurable process, (τj ) a sequence of (Ft )-
stopping times and (ξj ) a sequence of random variables with values in Rd such that
ξj is Fτj

-measurable for j = 1,2, . . . . Define

Nt =∑
j

1{τj≤t}, ξt = ξj , t ∈ (τj−1, τj ].
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Then for any f ∈ D, by Itô’s formula,

f (Xt) −
∫ t

0
Af (Xs,us) ds −

∫ t

0
Bf (Xs−, ξs−) dNs

= f (X0) −
∫ t

0
∇f (Xs)

�√
a dWs,

which is a martingale. Let

�t = δut (du),

�
(
H × [0, t])=

∫ t

0
1H(Xs−, ξs−) dNs, H ∈ B

(
Rd ×Rd \ {0}).

Then (X,�,�) solves the martingale problem (A,B) with initial distribution
L(X0).

EXAMPLE 4.2 (Combined regular and singular control of Brownian motion).
Take D = C2

0(Rd) ⊕R and define

Af (x,u) = 1

2

∑
i,j

aij ∂
2
ij f (x) + 〈

u,∇f (x)
〉
,(4.4)

Bf (x, γ, δ) =
{〈

γ,∇f (x)
〉
, δ = 0,

δ−1(f (x + δγ ) − f (x)
)
, δ > 0.

(4.5)

Here, E =Rd , U = Rd and V = �×R+
δ . Any solution of this martingale problem

is called combined regular and singular control of Brownian motion.
Indeed, let X be given by

Xt = X0 + √
aWt +

∫ t

0
us ds +

∫ t

0
γs dϕs,

with u a progressively measurable process, γs ∈ � and ϕs nondecreasing. By Itô’s
formula, we have

f (Xt) −
∫ t

0
Af (Xs,us) ds −

∫ t

0
Bf (Xs−, γs, δϕs) dϕs

= f (X0) −
∫ t

0
∇f (Xs)

�√
a dWs,

which is a martingale for any f ∈D. Let

�t = δut (du),

�
(
H × [0, t])=

∫ t

0
1H (Xs−, γs, δϕs) dϕs, H ∈ B

(
Rd × � ×R+

δ

)
.

Then (X,�,�) solves the martingale problem (A,B) with initial distribution
L(X0).
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4.2. Time-average control of Brownian motion. Now we formulate a relaxed
version of the time-average control problem of Brownian motion in terms of a
controlled martingale problem. This generalizes [22, 35] to combined regular and
singular/impulse control of martingale problems; see also [38]. Recall that A and
B are two operators where A : D ⊂ Cb(E) → C(E × U) and B : D ⊂ Cb(E) →
C(E ×V ). Consider two Borel measurable functions CA : E ×U →R+ and CB :
E × V →R+.

PROBLEM 4.1 (Martingale formulation of time-average control problem).
The time-average control problem under the martingale formulation is given by

IM = inf
(X,�,�)

lim sup
t→∞

1

t
E

[∫ t

0

∫
U

CA(Xs,u)�s(du)ds

(4.6)

+
∫
E×V ×[0,t]

CB(x, v)�(dx × dv × ds)

]
,

where the inf is taken over all solutions of the martingale problem (A,B) with any
initial distribution ν0 ∈P(E).

Now, let (X,�,�) be any solution of the martingale problem with operators A

and B . Define (μt , ρt ) ∈P(E × U) ×M(E × V ) as

μt(H1) = 1

t
E

[∫ t

0

∫
U

1H1(Xs, u)�s(du)ds

]
,(4.7)

ρt (H2) = 1

t
E
[
�
(
H2 × (0, t])],(4.8)

for H1 ∈ B(E × U) and H2 ∈ B(E × V ). Then the average cost up to time t in
(4.6) can be expressed as∫

E×U
CA(x,u)μt(dx × du) +

∫
E×V

CB(x, v)ρt (dx × dv).

On the other hand, for f ∈ D, (4.1) defines a martingale. Taking the expectation,
we obtain

1

t
E

[∫ t

0

∫
U

Af (Xs,u)�s(du)ds +
∫
E×V ×(0,t]

Bf (x, v)�(dx × dv × ds)

]

= 1

t
E
[
f (Xt) − f (X0)

]
.

When t tends to infinity, the right-hand side of the above equality tends to zero,
which means that∫

E×U
Af (x,u)μt(dx × du) +

∫
E×V

Bf (x, v)ρt (dx × dv) → 0 as t → ∞.

This leads us to introduce the following linear programming problem.
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PROBLEM 4.2 [Linear programming (LP) formulation of time-average control].
The time-average control problem under the LP formulation is given by

(4.9) I = inf
(μ,ρ)

c(μ,ρ),

with

c : P(E × U) ×M(E × V ) →R+,
(4.10)

(μ,ρ) �→
∫
E×U

CA(x,u)μ(dx × du) +
∫
E×V

CB(x, v)ρ(dx × dv),

where the inf is computed over all μ ∈ P(E × U) and ρ ∈ M(E × V ) satisfying
the constraint ∫

E×U
Af (x,u)μ(dx × du)

(4.11)
+
∫
E×V

Bf (x, v)ρ(dx × dv) = 0, ∀f ∈ D.

We now present the theorem which connects linear programming and time-
average control of Brownian motion. To this end, we first recall a condition on
the operators A and B , used in [37]. We refer the reader to [37] for an explanation
of different components of this assumption.

ASSUMPTION 4.1 (Condition 1.2 in [37]). (i) 1 ∈ D and A1 = 0,B1 = 0.
(ii) There exist ψA ∈ C(E ×U), ψB ∈ C(E ×V ), and constants af , bf depend-

ing on f ∈D such that∣∣Af (x,u)
∣∣≤ af ψA(x,u),

(4.12) ∣∣Bf (x, v)
∣∣≤ bf ψB(x, v), ∀x ∈ E,u ∈ U,v ∈ V.

(iii) Defining (A0,B0) = {(f,ψ−1
A Af,ψ−1

B Bf ) : f ∈ D}, (A0,B0) is sepa-
rable, in the sense that there exists a countable collection {gk} ⊂ D such that
(A0,B0) is contained in the bounded pointwise closure of the linear span of
{(gk,A0gk,B0gk) = (gk,ψ

−1
A Agk,ψ

−1
B Bgk)}.

(iv) For each u ∈ U , the operators Au and Bu defined by Auf (x) = Af (x,u)

and Buf (x) = Bf (x,u) are pre-generators (see [37], page 4).
(v) D is closed under multiplication and separates points.

THEOREM 4.1 (Equivalence between IM and I ). Assume that:

1. (Condition on the operators A and B) The operators A and B satisfy As-
sumption 4.1.

2. (Condition on the cost function CA) The cost function CA is nonnegative
and inf-compact, that is, {(x, u) ∈ E × U |CA(x,u) ≤ c} is a compact set for each
c ∈ R+. In particular, CA is lower semicontinuous.
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3. (Condition on cost function CB ) The cost function CB is nonnegative and
lower semi-continuous. Moreover, CB satisfies

(4.13) inf
(x,v)∈E×V

CB(x, v) > 0.

4. (Relation between operators and cost functions) There exist constants θ and
0 < β < 1 such that

(4.14) ψA(x,u)1/β ≤ θ
(
1 + CA(x,u)

)
, ψB(x, v)1/β ≤ θCB(x, v),

for ψA and ψB given by (4.12).

Then the two formulations above of the time-average control problem are equiva-
lent in the sense that

IM = I.

PROOF. The idea of the proof is the same as in [35], with a key ingredient
provided by [37], Theorem 1.7.

We first show that I ≤ IM . Given any solution (X,�,�) of the martingale
problem, we define the occupation measures as (4.7) and (4.8). Without loss
of generality, we can assume that lim supt→∞ c(μt , ρt ) < ∞ where c is de-
fined in (4.10) (otherwise we would have IM = ∞ ≥ I ). We will show that
I ≤ lim supt→∞ c(μt , ρt ).

We consider the one-point compactification E × V = E×V ∪{∞ = (x∞, v∞)}
and extend CB to E × V by

CB(x∞, v∞) = lim inf
(x,v)→(x∞,v∞)

CB(x, v) > 0,

where the last inequality is guaranteed by (4.13). Since CB is lower semicontinu-
ous, the level sets {(x, v) ∈ E × V |CB(x, v) ≤ c} are compact. By Lemma C.1, we
deduce that c is a tightness function on P(E × U) ×M(E × V ). So the family of
occupation measures (μt , ρt )t≥0 is tight if ρt is viewed as a measure on E × V . It
follows that the family of occupation measures indexed by t is relatively compact.

Let (μ,ρ) ∈ P(E ×U)×M(E × V ) be any limit point of (μt , ρt ) with canon-
ical decomposition ρ̄ = ρ + θρ̄δ∞. We claim that (μ,ρ) satisfies the linear con-
straint (4.11). Indeed, by (4.12) and (4.14), we have

|Af |1/β ≤ θf (1 + CA), |Bf |1/β ≤ θf CB,

where θf is a nonnegative real number depending on f . Then supt c(μt , ρt ) < ∞
implies that Af and Bf are uniformly integrable with respect to μ and ρ̄. We
therefore have∫

E×U
Af dμ +

∫
E×V

1E×V Bf dρ̄ = lim
t→∞

∫
E×U

Af dμt +
∫
E×V

1E×V Bf dρt .
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The right-hand side being equal to zero, we obtain∫
E×U

Af dμ +
∫
E×V

Bf dρ = 0.

Since CA and CB are lower semi-continuous, it follows that (see [15], Theo-
rem A.3.12)

I ≤ c(μ,ρ) ≤ c(μ, ρ̄) ≤ lim inf
t→∞ c(μt , ρt ) ≤ lim sup

t→∞
c(μt , ρt ).

As the choice of the solution of the controlled martingale problem (X,�,�) is
arbitrary, we conclude that I ≤ IM .

We now show that IM ≤ I . Given any (μ,ρ) satisfying the linear constraint
(4.11) such that c(μ,ρ) < ∞, Theorem 1.7 in [37] together with the condition on
the operators A and B provides the existence of a stationary solution (X,�,�) for
the martingale problem (A,B) with marginals (μ,ρ), hence IM ≤ I . �

REMARK 4.1. Compared with the results in [8, 35], no near-monotone con-
dition is necessary for the singular component. This is due to the fact that in the
linear constraint (4.11), ρ belongs to M(E × V ) instead of P(E × V ).

We now give natural examples for which I = IM .

COROLLARY 4.1 (Time-average control of Brownian motion with quadratic
costs). Assume that CA is given by

(4.15) CA(x,u) = r
〈
x,�Dx

〉+ l
〈
u,�Qu

〉
, ∀(x, u) ∈ Rd ×Rd,

where �D,�Q ∈ S+
d . Then for both following cases, we have IM = I :

1. The operators A and B are given by (4.2)–(4.3) and the cost function CB is
given by

(4.16) CB(x, ξ) = k

d∑
i=1

Fi1{ξ i �=0} + h
〈
P, |ξ |〉, (x, ξ) ∈ Rd ×Rd \ {0},

with mini Fi > 0.
2. The operators A and B are given by (4.4)–(4.5) and the cost function CB is

given by

(4.17) CA(x, γ, δ) = h
〈
P, |γ |〉, (x, γ, δ) ∈ Rd × � ×R+

δ ,

with mini Pi > 0.

PROOF. We consider the impulse case. First, we show that A and B satisfy
[37], Condition 1.2. (i) It is clear that 1Rd ∈ D, and A1Rd = 0,B1Rd = 0. (ii) De-
fine

ψA(x,u) = 1 ∨
d∑

i=1

|ui |, ψB(x, ξ) = 1,
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then (4.12) is satisfied. (iii) Since C2
0(Rd) equipped with ‖ · ‖C2

0
is separable, the

third condition is satisfied. (iv) Auf (x) = Af (x,u) and Bξf (x) = Bf (x, ξ) sat-
isfy the positive maximum principle, so they are dissipative. It is obvious that they
verify [37], (1.10). Hence, they are pre-generators. (v) Obvious. Second, since CA

and CB are l.s.c. and mini Fi > 0, the conditions on CA and CB are verified. Third,
(4.14) holds with β = 1/2.

The proof for the singular case is similar. Note that mini Pi > 0 is necessary for
(4.13) and the second bound in (4.14) to hold. �

4.3. Explicit examples in dimension one. We collect here a comprehensive list
of examples in dimension one for which explicit solutions are available. Most of
these results exist already in the literature under the classical SDE formulation
(see, e.g., [2, 14, 17, 22, 24–26, 44, 53]), but Examples 4.6 and 4.7 are presented
here for the first time. The basic idea is to solve explicitly the HJB equation cor-
responding to the time-average control problem and apply a verification theorem.
Similar methods apply under the linear programming framework. However, for
completeness we provide in Section 8 detailed proofs tailored to the formulation
in terms of linear programming. In fact, we prove only the case of combined reg-
ular and impulse control, that is, Example 4.6. The proofs for the other examples
are similar, and hence omitted.

EXAMPLE 4.3 (Regular control of Brownian motion). Let r, l > 0 and con-
sider the following linear programming problem:

(4.18) I (a, r, l) = inf
μ

∫
R×R

(
rx2 + lu2)μ(dx, du),

where μ ∈ P(R×R) satisfies

(4.19)
∫
R×R

(
1

2
af ′′(x) + uf ′(x)

)
μ(dx, du) = 0, ∀f ∈ C2

0(R).

By Corollary 4.1, this is equivalent to the time-average control of Brownian motion
with quadratic costs in the sense of Problem 4.1.

Let us explain heuristically how to obtain the optimal solution (a rigorous verifi-
cation argument for the linear programming formulation is provided in Section 8).
Roughly speaking, Problem 4.1 describes the following dynamics:

dXu
t = √

a dWt + ut dt.

The optimization objective is

inf
(ut )∈A

lim sup
T →∞

1

T
E

[∫ T

0

(
r
(
Xu

t

)2 + lu2
t

)
dt

]
,
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where the set A of admissible controls contains all progressively measurable pro-
cesses (ut ) such that

lim sup
T →∞

1

T
E
[(

Xu
T

)2]
< ∞.

Consider the associated HJB equation for the couple (w, IV )2

inf
u∈R

1

2
aw′′(x) + uw′(x) + lu2 + rx2 − IV = 0.

It is easy to to see (see also [44], equation (3.18)) that it is solved explicitly by the
couple:

w(x) = √
rlx2, IV =

√
a2rl.

Now, let (ut ) be an admissible control and apply Itô’s formula to w(XT ):

w(XT ) = w(X0) +
∫ T

0

(
1

2
aw′′(Xt) + utw

′(Xt)

)
dt +

∫ T

0
w′(Xt) dWt .

It follows that∫ T

0

(
rX2

t + lu2
t

)
dt ≥

∫ T

0

(
IV − 1

2
aw′′(Xt) − utw

′(Xt)

)
dt

(4.20)

= TIV + w(X0) − w(XT ) +
∫ T

0
w′(Xt) dWt .

Taking expectation, dividing by T on both sides, and using the admissibility con-
ditions, we obtain

lim sup
T →∞

1

T
E

[∫ T

0

(
rX2

t + lu2
t

)
dt

]
≥ IV .

To show that IV is indeed the optimal cost, it is enough to show that equality holds
in (4.20) for the optimal feedback control given by

u∗(x) = −w′(x)

2l
= −θx, θ =

√
r

l
.

Therefore, the optimally controlled process is an Ornstein–Uhlenbeck process

dX∗ = √
a dWt − θX∗

t dt.

Naturally, the stationary distribution of (X∗, u∗(X∗
t )) is the solution μ∗ of the lin-

ear programming problem. We have the following result.

2See [7] for an interpretation of this equation and related uniqueness results.
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PROPOSITION 4.1. The solution of (4.18)–(4.19) is given by

I (a, r, l) =
√

a2rl,

and the optimum is attained by

μ∗(dx, du) = 1√
2πσ

e
− x2

2σ2 dx ⊗ δ{−θx}(du),

where

σ 2 = a

2θ
, θ =

√
r

l
.

EXAMPLE 4.4 (Singular control of Brownian motion). For any parameters
r, h > 0, consider the following linear programming problem:

(4.21) I (a, r, h) = inf
(μ,ρ)

∫
R

rx2μ(dx) +
∫
R×{±1}×R+

δ

h|γ |ρ(dx, dγ, dδ),

where μ ∈ P(R) and ρ ∈ M(R× {±1} ×R+
δ ) satisfy∫

R

1

2
af ′′(x)μ(dx)

(4.22)
+
∫
R×{±1}×R+

δ

γf ′(x)ρ(dx, dγ, dδ) = 0, ∀f ∈ C2
0(R).

By Corollary 4.1, this is equivalent to the time-average control of Brownian motion
with quadratic deviation penalty and proportional costs in the sense of Problem 4.1.

The dynamics of the solution of the controlled martingale problem is heuristi-
cally

dXt = √
a dWt + γt dϕt ,

where γt ∈ {±1} and ϕt is a non-decreasing process. The optimization objective is

inf
(γt ,ϕt )∈A

lim sup
T →∞

1

T
E

[∫ T

0
rX2

t dt + hϕT

]
.

The associated HJB equation is(
1

2
aw′′(x) + rx2 − IV

)
∧
(

inf
γ∈{±1}γw′(x) + h

)
= 0.

An explicit solution for w is provided in [53] (see also [14, 26, 32]):

(4.23) w(x) =

⎧⎪⎪⎨⎪⎪⎩
Ax4 + Bx2, −U ≤ x ≤ U,

w(−U) + h(−U − x), x < −U,

w(U) + h(x − U), x > U,
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with

A = −1

6

r

a
, B = I

a
,

and

I =
(

3

4
ar1/2h

)2/3
, U =

(
3

4
ar−1h

)1/3
.

The optimally controlled process is

dX∗
t = √

a dWt + dϕ−
t − dϕ+

t ,

where ϕ± are the local times keeping X∗
t ∈ [−U,U ] such that∫ t

0
1{X∗

s �=−U} dϕ−
s +

∫ t

0
1{X∗

s �=U} dϕ+
s = 0.

In other words, this is a Brownian motion with reflection on the interval [−U,U ].
The optimal solution (μ∗, ρ∗) is the stationary distribution of X∗

t and the limit of
boundary measures

1

t

∫ t

0

(
δ(U,−1,0) dϕ+

s + δ(−U,1,0) dϕ−
s

)
,

as t → ∞. We have the following result.

PROPOSITION 4.2. The solution of (4.21)–(4.22) is given by

I (a, r, h) =
(

3

4
ar1/2h

)2/3
,

and the optimum is attained by

μ∗(dx) = 1

2U
1[−U,U ](x) dx,(4.24)

ρ∗(dx, dγ, dδ) = a

2U

(
1

2
δ(−U,1,0) + 1

2
δ(U,−1,0)

)
,(4.25)

where

U =
(

3

4
ar−1h

)1/3
.

EXAMPLE 4.5 (Impulse control of Brownian motion). For any parameters
r, k > 0 and h ≥ 0, consider the following linear programming problem:

(4.26) I (a, r, k, h) = inf
(μ,ρ)

∫
R

rx2μ(dx) +
∫
R×R\{0ξ }

(
k + h|ξ |)ρ(dx, dξ),
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where μ ∈ P(R) and ρ ∈ M(R×R \ {0}) satisfy∫
R

1

2
af ′′(x)μ(dx)

(4.27)
+
∫
R×R\{0}

(
f (x + ξ) − f (x)

)
ρ(dx, dξ) = 0, ∀f ∈ C2

0(R).

By Corollary 4.1, this is equivalent to the time-average control problem of Brow-
nian motion in the sense of Problem 4.1.

The associated HJB equation is (see also [2, 14, 17, 25])(
1

2
aw′′(x) + rx2 − IV

)
∧
(

inf
ξ∈R\{0}

(
w(x + ξ) + k + h|ξ |)− w(x)

)
= 0.

Let θ1, θ2 and 0 < x̃∗ < x∗ be solutions of the following polynomial system:⎧⎪⎪⎨⎪⎪⎩
6aθ1 + r = 0,

P
(
x∗)− P

(
x̃∗)= k + h

(
x∗ − x̃∗),

P ′(x∗)= h, P ′(x̃∗)= h,

where P(x) = θ1x
4 + θ2x

2. Let U = x∗. We can show that the solution of the HJB
equation is given by

w(x) =
{
P(x), |x| ≤ U,

w(U) + h
(|x| − U

)
, |x| > U,

and

IV = aθ2.

Let ξ∗ = x∗ − x̃∗. The optimally controlled process is a Brownian motion on the
interval [−U,U ], which jumps to ±U ∓ ξ∗ when reaching the boundary point
±U . Such processes have been studied in [5, 18]. We have the following result.

PROPOSITION 4.3. The solution of (4.26)–(4.27) is given by

I (a, r, k, h) = aθ2,

and the optimum is attained by

μ∗ = p(x)dx,
(4.28)

p(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

1

(x∗)2 − (x̃∗)2

(
x + x∗), −x∗ ≤ x < −x̃∗,

1

x∗ + x̃∗ , −x̃∗ ≤ x ≤ x̃∗,
1

(x∗)2 − (x̃∗)2

(
x∗ − x

)
, x̃∗ < x ≤ x∗,

ρ∗ = a

(x∗)2 − (x̃∗)2

(
1

2
δ(x∗,x̃∗−x∗) + 1

2
δ(−x∗,−x̃∗+x∗)

)
,(4.29)
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which correspond to the stationary distribution and boundary measure of Brown-
ian motion with jumps from the boundary on the interval [−U,U ].

EXAMPLE 4.6 (Combined regular and impulse control of Brownian motion).
For any parameters r, l, k > 0 and h ≥ 0, consider the following linear program-

ming problem:

I (a, r, l, k, h) = inf
(μ,ρ)

∫
R×R

(
rx2 + lu2)μ(dx, du)

(4.30)
+
∫
R×R\{0ξ }

(
k + h|ξ |)ρ(dx, dξ),

where μ ∈P(R×R) and ρ ∈ M(R×R \ {0ξ }) satisfy∫
R×R

(
1

2
af ′′(x) + uf ′(x)

)
μ(dx, du)

(4.31)
+
∫
R×R\{0ξ }

(
f (x + ξ) − f (x)

)
ρ(dx, dξ) = 0, ∀f ∈ C2

0(R).

By Corollary 4.1, this is equivalent to the time-average control problem of Brow-
nian motion in the sense of Problem 4.1.

The corresponding HJB equation is(
1

2
aw′′(x) + inf

u

(
uw′(x) + lu2)+ rx2 − IV

)
∧
(
inf
ξ

(
w(x + ξ) + k + h|ξ |)− w(x)

)
= 0.

In Section 8, we show that this equation admits a classical solution:

(4.32) w(x) =
⎧⎪⎨⎪⎩(rl)1/2x2 − 2al ln 1F1

(
1 − ι

4
; 1

2
;
(

r

a2l

)1/2
x2
)
, |x| ≤ U,

w(U) + h
(|x| − U

)
, |x| > U,

where 1F1 is the Kummer confluent hypergeometric function (see Appendix A)
and ξ∗ and U are such that 0 < ξ∗ < U and

w
(±U ∓ ξ∗)+ k + h

∣∣ξ∗∣∣− w(±U) = 0.

Moreover,

IV = ιa
√

rl,

for some ι ∈ (0,1).
Let u∗ be defined as

u∗(x) = Argmin
u

Aw(x,u) + CA(x,u) = −w′(x)

2l
.
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The optimally controlled process is given by

dX∗
t = √

a dWt + u∗(X∗
t

)
dt + d

(∑
τj≤t

(
1{X∗

τj −=−U }ξ∗ − 1{X∗
τj −=U }ξ∗)).

We have the following result.

PROPOSITION 4.4. The solution of (4.30)–(4.31) is given by

I (a, r, l, k, h) = ιa
√

rl,

and the optimum is attained by (μ∗, ρ∗) where

μ∗(dx, du) = p∗(x) dx ⊗ δu∗(x)(du),

ρ∗(dx, dξ) = (
ρ∗−δ(−U,ξ∗) + ρ∗+δ(U,−ξ∗)

)
(dx, dξ),

with p∗(x) ∈ C0([L,U ]) ∩ C2([L,U ] \ {L + ξ∗(L),U + ξ∗(U)}) solution of⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

2
ap′′(x) − (

u∗(x)p(x)
)′ = 0, x ∈ (−U,U) \ {−U + ξ∗,U − ξ∗},

p(−U) = p(U) = 0,

1

2
ap′((−U)+)= p′((−U + ξ∗)−)− 1

2
ap′((−U + ξ∗)+)

,

1

2
ap′(U−) = p′((U − ξ∗)+)− 1

2
ap′((U − ξ∗)−)

,∫ U

−U
p(x) = 1,

and ρ∗−, ρ∗+ ∈ R+ given by

ρ∗− = 1

2
ap′((−U)+)

, ρ∗+ = −1

2
ap′(U−).

Note that μ∗ and ρ∗ are the stationary distribution and boundary measure of the
optimally controlled process X∗

t .

EXAMPLE 4.7 (Combined regular and singular control of Brownian motion).
For any parameters r, l, h > 0, consider the following linear programming prob-
lem:

(4.33) I = inf
(μ,ρ)

∫
R×R

(
rx2 + lu2)μ(dx, du) +

∫
R×{±1}×R+

δ

h|γ |ρ(dx, dγ, dδ),

where μ ∈ P(R×R) and ρ ∈ M(R× {±1} ×R+
δ ) satisfy∫

R×R

(
1

2
af ′′(x) + uf ′(x)

)
μ(dx, du)

(4.34)
+
∫
R×{±1}×R+

δ

γf ′(x)(dx, dγ, dδ) = 0, ∀f ∈ C2
0(R).
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Again by Corollary 4.1, this is equivalent to the time-average control problem of
Brownian motion in the sense of Problem 4.1.

The constant IV and w : R → R exist with the same expressions as in Exam-
ple 4.6. Similarly, we have the following result.

PROPOSITION 4.5. The solution of (4.33)–(4.34) is given by

I = ιa
√

rl,

and the optimum is attained by (μ∗, ρ∗) where

μ∗(dx, du) = p∗(x) dx ⊗ δu∗(x)(du),

ρ∗(dx, dγ, dδ) = (
ρ∗−δ(−U,1,0) + ρ∗

Uδ(U,−1,0)

)
(dx, dγ, dδ),

with p∗(x) ∈ C2([−U,U ]) solution of

(4.35)

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1

2
ap′′(x) − (

u∗(x)p(x)
)′ = 0, x ∈ (−U,U),

1

2
ap′(x) + u∗(x)p(x) = 0, x ∈ {−U,U},∫ U

−U
p(x) = 1,

and ρ∗−, ρ∗+ ∈R+ given by

(4.36) ρ∗− = 1

2
ap(−U), ρ∗+ = 1

2
ap(U).

REMARK 4.2 (Higher dimension examples). To our knowledge, examples
with closed-form solutions for time-average control of Brownian motion in higher
dimension are not available except [2, 17, 21, 29, 44].

5. Relation with utility maximization under market frictions. As we have
already mentioned, the lower bound (1.4) appears also in the study of impact of
small market frictions in the framework of utility maximization; see [2, 19, 30,
31, 42, 44, 49, 53]. In this section, we explain heuristically how to relate utility
maximization under small market frictions to the problem of tracking. It should be
pointed out that we are just making connections between these two problems and
no equivalence is rigorously established.

We follow the presentation in [31] and consider the classical utility maximiza-
tion problem:

u(t,wt) = sup
ϕ

E
[
U
(
w

t,wt

T

)]
,

with

wt,wt
s = wt +

∫ s

t
ϕu dSu,
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where ϕ is the trading strategy. The market dynamics is an Itô semi-martingale

dSt = bS
t dt +

√
aS
t dWt .

In the frictionless market, we denote by ϕ∗
t the optimal strategy and by w∗

t the
corresponding wealth process. As mentioned in [31], the indirect marginal utility
u′(t,w∗

t ) evaluated along the optimal wealth process is a martingale density, which
we denote by Zt :

Zt = u′(t,w∗
t

)
.

Note that S is a martingale under Q with

dQ

dP
= ZT

Z0
.

One also defines the indirect risk tolerance process Rt by

Rt = − u′(t,w∗
t )

u′′(t,w∗
t )

.

Consider the exponential utility function as in [30], that is,

U(x) = −e−px, p > 0.

Then we have

Rt = R = 1

p
.

In a market with proportional transaction costs, the portfolio dynamics is given
by

wt,wt ,ε
s = wε

t +
∫ s

t
ϕε

u dSu −
∫ s

t
εhu d

∥∥ϕε
∥∥
u,

where ht is a random weight process and ϕε
t a process with finite variation. The

control problem is then

uε(t,wt ) = sup
ϕε

E
[
U
(
w

t,wt ,ε
T

)]
.

When the cost ε is small, we can expect that ϕε
t is close to ϕ∗

t and set

�wε
T := w

0,w0,ε
T − w∗

T =
∫ T

0

(
ϕε

t − ϕ∗
t

)
dSt − ε

∫ T

0
ht d

∥∥ϕε
∥∥
t .

Then, neglecting terms of higher order, we have heuristically,

uε − u = E
[
U
(
w∗

T + �wε
T

)]−E
[
U
(
w∗

T

)]
� E

[
U ′(w∗

T

)
�wε

T + 1

2
U ′′(w∗

T

)(
�wε

T

)2]
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= −u′(w0)E
Q

[
−�wε

T + 1

2R

(
�wε

T

)2]

� −u′(w0)E
Q

[
ε

∫ T

0
ht d

∥∥ϕε
∥∥
t + 1

2R

(∫ T

0

(
ϕε

t − ϕ∗
t

)
dSt

)2]

= −u′(w0)E
Q

[
ε

∫ T

0
ht d

∥∥ϕε
∥∥
t +

∫ T

0

aS
t

2R

(
ϕε

t − ϕ∗
t

)2
dt

]
.

Similarly, in a market with fixed transaction costs εkt (see [2]), the portfolio
dynamics is given by

wt,wt ,ε
s = wε

t +
∫ s

t
ϕε

u dSu + �s − ε
∑

t<τε
j ≤s

kτε
j
F
(
ξε
j

)
, ϕε

t = ∑
0<τε

j ≤t

ξ ε
j ,

and we have

uε − u � −u′(w0)E
Q

[
ε

∑
0<τε

j ≤T

kτε
j
F
(
ξε
j

)+
∫ T

0

aS
t

2R

(
ϕε

t − ϕ∗
t

)2
dt

]
.

Finally, in a market with linear impact εlt on price, see [44, 51], the portfolio
dynamics is given by

wt,wt ,ε
s = wε

t +
∫ s

t
ϕε

u dSu − ε

∫ s

t
lu
(
uε

u

)2
du, ϕε

t =
∫ t

0
uε

t dt,

and we have

uε − u � −u′(w0)E
Q

[
ε

∫ T

0
lt
(
uε

t

)2
dt +

∫ T

0

aS
t

2R

(
ϕε

t − ϕ∗
t

)2
dt

]
.

To sum up, utility maximization under small market frictions is heuristically
equivalent to the tracking problem if the deviation penalty is set to be

(5.1) rtD(x) = aS
t

2R
x2.

Defining the certainty equivalent wealth loss �ε by

uε =: u(w0 − �ε),
it follows that

(5.2)
1

εβζD
�ε � EQ

[∫ T

0
It dt

]
,

see also [31], equation (3.4), and [44], page 18.

REMARK 5.1 (Higher dimension and general utility function). For the case of
higher dimension and general utility function, one should set

(5.3) rtD(x) = 1

2Rt

〈
x, aS

t x
〉
.
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In other words, utility maximization under market frictions can be approximated
at first order by the problem of tracking with quadratic deviation cost (5.3). Thus,
one can establish a connection between the tracking problem and the utility maxi-
mization problems in [2, 20, 21, 44].

REMARK 5.2 (General cost structures). When there are multiple market fric-
tions with comparable impacts, the choice of deviation penalty is the same as (5.3)
and one only needs to adjust the cost structure. Our results apply directly in these
cases; see [20, 42]. For example, in the case of trading with proportional cost and
linear market impact (see [42]), the local problem is the time-average control of
Brownian motion with cost structure:

CA(x,u) = rx2 + lu2 + h|u|.
Indeed, equations (4.3)–(4.5) in [42] give rise to a verification theorem for the HJB
equation of the time-average control problem of Brownian motion under this cost
structure.

REMARK 5.3 (Nonzero interest rate). In the case of nonzero interest rate, the
correspondence should be written as

(5.4)
1

εβζD
�ε � EQ

[∫ T

0
e−r It dt

]
,

where e−rtSt is a Q-martingale and the tracking problem is defined by (5.3).
For example, the right-hand side of (5.4) is the probabilistic representation under
Black–Scholes model of equation (3.11) in [54].

REMARK 5.4 (Optimal consumption over infinite horizon). In [49, 53], the
authors consider the problem of optimal consumption over infinite horizon under
small proportional costs. Their results can be related to the tracking problem in the
same way, that is,

1

εβζD
�ε � EQ

[∫ ∞
0

e−r It dt

]
,

where e−rtSt is a Q-martingale and the tracking problem is defined by (5.3).

6. Proof of Theorem 2.1. This section is devoted to the proof of Theorem 2.1.
In Section 6.1, we first rigorously establish the arguments outlined in Section 2.2,
showing that it is enough to consider a small horizon (t, t + δε]. Then we prove
Theorem 2.1 in Section 6.2. Our proof is inspired by the approaches in [36] and
[41]. An essential ingredient is Lemma 6.3, whose proof is given in Section 6.3.
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6.1. Reduction to local time-average control problem. We first show that, to
obtain (2.10), it is enough to study the rescaled local version of the optimization
functional (note that the parameters rt , lt , kt , ht are frozen at time t):

I ε
t = 1

T ε

(∫ T ε∧(T −t)ε−2β

0

(
rtD

(
X̃ε,t

s

)+ ltQ
(
ũε,t

s

))
ds

(6.1)

+ ∑
0<τ̃

ε,t
j ≤T ε∧(T −t)ε−2β

(
ktF

(̃
ξε
j

)+ htP
(̃
ξε
j

)))
,

where

(6.2) dX̃ε,t
s = b̃ε,t

s ds +
√

ã
ε,t
s dW̃ ε,t

s + ũε,t
s ds + d

( ∑
0<τ̃

ε,t
j ≤s

ξ̃ ε
j

)
,

with T ε = ε−2βδε and δε ∈ R+ depending on ε in such a way that

(6.3) δε → 0, T ε → ∞,

as ε → 0. We can simply put δε = εβ .

Localization. Since we are interested in convergence results in probability, un-
der Assumptions 2.1 and 2.2, it is enough to consider the situation where the fol-
lowing assumption holds.

ASSUMPTION 6.1. There exists a positive constant M ∈ R∗+ such that

sup
(t,ω)∈[0,T ]×�

∣∣at (ω)
∣∣∨ rt (ω)±1 ∨ lt (ω)±1 ∨ ht (ω)±1 ∨ kt (ω)±1 < M < ∞.

Furthermore, X◦ is a martingale (bt ≡ 0).

Indeed, set Tm = inf{t > 0, sups∈[0,t] |bs | ∨ |as | ∨ r±1
s ∨ ls(ω)±1 ∨ h±1

s ∨
k±1
s ≤ m}. Then we have limm→∞ P[Tm = T ] = 1. By standard localization pro-

cedure, we can assume that all the parameters are bounded as in Assumption 6.1.
Let

dQ

dP
= exp

{
−
∫ T

0
a−1
t bt dWt − 1

2

∫ T

0
b�
t a−2

t bt dt

}
,

then by Girsanov theorem, X◦ is a martingale under Q. Since Q is equivalent to P,
we only need to prove (2.10) under Q. Consequently, we can assume that X◦ is a
martingale without loss of generality.

From now on, we will suppose that Assumption 6.1 holds.
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Locally averaged cost.

LEMMA 6.1. Under Assumption 6.1, we have almost surely

lim inf
ε→0

1

εζDβ
J ε ≥ lim inf

ε→0

∫ T

0
I ε
t dt.

PROOF. We introduce an auxiliary cost functional:

J̄ ε =
∫ T

0

(
1

δε

∫ (t+δε)∧T

t

(
rsD

(
X

ε

s

)+ lsQ
(
uε

s

))
ds

+ 1

δε

∑
t<τε

j ≤(t+δε)∧T

(
εβF kτε

j
F
(
ξε
j

)+ εβP hτε
j
P
(
ξε
j

)))
dt.

Note that the parameters r, l, k, h inside the integral are not frozen at t . Using
Fubini’s theorem, we have

J̄ ε =
∫ T

0

(
s

δε
1{s<δε} + 1{s>δε}

)(
rsD

(
X

ε

s

)+ lsQ
(
uε

s

))
ds

+ ∑
0<τε

j ≤T

(τ ε
j

δε
1{τ ε

j <δε} + 1{τ ε
j >δε}

)(
εβF kτε

j
F
(
ξε
j

)+ εβP hτε
j
P
(
ξε
j

))
.

Hence,

(6.4) 0 ≤ 1

εζDβ

(
J ε − J̄ ε)≤ δεI ε

0 ,

where I ε
0 is given by (6.1) with t = 0.

On the other hand, we have

J̃ ε :=
∫ T

0
I ε
t dt = 1

εζDβ

∫ T

0

(
1

δε

∫ (t+δε)∧T

t

(
rtD

(
X

ε

s

)+ ltQ
(
uε

s

))
ds

+ 1

δε

∑
t<τε

j ≤(t+δε)∧T

(
εβF ktF

(
ξε
j

)+ εβP htP
(
ξε
j

)))
dt,

where the parameters are frozen at time t . It follows that

(6.5)
∣∣∣∣ 1

εζDβ
J̄ ε − J̃ ε

∣∣∣∣≤ M · w(r, l, k, h; δε) ·
(

1

εζDβ
J̄ ε ∧ J̃ ε

)
,

where w denotes the modulus of continuity and M is the constant in Assump-
tion 6.1. Note that we have w(r, l, k, h; δ) → 0+ as δ → 0+ by the continuity of
r, l, k, h. Combining (6.4) and (6.5), the inequality follows. �
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Reduction to local problems. Using the previous lemma, we can reduce the
problem to the study of local problems as stated below.

LEMMA 6.2 (Reduction). For the proof of Theorem 2.1, it is enough to show
that

(6.6) lim inf
ε→0

E
[
I ε
t

]≥ E[It ].

PROOF. In view of Lemma 6.1, to obtain Theorem 2.1, we need to prove that

lim inf
ε→0

∫ T

0
I ε
t dt ≥p

∫ T

0
It dt.

By Assumption 2.3, Lemma D.1 and Fatou’s lemma, it is enough to show that

lim inf
ε→0

E
[
YIε

t

]≥ E[YI t ],
for any positive random variable Y bounded away from zero and from above. Up
to a change of notation rt → Yrt , lt → Y lt , ht → Yht and kt → Ykt (note that
this is allowed since we do not require rt , lt , ht and kt to be adapted), it suffices to
show (6.6). �

6.2. Proof of Theorem 2.1. After Section 6.1, it suffices to prove (6.6) where
I ε
t is given by (6.1)–(6.2). In particular, we can assume that

(6.7) sup
0<ε<ε0

E
[
I ε
t

]
< ∞,

for some ε0 small enough.
Combining ideas from [36, 41], we first consider the empirical occupation mea-

sures of (X̃ε,t
s ). Define the following random occupation measures with natural

inclusion:

με
t = 1

T ε

∫ T ε

0
δ{(X̃ε,t

s ,ũ
ε,t
s )} ds ∈ P

(
Rd ×Rd),

ρε
t = 1

T ε

∑
0<τ̃

ε,t
j ≤T ε

δ{(X̃ε,t

τ̃
ε,t
j

− ,̃ξ ε
j )} ∈ M

(
Rd ×Rd \ {0}) ↪→ M

(
Rd ×Rd \ {0}),

where for a space E, E = E ∪ {∞} denotes the one-point compactification of E.
Note that for m̄ ∈ M(E) we have the canonical decomposition:

m̄(de) = m(de) + θδ∞(de),

with m ∈ M(E) and θ ∈ R+. Second, we define ct : � × P(Rd × Rd) ×
M(Rd ×Rd \ {0}) →R,

(ω,μ, ρ̄) �→
∫
Rd×Rd

(
rt (ω)D(x) + lt (ω)Q(u)

)
μ(dx × du)

+
∫
Rd×Rd\{0}

(
kt (ω)F (ξ) + ht (ω)P (ξ)

)
ρ̄(dx × dξ),
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where the cost functions F and P are extended to Rd ×Rd \ {0} by setting

(6.8) F(∞(x,ξ)) = inf
ξ∈Rd\{0}

F(ξ) > 0, P (∞(x,ξ)) = 0,

with ∞(x,ξ) the point of compactification for Rd ×Rd \{0}. Note that the functions
F and P remain l.s.c. on the compactified space, which is an important property
we will need in the following. Moreover, for any ρ̄ = ρ + θρ̄δ∞(x,ξ)

, we have

(6.9) ct (ω,μ, ρ̄) ≥ ct (ω,μ,ρ).

Now we have

(6.10) I ε
t = ct

(
με

t , ρ
ε
t

)
,

and we can write (6.7) as

(6.11) sup
0<ε<ε0

E
[
ct

(
με

t , ρ
ε
t

)]
< ∞

for some ε0 small enough.
The following lemma, proved in Section 6.3, is the key of the demonstration for

Theorem 2.1.

LEMMA 6.3 (Tightness and limiting behavior of occupation measures). As-
sume that (6.11) holds, then:

1. The sequence {(με
t , ρ

ε
t )} is tight as a sequence of random variables with val-

ues in P(Rd ×Rd)×M(Rd ×Rd \ {0}), equipped with the topology of weak con-
vergence. In particular, {Q(με

t ,ρ
ε
t )} is relatively compact in PP(�×P(Rd ×Rd)×

M(Rd ×Rd \ {0})), equipped with the topology of stable convergence (see Ap-
pendix D for details on stable convergence and for additional notation).

2. Let Qt ∈ PP(� ×P(Rd ×Rd) ×M(Rd ×Rd \ {0})) be any stable limit of
{Q(με

t ,ρ
ε
t )} with disintegration form:

(6.12) Qt (dω, dμ,dρ̄) = P(dω)Qω
t (dμ,dρ̄),

and

S(a) =
{
(μ, ρ̄) ∈ P

(
Rd ×Rd)×M

(
Rd ×Rd \ {0}), ρ̄ = ρ + θρ̄δ∞

with ρ ∈M
(
Rd ×Rd \ {0}) and θρ̄ ∈ R+,

∫
Rd×Rd

Aaf (x,u)μ(dx, du)

+
∫
Rd×Rd\{0}

Bf (x, ξ)ρ(dx, dξ) = 0,∀f ∈ C2
0
(
Rd)},

where Aa and B are given by (4.2) and (4.3). Then we have, for P-almost all ω,

(6.13) Qω
t

[
(μ, ρ̄) ∈ S

(
at (ω)

)]= 1.
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Since the cost functional ct is lower semi-continuous, we have, using the nota-
tion introduced in Lemma 6.3, and recalling in particular that EQt stands for the
expectation with respect to the probability measure Qt in (6.12):

lim inf
ε→0

E[I ε
t ] (6.10)= lim inf

ε→0
E
[
ct

(
με

t , ρ
ε
t

)]
(D.1)≥ EQt

[
ct (ω,μ, ρ̄)

]
(6.9)≥ EQt

[
ct (ω,μ,ρ)

]
(6.12)=

∫
�
P(dω)

∫
P(R×R)×M(R×R\{0})

ct (ω,μ,ρ)Qω
t (dμ,dρ̄)

(6.13)=
∫
�
P(dω)

∫
S(at (ω))

ct (ω,μ,ρ)Qω
t (dμ,dρ̄)

≥
∫
�
P(dω) inf

(μ,ρ)∈S(at (ω))
ct (ω,μ,ρ).

Finally, by definition of I , we have

lim inf
ε→0

E
[
I ε
t

]≥ E
[
I (at , rt , lt , kt , ht )

]
.

6.3. Proof of Lemma 6.3. First, we show the tightness of {(με, ρε)} in P(Rd ×
Rd) × M(Rd ×Rd \ {0}). A common method is to use tightness functions (see
Appendix C).

Recall that the cost functions F and P are extended to Rd ×Rd \ {0} by (6.8)
such that c is lower semi-continuous. Moreover, c is a tightness function under
Assumption 6.1; see Appendix C or [15], page 309.

Consequently, if (6.11) holds, the family of random measures {(με, ρε)} is tight.
Furthermore, by Proposition D.1, we have(

με
t , ρ

ε
t

)→stable Qt ∈ PP(P(Rd ×Rd)×M
(
Rd ×Rd \ {0})),

up to a subsequence, with

Qt (dω, dμ,dρ̄) = P(dω)Qω
t (dμ,dρ̄).

For the rest of the lemma, we use a combination of the arguments in [36] and
[41]. Recall that

Aaf (x,u) = 1

2

∑
i,j

aij ∂
2
ij f (x) + u�∇f (x), Bf (x, ξ) = f (x + ξ) − f (x).

For f ∈ C2
0(Rd), define

�
f
t (ω,μ, ρ̄) :=

∫
Rd×Rd

Aat (ω)f (x,u)μ(dx × dx)

+
∫
Rd×Rd\{0}

Bf (x, ξ)ρ(dx, dξ), ρ̄ = ρ + θρ̄δ∞.
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Note that �
f
t is well defined since ρ ∈M(Rd ×Rd \ {0}). Then we claim that

(6.14) 0 ≤ EQt
[∣∣�f

t (ω,μ, ρ̄)
∣∣]≤ lim

ε→0
E
[∣∣�f

t

(
ω,με

t (ω), ρε
t (ω)

)∣∣]= 0.

The second inequality follows from point 2 of Proposition D.1. For the third equal-
ity, we apply Itô’s formula to f (X̃

ε,t
T ε ) [recall that the dynamics of X̃ε,t is given by

(2.11)] and obtain that

f
(
X̃

ε,t
T ε

)= f
(
X̃

ε,t
0+
)+

∫ T ε

0
f ′(X̃ε,t

s

)√
ã

ε,t
s dW̃ ε,t

s

+
∫ T ε

0

1

2

∑
ij

ã
ε,t
ij,s∂

2
ij f

(
X̃ε,t

s

)
ds +

∫ T ε

0

∑
i

ũ
ε,t
i,s ∂if

(
X̃ε,t

s

)
ds

+ ∑
0<τ̃

ε,t
j ≤T ε

(
f
(
X̃

ε,t

τ̃
ε,t
j − + ξ̃ ε

j

)− f
(
X̃

ε,t

τ̃
ε,t
j −

))
.

Combining the definitions of με , ρε and �
f
t , we have

E
[∣∣�f

t

(
ω,με

t (ω), ρε
t (ω)

)∣∣]
≤ 1

T ε
E
[∣∣f (X̃ε,t

T ε

)− f
(
X̃

ε,t
0+
)∣∣]+ 1

T ε
E

[∣∣∣∣∫ T ε

0
f ′(X̃ε,t

s

)√
ã

ε,t
s dW̃ ε,t

s

∣∣∣∣]

+ 1

T ε
E

[∫ T ε

0

1

2

∑
ij

∣∣̃aε,t
ij,s − ã

ε,t
ij,0

∣∣∣∣∂2
ij f

(
X̃ε,t

s

)∣∣ds

]
.

By Assumptions 2.1 and 6.1, the continuity of (as) and dominated convergence,
the term on the right hand side converges to zero. Therefore, (6.14) holds.

By definition of Qω
t , (6.14) and Fubini’s theorem, we have

0 = EQt
[∣∣�f

t (ω,μ, ρ̄)
∣∣]= EP[EQω

t
[∣∣�f

t (ω,μ, ρ̄)
∣∣]].

Hence, we have for P-almost all ω, EQω
t [|�f

t (ω,μ, ρ̄)|] = 0. Let D be a count-
able dense subset of C2

0 . Since D is countable, we have for P-almost all ω,

EQω
t [|�f

t (ω,μ, ρ̄)|] = 0 for all f ∈ D. Fix ω ∈ � \ N for which the prop-
erty holds. Again by the same argument, we have for Qω

t -almost all (μ, ρ̄),

�
f
t (ω,μ, ρ̄) = 0 for all f ∈ D. Since D is dense in C2

0 , �
f
t (ω,μ, ρ̄) = 0 holds

for f ∈ C2
0 .

7. Proof of Theorem 3.1. The rescaled process (X̃ε,t
s ) is given by

dX̃ε,t
s = b̃ε,t

s ds +
√

ã
ε,t
s dW̃ ε,t

s + ũε,t
s ds + γ̃ ε,t

s dϕ̃ε,t
s ,

with

γ̃ ε,t
s = γ ε

t+ε2βs
, ϕ̃ε,t

s = 1

εβ

(
ϕε

t+ε2βs
− ϕε

t

)
.
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The empirical occupation measure of singular control νε
t is defined by

νε
t = 1

T ε

∫ T ε

0
δ{(X̃ε,t

s ,γ̃
ε,t
s ,�ϕ̃

ε,t
s )} dϕ̃ε,t

s ,

while με
t is defined in the same way as previously.

Define the cost functional ct : � ×P(Rd ×Rd) ×M(Rd × � ×R+
δ ) →R:

(ω,μ, ν̄) �→
∫
Rd×Rd

(
rt (ω)D(x) + lt (ω)Q(u)

)
μ(dx × du)

+
∫
Rd×�×R+

δ

ht (ω)P (γ )ν̄(dx × dγ × dδ),

where Rd × � ×R+
δ denotes the one-point compactification of Rd × � × R+

δ .
Then we can show a similar version of Lemma 6.3 and prove Theorem 3.1 with
the operator B replaced by (4.5), the key ingredient being that the functional c is a
tightness function.

8. Proof of Propositions 4.1–4.5. In this section, we prove Propositions 4.1–
4.5. First, we provide a verification argument tailored to the linear programming
formulation in Rd . Second, we give full details for the proof of Proposition 4.4.
The proofs in the remaining cases are exactly the same hence omitted.

8.1. Verification theorem in Rd . Consider A : D → C(Rd ×Rd) and B : D →
C(Rd × V ) with D = C2

0(Rd). The operator A is given by

Af (x,u) = 1

2

∑
ij

aij ∂
2
ij f (x) +∑

i

ui∂if (x), f ∈ C2
0
(
Rd

2
)
.

The operator B is given by

Bf (x, ξ) = f (x + ξ) − f (x),

if V = Rd \ {0}, and by

Bf (x, γ, δ) =
{〈

γ,∇f (x)
〉
, δ = 0,

δ−1(f (x + δγ ) − f (x)
)
, δ > 0,

if V = � ×R+
δ .

Let CA : Rd × Rd → R+ and CB : Rd × V → R+ be two cost functions. We
consider the following optimization problem:

I = inf
(μ,ρ)

c(μ,ρ)

(8.1)

:= inf
(μ,ρ)

{∫
Rd×Rd

CA(x,u)μ(dx, du) +
∫
Rd×V

CB(x, v)ρ(dx, dv)

}
,
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where (μ,ρ) ∈ P(Rd ×Rd) ×M(Rd × V ) satisfies∫
Rd×Rd

Af (x,u)μ(dx, du)

(8.2)
+
∫
Rd×V

Bf (x, v)ρ(dx, dv) = 0, ∀f ∈ C2
0
(
Rd).

LEMMA 8.1 (Verification). Let w ∈ C1(Rd) ∩ C2(Rd \ N) so that Aw is well
defined point-wisely for x /∈ N and Bw is well defined for x ∈Rd . Assume that:

1. For each (μ,ρ) ∈ P(Rd × Rd) × M(Rd × V ) satisfying (8.2) and c(μ,

ρ) < ∞, we have μ(N ×Rd) = 0.
2. There exists wn ∈ C2

0(Rd) such that

Awn(x,u) → Aw(x,u), ∀(x, u) ∈Rd \ N ×Rd,

Bwn(x, v) → Bw(x, v), ∀(x, v) ∈ Rd × V,

and there exist θ ∈ R+ such that∣∣Awn(x,u)
∣∣≤ θ

(
1 + CA(x,u)

)
, ∀(x, u) ∈ (

Rd \ N
)×Rd,∣∣Bwn(x, v)

∣∣≤ θCB(x, v), ∀(x, v) ∈Rd × V.

3. There exists a constant IV ∈ R such that

inf
u∈Rd

Aw(x,u) + CA(x,u) ≥ IV , x ∈Rd \ N,(8.3)

inf
v∈V

Bw(x, v) + CB(x, v) ≥ 0, x ∈Rd .(8.4)

Then we have I ≥ IV .
If there exists (μ∗, ρ∗) satisfying the LP constraint and

Aw(x,u) + CA(x,u) = IV , μ∗-a.e.,(8.5)

Bw(x, v) + CB(x, v) = 0, ρ∗-a.e.(8.6)

then we have I = IV . Moreover, the optimum is attained by (μ∗, ρ∗) and we call
(w, IV ) the solution of the HJB equation associated to the linear programming
problem.

PROOF OF LEMMA 8.1. Let (μ,ρ) be any pair satisfying (8.2) and c(μ,

ρ) < ∞. We have∫
Rd×Rd

Aw(x,u)μ(dx, du) +
∫
Rd×V

Bw(x, v)ρ(dx, dv)

=
∫
Rd×Rd

Awn(x,u)μ(dx, du) +
∫
Rd×V

Bwn(x, v)ρ(dx, dv)

= 0.
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The first term is well defined since Aw is defined μ-everywhere. The second equal-
ity follows from the second condition and the dominated convergence theorem.
Hence,

c(μ,ρ) =
∫
Rd×Rd

(
CA(x,u) + Aw(x,u)

)
μ(dx, du)

+
∫
Rd×V

(
CB(x, v) + Bw(x, v)

)
ρ(dx, dv) ≥ IV ,

where the last inequality is due to (8.3)–(8.4), and the equality holds for (μ,ρ) =
(μ∗, ρ∗) if and only if (8.5)–(8.6) are satisfied. �

Therefore, finding an explicit solution of a linear programming is possible if we
can determine a suitable solution pair (w, IV ) from (8.5)–(8.6).

8.2. Verification of Proposition 4.4. In this section, we provide an explicit so-
lution of the following linear programming problem:

I (a, r, l, k, h) = inf
(μ,ρ)

∫
R×R

(
rx2 + lu2)μ(dx, du)

(8.7)
+
∫
R×R\{0}

(
k + h|ξ |)ρ(dx, dξ),

where μ ∈P(R×R) and ρ ∈ M(R×R \ {0}) satisfy∫
R×R

(
1

2
af ′′(x) + uf ′(x)

)
μ(dx, du)

(8.8)
+
∫
R×R\{0}

(
f (x + ξ) − f (x)

)
ρ(dx, dξ) = 0,

for any f ∈ C2
0(R). The following lemma, whose proof is given in the Appendix,

and Theorem 8.1 establish the existence of the solution pair (w, IV ) of the HJB
equation corresponding to (8.7)–(8.8).

LEMMA 8.2 (Solution of the HJB equation for combined regular and impulse
control). There exist U > ξ∗ > 0, IV > 0, and w ∈ C1(R)∩C2(R\{U,U}) such
that

Aw
(
x,u∗(x)

)+ CA

(
x,u∗(x)

)= IV , x ∈ (−U,U),(8.9)

Bw
(
x,− sgn(x)ξ∗)+ CB

(
x,− sgn(x)ξ∗)= 0, x ∈ {−U,U},(8.10)

where u∗(x) is defined by

(8.11) u∗(x) := Argmin
u∈R

Aw(x,u) + CA(x,u) = −w′(x)

2l
.
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FIG. 1. Solution of the HJB equation for combined regular and impulse control

More precisely, we have (cf. Figure 1)

(8.12) w(x) =
⎧⎪⎨⎪⎩(rl)1/2x2 − 2al ln 1F1

(
1 − ι

4
; 1

2
;
(

r

a2l

)1/2
x2
)
, |x| ≤ U,

w(U) + h
(|x| − U

)
, |x| > U,

where 1F1 is the Kummer confluent hypergeometric function (see Appendix A) and

IV = ι
√

a2rl,

for some ι ∈ (0,1). Moreover, w satisfies the following conditions:

w′(x) = w′(x − sgn(x)ξ∗)= sgn(x)h, x ∈ {−U,U},(8.13)

w′′(x) < 0, x ∈ {−U,U},(8.14)

w′(x) ∈

⎧⎪⎪⎨⎪⎪⎩
(−∞,−h), −U < x < −U + ξ∗,
(−h,h), −U + ξ∗ < x < U − ξ∗,
(h,∞), U − ξ∗ < x < U,

(8.15)

and w, ξ∗, U and IV depend continuously on the parameters (a, r, k, h).

REMARK 8.1. Equations (8.9) and (8.10) correspond essentially to (8.5) and
(8.6). The interval (−U,U) is called continuation region. Equation (8.13) is the
so-called “smooth-fit” condition and guarantees that w is a C1 function. Equations
(8.14) and (8.15) characterize the growth of the derivatives of w and will be useful
in the proof of Theorem 8.1.

Proposition 4.4 is a direct consequence of the following theorem.

THEOREM 8.1 (Combined regular and impulse control). For any parameters
a, r, l, k > 0 and h ≥ 0, we have:
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1. The pair (w, IV ) in Lemma 8.2 is the solution of the HJB equation corre-
sponding to (8.7)–(8.8) in the sense of Lemma 8.1. In particular, the optimal cost
of (8.7)–(8.8) is given by I = IV .

2. Let p∗(x) ∈ C0([−U,U ])∩C2((−U,U)\{−U +ξ∗,U −ξ∗}) be a solution
of ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

2
ap′′(x) − (

u∗(x)p(x)
)′ = 0, x ∈ (−U,U) \ {−U + ξ∗,U − ξ∗},

p(−U) = p(U) = 0,

1

2
ap′((−U)+)= p′((−U + ξ∗)−)− 1

2
ap′((−U + ξ∗)+)

,

1

2
ap′(U−) = p′((U − ξ∗)+)− 1

2
ap′((U − ξ∗)−)

,∫ U

−U
p(x) = 1,

(8.16)

write ρ∗−, ρ∗+ ∈ R+ for

(8.17) ρ∗− = 1

2
ap′((−U)+)

, ρ∗+ = −1

2
ap′(U−),

and recall that u∗ is given by (8.11). Then the optimum of (8.7)–(8.8) is attained
by

μ∗(dx, du) = p∗(x) dx ⊗ δu∗(x)(du),
(8.18)

ρ∗(dx, dξ) = ρ∗−δ(−U,ξ∗) + ρ∗+δ(U,−ξ∗).

PROOF. 1. Consider the function w defined in Lemma 8.2. First, we show that
the three conditions in Lemma 8.1 are satisfied by w.

(i) Note that N = {−U,U}. For any (μ,ρ) satisfying the LP constraint, we
show that μ({x} ×R) = 0,∀x ∈ R. In particular, μ(N ×R) = 0. Indeed, let fn ∈
C2

0(R) be a sequence of test functions such that f ′′
n (z) → 1{x}(z) for all z, ‖fn‖∞∨

‖f ′
n‖∞ → 0 and there exists θ ∈ R+ such that∣∣Afn(x,u)

∣∣≤ θ
(
1 + CA(x,u)

)
,∣∣Bfn(x, ξ)

∣∣≤ θCB(x, ξ) ∀x ∈R, u ∈R, ξ ∈ R \ {0}.
For example, let ϕ ∈ C2

0 with ϕ′′ being a piece-wise linear function such
that ϕ′′(±∞) = ϕ′′(−1) = ϕ′′(1) = ϕ′′(3) = ϕ′′(5) = 0, ϕ′′(0) = ϕ′′(4) = 1 and
ϕ′′(2) = −2 and take fn(z) = 1

n2 ϕ(n(z − x)). Since c(μ,ρ) < ∞, we have by
dominated convergence theorem

μ
({x} ×R

)= lim
n

∫
Afn(z,u)μ(dz × du) +

∫
Bfn(z, ξ)ρ(dz × dξ) = 0.
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(ii) Let ϕn ∈ C2
0 be a sequence of functions such that ϕn(x) = 1 for |x| ≤ n and

sup
n

‖ϕn‖C2
0
:= ‖ϕn‖∞ ∨ ∥∥ϕ′

n

∥∥∞ ∨ ∥∥ϕ′′
n

∥∥∞ < ∞.

Let wn = wϕn. Then wn is C2 except at {−U,U} and is of compact support. For
each n, wn satisfies also the LP constraint∫

Awn dμ +
∫

Bwn dρ = 0.

Indeed, let ϕδ be any convolution kernel and wn,δ := wn ∗ ϕδ . So wn,δ satisfies the
LP constraint. Moreover, Awn,δ → Awn for x /∈ {−U,U}, Bwn,δ → Bwn for any
(x, u) and supδ ‖wn,δ‖C2

0
< ‖wn‖C2

0
< ∞. By dominated convergence, wn satisfies

the LP constraint. Finally, a direct computation shows that for some constants θ

and θ ′,
|Awn| ≤ θ ′‖ϕn‖C2

0

(|w| + ∣∣w′∣∣+ ∣∣w′′∣∣)≤ θ(1 + CA),

|Bwn| ≤ 2‖ϕn‖∞|wn| ≤ θCB.

So the second condition is satisfied.
(iii) By (8.9) and (8.14), we have Aw + CA ≥ 0 for x /∈ {−U,U}. By (8.10)–

(8.15) and definition of w outside [U,U ], we have Bw + CB ≥ 0.
By Lemma 8.1, we then conclude that I = IV .

2. We need to show that μ∗ and ρ∗ satisfy the LP constraint. Assume that μ∗
and ρ∗ are given by (8.18), then by integration by parts, the LP constraint holds if
p∗(x) is solution of (8.16). It is easy to see that the latter admits a unique solution.

�

APPENDIX A: KUMMER CONFLUENT HYPERGEOMETRIC
FUNCTION 1F1

We collect here some properties of the Kummer confluent hypergeometric func-
tion 1F1 which are useful to establish the existence of solutions of the HJB equa-
tions associated to combined control problems in dimension one. Recall that 1F1
is defined as

(A.1) 1F1(a, b, z) =
∞∑

k=0

(a)k

(b)k

zk

k! ,

with (a)k the Pochhammer symbol.

LEMMA A.1. We have the following properties:

1. The function 1F1 admits the following integral representation:

1F1(a, b, z) = �(b)

�(b − a)�(a)

∫ 1

0
ezt ta−1(1 − t)b−a−1 dt.

It is an entire function of a and z and a meromorphic function of b.
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2. We have

∂

∂z
1F1(a, b, z) = a

b
1F1(a + 1, b + 1, z),

∂

∂a
1F1(a, b, z) =

∞∑
k=0

(a)k

(b)k

zk

k!
k−1∑
p=0

1

p + a
.

3. We have

(a + 1)z1F1(a + 2, b + 2, z)

+ (b + 1)(b − z)1F1(a + 1, b + 1, z) − b(b + 1)1F1(a, b, z) = 0.

4. We have

1F1(a, b, z) = �(a)

�(b − a)
eiπaz−a

(
1 + O

(
1

|z|
))

+ �(b)

�(a)
ezza−b

(
1 + O

(
1

|z|
))

,

as z → ∞.
5. Consider the Weber differential equation:

(A.2) w′′(x) −
(

1

4
x2 + θ

)
w(x) = 0.

The even and odd solutions of this equation are given, respectively, by

w̃(x; θ) = e− 1
4 x2

1F1

(
1

2
θ + 1

4
,

1

2
,

1

2
x2
)
,(A.3)

w̄(x; θ) = xe− 1
4 x2

1F1

(
1

2
θ + 3

4
,

3

2
,

1

2
x2
)
.(A.4)

PROOF. See [1, 3]. �

APPENDIX B: PROOF OF LEMMA 8.2

We first look for w in the continuation region (−U,U). Define (the change of
variable comes from [47], page 260)

w(x) := −2al ln w̃

(
x

α
;− ι

2

)
, α2 = 1

2
a
(
r−1l

)1/2
, ι = IV

(a2rl)1/2 ,

where w̃ is the odd solution (A.3) of the Weber differential equation (A.2). Then
w satisfies the following ODE:

1

2
aw′′(x) − 1

4l

(
w′(x)

)2 + rx2 = IV ,
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which is exactly (8.9). Hence, we conjecture that the solution in the continuation
region (−U,U) is given by

w(x) = −2al ln
(
e− 1

4 x2/α2

1F1

(
1 − ι

4
,

1

2
,

1

2α2 x2
))

= (rl)1/2x2 − 2al ln
(

1F1

(
1 − ι

4
,

1

2
,

1

2α2 x2
))

.

Now we show that there exist suitable values U , ξ(U) and ι such that 0 ≤ U +
ξ(U) ≤ U , ι ∈ (0,1) and Conditions (8.10)–(8.15) are satisfied. Let

h(x; ι) := ∂w

∂x
= 2(rl)1/2

(
1 − (1 − ι)g

(
1

2α2 x2; ι
))

x,

with

g(z; ι) = 1F1(
1−ι

4 + 1, 1
2 + 1, z)

1F1(
1−ι

4 , 1
2 , z)

.

We have the following lemma.

LEMMA B.1. The function g(z; ι) satisfies

g(z; ι) →
⎧⎨⎩1, z → 0+,

2

1 − ι
, z → +∞,

and

g′(z; ι) > 0, ∀z ∈ [0,+∞).

PROOF. The limits of g(z; ι) follow from the asymptotic behavior of 1F1
(Property 4 in Lemma A.1). To show that g is increasing, we use Properties 2
and 3 in Lemma A.1 and obtain

g′(z) = g(z)

(
1 − 1 − ι

2
g(z)

)
+ 1

2z

(
1 − g(z)

)
.

Note that g′(0) > 0, so g > 1 near x = 0. Since g′(z) > 0 for g(z) = 1 and
g′(z) < 0 for g(z) = 2

1−ι
, g(z) cannot leave the band [1, 2

1−ι
]. �

We now state a second lemma (cf. Figure 2).

LEMMA B.2. The function h(x; ι) satisfies the following properties:

1. For ι ∈ (0,1), we have

h(x; ι)
x

→
{

2(rl)1/2ι, x → 0+,

−2(rl)1/2, x → +∞.
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FIG. 2. Qualitative behavior of h(x; ι).

Let 0 < x̄ι < ∞ be the first zero of h(x; ι). We have

h′(x; ι) =
{

2(rl)1/2ι > 0, x = 0,

−2(rl)1/22(1 − ι)x̄ιg
′(z̄ι) < 0, x = x̄ι,

where z̄ι = 1
2α2 x̄2

ι and

h′′(x; ι) < 0, x ∈ [0, x̄ι].
2. For x ∈ (0,∞), we have

∂

∂ι
h(x; ι) > 0

and

h(x; ι) → 2(rl)1/2x, ι → 1−.

We have

x̄ι = O
(
ι1/2), ι → 0+,

and hence

max
x∈[0,x̄ι]

h(x; ι) → 0, ι → 0+.

PROOF. For fixed ι. The asymptotic behavior of h follows from Lemma B.1.
The second property is clear since

h′(x; ι) = 2(rl)1/2(−2(1 − ι)g′(z)z + (
1 − (1 − ι)g(z)

))
= 2(rl)1/2(−2(1 − ι)g′(z)z

)+ h(x)

x
,
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with z = 1
2α2 x2. Finally, we get

h′′(x; ι) = d

dz
h′(z; ι)z′(x) = −2(rl)1/2(1 − ι)

(
3g′(z) + 2g′′(z)z

)
z′(x).

Furthermore, we have

3g′(z) + 2g′′(z)z

= 3g′(z) + 2z

(
g′(z)

(
1 − (1 − ι)g(z)

)+ 1

2z2

(
g(z) − 1 − zg′(z)

))
= 2zg′(z)

(
1 − (1 − ι)g(z)

)+ 1

z

(
g(z) − 1

)+ 2g′(z)

which is strictly positive term by term for x ∈ [0, x̄ι].
For fixed x. The limit of h as ι → 1− follows from the fact that 1F1(a, b, z) is

entire in a [equation (A.1) and Property 1 in Lemma A.1]. Now we show that h is
monotone in ι. Let G := ∂ι1F1, we have

∂ιh(x; ι) = −2al
∂

∂ι

∂

∂x
ln 1F1

(
1 − ι

4
; 1

2
; 1

2α2 x2
)

= −2al
∂

∂x

∂

∂ι
ln 1F1

(
1 − ι

4
; 1

2
; 1

2α2 x2
)

= 1

2
al

∂

∂x

G

1F1

(
1 − ι

4
; 1

2
; 1

2α2 x2
)

= 1

2
alz′(x)

1F1
∂
∂z

G − G ∂
∂z 1F1

1F
2
1

(
1 − ι

4
; 1

2
; z
)
,

with z(x) = 1
2α2 x2. It is enough to show that the last term is positive. Using the

series representation of 1F1 and G (an Property 2 in Lemma A.1), write

1F1 =
∞∑

k=0

fkz
k, G =

∞∑
k=0

βkfkz
k,

with

βk =
k−1∑
p=0

1

p + a
, a = 1 − ι

4
.

We get

1F1
∂

∂x
G − G

∂

∂x
1F1 =

( ∞∑
i=0

fiz
i

)( ∞∑
j=0

(j + 1)βj+1fj+1z
j

)

−
( ∞∑

i=0

(i + 1)fi+1z
i

)( ∞∑
j=0

βjfj z
j

)
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=
∞∑

k=0

( ∑
i+j=k

fi(j + 1)βj+1fj+1

)
zk

−
∞∑

k=0

( ∑
i+j=k

(i + 1)fi+1βjfj

)
zk.

Then the coefficient of zk is given by∑
i+j=k

fi(j + 1)βj+1fj+1 − ∑
i+j=k

(i + 1)fi+1βjfj

= ∑
i+j=k

(j + 1)(βj+1 − βi)fifj+1

= ∑
1≤i<j+1≤k

(
(j + 1)(βj+1 − βi)fifj+1 − i(βi − βj+1)fj+1fi

)
+ ∑

j+1=k+1

(· · · ) + ∑
i=j+1

(· · · )

= ∑
1≤i<j+1≤k

(j + 1 − i)(βj+1 − βi)fifj+1 + ∑
j+1=k+1

(· · · ) + ∑
i=j+1

(· · · ).

This term is positive since βk is increasing in k. Hence, ∂ιh > 0. Thus, h(x; ι) is
increasing in ι for fixed x ∈ R+.

From the relation between g and h, z̄ι is the first solution of

1 − (1 − ι)g(z) = 0, z > 0.

Moreover, we have

g(z) = 1 +
(

1 − 1 − ι

2

)
z + o(z), z → 0+.

Then uniformly on ι, g(z) is bounded from below by 1 + 1
3z on [0, z0], hence

z̄ι ≤ 3ι

1 − ι
= O(ι), ι → 0+.

Finally, we have

max[0,x̄ι]
h(x; ι) ≤ 2(rl)1/2x̄ι → 0, ι → 0+. �

PROPOSITION B.1. For any parameters r, l, h > 0 and k ≥ 0, there exist ι ∈
(0,1) and 0 ≤ U + ξ ≤ U such that∫ U

U+ξ
h(x; ι) dx = k − hξ,

h(U ; ι) = h,
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h(U + ξ ; ι) = h,

h(x; ι) ∈
{
(0, h), 0 ≤ x ≤ U + ξ,

(h,∞), U + ξ ≤ x ≤ U,

h′′(x; ι) < 0, 0 ≤ x ≤ U.

Moreover, (ι, ξ,U) depends continuously on (r, l, k, h).

PROOF. Existence. Let k > 0. Since h(x; ι) is monotone in ι and h(x; ι) →
2(rl)1/2x as ι → 1−, there exists ι = ι(h) ≥ 0 such that

(ι,1) = {
ι ∈ (0,1), there exists exactly two solutions Uι + ξι and Uι on [0, x̄ι]}.

We have

h′(Uι + ξι; ι) > 0, h′(Uι) < 0,

so by the implicit function theorem, Uι and Uι + ξι depend continuously on ι.
Define

K(ι) =
∫ Uι

Uι+ξι

h(x; ι) dx.

Then K is continuous in ι and

lim
ι→ι

K(ι) = 0, lim
ι→1−K(ι) = ∞.

Hence, there exists ι(h, k) ∈ (ι(h),1) such that K(ι(h, k)) = k. The remaining
property of h is easily verified.

If k = 0, then there exists exactly one ι(h) ∈ (0,1) such that the maximum of
h(x; ι) is h and is attained by Uι such that

h′(Uι; ι) = 0.

Since h′′(Uι; ι) < 0, Uι depends continuously on ι by the implicit function theo-
rem.

Continuous dependence. Since ξ and U depend continuously on ι, it suffices to
show that ι depends continuously on the parameters a, r, h, k, l. To see this, note
that ι = ι(a, l, r, h, k) is determined by

K(ι;a, r, l, k, h) = k.

But, we have

∂

∂ι
K(ι;a, r, l, k, h) > 0.

Thus, ι depends continuously on the parameters by the implicit function theorem.
�
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PROOF OF LEMMA 8.2. Extend the function w in Proposition B.1 to R by

w(x) =
{
w
(|x|), |x| ≤ U,

w(U) + h
(|x| − U

)
, |x| > U.

Then (8.9)–(8.14) hold. By (8.10) and (8.13), we have w ∈ C1(R) ∩ C2(R \
{U,U}). �

APPENDIX C: TIGHTNESS FUNCTION

For more details on the following results, see [15], Appendix A.3 and [6].

DEFINITION C.1. A measurable function g on a metric space taking values
on the extended real line g : (E,d) →R∪ {∞} is a tightness function if:

1. infx∈E g(x) > −∞.
2. ∀M < ∞, the level set {x ∈ E|g(x) ≤ M} is a relatively compact subset of

(E,d).

LEMMA C.1. If g is a tightness function on a Polish space E, then:

1. The function G(μ) = ∫
E g(x)μ(dx) is a tightness function on P(E).

2. If in addition g ≥ δ where δ is a positive constant and E is compact, then
G(μ) = ∫

E g(x)μ(dx) is a tightness function on M(E).

PROOF. Note that M(E) is a metric space, thus sequential compactness is
equivalent to relative compactness (see [15], page 303, for the metric). For the
first property, see [15], page 309. For the second property, we consider the level
set {μ ∈ M(E)|G(μ) ≤ M} and let {μn} be any sequence in the level set. By [6],
Theorem 8.6.2, it is enough to show that:

1. The sequence of nonnegative real numbers μn(E) is bounded.
2. The family {μn} is tight.

Since g ≥ δ, we have μ(E) ≤ G(μ)/δ ≤ M/δ. Hence the first condition is
true. On the other hand, for any ε > 0, we consider μn/μn(E) ∈ P(E). Then
G(μn/μn(E)) ≤ M/μn(E) ≤ M/ε, if μn(E) > ε. Since G is a tightness function,
we deduce that {μn|μn(E) > ε} is tight. Therefore, {μn} is tight and the second
condition follows. �
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APPENDIX D: CONVERGENCE IN PROBABILITY, STABLE
CONVERGENCE

Let (�,F) be a measurable space and (E,E) a Polish space where E is the
Borel algebra of E. Define

� = � × E, F =F ⊗ E .

Let Bmc(�) be the set of bounded measurable functions g such that z �→ g(ω, z)

is a continuous mapping for any ω ∈ �. Let Mmc(�) be the set of finite positive
measures on (�,F), equipped with the weakest topology such that

μ �→
∫
�

g(ω, z)μ(dω,dz),

is continuous for any g ∈ Bmc(�).
We fix a probability measure P on (�,F). Let PP(� × E,F ⊗ E) ⊂ Mmc(�)

be the set of probability measures on � with marginal P on �, equipped with the
induced topology from Mmc(�). Note that PP(�×E,F ⊗E) is a closed subset of
Mmc(�). For any random variable Z defined on the probability space (�,F,P),
we define

QZ(dω,dz) := P(dω) ⊗ δZ(ω)(dz) ∈ PP(� × E,F ⊗ E).

DEFINITION D.1 (Stable convergence). Let {Zε, ε > 0} be random variables
defined on the same probability space (�,F,P) with values in the Polish space
(E,E). We say that Zε converges stably in law to Q ∈ PP(�×E,F ⊗ E), written
Zε →stable Q, if QZε → Q in Mmc(�).

We use the following properties in our proofs.

PROPOSITION D.1. Let {Zε, ε > 0} be random variables on the probability
space (�,F,P) with values in (E,E):

1. We have Zε →stable Q ∈ PP(� × E,F ⊗ E) if and only if

E
[
Yf

(
Zε)]→ EQ[Yf (z)

]
,

for all bounded random variables Y on (�,F) and all bounded continuous func-
tions f ∈ Cb(E,R).

2. Assume that Zε →stable Q ∈ PP(� × E,F ⊗ E). Then

(D.1) lim inf
ε→0

E
[
g
(
ω,Zε)]≥ EQ[g(ω, z)

]
,

for any g bounded from below with lower semi-continuous section g(ω, ·) on E.
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3. Let Z be a random variable defined on (�,F,P). We have

Zε →p Z ⇔ Zε →stable Q
Z.

4. The sequence {QZε
, ε > 0} is relatively compact in PP(�×E,F ⊗E) if and

only if {Zε, ε > 0} is relatively compact as subset of P(E). In particular, if E is
compact, then PP(� × E,F ⊗ E) is compact.

PROOF. 1. This is a direct consequence of [27], Proposition 2.4.
2. This is generalization of the Portmanteau theorem, see [27], Proposition 2.11.
3. The ⇒ implication is obvious. Let us prove the other. Consider F(ω, z) =

|Z(ω) − z| ∧ 1. On the one hand, we have E[F(ω,Zε)] → EQZ [F(ω, z)] = 0 by
definition. On the other hand, for any δ ∈ (0,1) we have

P
[∣∣Zε − Z

∣∣> δ
]≤ E

[
F
(
ω,Zε)> δ

]≤ E[F(ω,Zε)]
δ

,

by Markov inequality. We deduce that Zε →p Z.
4. See [27], Theorem 3.8 and Corollary 3.9. �

LEMMA D.1. Let {Z,Zε, ε > 0} be positive random variables on the proba-
bility space (�,F,P) such that Z is integrable. Then the following properties are
equivalent:

(i) For any positive random variable Y on (�,F,P), bounded away from zero
and from above,

lim inf
ε→0

E
[
YZε]≥ E[YZ].

(ii)

lim inf
ε→0

Zε ≥p Z.

(iii) For any sequence {εn} we can pick a subsequence {εnm} such that

(D.2) lim inf
m→∞ Zεnm ≥ Z

almost surely.

PROOF. (i) ⇒ (ii). Let δ > 0 be any real number and, without loss of gener-
ality, let {Zε} be a minimizing sequence of P[Zε > Z − δ] as ε → 0. Considering
the one-point compactification R+ ∪ {∞}, we can assume that Zε converge stably
to Q ∈ P(� × (R+ ∪ {∞})) with canonical realization Z̄. Then we have

E[Y Z̄] ≥ lim sup
ε→0

E
[
YZε]≥ E[YZ],

where the first inequality comes from the fact that z �→ z is u.s.c. on R+ ∪ {∞}
and [27], Proposition 2.11. Since Y is arbitrary, we conclude that Z̄ ≥ Z. Then by
stable convergence of Zε to Z̄, we have P[Zε > Z − δ] → P[Z̄ > Z − δ] = 1.
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(ii) ⇒ (i). Statement (ii) is equivalent to convergence of (Z − Zε)+ to zero
in probability. By the dominated convergence theorem, this implies that for every
bounded positive Y ,

lim inf
ε→0

E
[
Y
(
Z − Zε)+]= 0,

and so

lim inf
ε→0

E
[
Y
(
Z − Zε)]≤ 0,

which proves the implication.
(ii) ⇐⇒ (iii). Since (D.2) is equivalent to convergence of (Z −Zεnm )+ to zero

almost surely, the equivalence follows by standard results. �
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