
The Annals of Applied Probability
2017, Vol. 27, No. 3, 1778–1830
DOI: 10.1214/16-AAP1246
© Institute of Mathematical Statistics, 2017

THE PRICING OF CONTINGENT CLAIMS AND OPTIMAL
POSITIONS IN ASYMPTOTICALLY COMPLETE MARKETS
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We study utility indifference prices and optimal purchasing quantities for
a contingent claim, in an incomplete semimartingale market, in the presence
of vanishing hedging errors and/or risk aversion. Assuming that the average
indifference price converges to a well-defined limit, we prove that optimally
taken positions become large in absolute value at a specific rate. We draw mo-
tivation from and make connections to large deviations theory, and in particu-
lar, the celebrated Gärtner–Ellis theorem. We analyze a series of well studied
examples where this limiting behavior occurs, such as fixed markets with
vanishing risk aversion, the basis risk model with high correlation, models
of large markets with vanishing trading restrictions and the Black–Scholes–
Merton model with either vanishing default probabilities or vanishing trans-
action costs. Lastly, we show that the large claim regime could naturally arise
in partial equilibrium models.
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1. Introduction. The goal of this paper is to study the relationship between
utility indifference prices and optimal positions for a contingent claim, in a general
incomplete semimartingale market, under the assumption of vanishing hedging er-
rors. In particular, for an exponential utility investor, we wish to verify the heuristic
adage that when purchasing optimal quantities one obtains the delicate relationship

position size× risk aversion× incompleteness parameter≈ constant.

Here, the incompleteness parameter represents the hedging error associated with
the claim. From the above, we see that as the market becomes complete (or, at
least as the given claim in question becomes asymptotically hedgeable), optimal
position sizes tend to become large. In fact, optimal position sizes may also become
large as risk aversion vanishes in a fixed market, and our analysis is robust enough
to cover both cases.

The financial motivation for studying this situation is that large positions are
indeed being taken. For example, the over the counter derivatives markets now has
more than 700 trillion notional outstanding (see [7]). Other examples include mort-
gage backed securities, life insurance contracts and mortality derivatives. These
products are not completely replicable and a position on them implies unhedge-
able risk. Therefore, it is natural to study the situation within the framework of
utility based analysis in incomplete markets. Moreover, the observation that posi-
tion size is connected to hedging error can be understood as follows. In a complete
market, there is only one fair price d for a given claim. Hence, if one is able to
purchase claims for price p �= d then it is optimal to take an infinite position. Of
course, in reality one cannot take an infinite position and complete markets are
an ideal situation. However, these considerations indicate that large positions may
arise endogenously, if the hedging error or risk aversion is small. We also mention
that this is the underlying motivation for the indifference price approximations in
the basis risk models of [12, 21], which we revisit in the current paper.

Starting at least from [22], utility indifference pricing has attracted a lot of at-
tention; see, for example, [9] for detailed overview. Recently, indifference pricing
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for large position sizes has been studied in [8, 33, 34]. In [34], the authors con-
sider a sequence of a particular semicomplete market indexed by n that becomes
complete as n→∞ and, assuming the unhedgeable component of the nontraded
asset vanishes in accordance to a Large Deviation Principle (LDP), it is shown that
optimal purchase quantities become large at precisely the large deviations scaling.

To help motivate our results, let us briefly outline the main idea. Let n ∈ N

and consider a semimartingale market with available risky assets for investment
Sn, and an investor who owns a nontraded contingent claim B . The investor has
exponential utility with risk aversion an > 0, where, in addition to the assets, we
allow the risk aversion to change with n so that Uan(x) = −(1/an)e

−anx, x ∈ R.
Let An be the set of admissible trading strategies and Xπn = (πn · Sn) be the
resultant wealth process, for some πn ∈ An. The optimal utility that the investor
can achieve by trading in Sn with initial capital x and q units of B is

un
an

(x, q)= sup
πn∈An

E
[
Uan

(
x +Xπn

T + qB
)]; un

an
(x)= un

an
(x,0).

Then the average bid utility indifference price pn
an

(x, q) is defined through the
balance equation

un
an

(
x − qpn

an
(x, q), q

)= un
an

(x).

It is well known that pn
an

does not depend upon x, and writing pn
an

(q), takes the
form

pn
an

(q)=− 1

anq
log

(
EQn

0
[
e−anqŶ n

an
(q)]),

where Qn
0 is the minimal entropy measure in the nth market and Ŷ n

an
(q) is related

to the normalized residual risk (see [1, 31] among others) of owning q units of B .
Thus, pn

an
can be viewed as a “generalized” version of the scaled cummulant gen-

erating function �n(q)/q , where �n(q) := log(E[eqYn]) for a sequence of random
variables {Yn} from large deviations theory (see [15] for a classical manuscript).
Taking a cue from the celebrated Gärtner–Ellis theorem, which deduces an LDP
for the tail probabilities of {Yn} from the assumption that λ �→ (1/rn)�n(λrn)

converges to a sufficiently regular function as rn →∞, we naturally ask what
conclusions can be deduced from the assumption that � �→ pn

an
(�rn) converges to

a well-defined limit for � ∈R and rn →∞. Specifically, we assume (see Assump-
tion 3.3) that there exist a sequence {rn} of positive numbers with rn →∞ and a
δ > 0 such that for all |�|< δ the limit

(1.1) p∞(�)= lim
n↑∞pn

an
(�rn),

exists, is finite, and is continuous at � = 0. The price p∞(0) is thus the limit-
ing price ignoring position size, and when the market is asymptotically complete,
represents the unique arbitrage-free price in the limiting complete market; see Sec-
tion 4.3.
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As a first consequence, we prove (see Theorems 4.3, 4.4) that large optimal
positions arise endogenously at a rate proportional to rn. Specifically, for any price
p̃n which is arbitrage-free in the pre-limiting markets, the optimal position size (as
defined in [24]) q̂n = q̂n(p̃n) is such that for n large enough∣∣q̂n

∣∣≈ �rn, for some � ∈ (0,∞)

provided that p̃n → p̃ �= p∞(0). Namely, we have |q̂n|→∞ at the speed of rn.
Second, in Section 5 we show under which conditions the large claim regime

could arise in an equilibrium setting, with a particular focus on justifying the as-
sumption that, asymptotically, one could buy the claim for a price p̃ �= p∞(0).
Provided that stock market prices are exogenously given, the equilibrium price of
a claim is the one at which the optimal quantities of the investors sum up to zero,
meaning that the market of the claim is cleared out. If such a (partial) equilibrium
price exists for each n ∈ N, it is natural to ask where this sequence converges to,
and if the prices induce investors to enter the large claim regime. Here, we show
that if the investors’ random endowments are dominated by rn, then equilibrium
prices converge to p∞(0); the unique limiting arbitrage-free price. However, if in-
vestors’ endowments are growing with rate rn, equilibrium prices may converge to
a limit p̃ �= p∞(0) and hence the large claim regime of Theorems 4.3, 4.4 occurs.
This happens when one investor already owns large position in B , and yields a
family of examples where the large claim regime is in fact the market’s equilib-
rium. This result helps to explain the large observed volumes in OTC derivative
markets and the corresponding extreme prices that often appear (see, for instance,
[2, 7]).

Third, we illustrate through numerous and varied examples that the price con-
vergence in (1.1) holds, and hence is a natural feature of either asymptotically com-
plete markets or vanishing investor’s risk aversion in a fixed market. Moreover, in
all of these examples we explicitly identify the speed rn at which optimal positions
grow. To be precise, we validate these claims in the following cases: (a) vanish-
ing risk aversion in a fixed market in Section 6.1, (b) basis risk model with high
correlation in Section 6.2, (c) large markets with vanishing trading restrictions in
Section 6.3, (d) Black–Scholes–Merton model with vanishing default probability
in Section 6.4, and (e) vanishing transaction costs in the Black–Scholes–Merton
model in Section 7.

The vanishing transaction costs example of Section 7 probably deserves more
discussion. The first interesting point is that our theory unifies frictionless mar-
kets and markets with frictions, such as transaction costs. In particular, not only do
the statements on optimal positions in frictionless markets carry over, but in both
cases, the main results turn out to be natural outcomes of the same general state-
ments presented in Appendix A. The second interesting point is that our analysis
reveals that the natural relation between risk aversion, an, optimal position size,
q̂n, and proportion of the transaction costs, λn is anq̂nλ

2
n ≈ constant. Apart from
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the conclusion that for fixed risk aversion, this relation indicates that rn = λ−2
n ,

that is, that q̂nλ
2
n → � ∈ (0,∞), it also justifies the appropriateness of the limiting

asymptotic regimes, which were considered previously without justification, for
example, as in [4, 23].

Even though our focus in this paper is on investors with exponential utility, our
results are also true within the class of utility functions that decay exponentially
for large negative wealths; see Section 4.5. In this case, the optimal position is not
necessarily unique. However, we prove that optimizers do exist and that under the
assumption of convergence of indifference prices with speed rn, for exponential
utility, each optimizer will converge to ±∞ with speed rn.

We conclude the Introduction with a discussion on the applicability and useful-
ness of the results of this paper. First of all, our analysis offers a bridge between
complete and incomplete markets. Complete markets, where computations are of-
ten tractable and explicit, are clearly an idealization of reality. However, their more
realistic incomplete counterparts are typically intractable when it comes to iden-
tifying optimal trading strategies and pricing contingent claims. To connect these
two settings, it is thus natural to consider small perturbations away from complete
markets. In the case of fixed investor preferences, this paper addresses precisely
this situation, and we show that as the perturbation vanishes, large investors may
endogenously arise through optimal trading. Second, our work also acts as a bridge
between risk averse and risk neutral investors. For example, it is often assumed that
market makers are risk neutral, which is of course only approximately true. Our
analysis shows, however, that as market makers approach risk neutrality, they will
be induced into both taking large positions and offering prices so that other buyers
enter into the market in a large way. Third, the equilibrium results of Section 5
show that it takes only one person to be in the large claim regime in order for oth-
ers to enter that regime by acting optimally. Hence, our results can be also used to
both study and justify the emergence of large players in derivative markets, in the
setting where players take large positions immediately, as opposed to incremen-
tally increasing their position sizes. Fourth, our work can help towards correctly
pricing claims in the presence of small unhedgeable risks (e.g., in the insurance
industry), when positions are of significant size.

The rest of the paper is organized as follows. In Section 2, we describe in de-
tail the model and the optimal investment problem. In Section 3, we lay down our
main assumption on convergence of scaled indifference prices and draw motiva-
tions with and connections to large deviations theory. In Section 4, we describe
the main consequences of the assumption of convergence of scaled indifference
prices. Namely, we state the theorems on optimal positions and discuss their con-
sequences. We additionally discuss the limiting behavior for the optimal wealth
process, and justify the interpretation that the speed rn characterizes the speed at
which the market approaches completion. Moreover, we prove that the general re-
sults on optimal positions are true for all utility functions in the class of utility
functions that decay exponentially for large negative wealths. Section 5 contains
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the results on the partial equilibrium model and on its limiting behavior. Section 6
contains the motivating examples of frictionless markets that satisfy our assump-
tions. Section 7 contains the example with vanishing transaction costs. Appen-
dices A, B and C contain most of the proofs.

2. The model, optimal investment problem and indifference price. We fix
a horizon T > 0, probability space (�,F,P) and filtration F= (Ft )0≤t≤T , which
is assumed to satisfy the usual conditions. Additionally, we assume F = FT and
zero interest rates so the risk-free asset is identically equal to 1. For n ∈ N we
denote by Sn an Rdn -valued, locally bounded semimartingale which represents
the risky assets available for investment. In the sequel, we consider the valuation
and the optimal position taking in a contingent claim B ∈ L0(�,F,P) assumed to
satisfy the following.

ASSUMPTION 2.1. E[eλB]<∞ for all λ ∈R.

Since the assets are changing with n, the class of equivalent local martingale
measures are changing with n as well. We denote by Mn the family of measures
Qn ∼ P on F such that Sn is a Qn local martingale. Recall for two probability
measures μ� ν the relative entropy of μ with respect to ν is given by H(μ|ν)=
Eν[(dμ/dν) log(dμ/dν)]. In order to rule out arbitrage in each market, we make
the following standard assumption as seen in [14, 18] among many others.

ASSUMPTION 2.2. For each n, M̃n := {Qn ∈Mn :H(Qn|P) <∞} �=∅.

We consider an exponential utility investor with risk aversion an > 0, where,
in addition to the assets, we allow the risk aversion to change with n. Thus, the
investor has utility function

(2.1) Uan(x)=− 1

an

e−anx; x ∈R.

A trading strategy πn is admissible if it is predictable, Sn integrable, and if the
stochastic integral Xπn := (πn ·Sn) is a Qn supermartingale for all Qn ∈ M̃n. The
set of admissible trading strategies for the nth market is denoted An. For an initial
capital x and position q ∈R in the claim B , we define

(2.2) un
an

(x, q) := sup
πn∈An

E
[
Uan

(
x +Xπn

T + qB
)]

,

as the optimal utility an investor can achieve by trading in Sn with initial capital
x and q units of B . When q = 0 so that the investor does not own the claim, we
denote the value function by

(2.3) un
an

(x) := sup
πn∈An

E
[
Uan

(
x +Xπn

T

)]
.
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The average (bid) utility indifference price pn
an

(x, q) for initial capital x and q

units of B is defined through the balance equation

(2.4) un
an

(
x − qpn

an
(x, q), q

)= un
an

(x).

We now summarize a number of well known results regarding the utility maxi-
mization problem for exponential utility under the current setup and assumptions.
For proofs of these facts, see [14, 18, 19, 26, 30, 32].

Since un
an

(x, q) = e−anxun
an

(0, q), we consider without loss of generality that
x = 0 throughout. The value function without B , un

an
(0), is attained by an admis-

sible strategy π̂n
an

(0). Write X̂n
an

(0) :=Xπ̂n
an

(0) as the optimal wealth process. Ad-

ditionally, denote by Qn
0 ∈ M̃n the minimal entropy measure, which exists. Then

Qn
0 and X̂n

an
(0) are related by the formula

(2.5)
dQn

0

dP

∣∣∣∣
FT

= e−anX̂n
an

(0)T

E[e−anX̂n
an

(0)T ]
.

In a similar fashion, the value function for q units of B , un
an

(0, q), is also at-

tained for some admissible trading strategy π̂n
an

(q) and we write X̂n
an

(q) :=Xπ̂n
an

(q)

as the resultant wealth process. The indifference price does not depend upon the
initial capital and we write pn

an
(q) instead of pn

an
(x, q). By its definition, pn

an
(q) is

given by the abstract formula

pn
an

(q)=− 1

anq
log

(
un

an
(0, q)

un
an

(0)

)
,(2.6)

and the total price qpn
an

(q) admits the variational representation

(2.7) qpn
an

(q)= inf
Qn∈M̃n

(
qEQn[B] + 1

an

(
H

(
Qn|P)−H

(
Qn

0|P
)))

.

Note that from (2.7) one can easily deduce that for q ∈R

(2.8) pn
an

(q)= pn
1(anq).

Also, using (2.5) and (2.6) we obtain

pn
an

(q)=− 1

anq
log

(
E[e−anX̂n

an
(q)T−anqB ]

E[e−anX̂n
an

(0)T ]

)
(2.9)

=− 1

anq
log

(
EQn

0
[
e−anqŶ n

an
(q)]),

where

(2.10) Ŷ n
an

(q) := 1

q

(
X̂n

an
(q)T − X̂n

an
(0)T + qB

)
.

Ŷ n
an

(q) is intimately related to the normalized residual risk process of [1, 31, 37]
among others and can be seen as the per unit unhedgeable part of the long position
on q units of the claim B .
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3. Limiting prices and connections to large deviations theory. Equation
(2.9) is the starting point for our analysis. To motivate the result, we first make
connections with the large deviation principle (LDP) and Gärtner–Ellis theorem
from large deviations, both stated here for the convenience of the reader; see, for
example, [15].

DEFINITION 3.1. Let S be a Polish space with Borel sigma-algebra B(S) and
(�,F,P) be a probability space. We say that a collection of random variables
{Yn}n∈N from � to S has a LDP with good rate function I : S →[0,∞] and scaling
rn if rn →∞ and:

(1) For each s ≥ 0, the set 	(s)= {s ∈ S : I (s)≤ s} is a compact subset of S;
in particular, I is lower semicontinuous.

(2) For every open G⊂ S, limn↑∞(1/rn) log(P[Yn ∈G])≥− infs∈G I (s).
(3) For every closed F ⊂ S, limn↑∞(1/rn) log(P[Yn ∈ F ])≤− infs∈F I (s).

In this paper, we take S =R.

THEOREM 3.2 (Gärtner–Ellis). Let {Yn}n∈N be a collection of random vari-
ables on a probability space (�,F,P). Let {rn}n∈N be a sequence of positive reals
such that limn↑∞ rn =∞. For each n denote by �n the cumulant generating func-
tion for Yn

(3.1) �n(λ) := log
(
E

[
eλYn

])
, λ ∈R.

Assume the following regarding �n:

(1) For all λ ∈R the limit �(λ) := limn↑∞(1/rn)�n(rnλ) exists as an extended
real number.

(2) D0
�, the interior of D� := {λ :�(λ) <∞}, is nonempty with 0 ∈D0

�.
(3) � is differentiable throughout D0

� and steep; that is, limλ→∂D� |∇�(λ)| =
∞.

(4) � is lower semicontinuous.

Then the random variables {Yn}n∈N satisfy a LDP with speed {rn}n∈N and good
rate function I (y)= supλ∈R(λy −�(λ)).

To connect Theorem 3.2 with the indifference price in (2.9), assume that the
position size q takes the form q = �rn for � ∈ R, where {rn}n∈N is a sequence of
positive reals with limn↑∞ rn =∞. In this case, using (2.9) gives

(3.2) pn
an

(�rn)=− 1

an�rn
log

(
EQn

0
[
e−an�rnŶ n

an
(an�rn)])=− 1

an�rn
�n(−an�rn),

where, similar to �n above, we set

(3.3) �n(λ) := log
(
EQn

0
[
eλŶ n

an
(−λ)]).
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We thus see that convergence of the indifference prices pn
an

(�rn) is analogous
to the Gärtner–Ellis assumption that the scaled cummulant generating functions
(1/rn)�n(�rn) converge. However, besides the dependence of probability measure
on n, there is a substantial difference between �n in (3.3) and �n in (3.1): namely,
the random variables Ŷ n

an
(λ) of (3.3) are changing with λ whereas the random

variables Yn of (2.10) are not. Thus, even though convergence of the scaled indif-
ference prices implies a connection with a LDP for the random variables Ŷ n

an
(λ),

we do not typically expect a LDP from random variables Ŷ n
an

(λ) unless they do
not actually depend upon λ. An example where this is the case is presented in
Section 6.3 below.

We now make the main assumption in an analogous form to the Gärtner–Ellis
theorem.

ASSUMPTION 3.3. There exist a sequence {rn}n∈N of positive reals with
limn↑∞ rn =∞ and a δ > 0 such that for all |�|< δ the limit

(3.4) p∞(�) := lim
n↑∞pn

an
(�rn),

exists and is finite. In particular, with

(3.5) dn := pn
an

(0)= EQn
0 [B], 4

the limit d := p∞(0)= limn↑∞ dn exists. Furthermore, p∞(�) is continuous at 0,
that is, lim�→0 p∞(�)= d = p∞(0).

3.1. Discussion.

3.1.1. Assumption 3.3 and vanishing risk aversion. The relation (2.8) allows
us to vary risk aversion as well as position size. Specifically, Assumption 3.3 takes
the form that for all |�|< δ:

(3.6) p∞(�)= lim
n↑∞pn

an
(�rn)= lim

n↑∞pn
1(�anrn).

From here, it immediately follows that if the market is fixed: that is, if pn
1(qn) =

p1(qn) for all n and qn, then if an → 0 we may set rn := a−1
n →∞ and Assump-

tion 3.3 holds. Indeed, p1(�anrn) = p1(�) =: p∞(�) and continuity at 0 follows
from [14] which shows that lim�→0 p∞(�)= d = EQ0[B]. This example is briefly
additionally discussed in Section 6.1 below, and Theorems 4.3, 4.4 not withstand-
ing, our focus in the sequel will lie primarily on the case of fixed risk aversion in a
sequence of varying markets.

4See [14] for a proof of this equivalence.
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3.1.2. Assumption 3.3 and vanishing hedging errors. Though not explicitly
stated, for a fixed risk aversion an ≡ a, Assumption 3.3 implies the hedging er-
rors associated B are vanishing. This follows both from the convergence of scaled
indifference prices pn

a(�rn) and, crucially, from the assumption that p∞ is con-
tinuous at 0. To see this latter point, consider again when the market is fixed so
pn

a(qn)= pa(qn). Here, for a bounded claim B , as shown in [14, 32], we have

lim
n↑∞pa(�rn)=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

inf
Q∈M̃

EQ[B], � > 0,

EQ0[B], �= 0,

sup
Q∈M̃

EQ[B], � < 0.

Thus, the convergence requirement in Assumption 3.3 holds, but the resultant func-
tion p∞ is not continuous at 0, so Assumption 3.3 cannot hold in a fixed market
(or when there is a limiting market but B is not replicable in this market).

Alternatively, consider when all of Assumption 3.3 holds. First, (2.7) implies
that q �→ pn

an
(q) is decreasing and q �→ qpn

an
(q) is concave. Thus, � �→ �pn

an
(�rn)

is concave as well and, for |�| < δ, so is � �→ �p∞(�). In particular, p∞(�) is
continuous on (−δ,0) and (0, δ). Thus, additionally assuming continuity of p∞
at 0 [and hence on all of (−δ, δ)], we obtain the useful result

(3.7)
qn

rn
→ � ∈ (−δ, δ) =⇒ pn

an
(qn)→ p∞(�).

Indeed, take ε > 0 so that (�− ε)rn ≤ qn ≤ (�+ ε)rn for all n large enough. Since
pn

an
(q) is decreasing,

p∞(�+ ε)= lim
n↑∞pn

an

(
(�+ ε)rn

)≤ lim inf
n↑∞ pn

an
(qn)≤ lim sup

n↑∞
pn

an
(qn)

≤ lim
n↑∞pn

an

(
(�− ε)rn

)= p∞(�− ε).

Taking ε ↓ 0 gives the result. In particular, for all fixed position sizes q and risk
aversions a, we have that limn↑∞pn

a(q)= d , and this essentially implies the exis-
tence of trading strategies πn ∈An which asymptotically hedge B . This argument
is expanded upon, in the case of bounded claims and a continuous filtration, in
Section 4.3 below.

3.1.3. On the strict concavity of � �→ �p∞(�). Even though � �→ �p∞(�) is
concave under Assumption 3.3, as the example in Section 4.2 below shows, it
need not be strictly concave. However, under the assumption of strict concavity a
number of nice consequences ensue: for example, see Corollary 4.6 and the equi-
librium results in Section 5.
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4. Limiting scaled indifference prices and consequences. We now deduce
a number of consequences of Assumption 3.3, the first of which is that the regime
where the position size q = qn = �rn is the appropriate one as n ↑∞, if the consid-
ered positions are taken optimally. Here, we follow the approach of [24, 33, 34].

4.1. Optimal position taking. Define

(4.1) Bn := inf
Q∈M̃n

EQ[B], B̄n := sup
Q∈M̃n

EQ[B].

Assume for all n that B cannot be replicated by trading in Sn, and denote by In

the range of arbitrage-free prices for B; that is,

(4.2) In = (Bn, B̄n).

For p̃n ∈ In the optimal position q̂n = q̂n(p̃
n) is defined as the unique (see [24])

solution to the equation

(4.3) sup
q∈R

(
un

an

(−qp̃n, q
))

.

As shown in [24], q̂n satisfies the first-order conditions for optimality:

(4.4) p̃n = EQq̂n(p̃n)[B],
where Qq̂n(p̃n) ∈ M̃n is the dual optimizer for q̂n(p̃

n) units of claim B in that
it achieves the infimum in (2.7). To perform the asymptotic analysis we assume
consistency (in n) between the markets and non-degeneracy in prices as n ↑ ∞.
More precisely, we have the following.

ASSUMPTION 4.1. For Bn, B̄n as in (4.1) we have

(4.5) B := lim sup
n↑∞

Bn < lim inf
n↑∞ B̄n =: B̄.

REMARK 4.2. Let Assumption 3.3 hold. Then, since Bn ≤ dn ≤ B̄n for all n

it follows that B ≤ d ≤ B̄ (recall the definitions of dn and d as given in Assump-
tion 3.3). Assumption 4.1 strengthens this to say that there are p̃ �= d so that p̃

is arbitrage-free for all n large enough. In particular, there are In � p̃n → p̃ �= d .
Now, Assumption 4.1 may fail in two ways. First of all, it may be that In is col-
lapsing to the singleton d as n ↑ ∞. In this case, convergence of limiting prices
is trivial since pn

an
(qn)→ d for all sequences {qn}. The second way in which As-

sumption 4.1 may fail is if there is no consistency between markets in that there is
no price p̃ �= d such that p̃ ∈ In for all n large. Here, we do not have optimizers
(along a subsequence) q̂n.

Under Assumption 4.1, we present the first main result, which says that optimal
positions are becoming large at a rate which grows at least like �rn for some � �= 0.
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THEOREM 4.3. Let Assumptions 2.1, 2.2, 3.3 and 4.1 hold. For In � p̃n → p̃,

we have:

• If p̃ < d , then

lim inf
n↑∞

q̂n(p̃
n)

rn
> 0.

• If p̃ > d , then

lim inf
n↑∞

−q̂n(p̃
n)

rn
> 0.

The problem of obtaining upper bounds for lim supn↑∞ |q̂n(p̃
n)|/rn is more

subtle. First of all, we need to identify the maximal range where pn
an

(�rn) con-
verges. To do this, set

δ+ := sup
{
k > 0 : lim

n↑∞pn
an

(�rn)= p∞(�),∀0 < � < k
}
∈ [δ,∞],(4.6)

δ− := inf
{
k < 0 : lim

n↑∞pn
an

(�rn)= p∞(�),∀0 > � > k
}
∈ [−∞,−δ].(4.7)

As discussed in Section 3.1, pn
an

(q) is decreasing in q and hence p∞(�) is de-
creasing in �. Therefore, the limits

(4.8) p∞
(
δ+

) := lim
�↓δ−

p∞(�); p∞(δ−) := lim
�↑δ+

p∞(�),

exist. Furthermore, since Bn < pn
an

(�rn) < B̄n for all � ∈ R we have B ≤
p∞(δ+) ≤ p∞(δ−) ≤ B̄ , however, as the example in Section 4.2 below shows,
each of these inequalities may be strict. In particular, the range of limiting indif-
ference prices along the rate rn may deviate from the arbitrage-free prices.

With this notation, we now provide the corresponding upper bounds for optimal
positions.

THEOREM 4.4. Let Assumptions 2.1, 2.2, 3.3 and 4.1 hold. Define δ+, δ− as
in (4.6) and (4.7), respectively. For In � p̃n → p̃, we have:

• If p∞(δ+) < p̃ < d , then

lim sup
n↑∞

q̂n(p̃
n)

rn
< δ+.

• If d < p̃ < p∞(δ−), then

lim sup
n↑∞

−q̂n(p̃
n)

rn
<−δ−.
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Note the strict inequality above implies, for example, that when δ+ = ∞ we
have lim supn↑∞ q̂n(p̃

n)/rn <∞. Lastly, let us discuss when one actually has true
convergence. As seen in Section 3.1, the map � �→ �p∞(�) is concave. Here, we
strengthen this by assuming the following.

ASSUMPTION 4.5. The function � �→ �p∞(�) is strictly concave on (δ−, δ+).

Then we have the following corollary which ensures the limit q̂n/rn actually
exists.

COROLLARY 4.6. Let Assumptions 2.1, 2.2, 3.3, 4.1 and 4.5 hold. Define
δ+, δ− as in (4.6) and (4.7), respectively. Let In � p̃n → p̃. If p∞(δ+) < p̃ �=
d < p∞(δ−) then

lim
n↑∞

q̂n(p̃
n)

rn
= � ∈ (

δ−, δ+
) \ {0}.

The proofs of Theorems 4.3, 4.4 and of Corollary 4.6 are in Appendix B.

4.2. Discussion. Presently, we point out some conclusions and subtleties as-
sociated to the above results. First, when we put together Theorems 4.3, 4.4, we
see that if the price p̃n ∈ In converges to p̃ where p∞(δ+) < p̃ < p∞(δ−),p �= d

then up to subsequences we have q̂n(p̃
n)/rn → � ∈ (δ−, δ+)\{0}, which by Corol-

lary 4.6 becomes true convergence if � �→ �p∞(�) is strictly concave. Note also
that by (3.7), under optimal positions we have convergence of indifference prices
as well, that is, pn

an
(q̂n(p̃

n))→ p∞(�).
Second, assume, for example, that δ+ =∞. Then another straightforward cal-

culation shows [recall (4.5)]

B < p̃ < lim
�↑∞p∞(�) =⇒ lim

n↑∞
q̂n(p̃)

rn
=∞,

provided of course such a p̃ exists. This offers a converse to Theorem 4.4.
Third, let us briefly discuss the degenerate case where rn is (chosen) such that

p∞(�) = d for all � ∈ (δ−, δ+). In this case, a range of different phenomena can
occur. For illustration purposes, we consider the following example, taken from
[34]. In the nth market, the claim decomposes into a replicable piece Dn (with
replicating capital dn) and a piece Yn which is independent of Sn. Now, assume
Yn ∼ N(0, γn) under P and fix the risk aversion an ≡ a. Here, the indifference
price is

pn
a(q)= dn − 1

aq
log

(
E

[
e−aqYn

])= dn − 1

2
aqγ 2

n .
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The range of arbitrage-free prices is maximal: that is, Bn =−∞, B̄n =∞. For
p̃n ∈R, the optimal purchase quantity found by minimizing qp̃n − qpn

a(q) is

q̂n

(
p̃n)=− p̃n − dn

aγ 2
n

.

Now, assume that γn → 0, dn → d . With rn = γ−2
n →∞, Assumption 3.3 holds

with p∞(�) = d − (1/2)a�, δ− = −∞ and δ+ = ∞. Note that �p∞(�) = �d −
(1/2)a�2 is strictly concave. Here, if p̃n → p̃ ∈R we have that

q̂n(p̃
n)

rn
=− p̃n − dn

a
→− p̃− d

a
.

So, both Theorems 4.3 and 4.4 hold.
Now, change rn so that rn = γ−1

n →∞. Then Assumption 3.3 still holds with
p∞(�)= d , δ− =−∞ and δ+ =∞. In this instance, however, the map �p∞(�)=
�d is not strictly concave. Here, if p̃n → p̃ ∈R (which is still arbitrage-free since
this property does not depend upon rn) we have

q̂n(p̃
n)

rn
=− p̃n − dn

aγn

.

So, if p̃ < d the ratio goes to ∞, if p̃ > d the ratio goes to −∞ and if p̃ = d then
a variety of phenomena can occur depending on the rates at which γn → 0, p̃n →
p̃ and dn → d . Even though the behavior is degenerate in this case, it does not
contradict either Theorem 4.3 or 4.4. In particular, Theorem 4.4 is vacuous in this
case since p∞(�)= d for all �.

The above example is related to the well-known fact from large deviations that a
LDP may hold for the same sequence of random variables with two different rates
{rn}, {r ′n} with rn/r ′n → 0. The resulting rate functions, however, in an analogous
manner to the resultant limiting indifference prices above, may provide drastically
different levels of information.

4.3. On the normalized optimal wealth process. For a given n, fixed risk aver-
sion a and position size qn, recall the optimal wealth process X̂n

a(qn) from Sec-
tion 2. Heuristically, as |qn| → ∞ one expects X̂n

a(qn), as well as the optimal
strategy π̂n

a (qn), to grow on the order of |qn|. However, if we normalize the wealth
process by the position size then it is reasonable to ask if some type of convergence
takes place. To this end, we define the normalized wealth process X̃ via

(4.9) X̃n
a(qn) := 1

qn

X̂n
a(qn).

Note that X̃n
a(qn) is in fact a wealth process, obtained from the (acceptable) nor-

malized optimal trading strategy π̃n
a (qn) = (1/qn)π̂

n
a (qn). We wish to stress that

convergence of the normalized optimal wealth process is a topic on its own and we
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do not study it in this paper. However, we mention some interesting and motivating
straightforward conclusions.

Let us come back to (2.6), rewritten here as −aun
a(0)e−aqnpn

a (qn) =
E[e−qna(X̃n

a (qn)T+B)]. Since −aun
a(0)≤ 1, we immediately see that

(4.10) E
[
e−qna(X̃n

a (qn)T+B−pn
a(qn))]=−aun

a(0)≤ 1.

By Markov’s inequality, we have the elementary estimate

P
[
X̃n

a(qn)T +B − pn(qn)≤−γ
]≤ e−qnaγ ; γ ∈R.

Thus, we see that for any qn ↑∞ the portfolio obtained by buying one unit of B for
pn

a(qn) and trading according to the normalized optimal trading strategy provides
a super-hedge of 0 in P-probability in that for all γ > 0

(4.11) lim
n↑∞P

[
X̃n

a(qn)T +B − pn
a(qn)≤−γ

]= 0,

and in fact, the convergence to 0 is exponentially fast. This result essentially fol-
lows because of risk aversion and is valid under the minimal Assumptions 2.1
and 2.2. If we consider optimal positions then one can say more and characterize
the super-hedge more precisely. We first adapt the setup of [30] and enforce the
following assumptions on the claim B and filtration F.

ASSUMPTION 4.7. B is bounded: that is, ‖B‖L∞ <∞.

ASSUMPTION 4.8. The filtration F is continuous.

Under Assumptions 4.7 and 4.8, Theorem 13 of [30] says that for any qn

(4.12) qnB = qnp
n
a(qn)+ a

2

〈
L̂n

a(qn)
〉
T − L̂n

a(qn)T − X̂n
a(qn)T + X̂n

a(0)T ,

where L̂n
a(qn) is a Qn

0 martingale strongly orthogonal to Sn under Qn
0. Dividing by

qn and setting L̃n
a(qn) = (1/qn)L̂

n
a(qn) as the normalized orthogonal Qn

0 martin-
gale we obtain

(4.13) X̃n
a(qn)+B − pn

a(qn)= aqn

2

〈
L̃n

a(qn)
〉
T − L̃n

a(qn)T + 1

qn

X̂n
a(0).

Next, as shown in [30], Theorem 19, supn(qnE
Qn

0 [〈L̃n
a(qn)〉T ]) < ∞, which

implies that L̃n
a(qn)T goes to 0 in Qn

0-L2 as qn → ∞. Lastly, to evaluate
(1/qn)X̂

n
a(0)T as qn →∞ we impose the following mild asymptotic no arbitrage

condition (see [33], page 9):

ASSUMPTION 4.9. lim supn↑∞H(Qn
0|P) <∞.
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Assumption 4.9 implies (1/qn)X̂
n
a(0)T goes to 0 in Qn

0 probability as qn →∞.
Indeed, using the first-order relation in (2.5) a straightforward calculation shows
that for any ε, qn > 0 that

Qn
0

[
1

qn

X̂n
a(0)T ≥ ε

]
≤ eH(Qn

0 |P)−aqnε;

Qn
0

[
1

qn

X̂n
a(0)T ≤−ε

]
≤ H(Qn

0|P)+ e−1

εaqn +H(Qn
0|P)

,

from which the statement immediately follows. With these preparations, now con-
sider when, additionally, Assumptions 3.3 and 4.1 hold, and positions are taking
optimally: that is, qn = q̂n = q̂n(p̃

n) where In � p̃n → p̃ with p∞(δ+) < p̃ <

p∞(δ−),p �= d . Then, from Theorems 4.3, 4.4 we have up to subsequences (or,
under the assumptions of Corollary 4.6, for all subsequences) that q̂n/rn → � ∈
(δ−, δ+) \ {0} and that pn

a(q̂n)→ p∞(�). Thus, we obtain that in Qn
0-probability

(4.14) X̃n
a(q̂n)T +B − p∞(�)− aq̂n

2

〈
Ln

a(q̂n)
〉
T → 0,

which implies that the excess hedge is precisely aq̂n〈L̃n
a(qn)〉T /2 in Qn

0-probability
limit as n→∞. Even though this result is interesting, one would like to have the
same statement under the P measure. This is true if the measure P is contiguous
with respect to the measure Qn

0, that is, that Qn
0(An) → 0 implies P(An) → 0

for every sequence of measurable sets {An}n∈N, for example, Chapter 6 of [39].
The classical Le Cam’s first lemma (Lemma 6.4 in [39]) provides sufficient and
necessary conditions for contiguity.

Lastly, assume that qn = q is fixed and come back to (4.13). Taking expectations
yields

dn − pn
a(q)= aq

2
EQn

0
[〈
L̂n

a(q)
〉
T

]
,

where we recall that dn = EQn
0 [B]. As discussed in Section 3.1.2, Assumption 3.3

implies pn
a(q)→ d , and hence limn↑∞EQn

0 [〈L̂n
a(q)〉T ] = 0 which in turn implies

that both 〈L̂n
a(q)〉T , L̂n

a(q)T go to zero in Qn
0 probability as n→∞. Therefore,

for fixed position sizes, we have in view of (4.13), that X̃n
a(q)T − (1/q)X̂n

a(0)T +
B − d goes to zero in Qn

0 probability, and hence, under the additional contiguity
assumption, the claim is asymptotically hedgeable. This makes precise the con-
nection between Assumption 3.3 and vanishing hedging errors mentioned in Sec-
tion 3.1.2.

4.4. On a characterization of rn. As in the previous section, we let Assump-
tions 2.2, 3.3, 4.7 and 4.8 hold. Using the results of [30], we give a characterization
for rn which in a sense justifies the interpretation of rn as the speed at which the
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market becomes complete. Recalling (3.5), (4.12) and the normalized orthogonal
martingale L̃n

a(qn) we get

dn = pn
a(qn)+ aqn

2
EQn

0
[〈
L̃n

a(qn)
〉
T

]
.

Now, let qn = �rn for some |�|< δ [which, by Corollary 4.6 and (3.7) essentially
includes the case of optimal positions]. We thus have

(4.15) lim
n↑∞

rn

2
EQn

0
[〈
L̃n

a(�rn)
〉
T

]= d − p∞(�)

a�
.

This conforms to the “asymptotically complete” case. The normalized hedging
error under optimal positions q̂n ≈ �rn is approximately (up to a multiplicative
constant) EQn

0 [〈L̃n
a(�rn)〉T ]. If the market is becoming complete, we expect that

for n→∞
EQn

0
[〈
L̃n

a(�rn)
〉
T

]→ 0.

The speed at which it goes to 0 thus becomes r−1
n and at this scaling we have

convergence of prices.
In Sections 6 and 7, we study a number of examples where rn can be computed

explicitly. One would like to have an abstract formula that explicitly characterizes
rn, as (4.15) contains rn within the normalized hedging error 〈L̃n

a(�rn)〉. Notice
that (4.15) holds for all |�| < δ. So, one is tempted to take limits as � → 0 on
both sides, and, if one can interchange the n ↑∞ limit with the �→ 0 limit, pass
the latter limit inside the expectation, and if p∞(�) is both strictly decreasing and
differentiable at �= 0, then for n large enough

rn ≈−2ṗ∞(0)

a
× 1

EQn
0 [〈L̃n

a(0)〉T ]
.

Here, the interpretation of r−1
n as a market incompleteness factor is much more

transparent. Indeed, define X̌n, Ľn through the Kunita–Watanabe decomposition
of −B with respect to the subspace of L2(Qn

0;FT ) generated by trading in Sn so
that B = EQn

0 [B] − Ľn
T − X̌n

T . Then, as shown in [30], Section 6.1, we have the
following limits in L2(Qn

0;FT ):

lim
q↓0

L̃n
a(q)T = ĽT ; lim

q↓0

(
X̃n

a(q)T − 1

q
X̂n

a(0)T

)
= X̌n

T .

In other words, L̃n
a(0) describes the hedging error associated to B , with size

EQn
0 [〈L̃n

a(0)〉T ] ∝ r−1
n . Thus, r−1

n acts as the market incompleteness factor, and
as the market becomes complete, we see that rn →∞.

The derivation of this statement is of course heuristic. Rigorous proof of this re-
sult seems to be quite hard, but we nevertheless present the argument as it provides
more intuition into the problem. We choose to leave the rigorous derivation of this
result and further consequences as a future interesting work.
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4.5. Optimal position taking for general utilities. The optimal position taking
results in Theorems 4.3 and 4.4 readily extend to general utility functions on the
real line. This essentially follows from [33]. Throughout this section, we fix the
risk aversion at a > 0. Define Ua as the class of utility functions on R [i.e., U ∈
C2(R), strictly increasing and strictly concave] satisfying:

• The absolute risk aversion of U is bounded between two positive constants: that
is, for 0 < aU < āU :

(4.16) aU ≤ αu(x) := −U ′′(x)

U ′(x)
≤ āU ; x ∈R.

• U decays exponentially with rate a for large negative wealths: that is,

(4.17) lim
x↓−∞−

1

x
log

(−U(x)
)= a.

By (4.16), it follows that U is bounded from above on R, and hence through
a normalization we assume 0 = U(∞) = limx↑∞U(x). From [33], Section 2.2,
it holds that U ∈ Ua satisfies both the Inada conditions limx↓−∞U ′(x) = ∞,
limx↑∞U ′(x) = 0 and the reasonable asymptotic elasticity conditions
lim infx↓−∞ xU ′(x)/U(x) > 1, lim supx↑∞ xU ′(x)/U(x) < 1. Similar to (2.2)
and (2.3), define the value function in the nth market with initial capital x and
q units of the claim as un

U(x, q), where if q = 0 we write un
U(x). Analogously to

(2.4), set pn
U(x, q) as the (average, bid) utility indifference price defined through

the equation

(4.18) un
U

(
x − qpn

U(x, q), q
)= un

U(x).

So that pn
U(x, q) is well defined for x, q ∈R, we assume the claim is bounded: that

is, we enforce Assumption 4.7. Under Assumptions 2.2, 4.7, it follows from [32]
that for x, q ∈ R, pn

U(x, q) is well defined, arbitrage-free, decreasing in q with
limits [recall (4.2)] limq↓−∞ pn(x, q)= B̄n, limq↑∞ pn(x, q)= Bn, for each n.

To connect limiting prices for U with those for the exponential utility, we addi-
tionally enforce the asymptotic no arbitrage condition in Assumption 4.9, and re-
call that using [33], Theorem 3.3, it follows from Assumptions 2.2, 3.3, 4.7 and 4.9
that for all x ∈R and 0 < |�|< δ

(4.19) lim
n↑∞pn

U(x, �rn)= p∞(�).

As for �= 0, since Assumption 3.3 implies p∞ is continuous at 0, the monotonic-
ity of pn

U(x, q) yields for 0 < � < δ that

p∞(�)= lim
n↑∞pn

U(x, �rn)≤ lim inf
n↑∞ pn

U(x,0)≤ lim sup
n↑∞

pn
U(x,0)

≤ lim
n↑∞pn

U(x,−�rn)= p∞(−�),
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so that taking � ↓ 0 we obtain that pn
U(x,0)→ p∞(0). Now, for a given arbitrage-

free price p̃n ∈ In, we consider the optimal purchase problem

(4.20) sup
q∈R

(
un

U

(
x − p̃nq, q

))
.

Unlike for the exponential case when the results of [24] yield a unique maxi-
mizer, here, to the best our our knowledge, there are no known results on exis-
tence/uniqueness of optimizers (see [36] for results with utility functions defined
on the positive axis). However, the main results of Theorems 4.3 and 4.4 still hold,
as the following theorem shows.

THEOREM 4.10. Let Assumptions 2.2, 3.3, 4.1, 4.7 and 4.9 hold. Assume that
In � p̃n → p̃. Let x ∈ R be fixed and recall δ+, δ− from (4.6), (4.7), respectively.
Then:

• For each n there exists an optimizer q̂n = q̂n(x, p̃n) to (4.20).
• If p∞(δ+) < p̃ < d , then for any sequence of maximizers {q̂n}:

(4.21) 0 < lim inf
n↑∞

q̂n

rn
< lim sup

n↑∞
q̂n

rn
< δ+.

• If d < p̃ < p∞(δ−), then for any sequence of maximizers {q̂n}:

(4.22) 0 < lim inf
n↑∞

−q̂n

rn
< lim sup

n↑∞
−q̂n

rn
<−δ−.

REMARK 4.11. As with the exponential case, a sufficient condition for the
limits to exist in (4.21) and (4.22) is Assumption 4.5.

5. On partial equilibrium price quantity and its limiting behavior. The
concept of indifference pricing has a subjective nature, in the sense that the indif-
ference price of an investor is a way she values unhedgeable positions, and whether
or not there is a counter-party to offset a transaction is a different question. In par-
ticular, so far we have assumed that a sequence of prices p̃n ∈ In converges to p̃,
without mentioning whether such prices equilibrate any transactions among dif-
ferent investors. In this section, we address this issue and we justify that such
sequence of prices could indeed be the equilibrium prices of the given claim B

among (two) investors.
For this, we adapt the notion of the partial equilibrium price quantity (PEPQ).

Provided that the stock dynamics are exogenously specified, the equilibrium price
of a claim B is the one at which the investors’ optimal quantities of the claim
sum up to zero, meaning that the market of the claim is cleared out (the word
partial refers to the fact the investors specify the equilibrium of the claim and
not the stock market). Essentially, the main motivation of this section is to study
under Assumption 3.3 when our main optimal position taking results could arise
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in an equilibrium setting whether all investors act optimally and the price p̃n is the
equilibrium price in the nth market of a given claim B . In short, the analysis of
this section prove that if the investors’ risky exposures (random endowments) are
dominated by rn, then p̃n → d . However, if investors’ endowments are growing
like rn, equilibrium prices p̃n could converge to a limit different than d and the
results of Theorems 4.3, 4.4 occur. The latter situation, which happens when at
least one investor has an already undertaken large position in B , means that there
are cases where the large regime is in fact the market’s equilibrium, and even more
interestingly the equilibrium prices converge to a price different than the unique
limiting arbitrage-free price.

In the setting of a locally bounded semimartingale stock market, bounded
claims, and exponential utility maximizers, the PEPQ is analyzed in [1]. Speci-
fied to the current setup of Section 2, we assume, for each n, there is a group of
I investors such that each investor i is endowed with a exogenously given ran-
dom endowment, denoted by E i

n. For a given bounded claim B , the investors also
wish to trade B among themselves in such a way that acting optimally (in terms of
utility maximization) the market for the claim clears.

For simplicity, we consider the presence of two investors, although we should
point out that the results of this section can be generalized for markets with more
investors. Recall that In from (4.2) denotes the (nonempty) range of arbitrage-
free prices for B and let ai

n > 0 denote the risk aversion coefficient for investor i.
Before we give the exact definition of the PEPQ for a claim B , we need to introduce
the notation for the indirect utility and the indifference pricing under the presence
of random endowment. Namely, for the random endowment E i

n and position size
q in B , define, in a similar manner to (2.2), the value function for investor i by

(5.1) un
ai
n

(
x, q|En

i

) := sup
πn∈An

E
[
Uai

n

(
x +Xπn

T + qB + E i
n

)]; i = 1,2.

Similar to (2.4), the average (bid) indifference price of the investor i with ran-
dom endowment En

i at the nth market is denoted by pn
ai
n
(q|E i

n) and is given as the

solution of

(5.2) un
ai
n

(
x − qpn

ai
n

(
q|E i

n

)
, q|E i

n

)= un
ai
n

(
x|E i

n

); i = 1,2.

Note that the indifference price’s independence on the (constant) initial wealth
still holds under the presence of the random endowment, which means that we
can again assume x = 0. Next, for a given pn ∈ In, consider the optimal purchase
quantity problem for investor i defined by identifying [compare with (4.3)]

(5.3) q̂i
n

(
pn)= argmax

q∈R
(
un

ai
n

(−qpn, q|E i
n

)); i = 1,2.

As shown in Proposition 5.5 in [1], the optimization problem (5.3) admits a
representation similar to the corresponding problem without random endowment
[see (B.1)]. Namely, we have that

(5.4) q̂i
n

(
pn) ∈ argmin

q∈R
(
qp̃n − qpn

ai
n

(
q|E i

n

))
.
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A PEPQ is then defined as a pair (pn∗, qn∗ ) ∈ In ×R such that

qn∗ = q̂1
n

(
pn∗

)
and − qn∗ = q̂2

n

(
pn∗

)
.

In other words, at price pn∗ it is optimal for investor 1 to buy qn∗ and investor 2
to sell qn∗ units of B , thus the market clears out. Taking representation (5.4) into
account, it is then a matter of simple calculations to get the following condition for
the PEPQ for each n (see also Proposition 5.6 and Corollary 5.7 in [1]):

(5.5) qn∗ = argmax
q∈R

(
q
(
pn

a1
n

(
q|En

1
)+ pn

a2
n

(−q|En
2
)))

.

The equilibrium price pn∗ is then given by

(5.6) pn∗ = EQn
1(qn∗ )[B] = EQn

2(−qn∗ )[B],
where Qn

i (q) denotes the dual optimizer in M̃n for the position qB + En
i and risk

aversion ai
n [recall the first-order condition (4.4) without random endowment].5

According to Theorem 5.8 in [1], for a nonreplicable bounded claim B (i.e., sat-
isfying Assumption 4.7) a PEPQ (pn∗, qn∗ ) ∈ In ×R always exists for each n ∈ N,
and it is unique with qn∗ �= 0 if and only if a1

nEn
1 − a2

nEn
2 is nonreplicable.

Now, consider when n ↑ ∞ and Assumption 3.3 holds for each sequence
{ai

n}n∈N. The questions that naturally arise are where the sequence of the equi-
librium prices converges to and under which conditions the regime of Theo-
rems 4.3, 4.4 occurs. As n ↑∞, if one ignores the position size and has nonvanish-
ing risk aversion, the hedging error of positions in B approaches zero, and hence
it is expected that equilibrium prices converge to price d . It turns out that this is
the case provided however that the size of the investors’ endowments is dominated
by the “market incompleteness” parameter rn from Assumption 3.3. When at least
one of the endowments increases with n sufficiently fast, the equilibrium prices
may converge to a limit different than d , which implies a situation similar to the
regime of Theorems 4.3, 4.4. In the sequel, we provide a family of such exam-
ples where the endowment of one of the investor is an increasing position on the
claim B .

Before we present the precise arguments, we should clarify how Assumption 3.3
works in the case of two investors, i = 1,2. The statement that Assumption 3.3
holds for function pn

ai
n
: R �→ In [defined in (2.4)], means that there exist a se-

quence {ri
n}n∈N of positive reals with ri

n ↗∞ and a constant δi > 0 such that for all
|�|< δi the limit p∞i (�) := limn↑∞pn

ai
n
(�ri

n) exists, is finite and lim�→0 p∞i (�)=
d . Note that it readily follows from the relation pn

a2
n
(q) = pn

a1
n
(qa2

n/a
1
n) (which

holds for each n) that if Assumption 3.3 holds for function pn
a1
n
, it will also hold

for function pn
a2
n

provided that the sequence {a2
n/a

1
n}n∈N is bounded away from zero

5Note that Qn
i (0) is not necessarily Qn

0 due to the presence of En
i .
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and infinity. For this, we could set r2
n := r1

na2
n/a

1
n (possibly going to an increasing

subsequence), p∞2 = p∞1 and δ2 = δ1.
For the proofs of this section, we need to introduce the notion of the (bid) in-

difference price for every arbitrary bounded payoff C ∈ L∞ under risk aversion
an > 0 in the nth market, denoted by P n

an
(C) and defined as the solution of the

following equation:

sup
πn∈An

E
[
Uan

(
x +Xπn

T +C − P n
an

(C)
)]

(5.7)
= sup

πn∈An
E

[
Uan

(
x +Xπn

T

)]; i = 1,2.

Note that under this notation qpn
an

(q)= P n
an

(qB), for all q ∈R with pn
an

defined in
(2.4). The following lemma generalizes the findings of Theorems 4.3 and 4.4 under
the presence of random endowment provided that the endowment is dominated by
the associated rn.

LEMMA 5.1. Let Assumptions 2.2, 4.1, 4.7 hold and impose Assumption 3.3
for function pn

ai
n
:R �→ In. If for i = 1,2, En

i ∈ L∞, for each n and ‖En
i ‖L∞/ri

n →
0, then the statements of Theorems 4.3 and 4.4 hold also for the function pn

ai
n
(·|En

i ) :
R �→ In.

PROOF. In view of the proof of Theorem 4.3 and under the imposed assump-
tions, we first have to show that function pn

ai
n
(·|En

i ) : R �→ In satisfies Assump-

tion A.5. Indeed, the first bullet point follows by a simple change of measure
dPn

i /dP := cn
i e−ai

nEn
i , for some constant cn

i and the corresponding variational rep-
resentation of the indifference price (2.7) considered under measure Pn

i ; while the
second bullet point readily follows by the boundedness of claim B . For the third
and fourth items, it is enough to show that for all |�|< δi , limn→∞pn

ai
n
(�ri

n|En
i )=

p∞i (�). For this, we note that the indifference price of an exponential utility max-
imizer under some random endowment can be written as the difference of two
indifference prices without endowments [see, among others, Appendix of [1] and
recall definition (5.7)]:

(5.8) qpn
ai
n

(
q|En

i

)= P n
ai
n

(
qB + En

i

)− P n
ai
n

(
En

i

)
, ∀q ∈R.

Hence, for any |�|< δi

pn
ai
n

(
�ri

n|En
i

)= P n
ai
n
(�ri

nB + En
i )− P n

ai
n
(En

i )

�ri
n

≤ pn
ai
n

(
�ri

n

)+ 2
‖En

i ‖L∞
|�|ri

n

→ p∞i (�),

where the limiting argument follows by the imposed assumptions on function pn
ai
n

and En
i . We similarly show that pn

ai
n
(�ri

n|En
i ) ≥ pn

ai
n
(�ri

n) − 2
‖En

i ‖L∞
|�|ri

n
→ p∞i (�),
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which completes the proof that function q �→ pn
ai
n
(q|En

i ) satisfies Assumption A.5.

We then observe that requirements of Proposition A.6 are also met for function
pn

ai
n
(·|En

i ) : R �→ In, since by (5.8) it readily follows that pn
ai
n
(∞|En

i ) = pn
ai
n
(∞).

Hence, the rest of the proof follows the same argument lines as the ones in proofs
of Theorems 4.3, 4.4. �

Returning to the PEPQ, we exclude trivial cases for each n ∈N by imposing the
following assumption.

ASSUMPTION 5.2. For each n, En
i ∈ L∞ for both i = 1,2 and a1

nEn
1 − a2

nEn
2

is nonreplicable.

As mentioned above, this assumption guarantees the existence and the unique-
ness of the PEPQ (pn∗, qn∗ ) for each n with qn∗ �= 0. Imposing Assumption 3.3 for
indifference prices of both investors, we first address the conditions that give the
convergence of the equilibrium prices to d .

PROPOSITION 5.3. Let Assumptions 2.2, 4.1, 4.7, 5.2 hold, and impose As-
sumption 3.3 for function pn

a1
n
(q) and Assumption 4.5 for function qp∞1 (q). If

we further assume that ‖En
i ‖L∞/r1

n → 0, for both i = 1,2 and the sequence
{a2

n/a
1
n}n∈N is bounded away from zero and infinity, the sequence of the partial

equilibrium prices pn∗ of claim B converges to d .

PROOF. Let pn∗ denote an arbitrarily chosen convergent subsequence of the
equilibrium prices of B with limit p̂ (note that B ∈ L∞ guarantees the existence
of such subsequence) and assume that p̂ �= d , and in particular p̂ < d .

Under Assumptions 4.7 and 5.2, it follows by Theorem 5.1 of [24] that the map
q �→ qpn

ai
n
(q|En

i ) is strictly concave for each i = 1,2, and also that

(5.9) EQn
i (q)[B] = ∂

∂q
qpn

ai
n

(
q|En

i

)
.

Now that EQn
1(0)[B] �= EQn

2(0)[B] holds due to Assumption 5.2. Thus, first assume
for some subsequence (still labeled n) that EQn

1(0)[B]> EQn
2(0)[B], for sufficiently

large n. Then qn∗ > 0 and in fact EQn
1(0)[B] > pn∗ > EQn

2(0)[B]. In view of Theo-
rem 4.3 and Lemma 5.1, we have that the inequality p̂ < d implies the existence
of a further subsequence of qn∗ (still labeled n) such that limn→∞ qn∗/r1

n = � > 0.
We reach then a contradiction if we show that for sufficiently large n, the position
−qn∗ is not optimal for investor 2. Since p̂ < d , we get from Assumption 3.3 that
there exists c > 0 such that for any sufficiently large n, pn∗ < EQn

0 [B] − c. This
implies that

0≤ (−qn∗
)(

pn
a2
n

(−qn∗ |En
2
)− pn∗

)
<

(−qn∗
)(

pn
a2
n

(−qn∗ |En
2
)−EQn

0 [B] + c
)
,
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where the first inequality holds because the position −qn∗ is optimal for investor 2
at price pn∗ , for each n. Using the relation (5.8) and the representation (2.7), we get
that [recall definition (5.2)]

0 <
P n

a2
n
(−qn∗B + En

2 )

qn∗
−

P n
a2
n
(En

2 )

qn∗
+EQn

0 [B] − c

= inf
Q∈M̃n

{
EQ

[
−B + En

2

qn∗

]
+ 1

a2
nq

n∗
(
H(Q|P)−H

(
Qn

0|P
))}− P n

a2
n
(En

2 )

qn∗
+EQn

0 [B] − c

≤ EQn
0

[En
2

qn∗

]
−

P n
a2
n
(En

2 )

qn∗
− c ≤ 2

‖En
2 ‖L∞
qn∗

− c= 2
‖En

2 ‖L∞
r1
n

r1
n

qn∗
− c.

Since ‖En
2 ‖L∞/r1

n → 0 and r1
n/qn∗ → 1/�, it follows that c ≤ 0, a contradiction

since c > 0. Similarly, when EQn
1(0)[B]< EQn

2(0)[B], for sufficiently large n, then
qn∗ < 0 and up to a subsequence qn∗/r2

n →−� < 0. In this case, we follow the same
arguments to show that the position −qn∗ could not be optimal for the investor 1
for sufficiently large n. Finally, the case where p̂ > d is symmetric to the analysis
above and hence omitted. �

Withdrawing, however, the assumption ‖En
i ‖L∞/rn → 0 could give the inter-

esting cases where the equilibrium prices converge to a price different than the
unique arbitrage-free price of the limiting market and the regime of Theorems 4.3,
4.4 occurs. A family of such examples are presented in the following proposition.

PROPOSITION 5.4. Let Assumptions 2.2, 4.1 and 4.7 hold. Impose also As-
sumption 3.3 for function pn

1(p) with constant risk aversion equal to 1 and As-
sumption 4.5 for the corresponding function qp∞(q). If for each n ∈ N and
i = 1,2, ai

n ≡ ai and En
i ≡ bn

i B , for some ai > 0 and bn
i ∈ R, the following state-

ments hold:

(i) For each market n ∈ N, the unique PEPQ pair (pn∗, qn∗ ) is given by q∗n =
(a2b

n
2 −a1b

n
1)/(a1+a2) and pn∗ = EQ−abn [B], with 1/a := 1/a1+1/a2 and bn :=

bn
1 + bn

2 .
(ii) Letting for each n ∈N, bn

2 = κrn, for some κ ∈ (0, δ+/a) and bn
1 = b1 ∈R,

we get that limn→∞ qn∗/rn = � > 0 and pn∗ → p̂ < d .

PROOF. The proof of the first item (i) is based on standard arguments of the
related literature (see, e.g., Theorem 3.2 in [5]). We recall that the equilibrium
quantity is the solution of the optimization problem (5.5) and thanks to the strict
concavity of the function q �→ qpn

ai
(q|En

i ) we get that for any q ∈ R and every
n ∈N,

q
(
pn

a1

(
q|En

1
)+ pn

a2

(−q|En
2
))≤ bnpn

a

(
bn)

.
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We then observe that in fact bnpn
a(bn) = qn∗ (pn

a1
(qn∗ |En

1 )+ pn
a2

(−qn∗ |En
2 )), which

means that qn∗ is indeed the equilibrium quantity. The fact that equilibrium price

pn∗ equals to EQ−abn [B] readily follows by (5.6).
For the second item, we have that q∗n/rn = (a2κrn − a1b1)/(a1 + a2) →

a2κ/(a1 + a2) > 0. Since pn∗ is the equilibrium price for each n, we have that
pn∗ < pn

1(qn∗ |En
1 ), since qn∗ is optimal position for investor 1 at price pn∗ . Then by

using the representation (5.8) as in the proof of Lemma 5.1, we get that

lim
n→∞pn

a1

(
q∗n |En

1
)= lim

n→∞pn
a1

(
a2κrn/(a1 + a2)

)= p∞(aκ).

Recall that pn∗ = EQ−abn [B] and note that strict concavity of the function q �→
qpn

a1
(q|En

1 ) and equation (5.9) give that pn∗ is decreasing in n and hence it has a
limiting point p̂. Thus, we have that limn→∞p∗n = p̂ ≤ p∞(aκ) < p∞(0) = d ,
where the last strict inequality follows by Assumption 4.5. �

Proposition 5.4 indicates that there are cases where the equilibrium quantity
increases to infinity at the same time where the equilibrium price is different than
the limiting arbitrage-free price. It is important to point out here that both investors
act optimally at that equilibrium prices even though the limiting price is different
than d . The essential element is of course that one of the investor is endowed with
a large position on the claim and she is willing to sell portion of her position at
a price which induces the other investor acting optimally to enter to a large claim
regime also. In other words, Proposition 5.4 justifies the large volume of some
OTC derivative markets and the corresponding extreme prices as long as some of
the participants in the market are already exposed to a risk that is highly correlated
with the payoff of the tradeable derivatives. This situation fits to the observed ex-
treme volumes and prices for example in the mortgage backed securities market in
the recent years.

REMARK 5.5. The proof of Proposition 5.4 can easily be generalized in the
case where the endowments are of the form En

i = bn
i B + En

i , with the choices of
bn
i as in the Proposition 5.4 and En

i being bounded random endowments such that
‖En

i ‖L∞/rn → 0.

6. Examples where the limiting scaled indifference price exist. The power
of Assumption 3.3 is its validity in a wide variety of models. In this section, we give
four well studied market model examples. Then, in the next section we pay partic-
ular attention to an example with transactions costs. Remarkably, even though the
standard duality results no longer apply, a version of Assumption 3.3 still holds
and more importantly, so do the conclusions of Theorems 4.3 and 4.4.
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6.1. Vanishing risk aversion in a fixed market. As shown Section 3.1.1 for a
fixed market, if the risk aversion vanishes (i.e., an → 0) then Assumption 3.3 holds
with rn = a−1

n and p∞(�)= p1(�). In addition, as the class of acceptable trading
strategies A is a cone it follows for any qn that π̂an(qn) = (1/an)π̂1(anqn). So,
for qn = �rn = �/an, not only do indifference prices trivially converge, but the
optimal trading strategy is explicitly known, that is, it is (1/an)π̂1(�)= rnπ̂1(�)=
(qn/�)π̂1(�). Note that in this instance the normalized optimal trading strategy
trivially converges but does not necessarily provide a super hedge.

6.2. Basis risk model with high correlation. This example is considered in
detail in [12, 21, 33, 38] among others. Here, we have for each n one risky asset
Sn which evolves according to

dSn
t

Sn
t

= μ(Yt ) dt + σ(Yt )
(
ρn dWt +

√
1− ρ2

n dW̃t

)
,

dYt = b(Yt ) dt + a(Yt ) dWt,

where W and W̃ are two independent Brownian motions. The filtered probability
space is the standard two-dimensional augmented Wiener space. The coefficients
a, b have appropriate regularity and are such that Y has a unique strong solution
taking values in an open subset E of R. Set λ := μ/σ as the market price of
risk and assume that σ 2(y) > 0, y ∈ E and that λ is bounded on E. B = B(YT )

for some continuous bounded function B on E. As shown in [33], Section 5.3,
Bn = B = infy∈E B(y) and B̄n = B̄ = supy∈E B(y) for all n. Set rn = (1− ρ2

n)−1.
As shown in [38] (see also [33]), for a fixed risk aversion a > 0 and � ∈R, � �= 0:

pn
a(�rn)=− 1

a�
log

(
E[e−ρn

∫ T
0 λ(Yt ) dWt− 1

2

∫ T
0 λ2(Yt ) dt−a�B(YT )]

E[e−ρn

∫ T
0 λ(Yt ) dWt− 1

2

∫ T
0 λ2(Yt ) dt ]

)
.

For �= 0, one has

dn = pn
a(0)= EQn

0
[
B(YT )

]= E[e−ρn

∫ T
0 λ(Yt ) dWt− 1

2

∫ T
0 λ2(Yt ) dtB(YT )]

E[e−ρn

∫ T
0 λ(Yt ) dWt− 1

2

∫ T
0 λ2(Yt ) dt ]

.

Thus, if ρn → 1 (limit of high correlation) then rn →∞ and

lim
n↑∞pn

a(�rn)= p∞(�)=− 1

a�
log

(
EQ[

e−a�B(YT )]); � �= 0;

lim
n↑∞pn

a(0)= p∞(0)= EQ
[
B(YT )

]
,

where Q is the unique martingale measure in the ρ = 1 market where the
filtration is restricted to FW . Furthermore, using l’Hopital’s rule one obtains
lim�→0 p∞(�) = EQ[B(YT )] = p∞(0) so that Assumption 3.3 is satisfied with
δ =∞.
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6.3. Large markets with vanishing trading restrictions. The next example is
simplified version of the general semicomplete setup considered in [34]. Here,
(�,F,P) is assumed to support a sequence of independent Brownian motions
W 1,W 2, . . . . The filtration is the augmented version of FW 1,W 2,.... There is a se-
quence of (potentially tradeable) assets S1, S2, . . . with dynamics

dSi
t

Si
t

= μi dt +
i∑

j=1

σ ij dW
j
t ; i = 1,2,3, . . . ,

where μ = (μ1,μ2, . . .) satisfies
∑∞

i=1(μ
i)2 < ∞ and σ is the lower triangular

square root of the symmetric matrix � = {�ij }i,j=1,2,..., assumed positive definite
so that for some λ > 0 and all ξ = (ξ1, ξ2, . . .) with

∑∞
i=1(ξ

i)2 < ∞, we have
ξ ′�ξ ≥ λξ ′ξ .

The claim (as is typical in life insurance markets) is given as the sum of
independent, FWi

adapted claims Bi : B = ∑∞
i=1 Bi . To make B well defined

and amenable to large claim analysis, we assume E[eλBi ] <∞, i = 1,2, . . . and∑∞
i=1 log(E[eλBi ]) <∞ for all λ ∈R.
For n= 1,2, . . . , we construct the nth market by restricting trading to the first

n assets. Thus, as n ↑∞ the claim is asymptotically hedgeable, though for each
n the market is incomplete. As shown in [34], Bn = dn + ess infP[Yn] and B̄n =
dn+ess supP[Yn] where dn is the unique replicating capital for

∑n
i=1 Bi and Yn :=∑∞

i=n+1 Bi . Under Assumption 3.3, dn → d = EQ0[B] where Q0 is the unique
martingale measure in the limiting complete market.

Since
∑∞

i=1 log(E[eλBi ]) <∞ for all λ ∈ R, we know that limn↑∞E[Y 2
n ] = 0.

Assume furthermore that Yn is converging to 0 sufficiently fast so that it satisfies
a LDP with scaling rn →∞ and good rate function I such that {I = 0} = {0}.
Lastly, assume that for some δ > 0, |λ|< δ implies

(6.1) lim sup
n↑∞

1

rn

∞∑
i=n

log
(
E

[
eλrnBi ])

<∞.

For example, this will hold if Bi ∼N(0, δ2
i ), with

∑∞
i=1 δ2

i <∞. Fix the risk aver-
sion an = a > 0. As shown in [34], at �= 0 we have limn↑∞pn

a(0)= d = p∞(0).
Furthermore, for 0 < |�|< δ/a

lim
n↑∞pn

a(�rn)= p∞(�)= d − 1

a�
sup
y∈R

(−�ay − I (y)
)
.

Additionally, as can be deduced from I (y)= 0↔ y = 0, (6.1) and the lower semi-
continuity of I , it follows that

lim
�→0

1

a�
sup
y∈R

(−�ay − I (y)
)= 0,
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so that p∞(�)→ d = p∞(0) as �→ 0. Thus, Assumption 3.3 holds. Lastly, it is
also shown in [34] that for all q ∈R the normalized residual risk process Ŷ n

a (q) of
(2.10) is precisely Yn and, as such, does not depend upon q .

6.4. Black–Scholes–Merton model with vanishing default probability. This
example is taken from [25] and the setup is similar to that considered in [29].
Here, we consider the Black–Scholes–Merton model, except that the stock may
default at the first jump time of an independent Poisson process. The claim is a
defaultable bond paying 1 if the stock has not defaulted by time T . The owner of
the bond wishes to hedge the claim by trading in Sn, but needs to take into account
the event of default, since the stock is stuck at 0 after default occurs.

Fix n and let λn > 0. For each n, the probability space is assumed to support a
Brownian motion W as well as an independent Poisson process Nn with intensity
λn. Denote by Ñn the compensated Poisson process so that Ñn

t = Nn
t − λn(τn ∧

t), where τn = inf{t ≥ 0 : Nn = 1}. The filtration is that generated by Nn and
W , augmented so that it satisfies the usual conditions. The (single) risky asset Sn

evolves according to

dSn
t

Sn
t−
= 1t≤τn(μdt + σ dWt)− dNn

t ,

= 1t≤τn

(
(μ+ λn) dt + σ dWt − dÑn

t

)
.

The claim is a defaultable bond which pays 1 if Sn defaults before T : that is,
B = 1τn≤T .6 Here, Bn = 0 and B̄n = 1; this is because we can equivalently change
the default intensity to take any positive value. Thus, Assumption 4.1 holds even
though d = 1 and hence d /∈ In for all n.

As shown in [25], un
a(0, q)=− 1

a
F n(0;q) where Fn(·;q) solves the ODE

Ḟ n(t;q)− λFn(t;q)− μ2

2σ 2 Fn(t;q)+min
φ

(
1

2
σ 2φ2Fn(t;q)+ λne

μ

σ 2−φ
)

= 0; t ≤ T ,

Fn(T ;q)= e−aq .

It is easy to see that the optimal φ̂n in the above minimization satisfies

φ̂n(t;q)eφ̂n(t;q) = λn(F
n(t;q))−1e

μ

σ 2 , where one can show that Fn(t;q) > 0.
Now, let λn ↓ 0 (vanishing default probabilities) and set rn = − log(λn). With
qn = �rn, one can show that for � < 1/a

lim
n↑∞pn

a(�rn)= lim
n↑∞−

1

�arn
log

(
Fn(0;�rn)
F n(0;0)

)
= p∞a (�)= 1.

6As the claim depends upon n here it does not fit precisely into the setup of Section 2. However, as
inspection of the propositions in Appendix A shows, the results of Theorems 4.3, 4.4 readily extend
to a sequence of claims Bn if they are uniformly bounded.
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Since

lim
�→0

p∞a (�)= 1= lim
n↑∞pn

a(0),

we see that Assumption 3.3 is satisfied, though the map � �→ �p∞(�) = � is not
strictly concave.

7. Vanishing transaction costs in the Black–Scholes–Merton model. In
this section, we show that the existence of limiting indifference prices and the
resultant statements about optimal position taking even extend to models with fric-
tions, where the standard duality results used in Section 2 are not as fully developed
(see [11] for a recent treatment of the topic). As such, this example is given its own
section.

We consider the Black–Scholes–Merton model with proportional transactions
costs, as studied in [4, 6, 10, 13, 20, 23, 27, 28, 35] among many others. We take
the approach of [10] and especially [4, 23]. Using the notation of [4], the stock S

evolves according to a geometric Brownian motion

(7.1)
dSt

St

= μdt + σ dWt ; t ≤ T .

Here, the filtered probability space is the standard one-dimensional Wiener space.
Now, fix a time t ≤ T and s > 0 and assume St = s. Denote by X and Y , respec-
tively, the processes of dollar holdings in the money market and shares of stock
owned associated to a trading strategy L,M where Lt =Mt = 0 and L represents
the cumulative transfers (in shares of stock) from the money market to the stock
and M represents the cumulative transfers from the stock to the money market. We
denote by At the set of (L,M) where L,M are adapted, nondecreasing and left-
continuous with Lt =Mt = 0. There is a proportional transaction cost λ ∈ (0,1)

by trading. In other words, for a given initial position (x, y) where x ∈ R is the
initial capital and y ∈ R the initial shares held in S the corresponding processes
evolve according to

Xτ =XL,M,x,t
τ

= x −
∫ τ

t
Su(1+ λ)dLu +

∫ τ

t
Su(1− λ)dMu; t ≤ τ ≤ T ,

Yτ = YL,M,y,t
τ = y +Lτ −Mτ ; t ≤ τ ≤ T .

(7.2)

The claim B is a European call option on S: that is, B = (ST −K)+, and sup-
pose that the investor is considering selling the call. For an exponential investor
with fixed risk aversion a > 0, the value function without the claim is given by

(7.3) ua(x, y; s, t, λ)= sup
L,M∈At

Es,t

[
Ua(XT + YT ST )

]
.



CONTINGENT CLAIMS AND OPTIMAL POSITIONS 1807

Here, Es,t [·] refers to conditioning on time t given St = s. The value function for
q units of the call is

(7.4) ua(x, y, q; s, t, λ)= sup
L,M∈At

Es,t

[
Ua

(
XT + YT ST − q(ST −K)+

)]
.

The indifference price pa(x, y, q; s, t, λ) is then defined through the balance equa-
tion

(7.5) ua

(
x + qpa(x, y, q; s, t, λ), y, q; s, t, λ)= ua(x, y; s, t, λ).

REMARK 7.1. pa(x, y, q; s, t, λ) is thus the average ask indifference price, as
opposed to the average bid indifference price defined in Section 2. However, using
the arguments of Section 2 and definition (5.7) for a general claim B , the bid and
ask prices are related by pask

a (q;B) = −pbid
a (q;−B), where pbid

a (q;B) denotes
the average bid price (1/q)P bid

a (qB).

Though the results in [4] are stated in the joint limit of vanishing transactions
costs (i.e., λn → 0) and infinite risk aversion (i.e., a = an →∞), they easily (as the
authors therein mention) translate into asymptotics in the joint limit that λn → 0
and q = qn →∞ for a fixed risk aversion a. This translation is made precise in
the following proposition.

PROPOSITION 7.2. Fix s > 0,0 ≤ t ≤ T , x ∈ R, y ∈ R, λ ∈ (0,1) and
a > 0. The (ask) indifference price pa is independent of x and hence write
pa = pa(y, q; s, t, λ). Now, let λn → 0 and set rn := λ−2

n . For � > 0 and qn =
�rn = �λ−2

n we have for all yn such that limn↑∞ λ3
n|yn| = 0:

lim
n↑∞pa(yn, qn; s, t, λn)= p∞a (�; s, t) :=�(s, t;√a�),

where for b > 0, �(;b) : (0,∞)× [0, T ] �→ R is the unique continuous viscosity
solution to the nonlinear Black–Scholes PDE:

�t + 1

2
σ 2s2�ss

(
1+ S

(
b2s2�ss

))= 0; (s, t) ∈ (0,∞)× (0, T );
�(s,T )= (s −K)+; s ∈ (0,∞);

lim
s↑∞

�(s, t)

s
= 1; t ≤ T uniformly in t.

(7.6)

Here, S :R �→ (−1,∞) satisfies

Ṡ(A)= 1+ S(A)

2
√

AS(A)−A
; S(0)= 0;

lim
A↓−∞S(A)=−1; lim

A↑∞S(A)/A= 1.
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REMARK 7.3. The above result allows for yn to vary since intuitively a posi-
tion size of qn in the call would be associated to an initial position of qny in the
stock for some y ∈R. Note that for yn = qny = �yλ−2

n we have λ3
n|yn| → 0.

To obtain the optimal position taking results analogous to Theorems 4.3, 4.4,
it is first necessary to identify the range of limiting prices p∞a (�; s, t) in Proposi-
tion 7.2 as � varies between 0 and ∞. In other words, we must consider asymp-
totics for �(;b) for small and large b.

As b ↓ 0, Theorem 7.4 below proves continuity in that �(s, t;b)→�(s, t;0).
But, for b= 0, (7.6) is just the regular Black–Scholes PDE which admits a unique
(explicit) classical solution. Thus, as � ↓ 0, the limiting indifference price con-
verges to the unique price in complete, λn = 0 market given St = s.

THEOREM 7.4. Let �(;b) : (0,∞)× [0, T ] �→ R be the unique, continuous,
viscosity solution to the nonlinear Black–Scholes PDE equation (7.6). Then as
b→ 0, we have locally uniformly that �(;b)→�(;0), where �(;0) is the unique
continuous solution to the linear Black–Scholes PDE.

Next, we identify the limit of �(;b) as b ↑ ∞. Here, we are guided by the
intuition that, thought of as a function of the stock volatility, the Black–Scholes
price for a call option converges to the initial price as the volatility becomes large.
In fact, a similar phenomenon occurs here as b ↑∞, as the following shows.

THEOREM 7.5. For fixed s > 0,0≤ t ≤ T the map b �→�(s, t;b) is increas-
ing with

(7.7) lim
b↑∞�(s, t;b)=

{
(s −K)+, t = T ,

s, 0≤ t < T .

REMARK 7.6. An inspection of the proof of Theorem 7.4 below shows that
�(s, t;b) is continuously increasing in b. Thus, if qn = �nrn where �n → � ≥ 0
then the indifference prices converge to �(s, t;√a�).

With the above asymptotics for p∞a (�; s, t) in place, we now consider the op-
timal sale quantity problem in the nth market with transactions cost λn. In order
to simplify the presentation, we assume that given St = s the investor has the op-
portunity to sell call options at a price p̃n in the nth market. To finance this sale,
the investor cashes out her initial position in the stock, receiving ys(1− λn) for
the sale of y shares. Then, with x + ys(1− λn) in cash, she identifies the optimal
number of options to sell by solving the problem

(7.8) sup
q>0

ua

(
x + ys(1− λn)+ qp̃n,0, q; s, t, λn

)
.
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In the frictionless case, if p̃n is arbitrage-free in the nth market, then (see [24]),
an optimal q̂n exists and is unique. When considering transactions costs, rather
than identifying the arbitrage-free prices in each market, we use the small and
large � asymptotics for p∞a (�; s, t) obtained in Theorems 7.4, 7.5 to identify a
maximal range of reasonable prices p̃n for which one can sell the option. Indeed,
from the above theorems

lim
�↓0

p∞a (�; s, t)=�(s, t;0); lim
�↑∞p∞a (�; s, t)= s.

It is well known that �(s, t;0) < s. Furthermore, if one is going to sell options, the
effect of the transactions costs is that the ask price should (a) be at least as large as
�(s, t;0) and (b) be no higher than p since no one would buy at this price.7 Thus,
the only range of reasonable prices to sell at is (�(s, t;0), s). With this motivation,
we have the following.

THEOREM 7.7. Let p̃n ∈ (�(s, t;0), s) for each n with p̃n → p̃ where p̃ ∈
(�(s, t;0), s). Let λn → 0. For each n there exists a maximizer q̂n > 0 to (7.8).
Additionally, for any sequence {q̂n}n∈N of maximizers,

(7.9) lim inf
n↑∞

q̂n

rn
> 0; lim sup

n↑∞
q̂n

rn
<∞.

Thus, up to subsequences, q̂n/rn → � and hence for any sequence {yn}n∈N such
that λ3

n|yn| → 0,

lim
n↑∞pa(yn, q̂n; s, t, λn)= p∞a (�; s, t)=�(s, t;√a�).

APPENDIX A: TECHNICAL SUPPORTING RESULTS

The following propositions provide the main technical tools to prove the opti-
mal position taking results in both the frictionless and transactions cost cases. To
seamlessly integrate with the transaction costs case, results are separated into long
and short positions.

A.1. Long positions. Assume the following.

ASSUMPTION A.1. {pn} is a family of functions defined on (0,∞) such that:

• For each n, pn is nonincreasing and continuous.
• There exists a γ > 0 such that lim supn↑∞ supq≤γ q|pn(q)| = C(γ ) <∞.

7Technically, no one would buy at a price at or above p(1+λn) because it would then be preferable
to buy the stock and not trade. For this to hold as λn ↓ 0, we require p̃n ≤ p. Our results are valid
for p̃n < p.
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• There exists rn → ∞ and δ > 0 such that for 0 < � < δ we have
limn↑∞pn(�rn)= p∞(�).

• With p∞+ (0) := lim�↓0 p∞(�) and pn(∞) := limq↑∞ pn(q), we have
lim supn↑∞pn(∞) < p∞+ (0).

To find the maximal upper bound of convergence, set

δ+ := sup
{
k > 0

∣∣ lim
n↑∞pn(�rn)= p∞(�),∀0≤ � < k

}
∈ [δ,∞].(A.1)

Note that for 0 < � < δ+ we have pn(∞)≤ pn(�rn) so that lim supn↑∞pn(∞)≤
p∞(�) ≤ p∞+ (0). As such, a sufficient condition for bullet point four in Assump-
tion A.1 to hold is that p∞(�) < p∞+ (0) for some 0 < � < δ+.

Under Assumption A.1, we have the following result for positive position sizes.

PROPOSITION A.2. Let Assumption A.1 hold. Let p̃n → p̃.

• If lim supn↑∞pn(∞) < p̃ < p∞+ (0) then for n large enough the optimization
problem

(A.2) inf
q>0

(
qp̃n − qpn(q)

)
,

admits a minimizer q̂n > 0.
• If lim supn↑∞pn(∞) < p̃ < p∞+ (0), then for any sequence of minimizers {q̂n}:

(A.3) 0 < lim inf
n↑∞

q̂n

rn
.

• If additionally lim�↑δ+ p∞(�) < p̃ < p∞+ (0), then for any sequence {q̂n} of min-
imizers:

(A.4) lim sup
n↑∞

q̂n

rn
< δ+.

PROOF. First, consider the minimization problem in (A.2). Since p̃n → p̃,

there is some ε > 0 and Nε so that n ≥ Nε implies lim supn↑∞pn(∞) + ε <

p̃n < p∞+ (0) − ε. Next, choose � > 0 small enough so that p̃n < p∞(�) − ε/2.
By enlarging Nε , we know for n ≥ Nε that pn(∞) ≤ lim supn↑∞pn(∞) + ε/2
and p∞(�) < pn(�rn)+ ε/4, and hence

(A.5) pn(∞)+ ε/2≤ p̃n ≤ pn(�rn)− ε/4.

For a fixed n, note that limq↑∞(p̃n − pn(q)) = p̃n − pn(∞) ≥ ε/2. Thus, if
{q̂m

n }m∈N is a minimizing sequence for (A.2), then {q̂m
n } is bounded, and hence

has an accumulation point q̂n. We now show that q̂n �= 0, which combined with the



CONTINGENT CLAIMS AND OPTIMAL POSITIONS 1811

continuity of qpn(q) proves q̂n > 0 is a minimizer. To see that q̂n �= 0, we use a
contradiction argument. Note that with the γ from Assumption A.1

lim inf
q↓0

(
qp̃n − qpn(q)

)=− lim sup
q↓0

qpn(q)≥− sup
q≤γ

q
∣∣pn(q)

∣∣.
For the given ε, by enlarging Nε we may assume that for n≥Nε

lim inf
q↓0

(
qp̃n − qpn(q)

)≥− lim sup
n↑∞

sup
q≤γ

q
∣∣pn(q)

∣∣− ε =−C(γ )− ε.

But, for the � from (A.5):

(A.6) �rnp̃
n − �rnp

n(�rn)≤−�rnε/4.

Combining the last two displays we get that, for the chosen n, we have

−�rnε/4≥−C(γ )− ε.

However, by potentially enlarging Nε , and since rn →∞, we can always arrange
things so that −�rnε/4 < −C(γ )− ε. This leads to a contradiction, proving that
q̂n �= 0.

Now, let {q̂n} be a sequence of minimizers. We first claim that lim infn↑∞ q̂n >

0. Indeed, assume there is a subsequence (still labeled n) so that limn↑∞ q̂n = 0.
We then have, using the γ of Assumption A.1 that

lim inf
n↑∞

(
q̂np̃

n − q̂np
n(q̂n)

)=− lim sup
n↑∞

q̂np
n(q̂n)≥− lim sup

n↑∞
sup
q≤γ

q
∣∣pn(q)

∣∣
=−C(γ ).

But, this directly violates the minimality of q̂n in view of (A.6). As such, there is
some K > 0 so that q̂n ≥K for n large enough.

Now, assume that lim infn↑∞ q̂n/rn = 0 and take a subsequence such that
limn↑∞ q̂n/rn = 0. For all 0 < c < δ+, we see

p̃n − pn(crn)≥ q̂n

crn

(
p̃n − pn(q̂n)

)
.(A.7)

As n ↑∞, we know that p̃n−pn(crn)→ p̃−p∞(c), q̂n/(crn)→ 0 and p̃n → p̃.
Recall that lim infn↑∞ q̂n ≥K and the γ from Assumption A.1. Note that if K > γ

then

pn(K)≤ pn(γ )= 1

γ
γpn(γ )≤ 1

γ
sup
q≤γ

q
∣∣pn(q)

∣∣,
whereas if K ≤ γ then

pn(K)= 1

K
Kpn(K)≤ 1

K
sup
q≤γ

q
∣∣pn(q)

∣∣.
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Putting these together gives

lim sup
n↑∞

pn(q̂n)≤ 1

γ ∧K
lim sup

n↑∞
sup
q≤γ

q
∣∣pn(q)

∣∣= C(γ )

γ ∧K
.

Thus, taking n ↑∞ in (A.7) gives p̃ ≥ p∞(c). Taking c ↓ 0 gives p̃ ≥ p∞+ (0) a
contradiction. Therefore, (A.3) holds.

Next, assume that lim supn↑∞ q̂n/rn ≥ δ+ and take a subsequence so that
limn↑∞ q̂n/rn = k ≥ δ+. For each c < δ+, we have q̂n/rn ≥ c, and hence for any
K > 0, q̂n ≥K for n large enough. Thus, we have

(A.8) Kp̃n −Kpn(K)≥ q̂n

(
p̃n − pn(q̂n)

)≥ q̂n

(
p̃n − pn(crn)

)
.

Clearly, Kp̃n/q̂n → 0. Additionally, for any 0 < c′ < δ+,

lim inf
n↑∞

pn(K)

q̂n

≥ lim inf
n↑∞

pn(c′rn)
q̂n

= 0.

Thus, dividing by q̂n in (A.8) and taking n ↑ ∞ yields 0 ≥ p̃ − p∞(c). Taking
c ↑ δ+ gives that p̃ ≤ limc↑δ+ p∞(c), which is a contradiction. Therefore, (A.4)
holds. �

A.2. Short positions. We just state the result for q < 0 as the proof is the
exact same. First, we assume the following.

ASSUMPTION A.3. {pn} is a family of functions defined on (−∞,0) such
that:

• For each n, pn is nonincreasing and continuous.
• There exists a γ < 0 such that lim supn↑∞ supq≥γ q|pn(q)| = C(γ ) <∞.
• There exists rn → ∞ and δ > 0 such that for −δ < � < 0 we have

limn↑∞pn(�rn)= p∞(�).
• With p∞− (0) := lim�↑0 p∞(�) and pn(−∞) := limq↓−∞ pn(q) we have

p∞− (0) < lim infn↑∞pn(−∞).

To find the minimal lower bound of convergence, set

δ− := inf
{
k < 0

∣∣ lim
n↑∞pn(�rn)= p∞(�),∀0≥ � > k

}
∈ [−∞, δ−].(A.9)

As before, we have for any δ− < � < 0 that p∞− (0) ≤ p∞(�) ≤
lim infn↑∞pn(−∞) so that a sufficient condition for bullet point four above to
hold is that p∞− (0) < p∞(�) for some δ− < � < 0. The main result now reads as
follows.

PROPOSITION A.4. Let Assumption A.3 hold. Let p̃n → p̃.
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• If p∞− (0) < p̃ < lim infn↑∞pn(−∞), then for n large enough the optimization
problem

(A.10) inf
q<0

(
qp̃n − qpn(q)

)
,

admits a minimizer q̂n < 0.
• If p∞− (0) < p̃ < lim infn↑∞pn(−∞), then for any sequence of minimizers {q̂n}:

(A.11) 0 < lim inf
n↑∞

−q̂n

rn
.

• If additionally p∞− (0) < p̃ < lim�↓δ− p∞(�), then for any sequence {q̂n} of min-
imizers:

(A.12) lim sup
n↑∞

−q̂n

rn
<−δ−.

A.3. Long and short positions. We now combine the long and short results
of the previous section into one result which will be used to prove the frictionless
results of Section 4. Here, we assume the following.

ASSUMPTION A.5. {pn}n∈N is a sequence of functions on R such that:

• For each n, pn is nonincreasing and continuous.
• There exists a γ > 0 such that lim supn↑∞ sup|q|≤γ q|pn(q)| = C(γ ) <∞.
• There exist rn →∞ and δ > 0 such that for |�|< δ we have pn(�rn)→ p∞(�).
• lim�→0 p∞(�)= p∞(0).

PROPOSITION A.6. Let Assumption A.5 hold and define δ+, δ− as in (A.1)
and (A.9). Let p̃n → p̃.

• Assume that lim supn↑∞pn(∞) < p∞(0). If lim supn↑∞pn(∞) < p̃ < p∞(0)

then for n large enough any minimizer to the optimization problem infq∈R(qp̃−
qpn(q)) is positive. Furthermore, for any sequence of minimizers {q̂n}n∈N we
have that 0 < lim infn↑∞ q̂n/rn. If additionally lim�↑δ+ p∞(�) < p̃ < p∞(0),
then for any sequence of minimizers {q̂n}n∈N we have that lim supn↑∞ q̂n/rn <

δ+.
• Assume that p∞(0) < lim infn↑∞pn(−∞). If p∞(0) < p̃ <

lim infn↑∞pn(−∞), then for n large enough, any minimizer to the optimiza-
tion problem infq∈R(qp̃n− qpn(q)) is negative. Furthermore, for any sequence
of minimizers {q̂n}n∈N we have that 0 < lim infn↑∞−q̂n/rn. If additionally
p∞(0) < p̃ < lim�↓δ− p∞(�), then for any sequence of minimizers {q̂n} we have
that lim supn↑∞−q̂n/rn <−δ−.
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PROOF. We will prove the results for lim supn↑∞pn(∞) < p̃ < p∞(0) and
lim�↑∞p∞(�) < p̃ < p∞(0), respectively; the proof for the other case is the exact
same. First, since pn(0) is well defined for each n, we have 0× p̃n−0×pn(0)= 0.
Additionally, for ε > 0 so that lim supn↑∞pn(∞)+ ε < p̃ < p∞(0)− ε we have
for q < 0 and n large enough that

qp̃− qpn(q)≥ qp̃− qpn(0)≥−qε/2 > 0.

But, from (A.6) we see there is some � > 0 so that �rnp̃
n− �rnp

n(�rn) < 0. Thus,
it suffices to minimize over q > 0, and hence Proposition A.2 yields a minimizer to
the problem over (0,∞), as well as the asymptotic behavior q̂n/rn of minimizers
q̂n given above, completing the result. �

APPENDIX B: PROOFS FOR SECTION 4.1

The proofs of Theorems 4.3 and 4.4 are based on a more general result that we
proved in Appendix A. Hence, as a precursor to the proofs of Theorem 4.3 and 4.4
we first show that the functions pn(q) := pn

an
(q) satisfy Assumption A.5 above.

LEMMA B.1. Let Assumptions 2.1, 2.2, 3.3 and 4.1 hold. Then pn(q) :=
pn

an
(q) satisfies Assumption A.5.

PROOF. As shown in Section 3.1, pn
an

(q) is decreasing in q and the map
q �→ qpn

an
(q) is concave and well defined, finite, for all q ∈ R. As such, pn

an
(q)

is continuous on (−∞,0) and (0,∞) respectively. But, it is well known that con-
tinuity at 0 follows as well and in fact limq→0 pn

an
(q) = EQn

0 [B] = pn
an

(0) = dn.
Thus, bullet point one in Assumption A.5 holds. Regarding bullet point two, let
γ > 0. If 0 < q ≤ γ , then for any 0 < � < δ+ and n sufficiently large so that
rn ≥ �/γ :

pn
an

(q)≤ pn
an

(0)= dn = EQn
0 [B]; pn

an
(q)≥ pn

an
(�rn).

If −γ ≤ q < 0, then for any δ− < �′ < 0 and n so that rn ≥−�′/γ ,

pn
an

(q)≥ pn
an

(0)= dnE
Qn

0 [B]; pn
an

(q)≤ pn
an

(
�′rn

)
.

As such,

lim sup
n↑∞

sup
|q|≤γ

q
∣∣pn

an
(q)

∣∣≤ γ max
{|d|, ∣∣p∞(�)

∣∣, ∣∣p∞(
�′

)∣∣}= C(γ ),

and bullet point two holds. Bullet points three and four are Assumption 3.3, com-
pleting the result. �



CONTINGENT CLAIMS AND OPTIMAL POSITIONS 1815

PROOF OF THEOREM 4.3. For p̃n ∈ In, the optimal position q̂n(p̃
n) is the

unique solution of the problem (4.3). Using the explicit formula for Uan in (2.1)
and pn

an
in (2.6), this optimization problem is equivalent to finding

(B.1) q̂n

(
p̃n) ∈ argmin

q∈R
(
qp̃n − qpn

an
(q)

)
.

The results of the theorem will follow from Proposition A.6 once the requisite hy-
potheses are met where pn(q)= pn

an
(q). By Lemma B.1, Assumption A.5 holds.

Now, let p̃n ∈ In, p̃n → p̃ where p̃ and p̃ < d . Since pn(∞)≤ p̃n and d = p∞(0),
we have

lim sup
n↑∞

pn(∞)= lim sup
n↑∞

Bn ≤ lim
n↑∞ p̃n = p̃ < d = p∞(0).

Thus, the conclusions of the theorem follow from Proposition A.6. Similarly, let
p̃n ∈ In, p̃n → p̃ where p̃ and p̃ > d . Since pn(−∞) ≥ p̃n and d = p∞(0), we
have

lim inf
n↑∞ pn(−∞)= lim inf

n↑∞ B̄n ≥ lim
n↑∞ p̃n = p̃ > d = p∞(0).

Thus, the conclusions of the theorem follow from Proposition A.6 as well, com-
pleting the result. �

PROOF OF THEOREM 4.4. As in the proof of Theorem 4.3, it is enough to
show that requisite hypotheses of Proposition A.6 are met where pn(q)= pn

an
(q)

and the optimal position q̂n(p̃
n) is given in (B.1). Again by Lemma B.1, we have

that Assumption A.5 holds. Now, let p̃n ∈ In, p̃n → p̃ where p̃ and p∞(δ+) <

p̃ < d . Since pn(∞)≤ p̃n and d = p∞(0), we have

lim sup
n↑∞

pn(∞)= lim sup
n↑∞

Bn ≤ lim
n↑∞ p̃n = p̃ < d = p∞(0).

Thus, the conclusions of the theorem follow from Proposition A.6. Similarly, let
p̃n ∈ In, p̃n → p̃ where p̃ and p∞(δ−) > p̃ > d . Since pn(−∞) ≥ p̃n and d =
p∞(0), we have

lim inf
n↑∞ pn(−∞)= lim inf

n↑∞ B̄n ≥ lim
n↑∞ p̃n = p̃ > d = p∞(0).

Thus, the conclusions of the theorem follow from Proposition A.6 as well, com-
pleting the result. �

PROOF OF COROLLARY 4.6. Let, for example, p̃n → p̃ ∈ (p∞(δ+), d) so
that

0 < �= lim inf
n↑∞

q̂n(p̃)

rn
≤ lim sup

n↑∞
q̂n(p̃

n)

rn
= �̄ < δ+.
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Write q̂n for q̂n(p̃
n) and assume for some subsequence (still labeled n) that

q̂n/rn → � ∈ [�, �̄]. Let τ ∈ [�, �̄]. By the optimality of q̂n,

q̂np̃
n − q̂np

n
an

(q̂n)≤ τrnp̃
n − τrnp

n
an

(τ rn).

Dividing by rn, letting n ↑∞ and using Assumption 3.3 with (3.7), one obtains

�p̃− �p∞(�)≤ τ p̃− τp∞(τ ).

Since this works for all τ ∈ [�, �̄], we get that

�p̃− �p∞(�)≤ inf
τ∈[�,�̄]

(
τ p̃− τp∞(τ )

)
.

Hence, we see that the only possible limit points for q̂n/rn are the minimizers of
�p̃− �p∞(�) over [�, �̄]. But, under the assumption of strict concavity for �p∞(�)

any minimizer is unique, and hence the result follows. �

PROOF OF THEOREM 4.10. We start be proving the first bullet, that is, that
we show that maximizers exist to the optimal purchase quantity problem in (4.20).
To do so, we use the following basic result (see [17], Proposition 2.47): if U ∈ Ua

then with αU , ᾱU of (4.16) it holds for Ua from (2.1) with an ≡ a that

U(x)= F
(
UaU

(x)
); F(t)=U

(
U−1

aU
(t)

)=U

(
− 1

aU

log(−aU t)

)
;

UāU
(x)= F̂

(
U(x)

); F̂ (t)=UāU

(
U−1(t)

)=− 1

āU

e−āUU−1(t),

and where F, F̂ are concave and increasing. Thus, by Jensen’s inequality, for any
set of random variables Z ,

F̂−1
(

sup
Z∈Z

E
[
UāU

(Z)
])≤ sup

Z∈Z
E

[
U(Z)

]≤ F
(

sup
Z∈Z

E
[
UaU

(Z)
])

,

where F̂−1(s)=U(−(1/āU ) log(−āU s)) is strictly increasing. Therefore,

U

(
− 1

āU

log
(−āUun

āU

(
x − qp̃n, q

)))

≤ un
U

(
x − qp̃n, q

)
≤U

(
− 1

aU

log
(−aUun

aU

(
x − qp̃n, q

)))
.

Since for any a > 0, un
a(x − p̃nq, q)= e−a(x−p̃nq)un

a(0, q), we obtain from (2.6)
that

U

(
− 1

āU

log
(−āUun

āu
(0)

)+ x − p̃nq + qpn
āU

(q)

)

≤ un
U

(
x − p̃nq, q

)
≤U

(
− 1

aU

log
(−aUun

aU
(0)

)+ x − p̃nq + qpn
aU

(q)

)
.

(B.2)
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Now, let p̃n ∈ In = (Bn, B̄n). As limq↑∞ pn
aU

(q)= Bn, limq↓−∞ pn
aU

(q)= B̄n we
have

lim|q|↑∞q
(
pn

aU
(q)− p̃n)=−∞,

and hence from the second inequality in (B.2) and limx↓−∞U(x) =−∞ [which
follows from (4.17)] we obtain

lim
q↑∞un

U

(
x − p̃nq, q

)=−∞, lim
q↓−∞un

U

(
x − p̃nq, q

)=−∞.

As U(x − p̃nq − |q|‖B‖L∞) ≤ un
U(x − p̃nq, q) ≤ 0, any maximizing sequence

{qn
m}m∈N must be bounded and has an accumulation point q̂n. Now, un

U(x−p̃nq, q)

admits the variational representation (see [32])

un
U

(
x − p̃nq, q

)
(B.3)

= inf
Qn∈M̃n,y>0

(
y
(
x − p̃nq

)+ yqEQn[B] +E

[
V

(
y

dQn

dP

∣∣∣∣
FT

)])
,

where

(B.4) V (y) := sup
x∈R

(
U(x)− xy

)
.

Thus, we see that q �→ un
U(x − p̃nq, q) is concave, hence continuous on R and q̂n

is indeed a maximizer.
We next show for p∞(δ+) < p̃ < d and In � p̃n → p̃ that (4.21) holds [the

corresponding proof for negative positions in (4.22) is omitted as it is the exact
same]. We first claim that for n large enough, any maximizer q̂n is positive. Indeed,
since dn → d where dn = EQn

0 [B] = pn
a(0) (for any a > 0) and p̃ < d , p̃n → p̃ we

can find n large enough so that p̃n < dn. Thus, for q < 0 we have [since pn
a(q) is

decreasing in q for any a > 0] that

qpn
aU

(q)− qp̃n ≤ q
(
dn − p̃n)≤ 0.

In view of (B.2), this implies for q ≤ 0 that

(B.5) un
U

(
x − p̃nq, q

)≤U

(
− 1

aU

log
(−aUun

aU
(0)

)+ x

)
.

Now, let � > 0 be so that �āU/a < δ+. At q = �rn, we have

pn
āU

(�rn)− p̃n = pn
a(āU�/arn)− p̃n → p∞(āU�/a)− p̃.

Since p̃ < p∞(0) and p∞ is continuous at 0, we can find an � small enough so the
above quantity is strictly positive for n large. Thus, from (B.2) we see that

un
U

(
x − p̃n�rn, �rn

)≥U

(
− 1

āU

log
(−āUun

āu
(0)

)+ x − p̃n�rn + �rnp
n
āU

(�rn)

)
.
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As n ↑∞, the right-hand side above converges to 0 whereas the right-hand side
of (B.5), in view of Assumption 4.9 is bounded above by U(C + x) < 0 for some
constant C. Thus, for large enough n, no maximizer can be nonpositive.

Now, let {q̂n}n∈N be a sequence of (positive) maximizers. We prove the lower
bound in (4.21) by contradiction; that is, assume lim infn↑∞ q̂n/rn = 0 and take
a sequence (still labeled n) where q̂n/rn → 0. Let 0 < � < δ+āU /a and assume
q̂n/rn ≤ �. Since q̂n was an optimizer, we obtain from (B.2) that

− 1

āU

log
(−āUun

āU
(0)

)+ x − p̃n�rn + �rnp
n
āU

(�rn)

≤− 1

aU

log
(−aUun

aU
(0)

)+ x − p̃nq̂n + q̂np
n
aU

(q̂n).

Since �rn > 0

− 1

�rnāU

log
(−āUun

āU
(0)

)+ x

�rn
− p̃n + pn

āU
(�rn)

≤− 1

�rnaU

log
(−aUun

aU
(0)

)+ x

�rn
+ q̂n

�rn

(
pn

aU
(q̂n)− p̃n)

.

For any a > 0, −(1/a) ≤ un
a(0) = −(1/a)e−H(Qn

0 |P). Additionally, from (2.7) it
holds for any a, b > 0 that pn

a(q)= pn
b(aq/b). Thus, by Assumptions 3.3 and 4.9,

p∞
(

āU�

a

)
− p̃ ≤ lim inf

n↑∞
q̂n

�rn

(
pn

au
(q̂n)− p̃n)= 0,

where the last equality follows since q̂n/rn → 0, p̃n → p̃ and |pn
aU

(q)| ≤ ‖B‖L∞ .
Taking � ↓ 0 gives p̃ ≥ p∞(0) a contradiction. Therefore, lim infn↑∞ q̂n/rn > 0.

To obtain the upper bound in (4.21), we first claim that

(B.6) pn
U(x, q̂n)≥ p̃n.

Assuming (B.6) the upper bound in (4.21) readily follows: indeed, assume
lim supn↑∞ q̂n/rn = k ≥ δ+ and take a subsequence (still labeled n) so that
q̂n/rn → k. Let 0 < � < δ+ so that q̂n/rn ≥ � for n large enough. Since pn

U(x, q)

is decreasing in q , (B.6) implies p̃n ≤ pn
U(x, �rn). Taking n ↑∞ gives p̃ ≤ p∞(�)

and then taking � ↑ δ+ gives p̃ ≤ p∞(δ+). But, this is a contradiction, and hence
(4.21) holds.

To prove (B.6), come back to (B.3). Write ZQ,n := dQn
0/dP|FT

. From (B.3), it
follows for any y > 0 that

un
U(x − p̃nq, q)− un

U(x)

y
+ p̃nq

(B.7)

≤ qEQn
0 [B] + 1

y

(
E

[
V

(
yZQ,n)]+ xy − un

U(x)
)
.
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Consider the problem

(B.8) inf
y>0

1

y

(
E

[
V

(
yZQ,n)]+ xy − un

U(x)
)
.

According to [33], Lemma A.4, the map y �→ E[V (yZQ,n)] is differentiable with
derivative E[ZQ,nV ′(yZQ,n)]. Thus, we see the derivative of the above map is

1

y2

(
E

[
yZQ,nV ′(yZQ,n)− V

(
yZQ,n)]+ un

U(x)
)

= 1

y2

(
E

[∫ yZQ,n

0
τV ′′(τ ) dτ

]
+ un

U(x)

)
,

where the last equality follows since (d/dτ)(τV ′(τ )−V (τ))= τV ′′(τ ) and since
U ∈ Ua implies limτ↓0 τV ′(τ ) = limτ↓0 V (τ) = 0. Since U ∈ Ua and Assump-
tion 4.9 imply un

U(x) < 0, the strict convexity of V yields a unique yQ,n solving
(B.8) and this y satisfies the first-order condition

−un
U(x)= E

[∫ yQ,nZQ,n

0
τV ′′(τ ) dτ

]
.

A straightforward calculation shows τV ′′(τ ) = 1/αU(I (τ )) where I (τ ) =
(U ′)−1(τ ). Since U ∈ Ua implies 0 < aU < αU(x) < āU on R, we see that
E[ZQ,n] = 1 gives

1

āU

yQ,n ≤−un
U(x)≤ 1

aU

yQ,n,

or equivalently, that −aUun
U(x) ≤ yQ,n ≤ −āUun

U(x). Using this yQ,n in (B.7)
gives

un
U(x − p̃nq, q)− un

U(x)

yQ,n
+ p̃nq

≤ qEQn[B] + 1

yQ,n

(
E

[
V

(
yQ,nZQ,n)]+ xy − un

U(x)
)

= qEQn[B] + inf
y>0

1

y

(
E

[
V

(
yZQ,n)]+ xy − un

U(x)
)
.

We have already shown the existence of a q̂n > 0 which maximizes un
U(x− p̃nq, q)

and shown that for n large enough un(x − p̃q̂n, q̂n) > un
U(x). Thus, for this q̂n we

have, using the inequalities for yQ,n that

− 1

āUun
U(x)

(
un

U

(
x − p̃nq̂n, q̂n

)− un
U(x)

)+ p̃nq̂n

≤ q̂nE
Qn[B] + inf

y>0

1

y

(
E

[
V

(
yZQ,n)]+ xy − un

U(x)
)
,
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or, since this inequality is valid for any Qn ∈ M̃n that

un
U

(
x − p̃nq̂n, q̂n

)− un
U(x)− āUun

U(x)p̃nq̂n

≤−āuu
n
U(x)

(
inf

Qn∈M̃n

(
q̂nE

Qn[B] + inf
y>0

1

y

(
E

[
V

(
yZQ,n)]+ xy − un

U(x)
)))

=−āUun
U(x)q̂np

n
U(x, q̂n),

where the last equality follows from [32], Proposition 7.1. We thus obtain the
bounds

(B.9) un
U(x)≤ un

U

(
x − p̃nq̂n, q̂n

)≤ un
U(x)− āUun

U(x)q̂n

(
pn

U(x, q̂n)− p̃n)
,

which, since un
U(x) < 0, q̂n > 0 implies (B.6), completing the result. �

APPENDIX C: PROOFS FROM SECTION 7

We begin with a lemma8 showing how the indifference price scales with the
initial position and risk aversion. This is an easy consequence of the fact that At

is a cone: that is, for each c > 0, (L,M) ∈At ⇔ (cL, cM) ∈At . Throughout, we
assume that x, y ∈R, 0≤ t ≤ T , s > 0, a > 0 and λ ∈ (0,1) [resp., λn ∈ (0,1)].

LEMMA C.1. For pa as in (7.5) and q > 0,

(C.1) pa(qx, qy, q; s, t, λ)= pqa(x, y,1; s, t, λ).

PROOF. For (L,M) ∈At and X,Y , as in (7.2), note that

−a
(
X

L,M,qx,t
T + Y

L,M,qy,t
T − q(ST −K)+

)
(C.2)

=−qa
(
X

L/q,M/q,x,t
T + Y

L/q,M/q,x,t
T − (ST −K)+

)
.

As At is a cone,

inf
(L,M)∈At

Es,t

[
e−a(X

L,M,qx,t
T +Y

L,M,qy,t
T −q(ST−K)+)]

= inf
(L,M)∈At

Es,t

[
e−qa(X

L,M,x,t
T +Y

L,M,y,t
T −(ST−K)+)].

By removing (ST − K)+ from the above calculations, we obtain from (7.3)
and (7.4)

ua(qx, qy, q; s, t, λ)= quqa(x, y,1; s, t, λ);
(C.3)

ua(qx, qy; s, t, λ)= quqa(x, y; s, t, λ).

8See the comment in [4], Section 2.1.
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It is clear for x′ ∈ R that uqa(x + x′, y,1; s, t, λ)= e−qax′uqa(x, y,1; s, t, λ). To
make the notation cleaner, set p = pa(qx, qy, q; s, t, λ) and p′ = pqa(x, y,1;
s, t, λ) so that (C.1) becomes p = p′. Using the above facts,

uqa(x, y; s, t, λ)= 1

q
ua(qx, qy; s, t, λ)= 1

q
ua(qx + qp,qy, q; s, t, λ)

= 1

q
ua

(
qx + qp′ + q

(
p− p′

)
, qy, q; s, t, λ)

= uqa

(
x + p′ + (

p− p′
)
, y,1; s, t, λ)

= e−qa(p−p′)uqa

(
x + p′, y,1; s, t, λ)

= e−qa(p−p′)uqa(x, y; s, t, λ).

Thus, p = p′. �

As in [4], pages 374–375, for ε > 0 define

vε(x, y, s, t;λ) := 1+ 1

ε
u1/ε(x, y,1; s, t, λ);

(C.4)

vε,f (x, y, s, t;λ) := 1+ 1

ε
u1/ε(x, y; s, t, λ).

Next, define

zε(x, y, s, t;λ) := x + sy + ε log
(
1− vε(x, y, s, t;λ)

)
= x + sy + ε log

(
−1

ε
u1/ε(x, y,1; s, t, λ)

)
,

zε,f (x, y, s, t;λ) := x + sy + ε log
(
1− vε,f (x, y, s, t;λ)

)
= x + sy + ε log

(
−1

ε
u1/ε(x, y; s, t, λ)

)
.

(C.5)

Note that by definition x + py − zε and x + py − zε,f are the respective certainty
equivalents in the λ transactions costs market with and without the claim. Further-
more, we have the following.

LEMMA C.2. zε, zε,f from (C.5) are independent of x and hence write
zε(y, s, t;λ), zε,f (y, s, t;λ). Furthermore,

�(s, t;0)− εμ2

2σ 2 (T − t)≤ zε(y, s, t;λ)≤ s
(
1+ λ|y − 1|);

−εμ2

2σ 2 (T − t)≤ zε,f (y, s, t;λ)≤ λs|y|,
(C.6)
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where μ is the drift of S as in (7.1) and �(s, t;0) is the Black–Scholes price in the
frictionless model. Next, for a fixed (y, s, t) and ε, both zε, zε,f are increasing in λ.
Lastly, for a fixed (y, s, t) and λ, both zε and zε,f are continuous and decreasing
in ε on (0,∞).

PROOF. That zε, zε,f are independent of x and that (C.6) holds both follow
from [4], Proposition 2.1. Next, using the definition of vε in (C.4) and (7.2), we
have

zε(y, s, t;λ)− sy

= inf
(L,M)∈At

ε log
(
Es,t

[
exp

{
− 1

ε

(
−

∫ T

t
Sτ (1+ λ)dLτ

+
∫ T

t
Sτ (1+ λ)dMτ + yST + ST (LT −MT )− (ST −K)+

)}])

= inf
(L,M)∈At

ε log
(
Es,t

[
exp

{
−1

ε

(
−

∫ T

t
Sτ dLτ +

∫ T

t
Sτ dMτ + yST

+ ST (LT −MT )− (ST −K)+
)}

exp
{
λ

ε

∫ T

t
Sτ (dLτ + dMτ )

}])
.

It is thus evident that zε(y, s, t;λ) is increasing in λ. Since the same formula holds
for zε,f , just absent the (ST − K)+ term, zε,f (y, s, t;λ) is also increasing in λ.
Also, that zε(y, s, t;λ), zε,f (y, s, t;λ) are decreasing in ε follows from Hölder’s
inequality. Lastly, note that the map

γ �→ inf
(L,M)∈At

Es,t

[
exp

{
−γ

(
−

∫ T

t
Sτ (1+ λ)dLτ

+
∫ T

t
Sτ (1+ λ)dMτ + yST + ST (LT −MT )− (ST −K)+

)}]
,

is convex on (0,∞) [and again, also when the (ST − K)+ term is absent].
Indeed, take 0 < γ1 < γ2 and 0 < λ < 1. Set γλ = λγ1 + (1 − λ)γ2 and let
(L1,M2), (L2,M2) ∈At . Since z �→ e−z is convex and

(L,M)= λγ1

γλ

(L1,M1)+ (1− λ)γ2

γλ

(L2,M2) ∈At

the convexity follows by first minimizing over (L1,M1) then over (L2,M2). Since
convex functions are continuous on the interior of their effective domain and since
zε, zε,f are finite by (C.6), we see that zε(y, s, t;λ), zε,f (y, s, t;λ) are continuous
in ε on (0,∞). �

PROOF OF PROPOSITION 7.2. Using Lemma C.1 at q = (εa)−1 gives

pa

(
x

εa
,

y

εa
,

1

εa
; s, t;λ

)
= p1/ε(x, y,1; s, t, λ),
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so that

vε

(
x + pa

(
x

εa
,

y

εa
,

1

εa
; s, t;λ

)
, y,p, t;μ

)
= vε,f (x, y, s, t;λ).

Thus, using (C.4), (C.5), one obtains, since Lemma C.2 shows zε, zε,f are inde-
pendent of the capital x, that

pa

(
x

εa
,

y

εa
,

1

εa
; s, t, λ

)

= zε

(
x + pa

(
x

εγ
,

y

εγ
,

1

εa
; s, t;λ

)
, y, s, t;λ

)
− zε,f (x, y, s, t;λ)

= zε(y, s, t;λ)− zε,f (y, s, t;λ).

Thus, pa is independent of x. The conclusions of the theorem now readily follow:
namely let rn = λ−2

n and set qn = �rn. Let yn ∈ R. Take εn = λ2
n/(a�)= (qna)−1

so that qn = (εna)−1 and λn =√εn

√
a�. We then have

pa(yn, qn; s, t;λn)= pa

(
ynλ

2
n/�

εna
,

1

εna
; s, t,√εn

√
a�

)

= zεn

(
ynλ

2
n

�
, s, t;√εn

√
a�

)
− zεn,f

(
ynλ

2
n

�
, s, t;√εn

√
a�

)
.

Now, by [4], Theorem 3.1, we have for any y0 ∈R that

lim
n↑∞ zεn(y0, s, t;√εn

√
a�)=�(s, t;√a�);

(C.7)
lim
n↑∞ zεn,f (y0, s, t;√εn

√
a�)= 0.

Furthermore, as shown in [4], page 389,∣∣∣∣zεn

(
ynλ

2
n

�
, s, t;√εn

√
a�

)
− zεn(0, s, t;√εn

√
a�)

∣∣∣∣≤ λns
λ2

n|yn|
�

,

with the same inequality also holding for zεn,f . Thus, if limn↑∞ λ3
n|yn| = 0 we see

that

lim
n↑∞pa(yn, qn; s, t;λn)=�(p, t;√a�),

which is the desired result. �

PROOF OF THEOREM 7.4 . The proof of convergence follows the weak vis-
cosity limits of [3]; see also Chapter VII of [16]. Let us define

�∗(s, t)= lim sup
ρ↓0

lim sup
b↓0

sup
{
�(ŝ, t̂;b) : |s − ŝ| + |t − t̂ |< ρ

}
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and

�∗(s, t)= lim inf
ρ↓0

lim inf
b↓0

inf
{
�(ŝ, t̂;b) : |s − ŝ| + |t − t̂ |< ρ

}
.

Step 1: �∗(s, t) is a viscosity subsolution to the linear Black–Scholes equation.
Let w(s, t) be a smooth test function and assume that (s0, t0) ∈ (0,∞)× [0, T ] is
a strict local maximizer of the difference �∗(s, t) − w(s, t) on [0,∞) × [0, T ]
such that �∗(s0, t0) = w(s0, t0). We may, and will, assume that wss(s0, t0) �= 0.
We verify that �∗ is a viscosity subsolution by proving that if t0 < T , then

−wt(s0, t0)− 1

2
s2

0σ 2wss(s0, t0)≤ 0,

whereas if t0 = T , then either the previous inequality holds or �∗(s0, T ) ≤ (s0 −
K)+.

Let us assume that either t0 < T or that t0 = T and �∗(s0, T ) > (s0 − K)+.
Consider a sequence bn ↓ 0 and local maximizers (sn, tn) ∈ (0,∞)× [0, T ) of the
function

(s, t) �→�(s, t;bn)−w(s, t),

such that

(sn, tn)→ (s0, t0), �(sn, tn;bn)→�∗(s0, t0)

and

�(sn, tn;bn)−w(sn, tn)→ 0.

The existence of such a sequence and maximizers is shown in [3]. Notice that
for n large enough we have tn < T . Indeed, if t0 < T , then tn < T for large
enough n follows by the convergence tn → t0. Let us now assume that t0 = T

and �∗(s0, T ) > (s0 −K)+ and let tn = T . We calculate

�∗(s0, t0)= lim
n→∞�(sn, T ;bn)= (s0 −K)+.

But, since we have assumed that �∗(s0, T ) > (s0 −K)+ we get a contradiction,
which implies that tn < T for all n large enough.

Let us set now kn =�(sn, tn;bn)−w(sn, tn) and define the operator

Gb[�] = 1

2
σ 2s2�ss(s, t)

(
1+ S

(
bs2�ss(s, t)

))
.

By the fact that �(;bn) is a continuous viscosity solution of (7.6) and that the
function A �→A(1+ S(A)) is increasing function, we get the following:

0≥−wt(sn, tn)− Gbn

[
w(sn, tn)+ kn

]
.

Taking now n→∞ and using the facts that �n → 0, (sn, tn)→ (s0, t0), kn → 0
and S(0)= 0, we get

−wt(s0, t0)− 1

2
σ 2s2

0wss(s0, t0)≤ 0,

completing the proof of the viscosity subsolution property of �∗.
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Step 2: �∗(s, t) is a viscosity supersolution to the linear Black–Scholes equa-
tion. The proof of this step is almost identical to the proof of the previous step.
Let w(s, t) be a smooth test function and assume that (s0, t0) ∈ (0,∞) × [0, T ]
is a strict global minimizer of the difference �∗(s, t)−w(s, t) on [0,∞)× [0, T ]
such that �∗(s0, t0)=w(s0, t0). We may, and will, assume that wss(s0, t0) �= 0. We
verify that �∗ is a viscosity supersolution, by proving that if t0 < T , then

−wt(s0, t0)− 1

2
s2σ 2wss(s0, t0)≥ 0.

If t0 = T , then by construction we have the supersolution property �∗(s, T )≥
(s −K)+. We need to show the viscosity property.

Consider a sequence bn ↓ 0 and local minimizers (sn, tn) ∈ (0,∞)× [0, T ) of
the function

(s, t) �→�(s, t;bn)−w(s, t),

such that

(sn, tn)→ (s0, t0), �(sn, tn;bn)→�∗(s0, t0)

and

�(sn, tn;bn)−w(sn, tn)→ 0.

The existence of such a sequence and minimizers is shown in [3]. Notice that, as
in the viscosity subsolution case, for n large enough, we have that tn < T .

By the fact that �(;bn) is a viscosity solution of (7.6) and that the function
A �→A(1+ S(A)) is increasing function, we get the following:

0≤−wt(sn, tn)− Gbn

[
w(sn, tn)+ kn

]
.

Taking now n→∞ and using the facts that �n → 0, (sn, tn)→ (s0, t0), kn → 0
and S(0)= 0, we get

−wt(s0, t0)− 1

2
σ 2s2

0wss(s0, t0)≥ 0,

completing the proof of the viscosity supersolution property of �∗.
Step 3: Putting the estimates together. By construction, we have that �∗ ≤�∗.

Then a comparison argument as in proof of Theorem 3.1 of [4], or equivalently
(see Section VII.8 of [16]) gives the opposite inequality, that is, �∗ ≥ �∗. Thus,
we have that �∗ =�∗ and the function �0 =�∗ =�∗ is solution to the equation

�t + 1

2
σ 2s2�ss = 0; �(T , s)= (s −K)+.

Classical arguments, for example, Theorem 7.1 of [16], then imply that the equal-
ity �∗ = �∗ implies the local uniform convergence �� → �0 as � → 0. This
completes the proof of the theorem. �
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PROOF OF THEOREM 7.5. From Lemma C.2 at λ = b
√

ε, it follows that
zε(y, s, t;b√ε) is increasing in b. Since [4], Theorem 3.1, implies
limε→0 zε(y, s, t;b√ε) = �(s, t;b), it follows that �(s, t;b) is increasing in b.
As for the asymptotics in (7.7) by construction �(s,T ;b) = (s − K)+ for
p > 0, b > 0. Thus, we only consider when t < T . Here, we recall from Propo-
sition 7.2 that limA↑∞ S(A)/A = 1. Furthermore, as shown in [4], S(A) > 0 for
A > 0. Thus, let γ > 0 and pick Aγ so that S(A)≥ (1− γ )A for A≥Aγ .

Now, let ψ : (0,∞)× [0, T ] be a smooth function with ψss ≥ 0. Write

H [ψ] :=ψt + 1

2
σ 2s2ψss

(
1+ S

(
b2s2ψss

))
.

We have the following basic estimate since ψss ≥ 0 and A �→ A(1 + S(A)) is
increasing:

H [ψ] ≥ψt + 1
s2ψss≥Aγ

b2

(
1

2
σ 2s2ψss

(
1+ (1− γ )b2s2ψss

))

=ψt + 1
s2ψss≥Aγ

b2

(
1− γ

2
σ 2

(
bs2ψss + 1

2(1− γ )b

)2
− σ 2

8b2(1− γ )

)

≥ψt − σ 2

8b2(1− γ )
+ 1− γ

2
σ 2

(
bs2ψss + 1

2(1− γ )b

)2

− 1
s2ψss<

Aγ

b2

1− γ

2
σ 2

(
bs2ψss + 1

2(1− γ )b

)2

≥ψt − σ 2

8b2(1− γ )
+ 1− γ

2
σ 2

(
bs2ψss + 1

2(1− γ )b

)2

− 1− γ

2
σ 2

(
Aγ

b
+ 1

2(1− γ )b

)2

=ψt − σ 2Kγ

2b2 + 1− γ

2
σ 2

(
bs2ψss + 1

2(1− γ )b

)2
,

where

Kγ := 1

4(1− γ )
+ (1− γ )

(
Aγ + 1

2(1− γ )

)
.

To recap, we have for ψ smooth with ψss ≥ 0 that

(C.8) H [ψ] ≥ψt − σ 2Kγ

2b2 + 1− γ

2
σ 2

(
bs2ψss + 1

2(1− γ )b

)2
.

Now, let C > 0 and denote by φ(s, t;C) the Black–Scholes price at (s, t) for
a call option with strike K , maturity T when the interest rate is 0 and the asset
volatility is C. Let M ∈R and consider the function

ψ(s, t)= φ(s, t;C)−M(T − t).
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Clearly, ψ is smooth and from the explicit formula for φ(s, t;C) it follows that
ψss ≥ 0. We then have from (C.8) (writing φC to denote the dependence upon C)
that

H [ψ] ≥ φC
t +M − σ 2Kγ

2a2 + 1

2
(1− γ )σ 2

(
bs2φC

ss +
1

2(1− γ )b

)2

=−1

2
C2s2φC

ss +M − σ 2Kγ

2b2 + 1

2
(1− γ )σ 2

(
bs2φC

ss +
1

2(1− γ )b

)2
.

The quadratic form (1/2)(1− γ )σ 2b2x2+ (1/2)(σ 2−C2)x is bounded below by

−1

8

(σ 2 −C2)2

(1− γ )σ 2b2 .

Plugging this into the above (with s2φC
ss playing the role of x) yields

H [ψ] ≥ − (σ 2 −C2)2

8(1− γ )σ 2b2 +M − σ 2Kγ

2b2 + σ 2

8(1− γ )b2 .

Clearly, setting

M = (σ 2 −C2)2

8(1− γ )σ 2b2 +
σ 2Kγ

2b2 − σ 2

8(1− γ )b2

= C4

8(1− γ )σ 2b2 −
C2

4(1− γ )b2 +
σ 2Kγ

2b2 ,

(C.9)

yields that H [ψ] ≥ 0, and hence by the comparison argument shown in [4], The-
orem 3.1, pages 395–396, it follows that �(s, t;b)≥ ψ(s, t). To connect with the
results therein, set

z∗(s, t)= ψ(s, t)= φ(s, t;C)−M(T − t); z∗(s, t)=�(s, t;b),

and note that z∗ is a (classical) subsolution; z∗ is a continuous viscosity superso-
lution; lims↑∞ z∗(s, t)/s = 1, lims↑∞ z∗(s, t)/s = 1 uniformly in 0 ≤ t ≤ T ; and
that z∗(0, t)=−M(a)(T − t)≤ z∗(0, t)= 0 for any t ≤ T if C >

√
2σ . Thus, the

argument in [4], pages 395–396, goes through.
Now, so far the choice of C > 0 was arbitrary. Consider then when C = b1/4.

Here, we have as b→∞ that

C = C(b)→∞,

M =M(b)= 1

8(1− γ )σ 2b
− 1

4(1− γ )b3/2 +
σ 2Kγ

2b2 → 0.

Thus, we have from the comparison principle that

lim inf
b↑∞ �(s, t;b)≥ lim inf

b↑∞ φ
(
s, t;C(b)

)−M(b)(T − t)= s,

where the last equality follows from the well-known fact that the price of a call
in the Black–Scholes model converges to the initial stock price as the volatility
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approaches infinity. This completes the proof since it was shown in [4], Proposi-
tion 2.1, Theorem 3.1, that �(s, t;b)≤ s for all b > 0. �

PROOF OF THEOREM 7.7. We verify that Proposition A.2 holds, yielding the
desired result. As a first step towards this direction, we rewrite the involved op-
timization problem in a form that is easier to work with. For p̃n ∈ (�(s, t;0), s),
recall the optimal sale quantity problem in (7.8):

max
q>0

ua

(
x + ys(1− λn)+ qp̃n,0, q; s, t;λn

)
.

With x̃ = x+ ys(1−λn) we have, in view of (C.3) and (C.4), (C.5), that for q > 0

ua

(
x̃ + qp̃n,0, q; s, t;λn

)= 1

a

(
v

1
qa

(
x̃

q
+ p̃n,0, s, t;λn

)
− 1

)

=−1

a
e−a(x̃+qp̃n−qz

1
qa (0,s,t;λn)),

(C.10)

and hence it suffices to consider the optimization problem

(C.11) sup
q>0

(
qp̃n − qz

1
qa (0, s, t;λn)

)=− inf
q>0

(
q
(−p̃n)− q

(−z
1
qa (0, s, t;λn)

))
.

The existence of a maximizer q̂n > 0, as well as the asymptotic behavior of q̂n/rn
in (7.9) as λn → 0 will follow from Proposition A.2 once the requisite hypotheses
are shown to hold. Here, pn is the map

q �→ pn(q)=−z
1
qa (0, s, t;λn).

We first consider Assumption A.1. As for bullet point one, note that by Lemma C.2,
pn is continuous and nonincreasing on (0,∞). Regarding bullet point two, (C.6)
gives

−qs(1+ λn)≤ qpn(q)≤−q�(s, t;0)+ μ2

2aσ 2 (T − t),

so that for any γ > 0

lim sup
n↑∞

sup
q≤γ

q
∣∣pn(q)

∣∣≤ γ max
{
�(s, t;0)+ μ2

2aσ 2 (T − t), γ s

}
:= C(γ ) <∞,

verifying bullet point two. Regarding bullet point three, from (C.7) where
εn = λ2

n/(a�), qn = �rn and rn = λ−2
n it holds for all � > 0 that pn(�rn) →

−�(s, t;√a�)= p∞(�). Thus, bullet point three holds with δ = δ+ =∞. Lastly,
regarding bullet point four, since Theorem 7.5 shows that lim�↑∞�(s, t;√a�)=
− lim�↑∞ p∞(�) = −s and s > �(s, t;0) = −p∞+ (0), bullet point four holds
(see the sufficient condition Assumption A.1). Therefore, Assumption A.1 holds.
Lastly, as stated above for p̃ ∈ (�(s, t;0), s) we have

−s = lim
�↑∞p∞(�) <−p̃ < p∞+ (0)= lim

�↓0

(−�(s, t;√a�)
)=−�(s, t;0).

Therefore, the results of Proposition A.2 go through, completing the proof. �
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