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PHASE TRANSITION IN A SEQUENTIAL ASSIGNMENT
PROBLEM ON GRAPHS

BY ANTAL A. JÁRAI

University of Bath

We study the following sequential assignment problem on a finite graph
G = (V,E). Each edge e ∈ E starts with an integer value ne ≥ 0, and we
write n =∑

e∈E ne. At time t , 1 ≤ t ≤ n, a uniformly random vertex v ∈ V is
generated, and one of the edges f incident with v must be selected. The value
of f is then decreased by 1. There is a unit final reward if the configuration
(0, . . . ,0) is reached. Our main result is that there is a phase transition: as
n → ∞, the expected reward under the optimal policy approaches a constant
cG > 0 when (ne/n : e ∈ E) converges to a point in the interior of a certain
convex set RG, and goes to 0 exponentially when (ne/n : e ∈ E) is bounded
away from RG. We also obtain estimates in the near-critical region, that is
when (ne/n : e ∈ E) lies close to ∂RG. We supply quantitative error bounds
in our arguments.

1. Introduction. Consider the following game (known in different versions
[6, 11], Section 1.7). Players start with a row of N empty boxes. In each of N

rounds, a random digit is generated, and each player has to place it into one of
the empty boxes they have. A player’s score is the N digit number obtained after
the last round. The game is a special case of sequential stochastic assignment
introduced by Derman, Lieberman and Ross [3]. In sequential assignment, there
are N jobs with given values p1 ≤ · · · ≤ pN that have to be assigned to N workers,
as they appear in sequence. The ith worker has ability Xi , where X1, . . . ,XN are
i.i.d. random variables from a given distribution F . The reward from assigning the
job of value pi to a worker with ability x is pix, and the overall reward of the
assignment is the sum of the individual rewards. The game mentioned at the start
is recovered when pi = 10i−1, and Xi is uniform in {0, . . . ,9}.

The paper [3] showed that there is a strategy that maximizes the expected
score independently of what p1, . . . , pN are. This strategy has the following form.
There are numbers −∞ = a0,n ≤ a1,n ≤ · · · ≤ an−1,n ≤ an,n = ∞, n ≥ 1, that
only depend on the distribution F , such that if there are n jobs remaining to
be assigned, with values p′

1 ≤ · · · ≤ p′
n, and the next worker has ability x with

ai−1,n ≤ x ≤ ai,n, then the worker is assigned to the job with value p′
i .
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Albright and Derman [1] showed, using law of large numbers type arguments,
that when F is absolutely continuous, one has limn→∞ aqn,n = F−1(q), 0 < q <

1, as n → ∞. In particular, when the number n of jobs is large, a worker with
ability x should be assigned to a job with rank approximately qn, where F−1(q) =
x. Note that when F is discrete, this way of determining the asymptotics breaks
down: when x is an atom of F , the graph of F−1 has a horizontal piece at height x.
For large finite n, the value of q where the profile aqn,n crosses height x can be
expected to be somewhere in the corresponding interval of constancy of F−1, and
its precise location can be expected to be governed by large deviation effects.

In order to motivate the subject of our paper, consider the following modifica-
tion of the game mentioned at the beginning. Suppose that each digit can take the
values 1, . . . , k, with equal probability. Also suppose that the goal of the player
is to maximize the probability of achieving the maximum possible score, that is
to reach the unique final assignment consisting of k contiguous intervals of equal
digits. Let τ be the first time when all k numbers have occurred at least once.
At time τ , the empty boxes form k − 1 intervals of lengths n1, . . . , nk−1, where
n − τ = ∑k−1

i=1 ni . The ith interval has a box filled with i adjacent to it on the
right, and a box filled with i + 1 adjacent to it on the left. It is plausible that there
exist numbers 0 = α1 < α2 < · · · < αk−1 < αk = 1, such that for large n, under
the optimal strategy, ni/n ∼ αi+1 − αi , i = 1, . . . , k − 1. We will be interested
in the following question. Suppose that an alternative position is imposed on the
player, where the intervals have length n′

i ∼ (βi+1 −βi)n
′, i = 1, . . . , k − 1, where

0 = β1 < β2 < · · · < βk−1 < βk = 1. What is the behaviour of the probability that
the player can achieve the maximal score from this position?

We show that the above probability displays a sharp transition in the limit n′ →
∞. When the vector (βi+1 − βi : i = 1, . . . , k − 1) lies in the interior of a certain
convex set Rk , the probability approaches a positive constant, whereas it goes to 0
exponentially when the vector is at a positive distance from Rk .

More generally, we consider the above transition on a general finite graph G =
(V ,E) with vertices labelled 1, . . . , k. The starting position is a vector (ne : e ∈
E), and n = ∑

e∈E ne. When a number 1 ≤ i ≤ k is rolled, one of the edges f

incident with vertex i is selected by the player, and the value assigned to edge f

is decreased by 1. We assign a final reward of 1 when the configuration (0, . . . ,0)

is reached, and refer to this as “winning”. In the game described at the beginning,
the graph is a path of length k − 1.

We believe the study of this model is interesting for a number of reasons.

1. Questions of reachability have been studied in control theory for a long
time ([10], Sections 19, 20). In our model, the controllable set RG, that allows
the player to reach the state (0, . . . ,0) with uniformly positive probability, has a
simple characterization, which however involves the graph structure in a nontriv-
ial way; see equation (2) and Lemma 4. As we show, choosing the right control
is only essential near ∂RG. We believe our model, which is tractable on a gen-
eral graph, is a useful example system to have in understanding the behaviour of
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discrete controlled systems with spatial structure near critical regions. Indeed, the
main technical effort in this paper is getting estimates in the near critical region,
that we do in Section 3.

2. In deriving the optimal strategy for sequential assignment, Derman, Lieber-
man and Ross [3] used Hardy’s inequality, of which we have no analogue on
graphs. Our proofs work without knowledge of the optimal strategy, and only rely
on martingale and Lyapunov function techniques, as well as an explicit relation-
ship between RG and available controls. Thus, our arguments may be adaptable
to other models. It may be that the transition phenomenon itself can be estab-
lished with less effort, given more information on the optimal strategy (see, e.g.,
Question 1 in Section 4). Nevertheless, we believe that the quantitative bounds we
derive are of independent interest.

3. As the title of this paper suggests, we view the transition studied in this paper
as an instance of a critical phenomenon.1 While such transitions are ubiquitous in
stochastic control, we found little in the literature that connects them with critical
phenomena. We believe that such a point of view can be beneficial, and was indeed
our original motivation for this study. Examples of works in the physics literature
that address an interplay between controllability and network structure are [7, 9,
13].

4. Further problems that are important for applications can be studied in our
model or suitable modifications thereof. For example, we see no obvious dis-
tributed control, where vertices would only have local information about the graph
structure.

1.1. Definition of the model. Throughout G = (V ,E) will be a finite con-
nected simple graph (without multiple edges or loops). We write k = |V |, and
assume |E| ≥ 2 (the case with one edge being trivial). We write degG(v) for the
degree of v ∈ V , and degF (v) for the degree of v in the subgraph of G induced by
the set of edges F ⊂ E.

The state at time 0 ≤ t ≤ n is an integer vector N(t) = (Ne(t) : e ∈ E), where
the starting state is N(0) = n = (ne : e ∈ E). Usually we will use capitalized letters
for random variables or random processes, and lowercase letters for their possible
values. We write n =∑

e∈E ne. Let V1, . . . , Vn ∈ V be an i.i.d. sequence of vertices
with P[Vi = v] = 1

k
, v ∈ V , i = 1, . . . , n. If the player allocates Vt to the edge e

incident with Vt , the state is updated as

N(t) = N(t − 1) − 1e where 1e = (
1e
f : f ∈ E

)
,1e

f =
{

1, if f = e;

0, if f 
= e.

1A reader unfamiliar with critical phenomena can find a good introduction in the short text [4]. We
note that such familiarity is not required for understanding this paper.
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The gambler wins if N(n) = (0, . . . ,0) ∈ NE , and looses otherwise. We denote
by pG(n) the probability of winning under the optimal strategy, when the starting
state is n. This satisfies

(1) pG(n) = 1

k

∑
v∈V

max
e∈E:e∼v

pG

(
n − 1e),

known as the optimality equation [12], Section I.1, where e ∼ v means that e is
incident with v.

We introduce some notation needed to state our main theorem. We write SG for
the probability simplex in RE , that is, the set of nonnegative vectors x ∈ RE such
that

∑
e∈E xe = 1. We define

d(F ) = ∣∣{v ∈ V : degF (v) = degG(v)
}∣∣, ∅ ⊂ F ⊂ E;

RG =
{

x ∈ SG : for all ∅� F �E we have
∑
e∈F

xe >
1

k
d(F )

}
;

IG =
{

x ∈ SG : there exists ∅� F �E such that
∑
e∈F

xe <
1

k
d(F )

}
.

(2)

The letters “d”, “R” and “I” are intended to evoke “degree”, “reachable” and
“inaccessible”, as we explain. For any nonempty set F of edges, d(F )

k
is the prob-

ability that the player receives a vertex that has full degree in F . Any such vertex
must be allocated to one of the edges in F . For starting positions n = (ne : e ∈ E)

where the proportion of space
∑

e∈F ne/n available at the beginning is smaller than
d(F )/k, the probability of winning goes to 0 (as n → ∞). Therefore, from the re-
gion IG the winning position is asymptotically inaccessible. On the other hand,
as we show in Theorem 1, if n = nx with x ∈ RG, then the winning position is
asymptotically reachable from n. As we point out in Section 2.1, the set RG arises
as the region of controllability for a simple (deterministic) linear control system
associated to the game. It can be verified that when G is a tree with k vertices
(k ≥ 3) RG is a parallelepiped. As we will not need this fact, we omit the proof.

REMARK. The arguments we present in this paper are also applicable to the
slightly more general model when V1, . . . , Vn are not uniformly distributed (but
still i.i.d.). Suppose P[Vi = v] = pv with a probability vector p = (pv : v ∈ V )

such that pv > 0 for all v ∈ V . In this case, RG and IG are replaced by

RG,p =
{

x ∈ SG : for all ∅� F �E we have
∑
e∈F

xe >
∑

v:degF (v)=degG(v)

pv

}
;

IG,p =
{

x ∈ SG : there exists ∅� F �E such that
∑
e∈F

xe <
∑

v:degF (v)=degG(v)

pv

}
.
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FIG. 1. (a) Image of pG(m,200 − m − �, �) when G is a path of length three (k = 4) and n = 200.
The limit of pG is a positive constant in the rectangle 1

4 < x = m/n,y = �/n < 1
2 (dark region), and

goes to 0 when (x, y) is away from the rectangle (white region). The maximum of pG is ≈ 0.2583299.
(b) Detailed image of pG near the corner of the critical region 0.15 ≤ m/n ≤ 0.35, 0.4 ≤ �/n ≤ 0.6.

As the required changes in the proofs are minor, but including them would burden
the notation further, we state and prove the results only in the uniform case. All
the essential difficulties are already present in the uniform model.

1.2. Main results. Theorems 1 and 2 below state our main results. Figure 1
illustrates these when G is a path of length three, that is, k = 4.

THEOREM 1. Let G be a finite connected simple graph with |E| ≥ 2.

(i) If x ∈ IG, and n = nx + O(1), then pG(n) → 0 exponentially fast, as n →
∞, at a rate depending on x. The rate of decay is bounded away from 0 on subsets
bounded away from RG.

(ii) There exists a constant cG > 0, such that if x ∈ RG, and n = nx + O(1),
then pG(n) → cG, as n → ∞.

In Section 3, we obtain bounds on the behaviour near ∂RG. These show that the
“critical window” has width of order

√
n around n∂RG. Our bounds in particular

imply the following upper bound on pG(n) in this region. Fix any δ > 0, and let

Mn = Mn(δ) = max
{
pG(n) : n/n ∈ SG,dist(n/n, ∂RG) ≤ δ

}
.

THEOREM 2. For any δ > 0, we have lim supn→∞ Mn(δ) ≤ cG.

Combining Theorems 1 and 2, we obtain the following corollary.

COROLLARY 3. The configuration n that maximizes pG(n) with n fixed, sat-
isfies pG(n) = cG + o(1), as n → ∞.
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Theorems 1 and 2 do not rule out the possibility that pG(n) is maximized near
the critical surface, at a distance that is o(n). But of course we expect that the
location of the maximum, when rescaled by 1/n, converges to a point in the interior
of RG. It is also plausible that the location of this point can be characterized in
terms of large deviation rates for events of the form “the gambler runs out of space
on the edges in F ”, that is,{ ∑

v:degF (v)=degG(v)

n∑
t=1

1Vt=v >
∑
e∈F

ne

}
, ∅� F � E.

We state an explicit conjecture for a path of length k − 1, where this is easiest to
formulate. Let

a∗(j ;k) = log(
k−j−1
k−j

)

log(
j (k−j−1)

(j+1)(k−j)
)
, 1 ≤ j ≤ k − 2, a∗(0;k) = 0, a∗(k − 1;k) = 1.

Let nmax = (nmax
j : j = 1, . . . , k − 1) denote a point in nSG where pG(n) is maxi-

mized, n ≥ 1.

CONJECTURE. Let k ≥ 3. Then for 1 ≤ j ≤ k − 2, we have

lim
n→∞

1

n

j∑
�=1

nmax
j = a∗(j ;k).

The number a∗(j ;k) is obtained as the unique point a ∈ (
j
k
,

j+1
k

), for which the
“cheaper” of the two large deviation events{ j∑

v=1

n∑
t=1

1Vt=v > an

}
and

{
k∑

v=j+2

n∑
t=1

1Vt=v > (1 − a)n

}

is as “expensive” as possible. (This number a can be obtained by equating the large
deviation rates of the two events.) Each a∗(j ;k) marks out a linear submanifold of
SG, and the location of the optimum is their intersection. We expect that a similar
characterization holds for any connected graph G.

The structure of the paper is as follows. The proof of Theorem 1 is given in
Section 2. We study the behaviour near ∂RG in Section 3, and deduce Theorem 2.
We stress, however, that our analysis provides a much more refined picture than
Theorem 2; see Propositions 10, 11 and 12, and their proof. The estimates in these
propositions suggest Gaussian behaviour near ∂RG. We conclude with some fur-
ther questions in Section 4.

2. Proof of the phase transition. The next section collects some preliminar-
ies and useful notation.
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2.1. Basic properties of RG. It will be convenient to have the version of RG

in which the inequalities are not strict:

KG =
{

x ∈ SG : for all F ⊂ E we have
∑
e∈F

xe ≥ 1

k
d(F )

}
.

We denote by HF the hyperplanes appearing in these inequalities:

HF =
{

x ∈ RE : ∑
e∈F

xe = 1

k
d(F )

}
, ∅ 
= F ⊂ E.

In particular, SG, RG, IG and KG are all subsets of HE .

LEMMA 4. (i) The sets KG and RG are convex with a nonempty interior rel-
ative to HE .

(ii) KG = RG (the closure of RG in HE).

PROOF. (i) As intersections of half-spaces with HE , both KG and RG are con-
vex. Also, since the half-spaces defining RG (resp., KG) are open (resp. closed),
RG (resp., KG) is a relatively open (resp., closed) subset of HE . The containment
RG ⊂ KG is immediate from the definitions. To show that RG has a nonempty
interior, we check that the vector

(3) x∗ = (
x∗
e : e ∈ E

)
, x∗

e = 1

k

∑
v∈V
v∼e

1

deg(v)
, e ∈ E,

belongs to RG. First, x∗ ∈ HE can be seen by summing the formula for x∗
e over

e ∈ E and exchanging the two sums. It is also immediate that x∗
e > 0 and, therefore,

x∗ ∈ SG. Now fix any ∅ � F � E. Since G is connected, there exists a vertex
v ∈ V such that 0 < degF (v) < degG(v). Therefore,∑

e∈F

x∗
e = ∑

e∈F

1

k

∑
v∈V
v∼e

1

deg(v)

= 1

k

∑
v∈V

degF (v)=degG(v)

∑
e∈F
e∼v

1

degG(v)
+ 1

k

∑
v∈V

degF (v)<degG(v)

∑
e∈F
e∼v

1

degG(v)

>
1

k

∑
v∈V

degF (v)=degG(v)

1 = d(F )

k
.

This shows that x∗ ∈ RG, and since RG is open in HE , X∗ is an interior point. The
containment RG ⊂KG implies that x∗ is also an interior point of KG.

(ii) Since KG is closed, we have RG ⊂ KG. Therefore, it is enough to show
that KG \ RG ⊂ RG. Let x ∈ KG \ RG. Let x(t) = tx + (1 − t)x∗. Convexity
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of KG implies that x(t) ∈ KG for all 0 ≤ t ≤ 1. Moreover, since the expressions∑
e∈F xe(t) are monotone linear functions of t , and

∑
e∈F xe(0) > d(F )/k, and∑

e∈F xe(1) ≥ d(F )/k, we must have the inequality
∑

e∈F xe(t) > 1
k
d(F ) for all

0 ≤ t < 1. This implies that x(t) ∈ RG for 0 ≤ t < 1, and hence x ∈ RG, as re-
quired. �

The optimality equation implies that the optimal deterministic strategy is also
optimal among randomized strategies. The next lemma states a connection be-
tween elements of KG and possible moves in a randomized strategy. In its state-
ment, we think of q(v)(e) as the probability of assigning vertex v to the edge e in
such a move.

LEMMA 5. We have x ∈ KG if and only if there exists a collection {q(v)(e) :
v ∈ V, e ∈ E} of nonnegative numbers such that:

(i)
∑

e∈E q(v)(e) = 1 for all v ∈ V ;
(ii) q(v)(e) = 0 if e is not incident with v;

(iii) 1
k

∑
v∈V q(v)(e) = xe for all e ∈ E.

PROOF. We deduce the statement from the Max-Flow-Min-Cut theorem [2],
Theorem III.1. Define an auxiliary directed graph G′ as follows. Replace each edge
{v,w} of G by two directed edges (v, ue) and (w,ue), introducing the new vertex
ue for each e ∈ E. Also add new vertices s and t . Add a directed edge (s, v) for
each v ∈ V and a directed edge (ue, t) for each e ∈ E. Thus, G′ has |V | + |E| + 2
vertices and 2|E| + |V | + |E| edges.

Consider flows of strength 1 from s to t in G′, where we assign capacity 1/k to
each edge (s, v), v ∈ V , capacity 2 to each (v, ue) and capacity xe to each (ue, t).

Suppose q(v)(e) satisfy (i)–(iii). Define a flow by letting 1/k flow on each (s, v),
q(v)(e)/k flow on each (v, ue), and xe flow on each (ue, t). This flow satisfies
the capacity constraints, and it is a maximal flow, since {(s, v) : v ∈ V } is a cut
with value 1. Therefore, any other other cut must have value at least 1. Given
∅⊂ F ⊂ E, consider the cut

(4)
{
(s, v) : degF (v) < degG(v)

}∪ {(ue, t) : e ∈ F
}

with value

k − d(F )

k
+ ∑

e∈F

xe = 1 − d(F )

k
+ ∑

e∈F

xe ≥ 1.

This implies that x ∈ KG.
For the converse, suppose that x ∈ KG, and consider a maximal flow on G′.

The conditions in the definition of KG imply that all cuts of the form (4) have
value ≥ 1, and the cut corresponding to F = E has value 1. It is easy to check that
any minimal cut is necessarily of this form and, therefore, the maximal flow is 1.
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Letting q(v)(e) be k-times the amount flowing on (v, ue), we obtain a collection
satisfying (i)–(iii). �

Basic for Theorem 1 is the following computation. Suppose that our current
state is n = nx, x ∈ SG. Let {q(v)(e)}v∈V,e∈E be a set of probabilities representing
a randomized move (i.e., q(v)

e is the probability that edge e will be used, conditional
on the event that vertex v has been drawn). Let N′ = (n − 1)X′ be the random
outcome of the move. Let ye = 1

k

∑
v∈V q(v)(e). We have

EX′ = 1

n − 1
EN′ = 1

n − 1

(
n − ∑

e∈E

ye1e

)
= n

n − 1
x − 1

n − 1
y

= x + 1

n − 1
(x − y).

(5)

If x ∈ RG, then due to Lemma 5 it is possible to choose y ∈ KG in such a way
that the average displacement points in any desired direction. On the other hand,
if x ∈ IG, convexity of KG implies that the process will always move away from
RG on average.

The above observations are also reflected in the following deterministic con-
trolled differential equation:

dx
dt

= x − u(t) where the control u satisfies u(t) ∈ KG for all t ≥ 0.

It is easy to see (e.g., using as Lyapunov function the distance from HE ∩ HF for
suitable F ) that:

(i) If x(0) /∈ KG, then for any control u we have x(t) /∈KG for all t ≥ 0.
(ii) If x(0) ∈ RG, then for any x′ ∈ RG there exists a control u such that

limt→∞ x(t) = x′.
Let us introduce some further notation. Throughout we write ‖w‖1 =∑

e∈E |we|
and |w| =

√∑
e∈E |we|2 for any vector w = (we : e ∈ E) ∈ RE . For w ∈ RE and

A ⊂ RE , we write dist(w,A) = infy∈A |w − y|. We will write 〈·, ·〉 for the Eu-
clidean scalar product.

For each ∅ � F � E, we fix a point zF ∈ KG such that
∑

e∈F zF
e = d(F )

k
. Let

uF be the unit vector of the form

uF
e =

{
aF , if e ∈ F ;

−bF , if e ∈ E \ F ,

with aF , bF > 0, and such that
∑

e∈E uF
e = 0. For all w ∈ KG, we have 〈w −

zF ,uF 〉 ≥ 0. We will often use linear functions of the form

LF,n(n) = 〈
n − nzF ,uF 〉= ∑

e∈E

(
ne − nzF

e

)
uF

e .
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The last expression can be rewritten as follows:∑
e∈E

(
ne − nzF

e

)
uF

e = aF

∑
e∈F

ne + (−bF )

(
n − ∑

e∈F

ne

)

− naF

∑
e∈F

zF
e − n(−bF )

(
1 − ∑

e∈F

zF
e

)
= (aF + bF )

∑
e∈F

ne − nbF − n(aF + bF )
∑
e∈F

zF
e + nbF

= (aF + bF )

(∑
e∈F

ne − n
d(F )

k

)
.

We define κ = κ(G) = min{(aF + bF ) : ∅ � F � E} > 0. We will need the fol-
lowing lemma.

LEMMA 6. There exist constants b = b(G) > 0 and B = B(G) such that for
all w ∈ KG we have

(6) b dist(w, ∂RG) ≤ min
∅�F�E

{∑
e∈F

we − d(F )

k

}
≤ B dist(w, ∂RG).

We also have

(7)
1

2
LF,n(nw) ≤ n

(∑
e∈F

we − d(F )

k

)
≤ 1

κ
LF,n(nw), n ≥ 1.

PROOF. The proof of Lemma 4(ii) showed that KG\RG = ∂RG. Therefore, if
w ∈ KG \RG then

∑
e∈F we = d(F )/k for some ∅� F �E, and dist(w, ∂RG) =

0. In particular, the first statement of the lemma holds when w ∈ KG \RG. Hence-
forth assume that w ∈RG. Then since ∂RG =⋃

∅�F�E HF ∩KG, we have

(8) dist(w, ∂RG) = min
∅�F�E

dist(w,KG ∩ HF ) ≥ min
∅�F�E

dist(w,HE ∩ HF ).

We claim that the last inequality is in fact an equality. Let F be a set for which
the minimum in the right-hand side of (8) is attained. Let w0 be the orthogonal
projection of w onto HE ∩HF in the linear space H0. If the line segment ww0 had
any interior point w1 belonging to any other HF ′ , then this would contradict the
minimality of F ′. Therefore, the entire line segment ww0, apart from w0, belongs
to RG, with w0 ∈ ∂RG. Hence, dist(w,HE ∩ HF ) = dist(w,w0) ≥ dist(w, ∂RG).
This proves our claim. Since w ∈ HE , there exists a constant B0, that only depends
on min{angle between HE and HF : ∅� F � E}, such that

dist(w,HF ) ≤ dist(w,HE ∩ HF ) ≤ B0 dist(w,HF ).
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This implies the first statement of the lemma, since dist(w,HF ) = |F |−1/2 ×
(
∑

e∈F we − d(F )
k

). The second statement of the lemma follows from the defini-
tion of κ(G), and the fact that aF , bF ≤ 1 (since uF is a unit vector). �

Recall that we write n = nx for the starting state. Given a randomized strategy,
we write X(t) = 1

n−t
N(t). Note that we allow the processes N(t), X(t), etc. to have

negative entries, and once this happens, we have X(t) /∈ SG for all further times.
We write Y(t − 1) for the vector of edge weights that our strategy prescribes for
round t , and E(t) ∈ E for the random edge selected in round t according to this
strategy. We write

Ft = σ
(
N(s),Y(s) : 0 ≤ s ≤ t

)
for the filtration of the process.

2.2. Steering. In the following proposition, we show that if n is large enough,
then starting from any state in RG that is bounded away from the boundary, there
is a strategy that steers the process close to any other such point in RG.

PROPOSITION 7. Given δ > 0, there exist c1 = c1(G, δ) > 0, λ1 = λ1(G, δ) >

0, n0 = n0(G, δ), K1 = K1(G, δ) and C1 = C1(G, δ) such that the following holds.
Let n and n1 be any positive integers such that n ≥ (1 + K1)n1 and n1 ≥ n0.
Suppose that n = nx with dist(x, ∂RG) ≥ δ. Suppose also that z ∈ RG with
dist(z, ∂RG) ≥ δ, with n1z having integer coordinates. There exists a randomized
strategy starting from state n such that under this strategy we have

(9) P
[
N(n − n1) = n1z

]≥ c1;
and for all q ≥ 1 we have

(10) P
[∣∣N(n − n1) − n1z

∣∣> q
]≤ C1 exp(−λ1q).

The strategy will be defined in three stages: in the first stage, we reduce |N(t)−
(n − t)z| to O(1); in the second stage, we keep it within O(1) until time n − n1 −
O(1); and we use the last O(1) steps to attempt to hit n1z exactly. The first two of
these steps are the content of the next two lemmas. After proving the lemmas, we
assemble them to prove Proposition 7.

LEMMA 8. Given δ > 0, there exists K2 = K2(G, δ), d0 = d0(δ), λ2 =
λ2(G, δ) > 0 and C2 = C2(G) such that for any x, z with dist(x, ∂RG),dist(z,
∂RG) ≥ δ the following holds. For any n,n′ with n ≥ K2n

′ and n′ large enough,
there is a randomized strategy starting from state n = nx such that the stopping
time

τd0 = inf
{
t ≥ 0 : ∣∣N(t) − (n − t)z

∣∣≤ d0
}

satisfies

(11) P
[
τd0 > n − n′]≤ C2 exp

(−λ2n
′).
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PROOF. The value of d0 > 0 will be chosen in course of the proof. We are
also going to use a small parameter 0 < ε0 < δ/4, chosen later. The first step of the
proof is to reach an ε0-neighbourhood of z.

Let y be the point where the half-line starting at z and passing through x inter-
sects ∂RG. Let u denote the unit vector with the same direction as x−z. In the first
step, we use the following strategy: given the current state N(t) = (n − t)X(t), we
select Y(t) ∈ ∂RG such that Y(t) − X(t) is a positive multiple of u. In particular,
Y(0) = y. We employ this strategy until the stopping time τ(1) defined by

τ(1) = inf
{
t ≥ 0 : ∣∣X(t) − z

∣∣≤ ε0
}
.

Let us write Xort(t) for the component of the vector X(t) − z orthogonal to u. Let

(12) S(t) = 〈
N(t) − (n − t)z,u

〉
.

Since

N(t + 1) = (
N(t) − Y(t)

)+ (
Y(t) − 1E(t+1)),

and the second term has mean 0 given Ft , we have

E
[
S(t + 1)|Ft

]= S(t) − 〈
Y(t) − z,u

〉
.(13)

Since x and z are bounded away from ∂RG, there exist μ = μ(G, δ) > 1 and
ε0 = ε0(G, δ) > 0 such that as long as |Xort(t)| ≤ ε0

2 , we have

(14)
〈
Y(t) − z,u

〉≥ μ|x − z|.
This implies that S′(t) = S(t) + tμ|x − z| is a supermartingale as long as
|Xort(t)| ≤ ε0/2. On the other hand, due to the calculation in (5), Xort(t) is a mar-
tingale.

Let t1 = 1+μ
2μ

n. Due to the choice of μ and ε0, we have the inclusions{
τ(1) > t1

}
⊂ {∣∣Xort(s)

∣∣> ε0/2 for some 0 ≤ s ≤ t1
}

∪ {S(s) > μ(n − s)|x − z| for some 0 ≤ s ≤ t1
}∪ {S(t1) ≥ 1

}
⊂
{

max
0≤s≤t1

∣∣Xort(s)
∣∣> ε0/2

}
∪
{

max
0≤s≤t1

S′(s) − S′(0) > (μ − 1)n|x − z|
}

∪
{

max
0≤s≤t1

S′(s) − S′(0) >
μ − 1

2
n|x − z|

}
.

(15)

The inclusions (15) imply

P
[
τ(1) > t1

]≤ P
[

max
0≤s≤t1

S′(s) − S′(0) >
μ − 1

2
n|x − z|

]
+ P

[
max

0≤s≤t1

∣∣Xort(s)
∣∣> ε0/2

]
.

(16)
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Since S′(t) has increments bounded by (1 +μ)
√

2, while |Xort(t + 1)− Xort(t)| ≤√
2/(n − t − 1), we can apply the Azuma–Hoeffding inequality (see [14], Exer-

cise E14.2 or [5], Theorem 12.2(3)) to {S′(t)}t≥0 as well as to the projection of
{Xort(t)}t≥0 to each coordinate direction. This yields

P
[
τ(1) > t1

]≤ exp
(
−(μ − 1)2

8

n2|x − z|2
t12(1 + μ)2

)

+ 2|E| exp
(
−1

8

ε2
0

t1|E|∑t1
s=1

2
(n−s)2

)
≤ C′ exp

(−λ′n
)

(17)

for some λ′ = λ′(μ, ε0) > 0 and C′ = C′(G).
For the second step, we condition on the point n1 = n1x1 = N(τ (1)), such that

n − n1 ≤ t1 and |x1 − z| ≤ ε0 < δ/4. For ease of notation, we re-parametrize time
for this step so that N(0) = n1. We choose Y(t) to be the point where the half-line
starting at z and passing through X(t) intersects ∂RG. Let us write u(t) for the
unit vector with the same direction as X(t)− z. Decompose X(t + 1)− z = X′(t +
1)u(t)+X′′(t +1), where 〈X′′(t +1),u(t)〉 = 0. As long as |N(t)− (n− t)z| ≥ d0,
we have∣∣N(t + 1) − (n − t − 1)z

∣∣
=
√〈

N(t + 1) − (n − t − 1)z,u(t)
〉2 + (n − t − 1)2

∣∣X′′(t + 1)
∣∣2

≤
√〈

N(t + 1) − (n − t − 1)z,u(t)
〉2 + 2

≤ 〈
N(t + 1) − (n − t − 1)z,u(t)

〉+ 2

d0 − √
2
.

Therefore,

E
(∣∣N(t + 1) − (n − t − 1)z

∣∣|Ft

)
≤ E

(〈
N(t + 1) − (n − t − 1)z,u(t)

〉|Ft

)+ 2

d0 − √
2

= 〈
N(t) − (n − t)z,u(t)

〉− 〈
Y(t) − z,u(t)

〉+ 2

d0 − √
2

≤ ∣∣N(t) − (n − t)z
∣∣− δ + 2

d0 − √
2
.

Hence if we require that d0 ≥ √
2 + 4

δ
, then

D(t) = ∣∣N(t) − (n − t)z
∣∣+ δ

2
t, t ≥ 0,
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is a supermartingale until τd0 . Since the increments of D(t) are bounded by 2+ δ
2 <

3, and ε0 < δ
4 , it follows with t2 = 3

4n1 that

P[τd0 > t2] ≤ P
[

max
0≤s≤t2

(
D(s) − D(0)

)
>

δ

8
n1

]
≤ exp

(
− δ2t2

2

64 · 32t2

)
≤ exp

(−λ′′n1
)

with some λ′′ = λ′′(δ) > 0.
Putting the two parts together, the statement follows if we choose K2 = 8μ

μ−1 .
�

LEMMA 9. Given δ > 0, there exist λ3 = λ3(δ) > 0 and C3 = C3(δ) such that
such that for all n′ ≥ n′′ ≥ 0 and all w, z ∈ KG with dist(z, ∂RG) ≥ δ, |n′w −
n′z| ≤ d0(δ) the following holds. There exists a randomized strategy starting in
state n′ = n′w such that for all q ≥ 1 we have

(18) P
[∣∣N(n′ − n′′)− n′′z

∣∣> q
]≤ C3 exp(−λ3q).

PROOF. When |N(t) − (n′ − t)z| < d0, let us apply an arbitrary move, other-
wise, let us follow the strategy used in the second part of Lemma 8. We saw in the
proof of Lemma 8 that

D(t) = ∣∣N(t) − (n − t)z
∣∣+ δ

2

∑
0≤s<t

I
[∣∣N(s) − (n − s)z

∣∣≥ d0
]

is a supermartingale on any time interval s ∈ [t1, t2) on which |N(s) − (n − s)z| ≥
d0. Assume the event

F(q) = {∣∣N(n′ − n′′)− n′′z
∣∣> 4q

}
,

and suppose q > d0. When n′ − n′′ < q , the event F(q) is impossible, because
|N(0) − n′z| ≤ d0 < q and the increments of |N(t) − (n − t)z| are bounded by 2.
Hence, we may assume that �max := �(n′ − n′′)/q� ≥ 1. Since D(0) ≤ d0 < q , the
inequalities

(19)
∣∣N(n′ − n′′ − �q

)− (
n′′ + �q

)
z
∣∣> 4q, � = 0, . . . , �max,

cannot all simultaneously be satisfied. Summing over the smallest � for which (19)
fails, we have

P
[
F(q)

]≤ ∑
1≤�≤�max

P
[
D
(
n′ − n′′)− D

(
n′ − n′′ − �q

)
>

δ

2
q�

]

≤∑
�≥1

exp
(
−1

8

δ2q2�2

32q�

)
≤ C3 exp(−λ3q).

(20)

Adjusting the constant C3, if necessary, we have the statement for all q > 0. This
completes the proof. �
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REMARK. Note that the above strategy does not require the coordinates to
stay positive. This will become important in Section 3.3.

PROOF OF PROPOSITION 7. Observe that if there is no point w such that
dist(w, ∂RG) ≥ δ, then the statement of the proposition holds vacuously. Hence-
forth assume that δ is small enough so that the set above is nonempty. We choose
q0 ≥ 2 so that for the event F(q) introduced in the proof of Lemma 9 we have
P[F(q0/4)] ≤ 1

2 . Let M be the smallest integer such that

M ≥ (
min

{
we : e ∈ E,w ∈ RG,dist(w, ∂RG) ≥ δ

})−1
,

which is finite by our assumption on δ. We choose K1 and n0 such that n ≥ K1n1
and n1 ≥ n0 imply n ≥ K2(n1 + Mq0), where K2 is the constant from Lemma 8.
Following the strategies in Lemmas 8 and 9 over the time interval [n,n − n1 −
Mq0] we have

(21) P
[∣∣N(n − n1 − Mq0) − (n1 + Mq0)

∣∣≤ q0
]≥ 1

2
− C2 exp(−λ2n1) ≥ 1

4
,

if n0 is large enough. On the event in (21), we have

Ne(n − n1 − Mq0) − n1ze

≥ (Mq0)ze − ∣∣Ne(n − n1 − Mq0) − (n1 + Mq0)ze

∣∣
≥ q0 − q0 = 0, e ∈ E.

Therefore, N(n−n1 −Mq0) ≥ n1z componentwise, and there is a strictly positive
probability c1 = c1(G, δ) > 0 that n1z can be hit exactly from the state N(n−n1 −
Mq0). This proves (9) of the proposition. Since the form of the bound (18) is not
affected by taking Mq0 extra steps, statement (10) follows from the estimates (11)
and (18) of Lemmas 8 and 9. �

2.3. Proof of the main theorem. In this section, we complete the proof of The-
orem 1.

PROOF OF THEOREM 1(i). Fix x ∈ IG, and let ∅� F � E be a set such that∑
e∈F xe < d(F)

k
. Then for some ε = ε(G,x) > 0 and sufficiently large n we have

1
n

∑
e∈F Ne(0) < d(F)

k
− ε. Let

Yt =
{

1, if Vt = v and degF (v) = degG(v);

0, otherwise.

Since any v with degF (v) = degG(v) must be assigned to one of the edges in F ,
we have

pG(n) ≤ P

[
n∑

t=1

Yt ≤ ∑
e∈F

Ne(0)

]
≤ P

[
1

n

n∑
t=1

Yt <
d(F )

k
− ε

]
≤ exp

(
−n

ε2

4

)
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by Bernstein’s inequality; see [5], Theorem 2.2(1). The rate of decay is bounded
away from 0 as long as x is bounded away from ∂RG. �

PROOF OF THEOREM 1(ii). We show that for any fixed δ > 0 we have

(22) lim
n→∞Mn = lim

n→∞mn = α,

where

mn = mn(δ) = min
{
pG(n) : ∑

e∈E

ne = n,dist(n/n, ∂RG) ≥ δ

}
, n ≥ 1;

Mn = Mn(δ) = max
{
pG(n) : ∑

e∈E

ne = n,dist(n/n, ∂RG) ≥ δ

}
, n ≥ 1;

α = α(δ) = lim inf
n→∞ mn(δ).

We consider n′ ≥ n0, n ≥ K1n
′ and n = nx such that mn = pG(n). We apply

Proposition 7 with z = n′/n′, where n′ is chosen so that Mn′ = pG(n′).
Let ϕ(r) denote the probability that with the strategy described in Proposition 7

the state at time n − n′ is n′z + r, where
∑

e∈E re = 0. Due to Proposition 7, we
have ϕ(0) ≥ c1. Therefore, we can write

mn = pG(n) ≥ ∑
r:∑e∈E re=0

ϕ(r)pG

(
n′z + r

)
≥ c1pG

(
n′z
)+ ∑

r
=0:∑
e∈E re=0

ϕ(r)pG

(
n′z + r

)

≥ c1(Mn′ − mn′) + ∑
r:∑e∈E re=0

ϕ(r)mn′

≥ c1(Mn′ − mn′) + mn′ − C exp
(−λn′)

with some λ > 0 and C depending on δ and λ1, λ2, λ3. Rearranging gives

(23) Mn′ − mn′ ≤ 1

c1
(mn − mn′) + C

c1
exp

(−λn′).
Since n ≥ Kn′ was arbitrary, taking lim infn→∞ yields

(24) Mn′ − mn′ ≤ 1

c1
(α − mn′) + C

c1
exp

(−λn′).
Taking lim supn′→∞ in (24) yields Mn′ − mn′ → 0. Taking lim infn′→∞ in (24)
yields

0 ≤ lim inf
n′→∞ (Mn′ − mn′) ≤ 1

c1

(
α − lim sup

n′→∞
mn′

)
≤ 0.
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This shows that limn′→∞ mn′ = α, and the proof of (22) is complete.
The limit does not depend on δ, since for 0 < δ1 < δ2 we have

mn(δ1) ≤ mn(δ2) ≤ Mn(δ2) ≤ Mn(δ2),

and hence α(δ1) = α(δ2) = cG.
We complete the proof by noting that cG > 0. This is because Proposition 7 im-

plies that the process can be steered close to the point n0x∗ for a sufficiently large
n0 with positive probability, and from here there is a strictly positive probability of
winning. �

REMARK. Since the left-hand side of (24) is nonnegative, we can rearrange to
get

mn′ ≤ α + C exp
(−λn′), n′ ≥ n0.

We do not have a corresponding exponential lower bound on the speed at which
the limit α is approached. See Question 1 in Section 4.

3. Upper bounds in the critical region. In this section, we obtain estimates
in the critical region. This requires distinguishing a few cases that we state as
separate propositions in the next section, and use them to prove Theorem 2. The
proofs of the three propositions are given in Sections 3.2, 3.3 and 3.4, respectively.

3.1. Statements of upper bounds in three subregions. We define the sets of
configurations

BI
G(n;A)

= {
n ∈ nSG : for some ∅� F � E we have LF,n(n) ≤ −A

√
n
}
,

BII
G(n;A)

= {
n ∈ nSG : for all F with 0 < d(F) < k we have LF,n(n) ≥ A

√
n
}
,

BIII
G (n;A)

=
{
n ∈ nSG : −A

√
n < min

F :0<d(F)<k
LF,n(n) < A

√
n
}
.

(25)

PROPOSITION 10. For all A > 0, we have

lim sup
n→∞

max
{
pG(n) : n ∈ BI

G(n;A)
}≤ exp

(
−A2

8

)
.

In particular, the lim sup is at most cG, if A ≥ √
8 log(1/cG).
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PROPOSITION 11. There exist constants C4 = C4(G) and λ4 = λ4(G) > 0
such that for all A ≥ 1 we have

(26) lim sup
n→∞

max
{
pG(n) : n ∈ BII

G(n;A)
}≤ cG + C4 exp

(−λ4A
2).

PROPOSITION 12. There exists A0 = A0(G) such that for all A ≥ A0 we have

lim sup
n→∞

max
{
pG(n) : n ∈ BIII

G (n;A)
}≤ cG + C4 exp

(−λ4A
2).

PROOF OF THEOREM 2 ASSUMING PROPOSITIONS 10, 11, 12. Given ε > 0,
choose A sufficiently large so that each of the upper bounds in Propositions 10, 11
and 12 is at most cG + ε. Since with this fixed choice of A the sets BI

G, BII
G and

BIII
G cover all possibilities, the statement follows. �

3.2. Upper bound for BI
G.

PROOF OF PROPOSITION 10. We may fix the set F in the definition of
BI

G(n;A) and argue separately for each such set. Let us fix δ > 0. Due to The-
orem 1(i), we may restrict to n such that

−δn < LF,n(n) ≤ −A
√

n.

Let us follow the optimal strategy starting in configuration n. The process S(t) =
LF,n−t (N(t)) is a supermartingale due to

(27) E
[
S(t + 1)|Ft

]= S(t) − 〈
Y(t) − zF ,uF 〉≤ S(t).

Consider the stopping time

τ = (�n − c
√

n� + 1
)∧ inf

{
t ≥ 0 : S(t) < −δ(n − t)

}
,

where c = A
2δ

. Then we have

P[τ > n − c
√

n] ≤ P
[

max
0≤t≤�n−c

√
n�

S(t) − S(0) > (A − δc)
√

n
]

≤ exp
(
−1

2

(A − δc)2n

�n − c
√

n�
)

≤ exp
(
−A2

8

)
.

Due to the optimality equation, pG(N(t)) is a bounded martingale. Hence, by op-
tional stopping we have

pG(n) = E
[
pG

(
N(τ )

); τ ≤ n − c
√

n,S(τ) < −δ(n − τ)
]

+ E
[
pG

(
N(τ )

); τ > n − c
√

n
]
.

(28)

The first term in the right-hand side of (28) is at most

max
{
pG

(
n′) : ∥∥n′∥∥

1 ≥ c
√

n,LF,n′(
n′)< −δn′},

which goes to 0, as n → ∞, due to Theorem 1(i). The second term in the right-
hand side of (28) is at most P[τ > n − c

√
n] ≤ exp(−A2

8 ) < cG, due to our choice
of A. This completes the proof of the proposition. �
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3.3. Upper bound for BII
G. We start with two propositions that strengthen

Proposition 7, and will be used in the proof of Proposition 11. In the first, we
give a lower bound on the probability that the process can be steered away from
the boundary, if at least order

√
n away.

PROPOSITION 13. There exist λ5 = λ5(G) > 0, γ = γ (G) > 0, c5 = c5(G),
C5 = C5(G) and n′

0 = n′
0(G) such that for all A ≥ 1 the following holds. Let n,n′

satisfy nγ ≥ n′ ≥ n′
0, and let n = nx be a configuration such that∑

e∈F

xe ≥ 1

k
d(F ) + A√

n
for all ∅� F � E.(29)

There exists a randomized strategy starting from n such that for the stopping time

τ = inf
{
t ≥ 0 : dist

(
X(t), ∂RG

)≥ c5
}

we have

P
[
τ > n − n′]≤ C5 exp

(−λ5A
2).

PROOF. Let y be the point where the half-line starting at x∗ and passing
through x intersects ∂RG. Write d = |x − y|, and note that d ≥ A

B
1√
n

, due to

Lemma 6. Let r be the smallest integer such that (3/2)rd ≥ 1
2 |x∗ − y|. We fix a

small number η > 0 such that 1
2 −η > 4

9 . Then it is straightforward to check that the
choice of r ensures that there exists 0 < γ = γ (G) < 1 such that (1

2 − η)rn ≥ nγ ,
if n ≥ n0 for some n0 = n0(G).

Consider the sequence of points x = y(0),y(1), . . . ,y(r) defined by

y(i) = y + (3/2)i(x − y), i = 0,1, . . . , r.

The following statement can be proved in essentially the same way as Lemma 8.
For ε > 0 sufficiently small, there exists λ = λ(G,η, ε) > 0 such that given any
point w ∈ RG with |w − y(i)| < ε(3/2)id and any n such that (1

2 − η)n ≥ n0 the
following holds. There exists a randomized strategy starting in state nw such that
for the stopping time

τ(i) = inf
{
t ≥ 0 : ∣∣X(t) − y(i + 1)

∣∣< ε(3/2)i+1d
}

we have

P
[
τ(i) >

(
1

2
+ η

)
n

]
≤ exp

(−λ(3/2)2iA2).
Summing the upper bounds on τ(0), τ (1), . . . , τ (r − 1), we obtain that there is a
randomized strategy starting from state n such that for the stopping time

τ ′ = inf
{
t ≥ 0 : ∣∣X(t) − y(r)

∣∣< ε(3/2)rd
}
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we have

P
[
τ ′ > n − nγ ]≤ C exp

(−λA2).
Due to the choice of r , and for a sufficiently small ε, the point X(τ ′) is at least a
fixed positive distance c5 from ∂RG, and hence τ ≤ τ ′. This completes the proof.

�

The next proposition extends the result of Proposition 7 to the case when the
target state is anywhere in KG.

PROPOSITION 14. Given δ > 0, there exists λ6 = λ6(G) > 0, C6 = C6(G),
c6 = c6(G) > 0, K6 = K6(G, δ) and n6 = n6(G, δ) such that for any n1 ≥ K6n

′,
n′ ≥ n6 and configurations n1 = n1x, x ∈ RG, dist(x, ∂RG) ≥ δ and n′ = n′z,
z ∈ KG the following holds. There exists a randomized strategy starting in state n1
such that

(30) P
[
N
(
n1 − n′)= n′]≥ c6

and

(31) P
[∣∣N(n1 − n′)− n′∣∣> q

]≤ C6 exp(−λ6q), q > 0.

PROOF. We consider the following intermediate point:

x′′ = 1

2
x + 1

2
x′ and n′′ = n′x + n′ + O(1),

where the O(1) term guarantees that n′′ has integer coordinates. Observe that
dist(x′′, ∂RG) is at least a positive constant. Due to Proposition 7, we can steer
the process from n1 to a (δ/4)-neighbourhood of x′′ with probability at least
1 − C1 exp(−λ1n

′), provided K6 ≥ 2K1(G, δ). Let us call the point reached this
way (2n′)y′′. Since

y′′ = x′′ + (
y′′ − x′′)= 1

2

(
x − 2

(
y′′ − x′′))+ 1

2
x′,

and |2(y′′ − x′′)| < δ
2 , the point w = x − 2(y′′ − x′′) satisfies dist(w, ∂RG) ≥ δ

2 .
Now consider the steps of the strategy of Lemma 9 for the starting state n′w

and target state 0w over the time interval [0, n′ − Mq0], where M ≥ (min{we : e ∈
E})−1, and q0 is chosen so that F(q0/4) ≥ 1

2 . Let Ñ(t), t ≥ 0 denote this process.
If the coordinates do stay positive until time n′ − Mq0, there is a strictly positive
probability of hitting state 0. When 0 is not hit exactly, we have the bound

P
[∣∣Ñ(n′)∣∣> q

]= P
[∣∣Ñ(n′)− 0

∣∣> q
]≤ C2 exp(−λ2q).

If we now apply exactly the same moves to the configuration (2n′)y′′, we obtain
that the process N(t) = n′ + Ñ(t) hits n′ = n′x′ with positive probability, and sat-
isfies the bound in (31). �
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Since the proof of Proposition 11 is quite long, we first give a brief outline.
Suppose we can select configurations n and n(�), . . . ,n(1) in such a way that:

(a) n/n is bounded away from ∂RG, so that we have pG(n) ≤ cG + ε.
(b) n(�), . . . ,n(1) are in the respective sets BII

G with each pG(n(i)) close to the
lim sup in (26).

(c) We can steer the process as follows: n → n(�) → n(� − 1) → ·· · → n(1).
(d) In each steering step, we hit the target exactly with probability bounded

away from 0.

If � is large, step (d) ensures that pG(n) cannot be much smaller than the small-
est of the pG(n(i))’s, and the claim will follow. The crux of the proof is parts
(c)–(d), which rely on Propositions 13 and 14. The argument is somewhat delicate,
since the n(i)’s now can be arbitrarily close to ∂RG; recall the definition of BII

G in
(25). Therefore, Propositions 13 and 14 will be applied on a suitable subgraph that
omits some edges.

We carry out the plan (a)–(d). We start with some preliminaries. The first step
is to subdivide BII

G according to which part of ∂RG is close. Given n ∈ BII
G, let

G = G(n;G,A) =
{
F ⊂ E : LF,n(n) <

κA

2|E|+1

√
n

}
and F = ∪G,

where κ is the constant from Lemma 6. It may so happen that F = ∅, in which
case the arguments we have to make are similar to and simpler than when F 
= ∅.
We will not spell out such arguments. Note that F ∈ G implies d(F ) = 0, since
n ∈ BII

G. Hence, we have

(32)
∑
e∈F

ne ≤ ∑
F∈G

∑
e∈F

ne ≤ ∑
F∈G

1

2κ
LF,n(n) <

1

2
A

√
n.

This implies d(F ) = 0, for n large enough. Note that any F with d(F ) = 0 that is
not contained entirely inside F satisfies∑

e∈F

ne ≥ 1

2
LF,n(n) ≥ κA

2|E|+2

√
n.

Let us abbreviate κ0 = κ/2|E|+2. In the remainder of this section, we are going to
fix a possible value F0 of F , and argue separately for each F0. With this in mind,
we make the following definitions. For any F0 such that d(F0) = 0, let

BII
G(n;A,F0) =

⎧⎪⎨⎪⎩n ∈ BII
G(n;A) :

∑
e∈F0

ne < 1
2A

√
n, and for all

F not contained in F0 we have∑
e∈F ne − n

k
d(F ) ≥ κ0A

√
n

⎫⎪⎬⎪⎭ ,

Mn(F0) = max
{
pG(n) : n ∈ BII

G(n;A,F0)
}
,

β = lim sup
n→∞

Mn(F0).

(33)
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Our task is to show that β ≤ cG+C exp(−λA2) for each F0 such that BII
G(n;A,F0)

is nonempty.
We will need to work on subgraphs of the form GH = (V ,EH ), where EH =

E \H , H ⊂ F0. We write nH for the restriction of n to GH , that is: nH = (ne : e ∈
EH). When no confusion can arise, we will write nH =∑

e∈EH ne.

LEMMA 15. If BII
G(n;A,F0) is nonempty, then for any H ⊂ F0 the graph GH

is connected.

PROOF. It is enough to consider H = F0. Should GF0 not be connected, we
could write E = E1 ∪ F0 ∪ E2 as a disjoint union, where E1 and E2 are nonempty
and do not share any vertex. Then we have 0 < d(E1 ∪ F0), d(E2 ∪ F0) < k and
d(E1 ∪ F0) + d(E2 ∪ F0) ≥ k. Therefore, if n ∈ BII

G(n;A,F0), we have∑
e∈E

ne = ∑
e∈E1∪F0

ne + ∑
e∈E2∪F0

ne − ∑
e∈F0

ne

≥ n

k
d(E1 ∪ F0) + 1

2
A

√
n + n

k
d(E2 ∪ F0) + 1

2
A

√
n − 1

2
A

√
n

≥ n + 1

2
A

√
n > n,

a contradiction. �

LEMMA 16. Let H ⊂ F0 and n ∈ BII
G(n;A,F0):

(i) We have nH/nH ∈KGH .
(ii) Suppose in addition that ne ≥ cA

√
n for all e ∈ F0 \ H , with some c > 0.

Then nH satisfies the assumption on the starting state of Proposition 13, with A

replaced by min{cA,κ0A}.

PROOF. Both statements will be proved by the same computations. Let ∅ �

F � (E \H). Since d(H) ≤ d(F0) = 0, we have d(F ∪H ;G) = d(F ;GH). When
this common value is ≥ 1, we have∑

e∈F

ne ≥ ∑
e∈F∪H

ne − 1

2
A

√
n ≥ n

k
d(F ∪ H ;G) + A

√
n − 1

2
A

√
n

≥ nH

k
d
(
F ;GH )+ 1

2
A
√

nH ≥ nH

k
d
(
F ;GH ).

(34)

This already suffices for part (i). When d(F ∪ H ;G) = d(F ;GH) = 0 and F is
not a subset of F0, we have

(35)
∑
e∈F

ne ≥ κ0A
√

n ≥ κ0A
√

nH .



2120 A. A. JÁRAI

When ∅� F ⊂ F0 \ H , under the assumption made in part (ii) we have

(36)
∑
e∈F

ne ≥ cA
√

n ≥ cA
√

nH .

The three cases (34), (35) and (36) complete the proof of part (ii). �

The main technical difficulty in the proof of Proposition 11 is that we have
no control over how small ne(i) can get for e ∈ F0 and, therefore, these co-
ordinates must be hit exactly at each stage. We can do this, if the difference
ne(i + 1) − ne(i) ≥ 0 is sufficiently small so that we have enough opportunity to
play these edges [once the exact value is achieved, we can ignore any such edge,
since d(F0) = 0]. The configurations introduced next will help us overcome this
technical difficulty.

Let x∗,F0 denote the configuration introduced in (3), with the graph G replaced
by GF0 . Given δ > 0 and H � F0, let

y∗,F0(δ;H) = (1 − δ)x∗,F0 + δ
1

|F0 \ H |
∑

e∈F0\H
1e,

where all vectors are regarded as being in REH
. Let n∗,F0(H) = ny∗,F0(δ;H) +

O(1).

LEMMA 17. (i) We have x∗,F0 ∈ KGH .
(ii) For all sufficiently small δ > 0 we have y∗,F0(δ;H) ∈ RGH and

dist(y∗,F0(δ;H), ∂RGH ) ≥ δ(B|F0 \ H |)−1.
(iii) There exists c7(G) > 0 such that for all sufficiently small δ > 0 and all

∅� F � EF0 we have( ∑
e∈EF0

n∗,F0
e (H)

)−1 ∑
e∈F

n∗,F0
e (H) ≥ d(F ;GF0)

k
+ c7.

PROOF. (i) Let ∅ � F � EH . We first consider the case when F 
⊂ F0 \ H

and E \ F0 
⊂ F . Then we have∑
e∈F

x∗,F0
e = ∑

e∈F\F0

x∗,F0
e >

d(F \ F0;GF0)

k
= d(F ∪ (F0 \ H);GH)

k

≥ d(F ;GH)

k
.

(37)

When F 
⊂ F0 \ H and E \ F0 ⊂ F , we have instead

(38)
∑
e∈F

x∗,F0
e = ∑

e∈F\F0

x∗,F0
e = 1 >

d(F ;GH)

k
.
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If ∅� F ⊂ F0 \ H , we have

(39)
∑
e∈F

x∗,F0
e = 0 = d(F ;GH)

k
.

This completes the proof of part (i).
(ii) If δ is sufficiently small, the inequalities (37) and (38), with x∗,F0 replaced

by y∗,F0(δ;H), remain strict. Also, equation (39) becomes a strict inequality. The
lower bound on the distance follows from Lemma 6.

(iii) This follows from (37), since the normalization factor in the front is [n(1 −
O(δ))]−1. �

PROOF OF PROPOSITION 11. Given ε > 0, we select a subsequence along
which Mn(F0) > β − ε. For each n in the subsequence, select n ∈ BII

G(n,F0) such
that pG(n) > β − ε. By passing to a further subsequence, we may assume that for
each e ∈ F0 the coordinates ne are nondecreasing along the subsequence.

We now choose n(1), . . . ,n(�) and n. Let n(1) < · · · < n(�) and let n(i) ∈
BII

G(n(i);F0), i = 1, . . . , �, be a sequence of points such that:

(i) n(i + 1) ≥ 2(2K6n(i))1/γ , i = 1, . . . , � − 1;
(ii) ne(i + 1) ≥ ne(i), for all e ∈ F0, i = 1, . . . , � − 1;

(iii) pG(n(i)) ≥ β − ε, i = 1, . . . , �.

We further define n in the following way. Let n = 2K6n(�), where K6 is the
constant of Proposition 14, and let n = K6n(�)y∗,F0(δ1;∅) + K6n(�) + O(1) for
a small δ1 > 0 for which the conclusions of Lemma 17(ii)–(iii) hold. We will need
that for all e ∈ F0 we have

(40) ne ≤ K6n(�)
δ1

|F0| + K6
1

2
A
√

n(�) + O(1) < 2δ1K6n(�) = δ1n,

if n(�) is large enough. Also note that an application of Theorem 1(ii) yields
pG(n) < cG + ε.

We now define the strategy to steer from n towards n(�). We first employ a
strategy that plays an edge e ∈ F0 with Ne(t) > ne(�), whenever that is possible,
but never plays an edge e ∈ F0 with Ne(t) = ne(�). We stop the first time t when
for all e ∈ F0 we have Ne(t) = ne(�). Such a strategy exists, since d(F0) = 0. Since
we start with Ne(0) − ne(�) ≤ δ1n [recall (40)], if δ1 is sufficiently small, there is
probability ≥ 1−exp(−λn) that we stop before time Cδn for some C = C(G) and
λ > 0. Moreover, the value on every edge is decreased by an amount at most Cδn

and, therefore, it follows from Lemma 17(iii) that the configuration n′ reached has
the property that (n′)F0 is bounded away from ∂RGF0 .

We can now apply Proposition 14 to (n′)F0 and (n(�))F0 on the connected graph
GF0 . We can implement the moves given by the strategy in that proposition as a
strategy on G, because d(F0) = 0. Let ϕ�(r(�)) denote the probability that at time
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n(�) we reach state n(�)+r(�). Let us write c� = ϕ�(0) for the probability that n(�)

was hit exactly. Note that since we applied the strategy on GF0 , we have re(�) =
0 for all e ∈ F0. This restriction will be implicit in our notation. Proposition 14
implies

cG + ε ≥ pG(n) ≥ c�pG

(
n(�)

)+ ∑
r(�) 
=0

ϕ�

(
r(�)

)
pG

(
n(�) + r(�)

)
≥ c�(β − ε) + ∑

0<|r(�)|<νA
√

n(�)

ϕ�

(
r(�)

)
pG

(
n(�) + r(�)

)(41)

with any ν > 0. The value of ν will be chosen in what follows.
We now inductively define the strategy that steers from n(i + 1) + r(i + 1)

towards n(i), for i = � − 1, � − 2, . . . ,1. We assume |r(i + 1)| < νA
√

n(i + 1).
Let

H = {
e ∈ F0 : ne(i + 1) < δ2A

√
ni+1

}
,

where δ2 > 0 will be chosen in a moment. We will first reduce the edges in H to
their target value ne(i). Then we use Propositions 13 and 7 in GH to reach a target
where the edges e ∈ F0 \ H do not have much excess compared to ne(i), so that
these can be reduced to ne(i) as well. Following this, we use Proposition 14 in GF0

to hit n(i).
The first part of the strategy is to reduce the value on each edge e ∈ H , whenever

that is possible, until it equals ne(i), and in such a way that no edge in F0 \ H is
used. We stop the first time t when Ne(t) = ne(i) for all e ∈ H . Since d(F0) =
0, such strategy exists. The goal is achieved before time Cδ2A

√
n(i + 1) with

probability ≥ 1 − exp(−λ
√

n(i + 1)), if δ2 is sufficiently small. Moreover, the
value of every e ∈ E \F0 is decreased by no more than Cδ2A

√
n(i + 1). Let n′(i +

1) denote the configuration reached.

LEMMA 18. If δ2 and ν are sufficiently small, the restriction of the configura-
tion n′(i +1) to GH satisfies the assumption on the starting state of Proposition 13
with A replaced by min{1

2κ0A,δ2A}.

PROOF. The proof is similar to the proof of Lemma 16. Let ∅� F � E \ H .
If d(F ∪ H ;G) ≥ 1, we have∑

e∈F

n′
e(i + 1) = ∑

e∈F∪H

n′
e(i + 1) − ∑

e∈H

ne(i)

≥ ∑
e∈F∪H

n′
e(i + 1) − ∑

e∈H

(
ne(i + 1) + re(i + 1)

)
≥ ∑

e∈F∪H

(
ne(i + 1) + re(i + 1)

)− (
C + |H |)δ2A

√
n(i + 1)
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≥ ∑
e∈F∪H

ne(i + 1) −√|E|∣∣r(i + 1)
∣∣− (

C + |H |)δ2A
√

n(i + 1)(42)

≥ n(i + 1)

k
d(F ∪ H ;G) + A

√
n(i + 1)

− (√|E|ν + (
C + |H |)δ2

)
A
√

n(i + 1)

≥ n′(i + 1)

k
d
(
F ;GH )+ (

1 − C′ν + C′′δ2
)
A
√

n′(i + 1).

Hence, we will require that 1 − C ′ν − C′′δ2 ≥ 1
2 , say.

When d(F ∪ H ;G) = 0 and F is not a subset of F0, we have∑
e∈F

n′
e(i + 1) ≥ ∑

e∈F

(
ne(i + 1) + re(i + 1)

)− Cδ2A
√

n(i + 1)

≥ ∑
e∈F

ne(i + 1) − (√|E|ν + Cδ2
)
A
√

n(i + 1)

≥ (
κ0 −√|E|ν − Cδ2

)
A
√

n(i + 1)

≥ 1

2
κ0A

√
n′(i + 1),

(43)

if ν and δ2 are small enough.
Finally, if ∅� F ⊂ F0 \ H , we have

(44)
∑
e∈F

n′
e(i + 1) = ∑

e∈F

ne(i + 1) ≥ ∑
e∈F

δ2A
√

n(i + 1) ≥ δ2A
√

n′(i + 1).

The cases (42), (43) and (44) complete the proof. �

We need one more auxiliary configuration. Let n′′(i) = 2K6n(i), where K6 is
the constant from Proposition 14, and let

n′′(i) = K6n(i)y∗,F0(δ1;H) + (K6 − 1)
n(i)

(n(i))H

(
n(i)

)H + n(i) + O(1).

Due to Lemma 17(ii), n′′(i)/n′′(i) ∈ RG and (n′′(i))H /(n′′(i))H is at least dis-
tance cδ1 away from ∂RGH . Therefore, we can apply Proposition 7 on the graph
GH to steer the process from (n′(i + 1))H to a δ3 neighbourhood of (n′′(i))H ,
which succeeds with probability at least 1 −C1 exp(−λ1δ3n(i)). Moreover, due to
Lemma 17(iii), the configuration n′′(i) + s reached this way satisfies

(45)
(
2K6n(i)

)−1 ∑
e∈F

(
n′′

e (i) + se
)≥ d(F ;GF0)

k
+ c′

7, ∅� F � EF0 .
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Also, for e ∈ F0 \ H we have(
n′′

e (i) + se
)− ne(i) ≥ K6n(i)y∗,F0

e (δ1;H) −√|E||s| − 1

2
A
√

n(i)

≥ K6n(i)
δ1

|F0| − 2K6n(i)
√|E|δ3 − 1

2
A
√

n(i) ≥ 0,

if δ3 < δ1(4|F0|√|E|)−1 and n(i) is large enough. On the other hand,

n′′
e (i) + se ≤ K6n(i)δ1 +√|E||s| + K6

1

2
A
√

n(i)
(
1 + O

(
n(i)−1/2))

≤ K6n(i)δ1 + 2K6n(i)
√|E|δ3 ≤ 2K6n(i)δ1,

if n(i) is large enough.
If δ1 is sufficiently small, we can now employ a strategy starting from state

n′′(i) + s, that reduces the values on all e ∈ F0 \ H , whenever that is possible,
until they all equal ne(i), but never uses an edge in H . This only changes the
values on e ∈ EF0 by at most 2Cδ1K6n(i), and succeeds with probability at least
1 − exp(−λ2K6n(i)). Let n′′′(i) denote the configuration reached. It follows from
(45) that (n′′′)F0 is bounded away from ∂RGF0 .

Finally, we can apply Proposition 14 on the graph GF0 with starting state
(n′′′(i))F0 and target state (n(i))F0 . Let ϕi(r(i)) denote the probability that at time
n(i) we reach state n(i)+ r(i). Let us write ci = ϕi(0) for the probability that n(i)

is hit exactly. This gives the following inductive bound:

pG

(
n(i + 1) + r(i + 1)

)≥ cipG

(
n(i)

)+ ∑
r(i) 
=0

ϕi

(
r(i)

)
pG

(
n(i) + r(i)

)
(46)

≥ ci(β − ε) + ∑
0<|r(i)|<νA

√
ni

ϕi

(
r(i)

)
pG

(
n(i) + r(i)

)
.

Combining (41) and (46), Proposition 14 yields

cG + ε ≥ (β − ε)
[
c� + (1 − c�)c�−1 + · · · + (1 − c�) · · · (1 − c2)c1

]
− C� exp

(−λA2)− C exp(−λνA
√

n1).

Since each cj ≥ c > 0, we extract a factor arbitrarily close to β − ε. Letting ε ↓ 0
shows that cG ≥ β(1 − e−c�)−C� exp(−λA2). Choosing � of order A2 completes
the proof. �

3.4. Upper bound for BIII
G . In the proof of Proposition 12, we are going to

need the following lemma about supermartingales. It is a close variant of [8],
Propositions 17.19 and 17.20, and hence we omit the proof.

LEMMA 19. Let Z(t) be a nonnegative supermartingale with respect to Ft ,
and τ a stopping time with respect to Ft . Suppose that:
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(i) Z(0) = k ≥ 1;
(ii) |Z(t + 1) − Z(t)| ≤ B;

(iii) there exist constants σ 2 > 0 and b > 0 such that almost surely on the event
{τ > t}, either Var(Z(t + 1)|Ft ) ≥ σ 2 or Var(Z(t + 1)|Ft ) = 0 and E[Z(t + 1) =
Z(t)|Ft ] ≤ −b. Then there exists u1 = u1(B, b, σ ) and C = C(b,σ ) such that if
u ≥ u1 then

P[τ > u] ≤ C
k√
u
.

PROOF OF PROPOSITION 12. Given ε > 0 choose A0(ε) large enough so that
the conclusions of Propositions 10 and 11 are satisfied for all A ≥ A0. Under the
optimal strategy, we consider the process

(47) Z(t) = min
{
LF,n−t (N(t)

) : F,0 < d(F) < k
}
,

which is a supermartingale, because the LF,n−t are. Since the increments of LF,n

are bounded, condition (ii) of Lemma 19 is satisfied. We show that Z(t) satisfies
the condition (iii) of Lemma 19 as well. Let F be the set contributing the minimum
in (47). Since d(F ) > 0, there exists an edge e ∈ F such that Ne gets updated with
probability at least 1/k. On this event, we have

LF,n−t−1(N(t + 1)
)− LF,n−t (N(t)

)= −〈1e − zF ,uF 〉=: −b(e;F) < 0,

since d(F ) < k. Therefore, if Var(Z(t + 1)|Ft ) = 0, we have E[Z(t + 1) −
Z(t)|Ft ] ≤ −b(e;F). On the other hand, since there are only finitely many pos-
sible shifts in the values of the LF,n−t , and only finitely many possible vectors
Y(t) (recall that there exists a deterministic optimal strategy), if Var(Z(t + 1)|Ft )

is nonzero, then it is bounded below by some σ 2 = σ 2(G) > 0.
We will choose a small a > 0, and subdivide BIII

G (n;A) into the slices:

BIII
G (n;a, k)

= {
n ∈ nSG : min

{
LF,n(n) : F,0 < d(F) < k

} ∈ [ak
√

n,a(k + 1)
√

n)
}
,

a > 0,−kmax − 2 ≤ k ≤ kmax + 1,

where kmax = �A/a�. Let n ∈ BIII
G (n;a, k). The idea of the proof is to run the

martingale pG(N(t)) until Z(t) moves well into one of the neighbouring slices,
and use optional stopping to get an inequality relating the maximum of pG(n) over
BIII

G (n;a, k) to the maxima over BIII
G (n′;a, k −1) and BIII

G (n′;a, k +1), with 1
4n ≤

n′ < n. The parameter a will be chosen small so that we can apply Lemma 19 to
the stopping rule. We will need to handle k ≥ 1, k = 0,−1 and k ≤ −2 separately.
It will be convenient to introduce the following notation:

Mn(k) = max
{
pG(n) : n ∈ BIII

G (n;a, k)
}
,

Mn(k) = sup
m≥n

Mm(k),

β(k) = lim sup
n→∞

Mn(k) = lim
n→∞Mn(k).
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Case 1 ≤ k ≤ kmax. We define the stopping time

τk = √
an

(
1

k
− 1

4k2

)
∧ inf

{
t ≥ 0 : Z(t) <

(
k − 1

2

)
a
√

n − t

}
∧ inf

{
t ≥ 0 : Z(t) ≥

(
k + 3

2

)
a
√

n − t

}
.

It is straightforward to check that whenever τk < n(1
k

− 1
4k2 ), the value of Z(τk) is

such that N(τk) is either in the slice BIII
G (n − τk;a, k − 1) or in the slice BIII

G (n −
τk;a, k + 1). An application of Lemma 19 to Z(t) − (k − 1)a

√
n yields

P
[
τk ≥ √

an

(
1

k
− 1

4k2

)]
≤ C

2a
√

n

a1/4
√

n
√

1
k

− 1
4k2

≤ C
4a3/4√

a
2A

(4 − a
2A

)

= 4C√
1
A
( 2√

a
−

√
a

2A
)

.

(48)

By optional stopping, we have

pG(n) = E
[
pG

(
N(τk)

)]
≤ P

[
Z(τk) < ka

√
n − τk

]
Mn/4(k − 1)

+ P
[
Z(τk) ≥ (k + 1)a

√
n − τk

]
Mn/4(k + 1)

+ P[Z(τk) ∈ [ka
√

n − τk, (k + 1)a
√

n − τk)
]
Mn/4(k).

(49)

Note that due to our choice of a in (48) the probability in the third term of (49) is
at most C(A)

√
a. Maximizing pG(n) over its slice yields

Mn(k) ≤ cn(k)Mn/4(k − 1) + dn(k)Mn/4(k) + en(k)Mn/4(k + 1),
(50)

1 ≤ k ≤ kmax,

where dn(k) ≤ C(A)
√

a. By stopping the supermartingale Z′(t) = Z(t) − (k −
1)a

√
n at τk , we have

2a
√

n ≥ Z′(0) ≥ E
[
Z′(τk);Z′(τk) ≥ 5

2
a
√

n − τk

]
≥ 5

2
a
√

n

√
1 − √

aen(k).

(51)

When a is sufficiently small, the inequalities (51) and dn(k) ≤ C(A)
√

a imply that
cn(k) ≥ 1

6 .
Case k = −1,0. We define

τk = 3

4
an ∧ inf

{
t ≥ 0 : Z(t) <

(
k − 1

2

)
a
√

n − t

}
∧ inf

{
t ≥ 0 : Z(t) ≥

(
k + 3

2

)
a
√

n − t

}
.
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We now have

(52) P
[
τk ≥ 3

4
an

]
≤ C

2a
√

n√
3
4an

= 2
√

aC√
3/4

.

Analogously to (50), we obtain

Mn(k) ≤ cn(k)Mn/4(k − 1) + dn(k)Mn/4(k) + en(k)Mn/4(k + 1),
(53)

k = −1,0.

By an argument similar to the one for the previous case, for a sufficiently small
we have cn(k) ≥ 1

4 .
Case −kmax − 1 ≤ k ≤ −2. This time we define

τk = n
√

a

(
1

1 − k
− 1

4(1 − k)2

)
∧ inf

{
t ≥ 0 : Z(t) <

(
k − 1

2

)
a
√

n − t

}

∧ inf
{
t ≥ 0 : Z(t) ≥

(
k + 3

2

)
a
√

n

}
.

Then with the same choice of a as in the case k ≥ 1 we have

P
[
τk > n

(
1

1 − k
− 1

4(1 − k)2

)]
≤ C

4a3/4√
a

2A
(4 − a

2A
)

≤ C(A)
√

a.

This yields the relation

Mn(k) ≤ cn(k)Mn/4(k − 1) + dn(k)Mn/4(k) + en(k)Mn/4(k + 1),
(54)

−kmax − 1 ≤ k ≤ −2,

where cn(k) ≥ 1
4 for sufficiently small a.

We select a subsequence of n along which cn(k), dn(k), en(k) all converge to
some limits c(k), d(k), e(k), as well as all Mn(k) converge to β(k). Then we get

(55) β(k) ≤ c(k)β(k − 1) + d(k)β(k) + e(k)β(k + 1).

Due to Proposition 10, we have β(−kmax − 2) ≤ ε and β(kmax + 1) ≤ cG + ε. It is
easy to deduce from the relation (55) and c(k) ≥ 1

4 > 0 that if β(k) ≥ β(k+1) then
also β(k − 1) ≥ β(k). Hence, the maximum in the variable k occurs at the right
endpoint and β(k) ≤ cG + ε for all −kmax − 2 ≤ k < kmax + 1. This completes the
proof of the proposition. �

4. Further questions.

QUESTION 1. It is plausible that the limit cG is reached at an exponential rate
everywhere in RG. If one could show that pG(n) is maximized in the interior of
RG, then this would follow rather easily from (24). Can one describe the asymp-
totic behaviour of the optimal strategy?
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QUESTION 2. The estimates in Section 3 strongly suggest Gaussian behaviour
near ∂RG. Can one make this more precise?

QUESTION 3. It is plausible that under the optimal strategy, the games starting
from n,n′ ∈ nRG (and with the same sequence of vertices drawn) couple with
high probability. This may provide an alternative approach to the rather technical
arguments of Theorem 1(ii) and Proposition 11.

QUESTION 4. We describe a possible definition of an “order parameter”, in
analogy with statistical physics models. Let 0 ≤ α ≤ 1, and suppose that the player
has to give up proportion α of her/his moves to an adversary, at which times the
move is chosen by the adversary. Let pG,α(n) denote the probability of winning in
such a game. Let

θ(x) = inf
{
0 ≤ α ≤ 1 : lim

n→∞pG,α(nx) = 0
}
.

The methods of Theorem 1 show that θ(x) > 0 in RG and θ(x) = 0 in IG. Can
one analyze θ , or a suitable alternative?
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