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We consider a continuous-time financial market that consists of securi-
ties available for dynamic trading, and securities only available for static trad-
ing. We work in a robust framework where a set of non-dominated models is
given. The concept of semi-static completeness is introduced: it corresponds
to having exact replication by means of semi-static strategies. We show that
semi-static completeness is equivalent to an extremality property, and give a
characterization of the induced filtration structure. Furthermore, we consider
investors with additional information and, for specific types of extra infor-
mation, we characterize the models that are semi-statically complete for the
informed investors. Finally, we provide some examples where robust pricing
for informed and uninformed agents can be done over semi-statically com-
plete models.

1. Introduction. We consider a continuous-time financial market with two
types of traded instruments: securities that can be traded dynamically over time,
and securities that can be traded only at time zero and then held until maturity.
In this setting, we study replicability of contingent claims. The central notion of
the present paper is semi-static completeness, which refers to the possibility of
perfectly replicating any contingent claim by trading in the two sets of available
securities.

Markets with semi-static trading opportunities are typically considered in
the robust and model-free paradigm in mathematical finance. According to this
paradigm, rather than committing to one particular model (probability measure),
one considers a whole class of models that may be nondominated in the sense of
absolute continuity of probability measures. The goal is to account for model un-
certainty via a worst-case analysis over models that are deemed plausible. A large
and growing literature has developed around the following informally stated prob-
lem: In a suitable framework, establish the duality formula

sup
Q∈M

EQ[�]
(1.1)

= inf
{
x ∈ R : � can be super-replicated by semi-static trading

starting from initial capital x

}
,
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where M denotes an appropriate set of martingale measures, and � is a contin-
gent claim. The crucial feature is that super-replication is required M-quasi-surely.
Following the seminal paper by Hobson [22], this problem has been addressed by
many authors; for a survey, see [21] and [33]. In particular, (1.1) has been proved
in a variety of settings; see, for example, [1, 3, 6, 10, 17, 29] in discrete time, and
[4, 5, 7, 8, 14, 15, 18, 19, 23] in continuous time, among many others.

How is this related to semi-static completeness? First, in some situations the set
M turns out to be convex and compact; see Section 6 for some examples. It is then
often possible to reduce the left-hand side of (1.1) to a maximization problem over
the extreme points of M. Our first main result extends the classical Jacod–Yor
theorem on extreme points and martingale representation to the setting of semi-
static trading and nondominated models. We show that semi-static completeness is
equivalent to an extremality property of the model under consideration; see The-
orem 3.1. This result is related to work by Campi and Martini [11], who study
extremality in a two period model with countable state space.

Second, it is clear that both sides of (1.1) depend on the underlying filtration,
which models the information set available to investors in the market. Indeed, as
the filtration becomes larger, the martingale property becomes more restrictive.
This reduces the set M and decreases the left-hand side of (1.1). Similarly, a
larger information set increases the number of available trading strategies, which
decreases the right-hand side of (1.1). Under structural assumptions on the fil-
trations involved, we characterize those models that are semi-statically complete
for an informed agent with access to a larger filtration; see Theorem 5.1. Under
a semi-statically complete model, the informed agent will find that the larger fil-
tration coincides with the original one up to nullsets. The message that emerges
is that the only pricing measures that remain relevant for the informed agent are
those under which the two filtrations are indistinguishable.

Third, to leverage these observations, the probabilistic structure of semi-
statically complete models needs to be clarified. Indeed, given the long history
of the notion of completeness in mathematical finance, it seems natural to study
this notion in the context of semi-static trading. Assuming that the dynamically
traded securities have continuous price paths, we provide a full characterization
of semi-static completeness in terms of dynamic completeness; see Theorem 4.6.
Dynamically complete models have been studied extensively in mathematical fi-
nance, and their structure is well understood. Our characterization theorem can
thus be viewed as a recipe by which semi-statically complete models can be con-
structed. Let us mention that the theorem relies crucially on a structure that we
refer to as an atomic tree, which is related to the underlying filtration; see Defini-
tion 4.1.

The rest of the paper is organized as follows. In Section 2, the mathematical
setup is given, in particular the definition of semi-static completeness. Section 3
contains the generalization of the Jacod–Yor theorem to the semi-static setting.
Section 4 is devoted to the characterization of semi-statically complete models. In
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Section 5, semi-static completeness is studied in relation to changes of filtration.
In Section 6, we provides some examples where the sets of martingale measures
are compact, thus the results of Section 5 can be used to compare robust pricing
for agents with different sets of information. Finally, the Appendix contains the
proof of the main result in Section 4, and an extension of the Jeulin–Yor theorem
needed in Section 5.

2. Setup and notation. Let T ∈ (0,∞) be a finite time horizon and fix
a filtered measurable space (�,F,F) whose filtration F = (Ft )0≤t≤T is right-
continuous. No probability measure is given a priori. Consider a financial mar-
ket consisting of two types of securities: a risk-fee savings account and m risky
assets available for dynamic trading, as well as n securities available for static
trading, meaning that they can only be bought or sold at time zero and must be
held until time T . The prices of the dynamically traded risky assets, discounted by
the savings account, are modeled by a càdlàg F-adapted process S = (St )0≤t≤T ,
St = (S1

t , . . . , Sm
t ). We set S0 = 0 without loss of generality. The discounted time T

payoffs of the statically traded securities are represented by a set � = {ψ1, . . . ,ψn}
of FT -measurable random variables. Without loss of generality, we fix the price
at time zero of each statically traded security to be zero. Note that discrete time
models are included in this framework; see Example 6.1.

Calibrated martingale measures. Let P = P(F) be a fixed set of probabil-
ity measures on FT (priors). The role of the set P is to identify which events
are deemed relevant and which are not. Adopting the notation in [10], we write
Q≪ P when Q is a probability measure on FT such that Q� P for some P ∈ P .
We consider the following set of calibrated martingale measures, under which
the price process S is a martingale and the statically traded securities are priced
correctly:

M(F) =
{
Q≪ P : S is an F-martingale under Q,

EQ[ψi] = 0 and EQ

[
ψ2

i

]
< ∞ for all i

}
.

Thus, M(F) is the set of martingale measures emerging in a robust framework,
corresponding to the set P of priors; see, for example, [18] and [10]. The martin-
gale and calibration conditions are standard in the robust (nondominated) setting.
In addition, we require square integrability of the statically traded securities. It
is common in the literature to impose some integrability condition on the asset’s
terminal distribution; for instance, [1] require the existence of some superlinear
moment, and [14, 15] and [23] assume Lp-integrability for some p > 1. Here,
we only require S to be a martingale, but will impose L2 integrability on trading
strategies. This will allow us to use tools which are particular to the L2 structure,
such as orthogonal projections.

Note that, if P is chosen to be the set of all probability measures on FT , then
modulo integrability conditions, M(F) is the usual set of martingale measures
considered in the model-independent framework; see, for example, [6] and [14].
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Semi-static completeness and extreme points. We now define semi-static com-
pleteness, which is the key notion of the present paper. For a probability mea-
sure Q ∈ M(F), we denote by H2(F,Q) the set of square integrable martingales,
and for a martingale M = (M1, . . . ,Md) we let L2(M,F,Q) denote the set of
M-integrable processes H such that H · M ∈ H2(F,Q). Here, the usual vector
stochastic integral as in [24] or [31] is used. Following [13], we use the conven-
tion �M0 = M0 and (H · M)0 =∑d

i=1 Hi
0M

i
0. This does not affect integrals with

respect to the price process S since S0 = 0, but will be important when we in-
tegrate with respect to other martingales. Note that F is not augmented with the
Q-nullsets. If the filtration F and probability measure Q are clear from the context,
we often drop them from the notation.

DEFINITION 2.1. We say that semi-static completeness holds under Q ∈
M(F) if any X ∈ L2(FT ,Q) can be represented as

X = x + a1ψ1 + · · · + anψn + (H · S)T Q-a.s.

for some x, a1, . . . , an ∈ R and H ∈ L2(S,F,Q).

Thus semi-static completeness means that any square-integrable payoff can be
replicated using a semi-static strategy. In the absence of statically traded securities,
semi-static completeness corresponds exactly to the usual predictable representa-
tion property in an L2 setting. The main result of Section 3 relates semi-static
completeness to extremality of measures.

DEFINITION 2.2. An element Q ∈ M(F) is called an extreme point if Q =
λQ1 + (1 − λ)Q2 with Q1,Q2 ∈ M(F) and 0 < λ < 1 implies Q1 = Q2 = Q. The
set of all extreme points of M(F) is denoted by extM(F).

If M(F) is convex, and the space of probability measures is endowed with a
topology under which M(F) is compact, the Krein–Milman theorem implies that
M(F) is the closed convex hull of its extreme points. For any payoff � such that
Q �→ EQ[�] is continuous, one can then compute its robust super-hedging price
over the set of extreme points:

(2.1) sup
Q∈M(F)

EQ[�] = sup
Q∈extM(F)

EQ[�].

In Section 6, we provide two examples where M(F) is compact. Note, however,
that compactness of M(F) is not assumed in any of our subsequent results; the
above remarks merely serve as one motivation for studying its extreme points.

REMARK 2.3. Semi-static completeness is a property of a given model Q ∈
M(F). One could also think of a robust notion, where replication is possible un-
der all models in M(F) simultaneously. However, in view of Theorem 3.1, this
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is equivalent to M(F) being a singleton. Apart from the classical case P = {P},
such a situation seems too restrictive to be of much interest. Furthermore, Theo-
rem 3.1 shows that our notion of semi-static completeness is the right one in order
to characterize extM(F), which is a robust object in that it does not depend on
any specific choice of reference measure.

Stable subspaces and orthogonality. For a fixed probability measure Q ∈
M(F) and a possibly multi-dimensional martingale M = (M1, . . . ,Md), we de-
note by S(M) the closed subspace of H2 given by

S(M) = {H · M : H ∈ L2(M,F,Q)
}
.

If M is square-integrable, then S(M) is the smallest closed subspace of H2 that
contains M1, . . . ,Md and is stable under stopping. This is usually taken as the
definition of S(M), which however is inconvenient for us, since in particular the
prices process S need not be square-integrable. In this paper, we only need the fact
that S(M) is closed in H2 and stable under stopping.

Recall that there are two notions of orthogonality for square-integrable martin-
gales: M and N are weakly orthogonal if EQ[MT NT ] = 0, that is, if M and N

are orthogonal with respect to the inner product on the Hilbert space H2. They are
strongly orthogonal if MN is a martingale. To simplify notation, we often identify
square-integrable martingales with their final values. In particular, we then view
S(M) as a subspace of L2(FT ).

3. A semi-static Jacod–Yor theorem. The classical Jacod–Yor theorem re-
lates the predictable representation property of a process X to the extreme points
of the set of martingale measures for X; see [25]. The main result of the present
section is an analog of the Jacod–Yor theorem in the context of semi-static hedg-
ing. It states that the extreme points of M(F) exactly correspond to those models
which are semi-statically complete.

THEOREM 3.1. Let Q ∈ M(F). The following conditions are equivalent:

1. Q ∈ extM(F).
2. Semi-static completeness holds under Q.

The proof of Theorem 3.1 requires two auxiliary results. The first one shows
that the set of outcomes of semi-static strategies as a subset of L2(FT ) is closed
with respect to convergence in L1.

LEMMA 3.2. Let Q ∈ M(F). The set of outcomes of semi-static strategies,

W = {a0 + a1ψ1 + · · · + anψn + (H · S)T : a0, . . . , an ∈ R and H ∈ L2(S)
}
,

is closed in the following sense: if (Xk) ⊆ W satisfies Xk → X in L1 for some
X ∈ L2(FT ), then X ∈ W .
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PROOF. We proceed by induction on n. Suppose the result is known to be true
with n replaced by n−1, and let W ′ be defined as W with n replaced by n−1. Let
(Xk) ⊆ W be a sequence satisfying Xk → X in L1 for some X ∈ L2(FT ). Then
Xk = X′

k +akψn for some X′
k ∈ W ′ and ak ∈R. If ψn lies in the L1-closure of W ′,

then the induction hypothesis yields ψn ∈ W ′, so that in fact (Xk) ⊆ W ′, and hence
X ∈ W ′ ⊆ W by another application of the induction hypothesis. We may thus
suppose that ψn does not lie in the L1-closure of W ′. Then by the Hahn–Banach
theorem there exists a continuous linear functional F on L1(FT ) that vanishes
on W ′ and satisfies F(ψn) = 1. Thus ak = F(Xk) → F(X), whence X′

k → X −
F(X)ψn in L1. The induction assumption then yields X − F(X)ψn ∈ W ′ and
hence X ∈ W , as desired.

It remains to prove the result for n = 0. This follows immediately from the
following result by [34]; see Theorem 15.4.7 in [12] for a formulation that covers
the multidimensional case:

Let Hk , k ≥ 1, be S-integrable processes such that Hk · S is a martingale for
each n, and suppose (Hk ·S)T → X in L1 for some random variable X. Then there
exists an S-integrable process H such that H ·S is a martingale with (H ·S)T = X

a.s.
Since in our case X ∈ L2(FT ), we additionally obtain H ∈ L2(S), and hence

X ∈ W . This completes the proof. �

PROOF OF THEOREM 3.1. 1 =⇒ 2: By Lemma 3.2 it suffices to show that
the linear span of S(S) and 1,ψ1, . . . ,ψn, which we denote by W , is dense in
L1(FT ). Indeed, suppose this has been proved. Then for any X ∈ L2(FT ) we can
find a sequence (Xk) ⊆ W with Xk → X in L1, whence X ∈ W by Lemma 3.2.

It remains to prove that W is dense in L1(FT ). This follows from an application
of Douglas’s theorem; see [16]. For completeness, we provide the short argument.
By the Hahn–Banach theorem it suffices to show that Z = 0 for any random vari-
able Z ∈ L∞(FT ) such that EQ[YZ] = 0 for all Y ∈ W . Pick any such Z. By
scaling, we may assume |Z| ≤ 1/2. Define probability measures Q+ and Q− by

dQ± = (1 ± Z)dQ.

Since the Radon–Nikodym derivatives lie in [1/2,3/2], a random variable is
square integrable under Q if and only if it is square integrable under Q±. More-
over, we have

EQ±[ψi] = EQ[ψi] ±EQ[Zψi] = 0

for all i = 1, . . . , n. Similarly, EQ±[(H · S)T ] = EQ[(H · S)T ] = 0 for all simple
predictable bounded integrands H . Since also Q± � Q, we have Q± ∈ M(F).
Now, since Q = 1

2Q
+ + 1

2Q
− and Q is an extreme point, it follows that Q+ =

Q− = Q, whence Z = 0 as required.
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2 =⇒ 1: Suppose Q = λQ1 + (1 − λ)Q2 for some Q1,Q2 ∈ M(F) and λ ∈
(0,1). Then Q1 �Q, so we may define Z = dQ1

dQ . For any X = a0 + a1ψ1 + · · · +
anψn + (H · S)T ∈ W we then have

EQ

[
(Z − 1)X

]= EQ1[X] −EQ[X] = a0 − a0 = 0.

Since W is all of L2(FT ,Q) by assumption, it follows that Z = 1, and hence
Q1 = Q2 = Q. Thus, Q is an extreme point. �

REMARK 3.3. Theorem 3.1 could also be stated and proved in the L1 set-
ting, where the ψi are only assumed integrable, and semi-static completeness is
defined using integrands H such that H · S is a martingale. This L1 version of
Theorem 3.1 is easily proved by observing that the correspondingly modified set
W in Lemma 3.2 is closed in L1 (the proof is essentially the same). Since subse-
quent developments rely rather strongly on the Hilbert space structure of L2, we
opt to work in the L2 setting throughout the paper in order to maintain consistency.

In the classical setting of dynamic hedging without static components, there ex-
ists a wide range of complete models. For instance, dynamic completeness holds
as soon as the price process is a strong solution to a possibly path-dependent
stochastic differential equation of the form dSt = σ(t, Su : u ≤ t) dWt , where W

is Brownian motion and σ never vanishes. One may thus wonder whether, in the
semi-static setting, there is any reason to expect complete models to exhibit further
structural properties.

We now indicate why one might expect this to be the case. To this end, con-
sider some Q ∈ M(F) under which semi-static completeness holds, and suppose
temporarily that � = {ψ} contains one single element. Consider the nonhedge-
able part ψ − π(ψ) of ψ , where π denotes the orthogonal projection onto the
closed subspace {XT : X ∈ S(S)} ⊆ L2(FT ). Let M be the square-integrable mar-
tingale generated by this nonhedgeable part, Mt = EQ[ψ − π(ψ) | Ft ]. Then M

is weakly, hence strongly, orthogonal to S(S). It follows that H · M is (weakly
and strongly) orthogonal to S(S) for any H ∈ L2(M), so that, by semi-static com-
pleteness, H ·M lies in span{M}, the linear span of M . Furthermore, the inclusion
span{M} ⊆ S(M) holds due to our convention regarding the time-zero value of
stochastic integrals. Consequently,

S(M) = span{M}.
Thus, the set of stochastic integrals with respect to M is one-dimensional, which
obviously imposes severe restrictions on the behavior of M ; see Proposition B.1
for a precise statement in a multidimensional setting. Developing these observa-
tions further, one is led to a description of the behavior of semi-statically complete
models in terms of dynamically complete models. This is the topic of the next
section.
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4. Semi-static completeness for continuous price processes. The goal of
this section is to characterize the behavior of semi-statically complete models with
continuous price processes. We consider a probability measure Q ∈ M(F) that
will remain fixed throughout this section. Relations between random quantities
are understood in the Q-almost sure sense, and to simplify notation we drop the
subscript Q and write E[·] = EQ[·].

A key notion needed in the characterization theorem is that of an atomic tree.
For a set A ∈ FT we denote by t (A) the first time A becomes measurable,

t (A) = inf
{
t ∈ [0, T ] : A ∈ Ft

}
.

Note that A ∈ Ft (A) by right-continuity of F, and that A /∈ Ft (A)− if t (A) > 0.
Recall that A is an atom of Ft if A ∈ Ft and Q(B) equals zero or Q(A) whenever
B ∈ Ft , B ⊆ A.

DEFINITION 4.1. An atomic tree is a finite collection T of events in FT sat-
isfying the following properties:

1. every A ∈ T is a nonnull atom of Ft (A);
2. for every A,A′ ∈ T such that t (A) < t(A′), either A ⊇ A′ or A ∩ A′ = ∅;
3. for every A,A′ ∈ T such that A �A′, Q(A \ A′) > 0.

In order to discuss atomic trees T it is useful to have the following terminology:
an element A′ ∈ T is called a child of another element A ∈ T if A′ � A and there
is no A′′ ∈ T such that A′ � A′′ � A. Moreover, A ∈ T is called a leaf if it has
no children, or equivalently, if there is no A′ ∈ T such that A′ � A. It is clear that
T admits a natural tree structure obtained by connecting each element A to its
children. In particular, the above notion of a leaf coincides with the usual graph-
theoretic notion. See Figure 1 for an illustration. A natural measure of the size
of an atomic tree T is the number of paths through the tree, or equivalently the
number of leaves. We refer to this quantity as the dimension of T,

dim T = number of leaves in T.

This terminology is motivated by the fact that the space of functions defined on the
set of paths through the tree has dimension dim T; see also Remark 4.33 below.

We now introduce a natural nondegeneracy condition on atomic trees.

DEFINITION 4.2. An atomic tree T is called full if its leaves form a partition
of � (up to nullsets), and if A is an atom of Ft (A′)− whenever A′ is a child of A.

The following remark collects some basic properties and observations regarding
full atomic trees that are immediate consequences of the above definitions.

REMARK 4.3. Let T be a full atomic tree:
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�

A7

A6

A5

A4

A1

A2

A3

0 t1 t2 t3 T

FIG. 1. Schematic illustration of the filtration F containing a full atomic tree T. Each circle denotes
an event A ∈ T. In particular, the leaves of T are {A1,A4,A5,A6,A7}. The lines denote relations
between the elements of T; for example, A4 and A5 are children of A2, which in turn is a child
of �. Furthermore, we have t1 = t (A1), t2 = t (A4) = t (A5), and t3 = t (A6) = t (A7), and thus
ζ(T) = t11A1 + t21A2 + t31A3 .

1. Each A ∈ T that is not a leaf is the union of its children up to nullsets. Moreover,
if A′ and A′′ are children of A, then t (A′) = t (A′′).

2. Since T is a collection of elements of F , the sigma-algebra σ(T) ⊆ F is well
defined. Furthermore, up to nullsets, σ(T) = σ(A ∈ T : A is a leaf). Since also
the leaves form a partition of �,

(4.1) E
[
X | σ(T)

]=∑
A

E[X1A]
Q(A)

1A

holds for any X ∈ L1(FT ), where the sum extends over all leaves A ∈ T. Fur-
thermore, σ(T) can alternatively be described up to nullsets as

(4.2) σ(T) = Fζ(T) with ζ(T) =∑
A

t(A)1A,

where again the sum extends over the leaves of T. Note that ζ(T) is a stopping
time bounded above by T , which can be thought of as the “end of the tree”.

3. In view of (4.1), the dimension of L2(σ (T)) equals the number of leaves in T.
This motivates the definition of dim T.

Finally, the following restricted notion of (dynamic) completeness is needed.

DEFINITION 4.4. Given t ∈ [0, T ] and A ∈ Ft , we say that S is complete on
A × [t, T ] if any X ∈ L2(FT ) can be replicated on A by dynamic trading over
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[t, T ]; that is, if

X = x + (H · S)T on A

holds almost surely for some x ∈ R and some H ∈ L2(S) with H = 0 on [[0, t]].
REMARK 4.5. If S is complete on A × [t, T ], then A is necessarily an atom

of Ft . Indeed, if the arbitrarily chosen random variable X in Definition 4.4 is
Ft -measurable, then it is necessarily almost surely constant on A since X1A =
E[x + (H · X)T | Ft ]1A = x1A.

We can now state our main characterization theorem. The proof is given in Ap-
pendix B. Recall that we work under an arbitrary fixed measure Q ∈ M(F). We
let ζ(T) denote the stopping time in (4.2) associated with an atomic tree T.

THEOREM 4.6. Assume S is continuous. Then semi-static completeness holds
if and only if there exists a full atomic tree T such that:

1. S is complete on A × [t (A), T ] for each leaf A ∈ T,
2. the set {E[ψi | σ(T)] : i = 1, . . . , n} contains dim T − 1 linearly independent

elements.

In this case, L2(FT ) = L2(σ (T)) ⊕ S(S), and S is constant on [[0, ζ(T)]].
Semi-static completeness is therefore fully specified by the structure of the fil-

tration. More precisely, a model is semi-statically complete if and only if, under
that model, the filtration has the shape depicted in Figure 2: there is an atomic com-
ponent, generated by the part of the statically traded securities that is not replicable
by trading in S (see also Lemma B.7), and a richer component generated by S. As
a result, a semi-statically complete model is obtained as a combination of dynam-
ically complete models “glued” together via an atomic tree.

Clearly, such models are “unphysical” in the sense that they do not give realistic
descriptions of real asset prices. Nonetheless, they do characterize the extreme
points of the set of calibrated martingale measures (see Theorem 3.1). Therefore,
one may regard Theorem 4.6 as providing a parameterization of this set of extreme
points in terms of dynamically complete models and atomic trees.

Let us briefly mention how the atomic tree T arises in the proof of Theorem 4.6.
The key idea is to consider the unhedgeable parts V i

t = E[ψi | Ft ] − (H i · S)t of
the static claims ψi , where Hi · S is the orthogonal projection of E[ψi | Ft ] onto
S(S). Semi-static completeness then implies, by the argument sketched at the end
of Section 3, that

S
(
V 1, . . . , V n)= span

{
V 1, . . . , V n}.

This yields a set of atoms via Proposition B.1, which are used to construct an
atomic tree T such that ψi = E[ψi | σ(T)] + (H i · S)T ; see Lemma B.7. From
this, one deduces 1 and 2 in a relatively straightforward manner.
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FIG. 2. Schematic illustration of the filtration F when semi-static completeness holds. The wiggly
curves emanating from the leaves (except A5) illustrate that the filtration may quickly become rich
after ζ(T). It is, however, also possible that no further events occur once a leaf is reached; this
is illustrated by the flat line emanating from A5. By semi-static completeness, each of the models
starting at the leaves is dynamically complete.

REMARK 4.7. The tree T in Theorem 4.6 is nonempty since it is full. Thus
it contains at least one leaf, whence dim T ≥ 1. In the degenerate case where T =
{�}, 1 says that S is complete on � × [0, T ], which is simply the usual notion of
dynamic completeness. Furthermore, T is unique up to nullsets. Indeed, if T′ is
another possible tree, the theorem implies that L2(σ (T)) = L2(σ (T′)).

COROLLARY 4.8. Assume S is continuous, let Q ∈ extM(F), and let T de-
note the associated full atomic tree. Then the jumps of any martingale M are sup-
ported on T, in the sense that {�M �= 0} ⊆ {A × {t (A)} : A ∈ T}.

PROOF. By Theorem 4.6, M = x + V + H · S for some x ∈ R, some mar-
tingale V such that VT is Fζ(T)-measurable, and some H ∈ L2(S). In particular,
]]ζ(T), T ]] ⊆ {�M = 0}. Next, let A′ ∈ T be a child of A ∈ T. Since T is full, A is
an atom of Ft (A′)−. It is then clear that A × (t (A), t (A′)) ⊆ {�M = 0}. Let D

denote the union of all sets of this form and ]]ζ(T), T ]]. Then {�M �= 0} ⊆ Dc =
{A × {t (A)} : A ∈ T}, which yields the assertion. �

We conclude the section with two examples. The first example illustrates how
Theorem 4.6 can be used to build semi-statically complete models in a continuous
path setting. The second example shows that the statement of Theorem 4.6 need
not be valid if S has jumps.
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EXAMPLE 4.9. Here, we use Theorem 4.6 to build a semi-statically com-
plete model, putting together two (dynamically) complete models by means of a
2-dimensional atomic tree. Let � = C0([0, T ],R) denote the set of real-valued
continuous functions on [0, T ] vanishing at zero. Let S be the coordinate process,
St (ω) = ω(t), and let F be the right-continuous filtration generated by S. Let P
be the set of all probability measures on FT . Assume there is one statically traded
security ψ = [S,S]T − K , for some fixed K > 0. Fix t∗ ∈ (0, T ) and constants
σ1, σ2 such that σ1 >

√
K/(T − t∗) > σ2 > 0. We consider two probability mea-

sures Q1,Q2 on FT such that

St = σiWt−t∗1{t≥t∗} under Qi ,

where W is a standard Brownian motion under Qi . We now set Q = λQ1 + (1 −
λ)Q2, where λ ∈ (0,1) is determined by the calibration condition EQ[ψ] = 0:

0 = EQ[ψ] = λσ 2
1
(
T − t∗

)+ (1 − λ)σ 2
2
(
T − t∗

)− K,

which implies Q ∈ M(F). We let Ai = {∂+[S,S]t∗ = σ 2
i }, where ∂+ denotes the

right derivative, and note that T = {�,A1,A2} is an atomic tree under Q with
dim T = 2, and such that

EQ

[
ψ | σ(T)

]= σ 2
1
(
T − t∗

)
1A1 + σ 2

2
(
T − t∗

)
1A2 − K �≡ 0.

Therefore, by Theorem 4.6, Q is a semi-statically complete model. The represen-
tation of the corresponding filtration is given in Figure 3.

EXAMPLE 4.10. Here, we provide a semi-statically complete model, for
which the filtration structure given in Theorem 4.6 fails. We let � = C0([0, T ],

FIG. 3. The leaves A1,A2 correspond to the two Bachelier models with volatilities σ1 > σ2. Thus,
the variance swap ψ = [S,S]T − K is priced differently under the two models, and can be used to
hedge against A1 or A2.
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R) × R+ × {0,1}, and write (W, θ, ξ) for the coordinate element. Fix t∗ ∈ (0, T )

and σ1, σ2 > 0 with σ1 �= σ2. The price process S is defined by

St =

⎧⎪⎪⎨⎪⎪⎩
−t, t < θ ∧ t∗,
1 − θ, t ≥ θ, θ < t∗,
−t∗ + (ξσ1 + (1 − ξ)σ2

)
Wt−t∗, t ≥ t∗, t∗ ≤ θ,

and F is the right-continuous filtration it generates. Let P be the set of all proba-
bility measures on FT . Let Q be a probability measure on FT under which W , θ ,
and ξ are mutually independent, W is a standard Brownian motion, θ a standard
exponential, and ξ a Bernoulli with parameter 1/2. Then under Q, S behaves like
a compensated one-jump Poisson process strictly prior to t∗. If S jumps, then it
stays constant until T . Otherwise, if there is no jump before t∗, S continues as a
Brownian motion whose volatility is either σ1 or σ2, depending on the outcome of
the Bernoulli variable ξ .

It is clear that S is a martingale under Q. We now introduce the statically traded
security ψ = [S,S]T − K with K = EQ[[S,S]T ]. As is shown in Lemma 4.11
below, this makes the model semi-statically complete. However, the filtration F
does not admit a full atomic tree T as is guaranteed in the continuous case by
Theorem 4.6. Thus, the statement of the theorem does not carry over to the case
where S has jumps.

LEMMA 4.11. The model defined in Example 4.10 is semi-statically complete.

PROOF. Consider any X ∈ L2(FT ) and write

X = (X −EQ[X|Ft∗])+EQ[X|Ft∗−] + (EQ[X|Ft∗] −EQ[X|Ft∗−]).
Using the martingale representation theorem for the Poisson process and Brownian
motion, one readily shows that the first two terms on the right-hand side are of the
form EQ[X] + (H · S)T . To deal with the third term, note that Ft∗ = Ft∗− ∨ σ(A)

up to nullsets, where A = {θ ≥ t∗} ∩ {ξ = 1} is an atom of Ft∗ . Thus,

EQ[X|Ft∗] −EQ[X|Ft∗−] = c1A + Y

for some constant c and some Ft∗−-measurable random variable Y , which admits
a representation Y = y + (J · S)T . Thus, it remains to show that 1A can be semi-
statically replicated. This follows by taking X = ψ above. Indeed, we have

ψ = σ 2
1
(
T − t∗

)
1A + σ 2

2
(
T − t∗

)
1B + 1C − K,

where A is as above, B = {θ ≥ t∗}∩ {ξ = 0}, and C = � \ (A∪B). Since A∪B ∈
Ft∗− and σ1 �= σ2, we obtain

1A = 1

(σ 2
1 − σ 2

2 )(T − t∗)
ψ + Y ′

for some Ft∗−-measurable random variable Y ′, which as above admits a represen-
tation in terms of S. This completes the proof of semi-static completeness. �
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5. Pricing by informed investors. In addition to F, we now consider right-
continuous filtrations G= (Gt )0≤t≤T on (�,F) with Ft ⊆ Gt for all t ≤ T . While
F should be thought of as the information available to a typical market participant,
G includes additional information that only some investors observe. Notice that
M(F) is defined using a family P = P(F) of probability measures on FT , while
M(G) is similarly defined using a family P(G) of probability measures on GT .
In order to compare the two sets of calibrated martingale measures, we always
assume that

P(F) = {Q|FT
: Q ∈ P(G)

}
.

For any filtration H = (Ht )0≤t≤T , the progressive enlargement of F with H is
the filtration G = (Gt )0≤t≤T defined by

(5.1) Gt =⋂
u>t

Fu ∨Hu.

Thus, G is the smallest right-continuous filtration that contains both F and H.
Our main results consider specifications where S is continuous and H is generated
by a collection of single-jump processes. By this we mean processes of the form
X1[[τ,T ]], where X is a random variable and τ is a random time, that is a [0, T ] ∪
{∞}-valued random variable. Without loss of generality, we always suppose τ =
∞ on {X = 0}.

To state these results, we define the following F-stopping time, which is the first
time S starts to move:

σ = inf
{
t ∈ [0, T ] : St �= 0

}
.

Moreover, we say that F and G coincide under Q if Ft equals Gt up to Q-nullsets
for each t ∈ [0, T ]. The following theorem relates semi-static completeness for
informed and uninformed investors.

THEOREM 5.1. Assume S is continuous. Let G be given by (5.1) with H
generated by finitely many nonnegative bounded single-jump processes Xi1[[τi ,T ]],
i = 1, . . . , p. Assume τi > σ on {0 < τi < ∞} for all i. Then

(5.2) extM(G) = {Q : F and G coincide under Q, and Q ∈ extM(F)
}
.

Theorem 5.1 can be interpreted as follows: Consider an informed agent who
computes super-hedging prices by maximizing over extreme points of M(G) as
in (2.1). This agent will find that the relevant models Q are those under which
the additional information H is in fact already contained in F (up to nullsets, of
course). Example 5.2 below gives a simple illustration of how this restriction can
cause M(G) to be significantly smaller than M(F). The difference between these
sets yields a potentially large difference between the robust super-hedging prices
computed by the informed and uninformed agents. Further examples are given in
Section 6.
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EXAMPLE 5.2. Let S be continuous with S0 = 0. Suppose H is generated by
the single-jump process 1[[τ,T ]], where τ = sup{t ∈ [0, T ] : St = 1} is the last time
S hits level 1, and where we set τ = 0 if this never happens. Note that τ satisfies
the condition in Theorem 5.1. Then, in order for S to be a martingale for G, we
must have S < 1 almost surely. To see this, observe that a continuous martingale
attaining a certain level at a stopping time (in this case, Sτ = 1) will return to
that level infinitely many times, unless this happens at time T . Therefore, either
τ = T or S < 1, hence τ = 0. This implies {ST = 1} = {τ = T } = {τ = 0}c ∈ G0.
Since S0 = 0, the martingale property imposes τ = 0 almost surely, thus forcing
S < 1. In addition to this property, any Q ∈M(G) should price the statically traded
securities correctly. This example will reappear in Section 6.

REMARK 5.3. Note that the filtration G considered in Theorem 5.1 is the
smallest right-continuous filtration which contains F, makes the τi stopping times,
and the Xi1{τi<∞} become Gτi

-measurable. Both the progressive enlargement with
a random time and the initial enlargement with a random variable are included as
special cases; simply take X = 1 for the former, and τ = 0 for the latter. These
classical types of filtration enlargement are the most studied in the literature, and
our analysis draws heavily on this theory; see, for example, [27] and [26].

REMARK 5.4. Due to Theorem 3.1, Theorem 5.1 implies that extra informa-
tion of the form considered here cannot be used to complete the market under a
given model. The only way an informed agent can face a semi-statically complete
market is when semi-static completeness already holds for the uninformed agent.
Therefore, while additional information may reduce the cost of super-replication
in an incomplete market, it will in general not be enough to guarantee exact repli-
cation.

PROOF OF THEOREM 5.1. The only inclusion that needs proof is “⊆”. In fact,
we will prove by induction on p the statement:

(5.3)

extM(G) ⊆ {Q : F′ and G coincide under Q
}

holds

for any right-continuous base filtration F′, where G is the

progressive enlargement of F′ with p ≥ 1 single-jump processes.

Suppose for the moment that the base case p = 1 has been proved. Let p ≥ 2 and
assume (5.3) is true for p − 1. Let H′ be the filtration generated by Xp1[[τp,T ]], and
let H′′ be the filtration generated by Xi1[[τi ,T ]], i = 1, . . . , p − 1. Then, with the
obvious notation, we have

G = (F∨H′)∨H′′.

The induction assumption applied with base filtration F′ = F ∨ H′ implies that
F ∨ H′ and G coincide under any Q ∈ extM(G). Thus M(G) = M(F ∨ H′).
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Thus, applying the base case with F′ = F we find that F and F∨H′, and hence F

and G, coincide under any Q ∈ extM(G). This completes the induction step.
It only remains to prove (5.3) for the base case where H is generated by a single

one-jump process X1[[τ,T [[. We write F′ = F. Fix a measure Q ∈ extM(G). Define
a process M by

(5.4) Mt = X1{τ≤t} −
∫ t∧τ

0

1

Zs−
dAs,

where Z is the Azéma supermartingale (C.3) associated with τ , and A is the
dual predictable projection of the process X1[[τ,∞[[. By Lemma C.1, M is a G-
martingale. A localization argument in conjunction with semi-static completeness,
which follows from Theorem 4.6, yields

(5.5) M = M0 + V + H · S
for some S-integrable process H and some G-martingale V with VT ∈ L2(σ (T)),
where T is the corresponding full atomic tree. To see this, first note that M is
locally bounded. Indeed, X is bounded, and the integral in (5.4) defines a càdlàg
predictable processes which is automatically locally bounded; see VII.32 in [13].
Let (ρk) be a localizing sequence. Semi-static completeness and Theorem 4.6 yield

M
ρk

T = M0 + V k
T + (Hk · S)T

for some Hk ∈ L2(S,G) and V k
T ∈ L2(Gζ(T)). Since ρk → ∞ and ζ(T) ≤ T

takes finitely many values, we have ρk > ζ(T) for all sufficiently large k, say
k ≥ k0. Thus, taking Gζ(T)-conditional expectations and using that S is constant
on [[0, ζ(T)]], we have

V k
T = Mζ(T)∧ρk

− M0 = Mζ(T) − M0

for all k ≥ k0. The right-hand side does not depend on k; denote it by VT . Then
(5.5) holds with H given by

H = Hk01[[0,ρk0 ]] + ∑
k>k0

Hk1]]ρk−1,ρk]],

as claimed.
In view of (5.4), (5.5) and the continuity of S, considering the jump process of

M yields

(5.6) X1[[τ ]] = �A

Z−
1[[0,τ ]] + �V =

(
�A

Z−
+ �V

)
1[[0,τ ]],

where [[τ ]] denotes the graph of τ , and we use the convention Y0− = 0 for any
process Y . Note that [[τ ]] ⊆ [[0]]∪ ]]σ,T ]] due to the assumption that τ > σ on
{0 < τ < ∞}. Also, σ ≥ ζ(T) since S is constant on [[0, ζ(T)]]. Thus, multiplying
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both sides of (5.6) by 1[[0]]∪]]σ,∞[[ and using that �V = 0 outside ]]0, ζ(T)]] by
Corollary 4.8, we obtain

(5.7) X1[[τ ]] = �A

Z−
1[[0]]∪]]σ,τ ]].

Since X > 0 on {τ < ∞} by assumption, this yields

τ = inf
{
t ∈ [0, T ] : �A

Z−
1[[0]]∪]]σ,T ]] �= 0

}
,

which is an F-stopping time. It follows that the right- and hence left-hand side
of (5.7) is F-adapted. Thus, the process X1[[τ,T ]] with which we enlarge F is al-
ready F-adapted, whence F and G coincide under Q, and Q ∈ extM(F). �

A slight modification of the proof of Theorem 5.1 shows that in the absence of
statically traded securities, neither the continuity assumption on S, nor the condi-
tion on the τi , is needed.

COROLLARY 5.5. Assume � = ∅. Let G be given by (5.1) with H gen-
erated by finitely many nonnegative bounded single-jump processes Xi1[[τi ,T ]],
i = 1, . . . , p. Then

extM(G) = {Q : F and G coincide under Q, and Q ∈ extM(F)
}
.

PROOF. Again the only nontrivial inclusion is “⊆”, and as before it suffices
to consider one single-jump process X1[[τ,T [[. Using that (dynamic) completeness
holds under any Q ∈ extM(G), a similar argument as the one leading to (5.6)
yields

X1[[τ ]] =
(

�A

Z−
+ H�S

)
1[[0,τ ]]

for some H ∈ L2(S,G). Let J be an F-predictable process with J1[[0,τ ]] =
H1[[0,τ ]]; see (C.2). Replacing H by J , one sees as before that τ is almost surely
equal to an F-stopping time, and then that X1[[τ ]] is already F-adapted. �

REMARK 5.6. Theorem 5.1 can be generalized, for example to progressive
enlargements with countably many single-jump processes such that, for every ω,
only finitely many jumps can occur before T . However, some assumption on the
enlargement is needed for the conclusion of the theorem to hold. Indeed, let W

be a standard Brownian motion under Q generating the filtration G, define S via
St = ∫ t0 sgn(Ws) dWs , and let F be the filtration generated by S. Then S is again
a Brownian motion, and (dynamic) completeness holds with respect to both fil-
trations. Thus, Q|FT

∈ extM(F) and Q ∈ extM(G), where we take � = ∅ and
P(G) the set of all probability measures on GT . Nonetheless, it is well known that
F coincides with the filtration generated by |W | and is strictly smaller than G; see
Corollary VI.2.2 in [30]. We thank Monique Jeanblanc for pointing this out to us.
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6. Examples. In this section, we provide examples, in discrete and in continu-
ous time, where both sets M(F) and M(G) of calibrated martingales measures are
compact (Examples 6.2 and 6.5). In those cases, robust pricing can be done over
extreme measures, as in (2.1), and the results of Section 5 can be used to compare
pricing for agents with different sets of information. We also give examples where
M(F) is compact and M(G) is empty, and where M(F) is compact but M(G) is
not (Example 6.6).

EXAMPLE 6.1 (Discrete time). Suppose T ∈ N and let � = [s, s]T for some
constants s < 0 < s. Let S be the piecewise constant interpolation of the coordinate
process, St (ω) = ω(�t�), where �t� denotes the integer part of t and we set ω(0) =
0 by convention. Let F be the filtration generated by S, and let P be the set of all
probability measures on FT . Moreover, assume that the payoffs of the statically
traded securities are continuous in ω. In this setting, Prokhorov’s theorem implies
that P is weakly compact. Furthermore, the calibration and martingale restrictions
become

EQ[ψ] = 0 and EQ

[
f (S1, . . . , Ss)(St − Ss)

]= 0,

for all integers 0 ≤ s < t ≤ T and all continuous functions f : Rs → R. Due to
the boundedness of �, these constraints are weakly closed. Thus,M(F) ⊆ P is
weakly compact.

EXAMPLE 6.2 (Filtration enlargement in discrete time). We continue with the
setting of Example 6.1. Let G be a filtration obtained as the initial enlargement of
F with a random variable L = L(S) that depends continuously on S, that is,

Gt =⋂
u>t

Fu ∨ σ(L), t ∈ [0, T ].

An example of such a random variable is L(S) = 1
T

∑T
t=1 |St |. The set of mar-

tingale measures M(G) then consists of all measures in M(F) that satisfy the
condition:

EQ

[
f
(
S1, . . . , Ss,L(S)

)
(St − Ss)

]= 0,

for all integers 0 ≤ s < t ≤ T and all bounded continuous functions f : Rs+1 →R.
By boundedness of � and continuity of L, this constraint is weakly closed, and
since M(F) is weakly compact, then M(G) is weakly compact as well.

Now, the by Krein–Milman theorem, both M(F) and M(G) can be recovered
by their extreme measures, and robust pricing can be done over such measures, see
(2.1). The extreme points of M(F) and M(G) are related as in Corollary 5.5, and
this allows us to appreciate the difference in the robust pricing of derivatives by an
investor with or without additional information.
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EXAMPLE 6.3 (Continuous time). Fix T > 0 and let � be the space
C0([0, T ],R) of real-valued continuous functions on [0, T ] vanishing at zero, en-
dowed with the topology of uniform convergence. The price process S is taken to
be the coordinate process on �, and F the right-continuous filtration it generates.
We assume that the statically traded securities have payoffs ψi that are continuous
functions of ω and satisfy

(6.1)
∣∣ψi(ω)

∣∣≤ C
(
1 + sup

t≤T

∣∣ω(t)
∣∣κ)

for some constants C and κ . Fix σ > 0 and let P denote the set of probability
measures P on FT such that S is a semimartingale with quadratic variation given
by

(6.2) [S,S]t =
∫ t

0
σ 2

s ds with σ 2
t ≤ σ 2 for all t ≤ T .

That is, S has absolutely continuous quadratic variation, and the volatility is
bounded by σ . This situation is discussed for instance in [32].

LEMMA 6.4. M(F) is weakly compact.

PROOF. We first show that M(F) is weakly closed, so let Qk ∈ M(F) con-
verge weakly to some probability measure Q. The BDG inequality and (6.2) yield
EQk

[supt≤T |St |p] ≤ CpσpT p/2 for any p ≥ 1, where Cp is a constant that only
depends on p. Since the right-hand side is uniform in k, Theorem 3.5 in [9] asserts
that EQk

[X] → EQ[X] holds for any continuous random variable X that grows at
most polynomially in supt≤T |ω(t)|. This immediately yields EQ[|St |] < ∞ for
all t , and in view of (6.1) also EQ[ψ2

i ] < ∞ and EQ[ψi] = 0. Moreover, one
obtains EQ[(St − Ss)X] = 0 for any σ(Su : u ≤ s)-measurable bounded contin-
uous random variable X. A monotone class argument lets us drop continuity of
X, showing that S is a Q-martingale for the filtration (σ (Su : u ≤ t))t∈[0,T ]. This
is extended to the right-continuous modification F by dominated convergence; we
omit the details. Thus, S is a Q-martingale for the filtration F. It only remains to
check that Q≪ P . Since Qk ≪ P , and hence Qk ∈ P , Lemma A.1 yields

EQk

[(
m∑

i=1

(Sti − Sti−1)
2

)p]
≤ σ 2p(t − s)p

(
1 + 4pp!

m

)
for any equidistant grid 0 ≤ s = t0 < · · · < tm = t ≤ T and any p ≥ 1 with p < m.
By the same weak convergence argument as above, this bound carries over to Q.
Considering the grid points tmi = s + i(t − s)/m and using Fatou’s lemma, we
therefore obtain

EQ

[([S,S]t − [S,S]s)p]≤ lim
m→∞EQ

[(
m∑

i=1

(Stmi
− Stmi−1

)2

)p]
≤ σ 2p(t − s)p
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for every p ≥ 1. Taking pth roots of the left- and right-hand sides and sending p

to infinity finally yields [S,S]t − [S,S]s ≤ σ 2(t − s). This shows that Q ∈ P , and
completes the proof that M(F) is closed.

It remains to prove that M(F) is tight. To this end, let p > 2 and fix any ε > 0.
Then the Markov and BDG inequalities together with (6.2) yield

1

δ
Q
(

sup
t≤s≤t+δ

|Ss − St | ≥ ε
)

≤ 1

δεp
EQ

[
sup

t≤s≤t+δ

|Ss − St |p
]
≤ Cpσp

εp
δp/2−1

for any δ > 0 and any t ∈ [0, T ] (we set Ss = ST for s > T ). By shrinking δ,
the right-hand side can be made arbitrarily small. Tightness now follows from
Theorem 7.3 and the subsequent Corollary in [9]. �

EXAMPLE 6.5 (Filtration enlargement in continuous time). We continue with
the setting of Example 6.3. Consider a filtration G obtained as the progres-
sive enlargement of F with a random time τ that depends continuously on ω ∈
C0([0, T ],R). Then an element Q ∈ M(F) lies in M(G) if and only if the martin-
gale condition

EQ

[
f (St1, . . . , Stk , τ ∧ s)(St − Ss)

]= 0

holds for all 0 ≤ t1 < · · · < tk ≤ s ≤ t ≤ T and all bounded continuous functions
f :Rk × [0, T ] →R. By continuity of τ , this is a closed condition. Hence, M(G)

is a weakly closed subset of M(F), thus weakly compact due to Lemma 6.4. The
relevant question, therefore, is whether M(G) is nonempty.

To give a simple concrete example, suppose τ(ω) = f (ω(T )) for some contin-
uous function f : R → [0, T ] that is equal to zero on an interval [−a, a] around
the origin. Then, for any model Q ∈ M(F) such that |ST | ≤ a almost surely, we
have τ = 0 almost surely, hence F and G coincide under Q, and thus Q ∈ M(F).
Therefore, provided that the condition |ST | ≤ a is consistent with the calibration
conditions EQ[ψi] = 0, M(G) will be nonempty. It will however typically be sig-
nificantly smaller than M(F), which is advantageous to an informed agent com-
puting robust super-hedging prices. Again, for both agents pricing can be done
over extreme measures, which for τ satisfying Theorem 5.1 are related via (5.2).

EXAMPLE 6.6 (Filtration enlargement and arbitrage or failure of compact-
ness). There are natural enlargements under which M(G) fails to be compact.
For example, let G be the progressive enlargement of F with the hitting time
τ = sup{t ∈ [0, T ] : St = 1} from Example 5.2, with τ = 0 if this set is empty.
As explained in Example 5.2, in order for S to be a martingale for G we must have
S < 1 almost surely. This is however not a closed condition. Indeed, if Qk is the
law of Brownian motion on [0, T ] stopped the first time it hits 1 − k−1, then Qk

converges weakly to the law, Q say, of Brownian motion stopped the first time it
hits 1. But S < 1 fails under Q, so Q /∈ M(G).
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Furthermore, depending on the static claims, M(G) = ∅ can occur. For exam-
ple, consider the case where there is only one static claim ψ = (ST − 1)+ − 1

2 .
The pricing condition EQ[ψ] = 0 imposes Q(ST > 1) > 0, hence in this case
M(G) = ∅. This situation is interpreted as existence of arbitrage for the informed
agent.

APPENDIX A: A TECHNICAL LEMMA

LEMMA A.1. Fix σ > 0 and let M be a continuous martingale with M0 = 0
and [M,M]t − [M,M]s ≤ σ 2(t − s) for all 0 ≤ s ≤ t ≤ T . Then, for any equidis-
tant grid 0 ≤ s = t0 < · · · < tm = t ≤ T and any p > 0 with p < m, we have

E

[(
m∑

i=1

(Mti − Mti−1)
2

)p]
≤ σ 2p(t − s)p

(
1 + 4pp!

m

)
.

PROOF. The proof uses the double factorial defined by n!! = n×(n−2) · · ·3×
1 for n odd, and (−1)!! = 1. We claim that

(A.1) E
[
M2k

t

]≤ (2k − 1)!!σ 2ktk, 0 ≤ t ≤ T ,

holds for any k ≥ 0. We proceed by induction on k. For k = 0, the statement is
obviously true. Let now k ≥ 1 and assume (A.1) is true for k − 1. Itô’s lemma
yields

M2k
t = 2k

∫ t

0
M2k−1

s dMs + k(2k − 1)

∫ t

0
M2k−2

s d[M,M]s .
The local martingale term is a true martingale due to the bound on [M,M]; we
omit the argument here. Taking expectations and using the induction assumption
as well as the bound on [M,M], this yields

E
[
M2k

t

]≤ σ 2k(2k − 1)

∫ t

0
E
[
M2k−2

s

]
ds

≤ σ 2kk(2k − 1)(2k − 3)!!
∫ t

0
sk−1 ds

= σ 2ktk(2k − 1)!!
as required. Thus, (A.1) holds for all k by induction.

Next, for ease of notation write �Mi = Mti − Mti−1 and h = ti − ti−1 =
(t − s)/m. A conditioning argument in conjunction with (A.1) yields, for any non-
negative integers k1, . . . , km,

E
[
�M

2k1
1 · · ·�M2km

m

]≤ (σ 2h
)k1+···+km

m∏
i=1

(2ki − 1)!!.
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Combining this with the multinomial theorem yields

E

[(
m∑

i=1

�M2
i

)p]

= ∑
k1+···+km=p

(
p

k1 · · ·km

)
E
[
�M

2k1
1 · · ·�M2km

m

]

≤ σ 2php
∑

k1+···+km=p

(
p

k1 · · ·km

)
m∏

i=1

(2ki − 1)!!

= σ 2phpmp + σ 2php
∑

k1+···+km=p

(
p

k1 · · ·km

)(
m∏

i=1

(2ki − 1)!! − 1

)

≤ σ 2phpmp + 4pp!σ 2phpmp−1,

where the last line uses the combinatorial inequality (A.2) below. Since mh = t −s,
the result follows.

It remains to prove the inequality

(A.2)
∑

k1+···+km=p

(
p

k1 · · ·km

)(
m∏

i=1

(2ki − 1)!! − 1

)
≤ 4pp!mp−1.

We proceed by induction, noting first that (A.2) holds for p = 1 since the left-
hand side is zero in this case. We now suppose (A.2) holds for p and prove it for
p + 1. Since any multi-index (k1, . . . , km) summing to p + 1 can be represented in
at least one way as (l1, . . . , lj−1, lj + 1, lj+1, . . . , lm) for some j and some multi-
index (l1, . . . , lm) summing to p, we have∑

k1+···+km=p+1

(
p + 1

k1 · · ·km

)(
m∏

i=1

(2ki − 1)!! − 1

)

≤
m∑

j=1

∑
l1+···+lm=p

(
p

l1 · · · lm

)
p + 1

lj + 1

(
(2lj + 1)

m∏
i=1

(2li − 1)!! − 1

)
.

This expression equals
m∑

j=1

∑
l1+···+lm=p

(
p

l1 · · · lm

)
p + 1

lj + 1

(
(2lj + 1)

(
m∏

i=1

(2li − 1)!! − 1

)
+ 2lj

)
,

which, since (A.2) is assumed to hold for p, is bounded by

2(p + 1)4pp!mp + 2(p + 1)

m∑
j=1

lj
∑

l1+···+lm=p

(
p

l1 · · · lm

)

= 2(p + 1)
(
4pp! + p

)
mp.
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The right-hand side is crudely bounded by 4p+1(p + 1)!mp , showing that (A.2)
holds for p + 1 as desired. �

APPENDIX B: PROOF OF THEOREM 4.6

In proving Theorem 4.6, we treat sufficiency and necessity separately. Suffi-
ciency is fairly straightforward, so we deal with this first. The last two statements
of the theorem will follow in the course of the proof; see (B.1) below regarding the
direct sum decomposition of L2(FT ), and Corollary B.6 for the constancy of S.
Recall that Q ∈ M(F) is fixed.

PROOF OF THEOREM 4.6: SUFFICIENCY. Let T be a full atomic tree satisfy-
ing 1–2. We need to prove that any X ∈ L2(FT ) admits a semi-static representa-
tion.

To start with, we claim that any X ∈ L2(FT ) has a representation

(B.1) X = E
[
X | σ(T)

]+ (H · S)T

for some H ∈ L2(S). To prove this, let A1, . . . ,Ad denote the leaves of T. Since
T is full, the leaves form a partition of � (up to a nullset). Together with the
assumption that S is complete on Ai × [t (Ai), T ] for each i, this yields

X =
d∑

i=1

X1Ai
=

d∑
i=1

(
xi + (Hi · S)T )1Ai

for some xi ∈ R and some Hi ∈ L2(S) with Hi = 0 on [[0, t (Ai)]]. Defining

H =
d∑

i=1

Hi1Ai
,

we then have H ∈ L2(S) and H = 0 on [[0, ζ(T)]]. Thus,

X =
d∑

i=1

xi1Ai
+ (H · S)T

and, using (4.2) and the optional stopping theorem,

E
[
X | σ(T)

]= E[X | Fζ(T)] =
d∑

i=1

xi1Ai
.

We deduce (B.1), as desired.
It now suffices to prove that any σ(T)-measurable random variable X (which is

automatically bounded, hence square-integrable) admits a semi-static representa-
tion. In view of (B.1), we can find Hi ∈ L2(S) such that

(B.2) ψi = E
[
ψi | σ(T)

]+ (Hi · S)T , i = 1, . . . , n.
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Due to assumption 2 and Remark 4.33, the constant 1 together with the random
variables E[ψi | σ(T)] span L2(σ (T)). Thus, there exist constants a0, . . . , an such
that

X = a0 +
n∑

i=1

aiE
[
ψi | σ(T)

]
.

In conjunction with (B.2), this yields

a0 +
n∑

i=1

aiψi = a0 +
n∑

i=1

aiE
[
ψi | σ(T)

]+ n∑
i=1

ai

(
Hi · S)T = X + (H · S)T ,

where H =∑n
i=1 aiH

i lies in L2(S). Thus, X admits a semi-static representation,
as required. This completes the proof of sufficiency in Theorem 4.6. �

To prove the forward implication (necessity) of Theorem 4.6, we need some pre-
liminary results. These results, specifically Proposition B.1, Lemmas B.4 and B.5,
and Corollary B.6 below, do not use the fact that Q ∈ M(F). Indeed they are
valid for any filtered probability space (�,F,F,Q) whose filtration F is right-
continuous. We write F0− = F0 by convention.

PROPOSITION B.1. Let M = (M1, . . . ,Md) be a d-dimensional square-
integrable weakly orthonormal martingale with E[M0] = 0; in particular, we as-
sume that E[Mi

T M
j
T ] = δij (the Kronecker delta) for i, j = 1, . . . , d . Assume also

that

(B.3) S(M) = span
{
M1, . . . ,Md}.

Then there exists an orthogonal matrix Q ∈ O(d) and time points 0 ≤ t1 < · · · <

tm ≤ T , such that the martingale N = QM is of the form:

(B.4) N =

⎛⎜⎜⎝
N(1)

...

N(m)

⎞⎟⎟⎠=

⎛⎜⎜⎝
N

(1)
T 1[[t1,T ]]

...

N
(m)
T 1[[tm,T ]]

⎞⎟⎟⎠ ,

where each N(k) is a dk-dimensional martingale for some 1 ≤ dk ≤ d . Each mar-
tingale N(k) = (N(k),1, . . . ,N(k),dk ) satisfies

(B.5) S
(
N(k))= span

{
N(k),1, . . . ,N(k),dk

}
.

Moreover, for each k there exist dk pairwise disjoint atoms Bk
1 , . . . ,Bk

dk
of Ftk−

such that

(B.6)
{
Q
(
N

(k)
T �= 0 | Ftk−

)
> 0
}= Bk

1 ∪ · · · ∪ Bk
dk

.

REMARK B.2. Of course, d1 + · · · + dm = d . Furthermore, note that some of
the atoms Bk

i may be nullsets.
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PROOF. We first prove the existence of Q ∈ O(d) and 0 ≤ t1 < · · · < tm ≤ T

such that N = QM is of the form (B.4). We proceed by induction on d . The case
d = 0 is vacuously true, so we need only prove the result under the assumption
that it holds with d replaced by any r < d .

For any fixed t ∈ [0, T ] and i ∈ {1, . . . , d}, define a bounded predictable process
H = (H 1, . . . ,Hd) by Hi = 1[[0,t]] and Hj = 0 for j �= i. Then (B.3) implies

(B.7) Mi
t = (H · M)T =

d∑
j=1

C
ij
t M

j
T

for some deterministic constants C
ij
t . Let Ct denote the matrix with elements C

ij
t .

We claim that

(B.8) Ct is symmetric and the map t �→ Ct is càdlàg.

Indeed, orthonormality of M , (B.7), and the martingale property of M yield

(B.9) C
ij
t =

d∑
k=1

Cik
t E
[
Mk

T M
j
T

]= E
[
Mi

t M
j
T

]= E
[
Mi

t M
j
t

]= E
[[

Mi,Mj ]
t

]
,

showing that Ct is symmetric. Moreover, the Kunita–Watanabe inequality fol-
lowed by the Cauchy–Schwarz inequality and square-integrability of M yield∣∣[Mi,Mj ]

t

∣∣≤ [Mi,Mi]1/2
t

[
Mj,Mj ]1/2

t ≤ [Mi,Mi]1/2
T

[
Mj,Mj ]1/2

T ∈ L1.

Thus, since [Mi,Mj ] is càdlàg, (B.9) and the dominated convergence theorem
imply (B.8).

Now, define

tm = inf{t ≥ 0 : rankCt = d}.
Since CT = I due to (B.9), we have tm ∈ [0, T ]. Since Ct is càdlàg, we have
rankCtm = d . If tm = 0, then (B.7) yields MT = C−1

0 M0, which is F0-measurable.
Thus, M is constant, and (B.4) holds with m = 1 and Q the identity. If instead
tm > 0, there exists some s ∈ [0, tm) such that rankCt is constant on [s, tm). Let
r = rankCs < d be this constant value.

Since Cs is symmetric, we have Cs = Q�
1 �Q1 for some Q1 ∈ O(d) and some

diagonal matrix � = Diag(λ1, . . . , λr,0, . . . ,0), where λ1, . . . , λr are nonzero.
Define a new orthonormal martingale M̂ and matrix map Ĉ by

M̂ = Q1M and Ĉ = Q1CQ�
1 .

Due to (B.3), we have

(B.10) S(M̂) = span
{
M̂1, . . . , M̂d}.

Moreover, in view of (B.7),

M̂t = Ĉt M̂T for all t ∈ [0, T ].
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We establish some properties of Ĉ. Since rank Ĉtm = d , we have M̂T = Ĉ−1
tm M̂tm ,

which is Ftm-measurable. Thus M̂ is constant on [tm, T ], whence Ĉt = I there.
Next, we have by construction that Ĉs is diagonal with Ĉii

s = λi �= 0 for i =
1, . . . , r . Thus, M̂i

T = λ−1
i M̂i

s is Fs -measurable for i = 1, . . . , r , so that M̂i is
constant on [s, T ]. It follows that

Ĉ
ij
t =

d∑
k=1

Ĉik
t E
[
M̂k

T M̂
j
T

]= E
[
M̂i

t M̂
j
T

]= E
[
M̂i

T M̂
j
T

]= δij

for all t ∈ [s, T ], i ∈ {1, . . . , r}, and j ∈ {1, . . . , d}. Since rank Ĉt = r for t ∈
[s, tm), this forces Ĉ

ij
t = 0 for i, j ∈ {r + 1, . . . , d} and t ∈ [s, tm). To summarize,

we have shown that

Ĉt =
(

I 0
0 I1[tm,T ](t)

)
∈ Sr+(d−r) for t ∈ [s, T ].

Defining M̂ ′ = (M̂1, . . . , M̂r) and M̂ ′′ = (M̂r+1, . . . , M̂d), it follows that

(B.11) M̂ ′′ = M̂ ′′
T 1[[tm,T ]],

and that M̂ ′ is constant on [s, T ]. This immediately implies that M̂ ′ and M̂ ′′ are
strongly orthogonal. Thus, for any H ∈ L2(M̂ ′), we have that (H · M̂ ′)T is orthog-
onal to M̂i

T for i = r + 1, . . . , d . Consequently, in the representation(
H · M̂ ′)

T = a1M̂
1
T + · · · + adM̂d

T ,

which exists by (B.10), we actually have ar+1 = · · · = ad = 0. This proves the
nontrivial inclusion in

(B.12) S
(
M̂ ′)= span

{
M̂1, . . . , M̂r}.

Since M̂ ′ itself is an r-dimensional weakly orthonormal martingale with E[M̂ ′
0] =

0, we may now apply the induction assumption to get Q′
1 ∈ O(r) and time points

0 ≤ t1 < · · · < tm−1 ≤ T such that N ′ = Q′
1M̂

′ = (N1, . . . ,Nr) satisfies

(B.13) N ′ =

⎛⎜⎜⎝
N(1)

...

N(m−1)

⎞⎟⎟⎠ , where N(k) = N
(k)
T 1[[tk,T ]], k = 1, . . . ,m − 1.

Since M̂ ′, and hence N ′, is constant on [s, T ], we in fact have tm−1 < tm. Defining
the matrix

Q = Q2Q1 where Q2 =
(
Q′

1 0
0 I

)
∈ O(d),

it follows from (B.11) and (B.13) that N = QM = (N(1), . . . ,N(m−1), M̂ ′′) is of
the desired form. This completes the proof of (B.4).
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Next, (B.5) follows by the same argument that gave (B.12), using the obvious
fact that the martingales N(k) are mutually strongly orthogonal.

Finally, for each k ∈ {1, . . . ,m} we locate dk pairwise disjoint atoms
Bk

1 , . . . ,Bk
dk

of Ftk− such that (B.6) holds (recall our convention F0− = F0). To
this end, define

Bk = {Q(N(k)
T �= 0 | Ftk−

)
> 0
} ∈ Ftk−.

We need to decompose Bk into dk atoms. Consider any bounded Ftk−-measurable
random variable h vanishing outside Bk . Define the predictable process H =
h1[[tk,T ]]. Due to (B.4) and (B.5), we then have

hN
(k),i
T = (H · N(k),i)

T =
dk∑

j=1

aijN
(k),j
T , i = 1, . . . , dk,

for some constants aij . Note that this holds also when tk = 0, due to our convention
regarding the time-zero value of stochastic integrals. Letting A be the dk × dk

matrix with elements aij , we write this in vector form as

hN
(k)
T = AN

(k)
T .

This implies that h is an eigenvalue of A on Bk . To see this, note that

{h is an eigenvalue of A} ⊇ {N(k)
T �= 0

}
.

Taking Ftk−-conditional probabilities and using that h is Ftk−-measurable, we get

1{h is an eigenvalue of A} ≥Q
(
N

(k)
T �= 0 | Ftk−

)
> 0 on Bk,

by definition of Bk . This shows that h is an eigenvalue of A on Bk . Since the
dk × dk matrix A can have at most dk distinct eigenvalues, the random variable h

can take at most dk different values. Since h was arbitrary, we deduce the existence
of a decomposition

Bk = Bk
1 ∪ · · · ∪ Bk

dk

into (possibly trivial) atoms of Ftk−, as required. �

REMARK B.3. The conclusions (B.4) and (B.6) of Proposition B.1 are not
quite strong enough to imply (B.3). More specifically, the decomposition (B.6)
into atoms is not enough to imply (B.5); one also has to account for the interplay
between the processes N(k),i on each atom Bk

j . This is captured by the relation

span
{
N(k),1, . . . ,N(k),dk

}= span
{
1Bk

j
N(k),i : i, j = 1, . . . , dk

}
,

which is a consequence of (B.5) and (B.6). It is not hard to show that together
with (B.4) and (B.6), this actually implies (B.3), yielding a converse of Proposi-
tion B.1. As the current formulation of Proposition B.1 is sufficient for our pur-
poses, we refrain from developing this line of reasoning further.
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LEMMA B.4. Let X be a semimartingale with Xt = f (t) for all t < τ , where
f is a deterministic function and τ is a stopping time. Then f is of finite variation
on [0, t∗] for any t∗ such that Q(τ ≥ t∗) > 0.

PROOF. Suppose for contradiction that f is not of finite variation on [0, t∗].
Then there exist partitions 0 = tn0 < · · · < tnNn

= t∗ indexed by n such that∑Nn

i=1 |f (tni ) − f (tni−1)| → ∞ as n → ∞. For each n, define the elementary

predictable process Hn = H̃ n1[[0,τ ]], where H̃ n =∑Nn

i=1 sgn(f (tni ) − f (tni−1)) ×
1]]tni−1,t

n
i ]]. Then

(
Hn · X)t∗ =

Nn∑
i=1

∣∣f (τ ∧ tni
)− f
(
τ ∧ tni−1

)∣∣,
whence Q(lim infn(Hn ·X)t∗ = ∞) ≥Q(τ ≥ t∗) > 0. Since X is a semimartingale
and |Hn| ≤ 1, this gives the desired contradiction. Indeed, as a direct consequence
of the bounded convergence theorem for stochastic integrals, the set{

(H · X)t∗ : H is elementary predictable with |H | ≤ 1
}

is bounded in probability. �

LEMMA B.5. Let M be a continuous local martingale, and let B be an atom
of Ft∗ or of Ft∗− for some t∗ > 0. Then Mt = M0 on B for all t < t∗.

PROOF. Consider the stopping time τ = inf{t : Q(B | Ft ) = 0} as well as the
events Bt = {τ > t} = {Q(B | Ft ) > 0} ⊇ B for t < t∗. We have τ = ∞ on B , and
we may suppose that Q(B) > 0. Now, suppose for contradiction that Bt = B1 ∪B2
for two disjoint nonnullsets B1,B2 ∈ Ft . Then B ⊆ B1 (possibly after relabeling)
since B is an atom, and thus Q(B | Ft ) = 0 on B2, a contradiction. Hence, Bt is an
atom of Ft , which implies Mt1Bt = f (t)1Bt for some f (t) ∈ R. Thus, Mt = f (t)

for all t < τ ∧ t∗, so Lemma B.4 yields that f is of finite variation on [0, t∗]. Thus,
Mτ∧t∗ is a continuous local martingale of finite variation, and therefore constant.
This completes the proof. �

COROLLARY B.6. Let T be a full atomic tree and M a continuous local mar-
tingale. Then M is constant on [[0, ζ(T)]].

PROOF. Lemma B.5 implies that M is constant on A × [0, t (A)) for each leaf
A ∈ T. Thus, M is constant on [[0, ζ(T)[[, and the result follows by continuity
of M . �

The following result is the key step toward proving the forward implication of
Theorem 4.6. This is where the required full atomic tree is constructed. Once this
has been done, it is straightforward to complete the proof of the theorem.
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LEMMA B.7. Assume S is continuous and semi-static completeness holds.
Then there exists a full atomic tree T such that each ψi , i = 1, . . . , n, admits a
representation

ψi = E
[
ψi | σ(T)

]+ (Hi · S)T
for some Hi ∈ L2(S).

PROOF. If dynamic completeness holds, the result is clearly true with T =
{�}. We therefore suppose that dynamic completeness fails. For each i = 1, . . . , n,
let Hi · S be the orthogonal projection of the martingale E[ψi | Ft ] onto S(S) and
define the martingale V = (V 1, . . . , V n) by

V i
T = ψi − (Hi · S)T , i = 1, . . . , n.

Suppose we can find a full atomic tree T such that

(B.14) V i
T is σ(T)-measurable for i = 1, . . . , n.

Then, since S is constant on [[0, ζ(T)]] by Corollary B.6, we have E[(H i · S)T |
Fζ(T)] = 0. Since also σ(T) = Fζ(T) up to nullsets, we deduce

ψi − (Hi · S)T = E
[
ψi | σ(T)

]
,

which is the required conclusion.
We thus only need to find a full atomic tree T such that (B.14) holds. To this

end, note that each V i is weakly orthogonal to S(S), and hence also strongly or-
thogonal; see for example, Theorem VIII.49 in [13]. Together with semi-static
completeness and the fact that E[V i

T ] = 0, this yields

span
{
V 1, . . . , V n}= S(S)⊥ ⊇ S(V ),

where S(S)⊥ denotes the weak orthogonal complement of S(S). Since
span{V 1, . . . , V n} ⊆ S(V ) holds trivially, we actually have equality, and this
suggests that Proposition B.1 should be used. To prepare for this, choose a
(weakly) orthonormal martingale M = (M1, . . . ,Md) with span{M1, . . . ,Md} =
span{V 1, . . . , V n}. Here, d = dim span{V 1, . . . , V n}, and we have d ≥ 1 since we
assumed that dynamic completeness does not hold. The martingale M inherits the
property

S(M) = span
{
M1, . . . ,Md}.

Proposition B.1 now yields Q ∈ O(d) and 0 ≤ t1 < · · · < tm ≤ T , m ≥ 1, such
that the martingale N = QM satisfies (B.4)–(B.6) for some atoms Bk

1 , . . . ,Bk
dk

of
Ftk−, with d1 + · · · + dm = d . Since V , M and N are related by (deterministic)
invertible linear transformations, (B.14) is equivalent to

(B.15) Ni
T is σ(T)-measurable for i = 1, . . . , d ,
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and semi-static completeness means that we have

(B.16) L2(FT ) = span
{
1,N1, . . . ,Nd}⊕ S(S).

We now construct T inductively. Set k = 1 and T = {�}. With N(0) = 0, it is
clear that the pair (k,T) satisfies the following induction hypothesis:

(B.17)

T is full,

Ft (A) ⊆ Ftk− for all A ∈ T,

N(l) is σ(T)-measurable for l < k.

Assume now that the pair (k,T) satisfies (B.17). The induction step proceeds
as follows. First, the case k = 1, t1 = 0 requires special treatment. In this case,
we simply re-define T to consist of those events among the F0-measurable atoms
B1

1 , . . . ,B1
d1

,� \ (B1
1 ∪ · · · ∪ B1

d1
) that are nonnull. If m = 1, we are done: (B.15)

holds. Otherwise, set k = 2, note that (B.17) is satisfied for the new pair (T, k),
and proceed with the induction.

Next, consider the case tk > 0. Equation (B.6) says that {Q(N
(k)
T �= 0 | Ftk−) >

0} = Bk
1 ∪ · · · ∪ Bk

dk
. Consider Bk

1 . Either Q(Bk
1 ) = 0, in which case we ignore

it, or Q(Bk
1 ) > 0. In the latter case, since T is full, we can find a leaf A with

Q(A ∩ Bk
1 ) > 0. We now show that then, in fact,

(B.18) A = Bk
1 up to a nullset.

To this end, first observe that Bk
1 ⊆ A since Bk

1 is an atom and A ∈ Ft (A) ⊆ Ftk

by (B.17). Next, using (B.16) and taking Ftk−-conditional expectations while
keeping in mind (B.4), we obtain

(B.19) 1Bk
1
= Q
(
Bk

1
)+ (H · S)tk +∑

l<k

a�
l N

(l)
T

for some H ∈ L2(S) and some al ∈ Rdl , l < k. Since A is a leaf of σ(T), and using
the induction hypothesis (B.17), we find∑

l<k

a�
l N

(l)
T = c on A

for some constant c. Moreover, Lemma B.5 implies that (H · S)tk = 0 on Bk
1 .

Inspecting (B.19) on the event Bk
1 we thus obtain

Q
(
Bk

1
)+ c = 1.

Next, another application of Lemma B.5 yields

1A(H · S)tk = 1A(H1]]t (A),tk]] · S)tk = (K · S)tk ,

where K = H1A1]]t (A),tk]] ∈ L2(S). Thus, multiplying both sides of (B.19) by 1A

we get

1Bk
1
= 1A

(
Q
(
Bk

1
)+ c
)+ (K · S)tk = 1A + (K · S)tk .
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Taking expectations yields Q(Bk
1 ) = Q(A). Together with the fact that Bk

1 ⊆ A,
this proves (B.18).

Repeating this for each Bk
i , we identify events A1, . . . ,Ap that are leaves of T

and atoms of Ftk− and satisfy

(B.20)
{
Q
(
N

(k)
T �= 0 | Ftk−

)
> 0
}= A1 ∪ · · · ∪ Ap.

On this set, we have St = S0 for t ≤ tk due to Lemma B.5. Together with (B.16)
and in view of (B.4), this implies that the linear space{

X ∈ L2(Ftk ) : X = 0 outside A1 ∪ · · · ∪ Ap

}
is spanned by {N(l),1, . . . ,N(l),dl : l = 1, . . . , k} together with 1A1∪···∪Ap . In par-
ticular, it is finite-dimensional. Thus each set Ai can be decomposed into finitely
many nonnull atoms of Ftk , which we denote by Aij , j = 1, . . . , ni , that satisfy

σ
(
N(k))⊆ σ(Aij : i = 1, . . . , p, j = 1, . . . , ni)

up to nullsets. Moreover, since N(k) is a martingale and not identically zero on Ai

due to (B.20), and since tk > 0, we have ni ≥ 2 for each i. Define the atomic tree

T′ = T ∪ {Aij : i = 1, . . . , p, j = 1, . . . , ni}.
The above observations together with the induction hypothesis (B.17) show that T′
is again full, N(1), . . . ,N(k) are σ(T′)-measurable, and t (A) < tk+1 for all A ∈ T′
(setting tm+1 = ∞). Now replace T by T′. If k = m, we are done: (B.15) holds.
Otherwise, we replace k by k + 1, observe that (B.17) is satisfied for the new pair
(k,T), and iterate. The procedure ends after m steps. The proof is complete. �

We can now complete the proof of Theorem 4.6.

PROOF OF THEOREM 4.6: NECESSITY. Let T be the full atomic tree given by
Lemma B.7. We first prove 1. Let A be any leaf of T, and consider an arbitrary
X ∈ L2(FT ). By semi-static completeness,

X = a0 +
n∑

i=1

aiψi + (H · S)T

for some constants a0, . . . , an and some H ∈ L2(S). By Lemma B.7, we have
H 1, . . . ,Hn in L2(S) such that

(B.21) X = a0 +
n∑

i=1

aiE
[
ψi | σ(T)

]+ (K · S)T ,

where K = H + H 1 + · · · + Hn. Since any σ(T)-measurable random variable is
constant on A, we have

(B.22) X = x + (K · S)T on A
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for some x ∈ R. Finally, Lemma B.5 shows that S is constant on A×[0, t (A)]. We
may thus replace K by K1]]t (A),T ]] without invalidating (B.22), and conclude that
S is complete on A × [t (A), T ]. This proves 1.

We now prove 2. Again, let A be any leaf of T. With X = 1A, (B.21) yields

1A = a0 +
n∑

i=1

aiE
[
ψi | σ(T)

]+ (K · S)T ,

where, by Corollary B.6, we have (K · S)ζ(T) = 0. The optional stopping theorem
and the fact that σ(T) =Fζ(T) up to nullsets then yield

1A = a0 +
n∑

i=1

aiE
[
ψi | σ(T)

]
.

We conclude that {E[ψi | σ(T)] : i = 1, . . . , n} together with the constant 1 span
the (dim T)-dimensional space L2(σ (T)), and since E[ψi] = 0 for all i the former
set must contain dim T − 1 linearly independent elements. This proves 2. �

APPENDIX C: A JEULIN–YOR THEOREM

In this section, we state and prove a slight generalization of the classical Jeulin–
Yor theorem from the theory of progressive enlargement of filtrations; see [27] and
[20], among others. This result is needed in Section 5.

Recall that we work on a given filtered measurable space (�,F,F) whose fil-
tration F is right-continuous. Let τ be a random time and X a nonnegative bounded
random variable such that τ = ∞ on {X = 0}. Denote by H the filtration generated
by the single-jump process X1[[τ,T ]]. Define G as the progressive enlargement of
F with H; see (5.1). Then in particular,

(C.1) Ft ∩ {τ > t} = Gt ∩ {τ > t} for all t ∈ [0, T ],
see Lemma 2.5 in [28]. By (the proof of) Lemma 1 in [27] this implies that for any
G-predictable process H there exists an F-predictable process J such that

(C.2) J1[[0,τ ]] = H1[[0,τ ]].

Next, fix any probability measure Q on GT . Let Z denote the right-continuous
supermartingale associated with τ by Azéma [2] via

(C.3) Zt = Q(τ > t | Ft ),

and let A denote the dual predictable projection of the bounded process X1[[τ,∞[[;
see Theorem 12 in Appendix I of [13]. Note that the usual conditions are not
assumed and not needed here. By Lemma A.10 in [20], whose proof still goes
through in our setting, we have Z− > 0 except on a dA-nullset.
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LEMMA C.1. The process M given by

Mt = X1{τ≤t} −
∫ t∧τ

0

1

Zs−
dAs

is a G-martingale.

PROOF. We follow the proof of the Jeulin–Yor theorem given by [20]. Define
N = X1[[τ,∞[[, let H be any bounded G-predictable process, and let J be an F-
predictable process satisfying (C.2). Note that Z− coincides with the predictable
projection of 1[[0,τ ]] by the same argument as in the proof of Theorem 1.1 in [20].
Using also the definition of A, we then obtain

E

[∫ ∞
0

Ht dNt

]
= E[HτX1{τ<∞}] = E[JτX1{τ<∞}]

= E

[∫ ∞
0

Jt dNt

]
= E

[∫ ∞
0

Jt dAt

]
= E

[∫ ∞
0

JtZt−
dAt

Zt−

]
= E

[∫ ∞
0

Jt1[[0,τ ]]
dAt

Zt−

]

= E

[∫ ∞
0

Ht1[[0,τ ]]
dAt

Zt−

]
.

This proves the lemma. �
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