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MODEL-FREE SUPERHEDGING DUALITY

BY MATTEO BURZONI∗, MARCO FRITTELLI† AND MARCO MAGGIS†

ETH Zurich∗ and University of Milan†

In a model-free discrete time financial market, we prove the superhedg-
ing duality theorem, where trading is allowed with dynamic and semistatic
strategies. We also show that the initial cost of the cheapest portfolio that
dominates a contingent claim on every possible path ω ∈�, might be strictly
greater than the upper bound of the no-arbitrage prices. We therefore char-
acterize the subset of trajectories on which this duality gap disappears and
prove that it is an analytic set.

1. Introduction. The aim of this article is the proof of the following discrete
time, model independent version of the superhedging theorem.

THEOREM 1.1 (Superhedging). Let g :� �→ R be an F -measurable random
variable. Then

inf
{
x ∈R|∃H ∈H such that x + (H · S)T ≥ g M-q.s.

}
= inf

{
x ∈R|∃H ∈H such that x + (H · S)T (ω)≥ g(ω) ∀ω ∈�∗

}
= sup

Q∈Mf

EQ[g] = sup
Q∈M

EQ[g],

where

(1.1) �∗ := {
ω ∈�|∃Q ∈M such that Q(ω) > 0

}
and the inf is attained by a strategy H ∈H whenever it is finite.

We adopt the following setting and notation: let � be a Polish space and F =
B(�) be the Borel sigma-algebra; T ∈ N, I := {0, . . . , T }, S = (St )t∈I be an Rd -
valued stochastic process on (�,F) representing the price process of d ∈N assets;
P be the set of all probability measures on (�,F);FS := {FS

t }t∈I be the natural
filtration and F := {Ft }t∈I be the universal filtration, namely,

Ft :=
⋂

P∈P
FS

t ∨N P
t , where N P

t = {
N ⊆A ∈FS

t |P(A)= 0
};

Received June 2015; revised May 2016.
MSC2010 subject classifications. 60B05, 60G42, 28A05, 28B20, 46A20, 91B70, 91B24.
Key words and phrases. Superhedging theorem, model independent market, model uncertainty,

robust duality, finite support martingale measure, analytic sets.

1452

http://www.imstat.org/aap/
http://dx.doi.org/10.1214/16-AAP1235
http://www.imstat.org
http://www.ams.org/mathscinet/msc/msc2010.html


MODEL-FREE SUPERHEDGING DUALITY 1453

H be the class of Rd -valued, F-predictable stochastic processes, representing the
family of admissible trading strategies; (H · S)T :=∑T

t=1
∑d

j=1 H
j
t (S

j
t − S

j
t−1)=∑T

t=1 Ht ·�St be the gain up to time T from investing in S adopting the strategy H .
We denote

M := {Q ∈ P|S is an F-martingale under Q},
Pf := {

Q ∈P| supp(Q) is finite
}
,

Mf :=M∩Pf ,

where the support of P ∈ P is defined by supp(P )=⋂{C ∈F |C closed, P(C)=
1}. The family of M-polar sets is given by N := {N ⊆ A ∈ F |Q(A) = 0 ∀Q ∈
M} and a property is said to hold quasi surely (q.s.) if it holds outside a polar
set. We adopt the convention ∞−∞=−∞ for those random variables g whose
positive and negative part is not integrable. For random variables X and Y , we
write X > Y if X(ω) > Y(ω) for all ω ∈ �. When we specify X > Y on a set
A⊂�, it means that X(ω) > Y(ω) holds for all ω ∈ A, and similarly for X ≥ Y

and X = Y . We are also assuming the existence of a numeraire asset S0
t = 1 for all

t ∈ I .

Probability-free set up. In the statement of the superhedging theorem, there is
no reference to any a priori assigned probability measure and the notions of M, H
and �∗ only depend on the measurable space (�,F) and the price process S. In
general, the class M is not dominated.

We are not imposing any restriction on S so that it may describe generic finan-
cial securities (e.g., stocks and/or options). However, in the framework of Theo-
rem 1.1 the class H of admissible trading strategies requires dynamic trading in all
assets. In Theorem 1.2 below, we extend this setup to the case of semistatic trading
on a finite number of options.

As illustrated in Section 4, we explicitly show that the initial cost of the cheapest
portfolio that dominates a contingent claim g on every possible path, namely,

(1.2) inf
{
x ∈R|∃H ∈H such that x + (H · S)T ≥ g on �

}
can be strictly greater than supQ∈M EQ[g], unless some artificial assumptions are
imposed on g or on the market. In order to avoid these restrictions on the class of
derivatives, it is crucial to select the correct set of paths (namely, �∗) where the
superhedging strategy can be efficiently employed.

On the set �∗. In Theorem 1.1, the pathwise model independent inequality
in (1.2) is replaced with an inequality involving only those ω ∈ �, which are
weighted by at least one martingale measure Q ∈M. In [7] (see also Proposi-
tion 3.1), it is shown the existence of the maximal M-polar set N∗, namely, a set
N∗ ∈N containing any other set N ∈N . Moreover,

(1.3) �∗ = (N∗)C.
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The inequality x + (H · S)T ≥ g M-q.s. holds by definition outside any M-polar
set and therefore it is equivalent, thanks to (1.3), to the inequality x + (H · S)T ≥
g on �∗, which justifies the first equality in Theorem 1.1. The set �∗ can be equiv-
alently determined (see Proposition 3.1) via the set Mf of martingale measures
with finite support, a property that turns out to be crucial in several proofs.

We stress that we do not make any ad hoc assumptions on the discrete time
financial model and notice that �∗ is determined only by S: indeed the set M
can be written also as M = {Q ∈ P|S is an FS-martingale under Q}. One of the
main technical results of the paper is the proof that the set �∗ is an analytic set
(Proposition 5.5), and so our findings show that the natural setup for studying this
problem is (�,S,F,H) with F the universal filtration (which contains the analytic
sets) and H the class of F-predictable processes. We also point out that we could
replace any sigma-algebra Ft with the sub sigma-algebra generated by the analytic
sets of FS

t .

On Model Independent Arbitrage and the condition M �= ∅. In the case
M = ∅, then �∗ = ∅ and the theorem is trivial, as each term in the equalities
of Theorem 1.1 is equal to −∞, provided we convene that any M-q.s. inequalities
hold true when M=∅.

For this reason, we will assume without loss of generality M �= ∅, and recall
that this condition can be reformulated in terms of absence of Model Indepen-
dent Arbitrages. A Model Independent H-Arbitrage consists of a trading strategy
H ∈ H which satisfies (H · S)T (ω) > 0 ∀ω ∈ �. However, as shown in [7], the
absence of Model Independent H-Arbitrage is not sufficient to guarantee M �=∅.
Indeed, we need the stronger condition of No Model Independent H̃-Arbitrage to
hold, where H̃ is a wider class of F̃-predictable stochastic processes for a suit-
able enlarged filtration F̃. Hence, the nontrivial statement in Theorem 1.1 (namely,
when M �=∅) regards the superhedging duality under No Model Independent H̃-
Arbitrage.

1.1. Superhedging with semistatic strategies on options and stocks. We now
allow for the possibility of static trading in a finite number of options. Let us add
to the previous market k options � = (φ1, . . . , φk), which expires at time T and
assume without loss of generality that they have zero initial cost. We assume that
each φj is an F -measurable random variable. Define h� :=∑k

j=1 hjφj , h ∈ Rk ,
and

M� := {
Q ∈Mf |EQ

[
φj ]= 0 ∀j = 1, . . . , k

}
(1.4)

= {
Q ∈Mf |EQ[h�] = 0 ∀h ∈Rk},

which are the options-adjusted martingale measures, and

(1.5) �� := {
ω ∈�|∃Q ∈M� such that Q(ω) > 0

}⊆�∗.
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We have by definition that for every Q ∈M� the support satisfies supp(Q)⊆��.
We define the superhedging price when semistatic strategies are allowed by

π�(g) := inf
{
x ∈R|∃(H,h) ∈H×Rk such that

(1.6)
x + (H · S)T + h�≥ g on ��

}
.

With the same methodology used for the proof of Theorem 1.1, in Section 5.3 we
will obtain the superhedging duality when semistatic trading is allowed, under the
assumption M� = {Q ∈Mf | supp(Q)⊆��}:1

THEOREM 1.2 (Superhedging with options). Let g :� �→R and φj :� �→R

for j = 1, . . . , k, be F -measurable random variables. Then

π�(g)= sup
Q∈M�

EQ[g].

1.2. Comparison with the related literature. In the classical case when a ref-
erence probability is fixed, this subject was originally studied by El Karoui and
Quenez [13]; see also [19] and [9] and the references cited therein.

In [5], a superhedging theorem is proven in the case of a nondominated class
of priors P ′ ⊆ P . The result strongly relies on two technical hypotheses: (i) The
state space � has a product structure, �=�T

1 , where �1 is a certain fixed Polish
space and �t

1 is the t-fold product space; (ii) the set of priors P ′ is also obtained
as a collection of product measures P := P0 ⊗ · · · ⊗ PT where every Pt is a mea-
surable selector of a certain random class P ′

t ⊆ P(�1). P ′
t (ω) represents the set of

possible models for the t th period, given state ω at time t . An essential require-
ment on P ′

t is that the graph(P ′
t ) must be an analytic subset of �t

1 ×P(�1). These
assumptions are crucial in order to apply the measurable selection and stochastic
control arguments which lead to the proof of the superhedging theorem. In our
setting, we do not impose restrictions on the state space � so the result cannot be
deduced from [5] for P ′ =M. Moreover, even in the case of � = �T

1 , the class
of martingale probability measures M is endogenously determined by the market
and we do not require that it satisfies any additional restrictions. Furthermore, the
techniques employed to deduce our version of the superhedging duality theorem
are completely different, as they rely on the results of [7]. Note that in the partic-
ular simple case of � := (Rd)T with S the canonical process, from [7], we have
that �∗ =� and there are no M-polar sets. We thus have the equivalence between
P-q.s. and M-q.s. equalities. The superhedging theorem of [5] can be therefore
applied with P ′ =P and the two results coincide.

1We wish to thank J. Obłoj and Z. Hou for pointing out that this hypothesis is necessary for the
argument used in the proof of Theorem 1.2. We will show in a forthcoming paper (joint with J. Obłoj
and Z. Hou) that the result holds in full generality dropping this hypothesis.
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The relevance of the superhedging problem without any a priori specified set
of probability measures is revealed by the increasing amount of literature on this
topic. The problem has been studied as a particular case of a Skorokhod embedding
problem (see [6, 8, 16]), following the pioneering work [17] on robust hedging.
The reformulation of the superhedging duality in the framework of optimal mass
transport led to important results both in discrete and continuous time as in [3, 11,
12, 14, 15, 20, 23].

Different approaches are taken in [1, 21]. In [21], the continuity assumptions
on the assets allow to embed the problem in the linear programming framework
and to obtain the desired equality in a one period market. In [1] from a model
independent version of the fundamental theorem of asset pricing, they deduce the
following superhedging duality (Theorem 1.4 [1]):

(1.7) π�(g)= sup
Q∈M�

EQ[g],

where π�(g) := inf{x ∈ R|∃(H,h) ∈ H × Rk such that x + (H · S)T + h� ≥
g on �}. They assume a discrete time market, with one dimensional canonical
process S on the path space � = [0,∞)T and an arbitrary (but nonempty) set of
options on S available for static trading. Theorem 1.4 in [1] relies on two additional
technical assumptions: (i) The existence of an option with superlinearly growing
and convex payoff; (ii) the upper semicontinuity of the claim g.

The example in Section 4 shows that without the upper semicontinuity of the
claim g the duality in (1.7) fails and it also points out that the reason for this is the
insistence of superhedging over the whole space �, instead of over the relevant
set of paths �∗. Our result holds for a d-dimensional (not necessarily canonical)
process S and does not necessitate the existence of any options.

2. Aggregation results. In this section we investigate when certain conditions
(like superhedging or hedging) which hold Q-a.s. for all Q ∈M, ensure the va-
lidity of the correspondent pathwise conditions on �∗. We recall that absence of
classical arbitrage opportunities, with respect to a probability P ∈ P , is denoted
by NA(P ). We set

L(�,G) := {f :�→R|G-measurable},
L(�,G)+ := {

f ∈ L(�,G)|f ≥ 0
}
.

The linear space of attainable random payoffs with zero initial cost is given by

K := {
(H · S)T ∈ L(�,F)|H ∈H

}
.

Recall that the set �∗ of events supporting martingale measures is defined in (1.1)
and observe that the convex cones

C := {
f ∈ L(�,F)|f ≤ k on �∗ for some k ∈K

}
,(2.1)

C(Q) := {
f ∈ L(�,F)|f ≤ k Q-a.s. for some k ∈K

}
(2.2)

are related by C ⊆ C(Q), if Q ∈M.
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The main Theorem 1.1 relies on the following cornerstone proposition that will
be proved in Section 5, as its proof requires several technical arguments.

PROPOSITION 2.1. Let g ∈ L(�,F) and define

π∗(g) := inf
{
x ∈R|∃H ∈H such that x + (H · S)T ≥ g on �∗

}
,(2.3)

πQ(g) := inf
{
x ∈R|∃H ∈H such that x + (H · S)T ≥ g Q-a.s.

}
.(2.4)

Then

π∗(g)= sup
Q∈Mf

πQ(g),(2.5)

C = ⋂
Q∈Mf

C(Q).(2.6)

In particular, if π∗(g) <+∞ the infimum in (2.3) is a minimum.

COROLLARY 2.2. Let g ∈ L(�,F) and x ∈ R. If for every Q ∈Mf , there
exists HQ ∈H such that x+ (HQ · S)T ≥ g Q-a.s. then there exists H ∈H which
satisfies x + (H · S)T (ω)≥ g(ω) for every ω ∈�∗.

PROOF. By assumption, g − x ∈ C(Q) for every Q ∈ Mf . From C =⋂
Q∈Mf

C(Q), we obtain g − x ∈ C. �

COROLLARY 2.3 (Perfect hedge). Let g ∈ L(�,F). If for every Q ∈ Mf

there exists HQ ∈ H, xQ ∈ R such that xQ + (HQ · S)T = g Q-a.s. then there
exists H ∈ H, x ∈ R such that x + (H · S)T (ω) = g(ω) for every ω ∈ �∗, and
xQ = x for every Q ∈Mf .

PROOF. Note first that, from the hypothesis, for every Q ∈Mf there exists
HQ ∈H, xQ ∈R such that xQ+(HQ ·S)T (ω)= g(ω) for every ω ∈ supp(Q). We
first show that xQ does not depend on Q. Assume there exist Q1,Q2 ∈Mf such
that xQ1 < xQ2 . For every λ ∈ (0,1), set Qλ := λQ1 + (1 − λ)Q2 ∈Mf . Then
there exist HQλ ∈H and xQλ ∈R such that xQλ+(HQλ ·S)T (ω)= g(ω) for every
ω ∈ supp(Qλ)= supp(Q1)∪ supp(Q2). Therefore, xQλ + (HQλ · S)T (ω)= g(ω)

for every ω ∈ supp(Qi), for any i = 1,2, and from NA(Qi) we necessarily have
that xQλ = xi .

Since x + (HQ · S)T (ω) = g(ω) for every ω ∈ supp(Q) we can apply Corol-
lary 2.2 which implies the existence of H ∈H such that x + (H · S)T (ω)≥ g(ω)

on �∗. Moreover x − x + ((H − HQ) · S)T (ω) ≥ g(ω) − g(ω) ∀ω ∈ supp(Q)

implies ((H − HQ) · S)T (ω) ≥ 0 ∀ω ∈ supp(Q). Since NA(Q) holds, we con-
clude ((H −HQ) · S)T (ω)= 0 ∀ω ∈ supp(Q). Thus, for every Q ∈Mf we have
x + (H · S)T (ω)= g(ω) on supp(Q), and hence the thesis follows from Proposi-
tion 4.18 [7] (or Proposition 3.1). �



1458 M. BURZONI, M. FRITTELLI AND M. MAGGIS

COROLLARY 2.4 (Bipolar representation). Let C be defined in (2.1). Then

(2.7) C = {
g ∈ L(�,F)|EQ[g] ≤ 0 ∀Q ∈Mf

}
.

PROOF. Clearly, C ⊆ {g ∈ L(�,F)|ER[g] ≤ 0 ∀R ∈ Mf } =: C̃. Fix Q ∈
Mf and observe that L0(�,F,Q) ≡ L1(�,F,Q) ≡ L∞(�,F,Q), which de-
note, respectively, the space of equivalent classes of Q-a.s. finite, Q-integrable
and Q-a.s. bounded F -measurable random variables on �. For g ∈ L(�,F),
we denote with the capital letter G the corresponding equivalence class G ∈
L0(�,F,Q). Denote also by L0+(�,F,Q) the Q-a.s. nonnegative elements of
L0(�,F,Q). The quotient of K and C(Q) with respect to the Q-a.s. identification
∼Q are denoted respectively by

KQ := {
K ∈ L0(�,F,Q)|K = (H · S)T Q-a.s., H ∈H

}
,

CQ := {
G ∈ L0(�,F,Q)|∃K ∈KQ such that G≤KQ-a.s.

}
= KQ −L0+(�,F,Q).

Now we may follow the classical arguments: the convex cone CQ is closed in
probability with respect to Q (see, e.g., [18] Theorem 1). As Q ∈Mf , CQ is also
closed in L1(�,F,Q) and, therefore,

(CQ)0 = {
Z ∈ L∞(�,F,Q)|E[ZG] ≤ 0 ∀G ∈ CQ

}
⊆ L∞(�,F,Q)∩L0+(�,F,Q).

Notice that R �Q and R ∈Mf if and only if R �Q and dR
dQ

∈ (CQ)0. Hence,

(CQ)00 = {
G ∈L1(�,F,Q)|E[ZG] ≤ 0 ∀Z ∈ (CQ)0}

=
{
G ∈ L1(�,F,Q)|ER[G] ≤ 0 ∀R �Q such that

dR

dQ
∈ (CQ)0

}
(2.8)

= {
G ∈L1(�,F,Q)|ER[G] ≤ 0 ∀R �Q such that R ∈Mf

}
.

Let g ∈ C̃. By the characterization in (2.8) the corresponding G belongs to (CQ)00.
By the bipolar theorem CQ = (CQ)00 and, therefore, G ∈ CQ and g ∈ C(Q) [as de-
fined in (2.2)]. Since this holds for any Q ∈Mf , from C =⋂

Q∈Mf
C(Q) (Propo-

sition 2.1) we conclude that g ∈ C. �

REMARK 2.5. One may ask whether the bipolar duality (2.7) implies that C
is closed with respect to some topology. To answer this question let us introduce
on L(�,F) the following equivalence relation: for any X,Y ∈ L(�,F)

X ∼ Y if and only if X(ω)− Y(ω)= k(ω)

for some k ∈K and for every ω ∈�∗.



MODEL-FREE SUPERHEDGING DUALITY 1459

Consider the quotient space L(�,F) = L(�,F)/∼, denote with [X] the equiv-
alent class in L(�,F) having X as a representative and let Vf be the vector
space generated by Mf . We first claim that the couple (L(�,F),Vf ) is a sep-
arated dual pair under the bilinear form 〈·, ·〉 : L(�,F) × Vf → R defined by:
〈[X],μ〉 �→ Eμ[X], for any X ∈ [X]. Notice that the form 〈[X],μ〉 �→ Eμ[X] is
well-posed as Eμ[k] = 0 for all k ∈K and the pairing is obviously bilinear. Clearly,
if μ �= 0 then there exists ω ∈�∗ such that μ({ω}) �= 0 and Eμ[1ω] �= 0. Thus, we
have showed that 〈[X],μ〉 = 0, for every [X], implies μ= 0.

We now prove that 〈[X],μ〉 = 0 for every μ implies [X] = [0]. By contradic-
tion, assume [X] �= [0]. By assumption, X can not be replicable at a nonzero cost.
Observe that if X ∈ [X] is replicable at zero cost in any market (�,F,F, S;Q)

for any possible choice Q ∈Mf then by Corollary 2.3 X is pathwise replicable
for every ω ∈�∗, or in other words: [X] = [0].

Hence, our assumption [X] �= [0] implies that there exists a Q ∈Mf such that
the market (�,F,F, S;Q) is not complete, so that Me(Q) := {Q∗ ∼ Q|Q∗ ∈
M}} �= {Q}, and X ∈ [X] is not replicable in such market. Then

inf
Q∗∈Me(Q)

EQ∗[X]< sup
Q∗∈Me(Q)

EQ∗[X].

As Q ∈Mf has finite support, Me(Q)⊂Mf and there exists a μ ∈Me(Q)⊂
Vf such that Eμ[X] �= 0, which is a contradiction.

Now we conclude that the cone C/∼ is closed with respect to the weak topology
σ(L(�,F),Vf ). Indeed, from (2.7) we obtain that

C/∼ = {[g] ∈ L(�,F)|EQ[g] ≤ 0 ∀Q ∈Mf

}
= ⋂

Q∈Mf

{[g] ∈ L(�,F)|EQ[g] ≤ 0
}

is the intersection of σ(L(�,F),Vf )-closed sets.

3. Proof of Theorem 1.1. We first recall from [7] the relevant properties of
the set �∗ that will be needed several times in the proofs.

PROPOSITION 3.1 (Proposition 4.18 [7]). In the setting described in Sec-
tion 1, we have

M �=∅ ⇐⇒ �∗ �=∅ ⇐⇒ Mf �=∅,
(3.1)

�∗ = {
ω ∈�|∃Q ∈Mf such that Q(ω) > 0

}
.

The complement of �∗ is the maximal M-polar set.

PROOF OF THEOREM 1.1. As already stated in the Introduction, we may as-
sume w.l.o.g. that M �= ∅, or equivalently Mf �= ∅. The first equality of the
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theorem holds because of the definition of M-q.s. inequality and the fact that �∗
is the maximal M-polar set.

Step 1: Here, we show that

inf
{
x ∈R|∃H ∈H such that x + (H · S)T (ω)≥ g(ω) ∀ω ∈�∗

}= sup
Q∈Mf

EQ[g],

and recall, from Proposition 2.1, that the inf is attained whenever finite. Note first
that the left-hand side of the previous equation can be rewritten as inf{x ∈ R|g −
x ∈ C}. From Corollary 2.4 it follows

inf{x ∈R|g − x ∈ C} = inf
{
x ∈R|EQ[g− x] ≤ 0 ∀Q ∈Mf

}
= inf

{
x ∈R|x ≥EQ[g] ∀Q ∈Mf

}
= sup

{
EQ[g]|Q ∈Mf

}
.

Step 2: We complete the proof by showing that, for any g ∈ L(�,F),

(3.2) sup
Q∈M

EQ[g] = sup
Q∈Mf

EQ[g],

where we adopt the convention∞−∞=−∞ for those random variables g whose
positive and negative part is not integrable. Set

m := sup
Q∈M

EQ[g], l := sup
Q∈Mf

EQ[g].

We obviously have that l ≤m so that we only have to prove the converse inequality.
If l =∞, there is nothing to prove. Suppose then l <∞. We first show that

(3.3) if Q ∈M satisfy EQ[g]> l ⇒ EQ[g] =∞.

Suppose indeed by contradiction that there exists Q ∈ M \Mf such that l <

EQ[g]<∞. Consider now an arbitrary version of the process gt :=EQ[g|Ft ] and
extend the original market with the asset Sd+1

t := gt for t ∈ I . We obviously have
that Q is a martingale measure for the extended market and from Proposition 3.1
this implies the existence of a finite support martingale measure Qf which, by
construction, belongs to Mf . Since EQf

[g] = g0 > l, which is the supremum of
the expectations of g over Mf , we have a contradiction.

From (3.3), we readily infer that if m <∞ then l =m. We are only left to study
the case of m=∞ and we show that this is not possible under the hypothesis l <

∞. Consider first the class of martingale measures Q(g)⊂M such that EQ[g−] =
∞. We obviously have that Q(g) ∩Mf = ∅, moreover, since l < m =∞ from
(3.3) and from ∞−∞=−∞, there exists Q̃ ∈M \Q(g) such that EQ̃[g] =∞
and EQ̃[g−]<∞. Consider now the sequence of claims gn := g∧n for any n ∈N.
From EQ̃[g−] < ∞ and monotone convergence theorem, we have EQ̃[g ∧ n] ↑
EQ̃[g] =∞; hence, there exists n ∈N such that n≥EQ̃[g∧n]> l. Note now that

(3.4) sup
Q∈Mf

EQ[g ∧ n] ≤ sup
Q∈Mf

EQ[g] = l < EQ̃[g ∧ n].
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FIG. 1. Payoffs.

Applying (3.3) to g ∧ n, we get EQ̃[g ∧ n] = +∞, which is a contradiction since
the contingent claim g ∧ n is bounded. �

4. Example: Forget about superhedging everywhere. Let (�,F) = (R+,

B(R+)). Consider a one period market (T = 1) defined by a nonrisky asset S0
t ≡ 1

for t = 0,1 (interest rate is zero) and a single risky asset S1
T (ω) = ω with initial

price S1
0 := s0 > 0. In this market, we also have two options �= (φ0, φ1), where

φ0 := f 0(ST ) is a butterfly spread option and φ1 := f 1(ST ) is a power option,
namely,

f 0(x) := (x −K0)
+ − 2

(
x − (K0 + 1)

)+ + (
x − (K0 + 2)

)+
,

f 1(x) := (
x2 −K1

)+
.

Assume K0 > s0, K1 > (K0+2)2 and that these options are traded at prices c0 = 0
and c1 > 0, respectively. Set c = (c0, c1). The payoffs of these financial instru-
ments are shown in Figure 1 for K0 = 2, K1 = 25:

DEFINITION 4.1. (1) There exists a Model Independent Arbitrage (in the
sense of Acciaio et al. [1]) if ∃(H,h) ∈H×R2 such that (H ·S)T (ω)+h(�(ω)−
c) > 0 ∀ω ∈�.

(2) There exists a one point arbitrage (in the sense of [7]) if ∃(H,h) ∈H×R2

such that (H · S)T (ω)+ h(�(ω)− c) ≥ 0 ∀ω ∈� and (H · S)T (ω)+ h(�(ω)−
c) > 0 for some ω ∈�.

It is clear that any long position in the option φ0 is a one point arbitrage but it
is not a Model Independent Arbitrage. We have indeed that there are No Model
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Independent Arbitrages as

M� �=∅.

More precisely, any Q ∈ M� must satisfy Q((K0,K0 + 2)) = 0, so that (K0,

K0 + 2) is an M�-polar set. Nevertheless,

�� =R+ \ (K0,K0 + 2).

One possible way to see this is to observe that on 
 := R+ \ (K0,K0 + 2) the
option φ0 has zero payoff and zero initial cost so that any probability P , with
supp(P )⊆ 
, that is, a martingale measure for S1, φ1, is also a martingale measure
for S0, S1, φ0, φ1. Take now ω1 = 0, ω2 ∈ (K0 + 2,

√
K1), ω3 >

√
K1 + c1 and

observe that the corresponding points x1 := (−s0,−c1), x2 := (ω2 − s0,−c1) and
x3 := (ω3 − s0, φ

1(ω3)− c1) clearly belong to conv(�X(ω)|ω ∈ 
) where �X is
the random vector [S1

1 − s0;φ1 − c1]. Consider now ε := 1
2 min{c1, s0, |ω2 − s0|}

so that for ω3 sufficiently large we have

Bε(0)⊆ conv
(
�X(ω)|ω ∈ {ω1,ω2,ω3})⊆ conv

(
�X(ω)|ω ∈ 


)
.

We have therefore that 0 is in the interior of conv(�X(ω)|ω ∈ 
) and from Corol-
lary 4.11 item (1) in [7], �� = 
 = R+ \ (K0,K0 + 2). Note, moreover, that this
is true for any value of the price c1 > 0.

Consider now the digital options gi = Fi(ST ), i = 1,2, with

F1(x)= 1(K0,K0+2)(x),

F2(x)= 1[K0,K0+2](x)

which differ only at the extreme points of the interval (K0,K0 + 2) and observe
that F2 is upper semicontinuous while F1 is not. From the previous remark, g1 has
price zero under any martingale measure Q ∈M�, so that

(4.1) sup
Q∈M�

EQ[g1] = 0.

Recall that

π�(g) := inf
{
x ∈R|∃(H,h) ∈H×R2 such that x + (H · S)T + h�≥ g on �

}
and

π�(g) := inf
{
x ∈R|∃(H,h) ∈H×R2 such that x + (H · S)T + h�≥ g on ��

}
.

CLAIM 4.2. In this market:

1. π�(g1)= supQ∈M�
EQ[g1] = 0 and π�(g2)= supQ∈M�

EQ[g2];
2. π�(g1)=min{ s0

K0
,1}> supQ∈M�

EQ[g1] = 0;
3. π�(g2)= supQ∈M�

EQ[g2].
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REMARK 4.3. (i) Item (1) is in agreement with the conclusion of Theo-
rem 1.2.

(ii) Item (2) shows instead that the superhedging duality with respect to the
whole � does not hold for the claim g1 (which is even bounded). Note that in this
example all the hypothesis of Theorem 1.4 in [1] are satisfied except for the upper
semicontinuity of g1.

As the comparison between g1 and g2 in items (2) and (3) shows, the assumption
of upper semicontinuity of the claim seems artificial from the financial point of
view, even though necessary for the validity of Theorem 1.4 in [1].

Our results demonstrates that it is possible to obtain a superhedging duality on
the relevant set �� (or �∗ when there are no options) for any measurable claim,
regardless of the continuity assumptions (as well as without the existence of an
option with superlinear payoff).

PROOF OF THE CLAIM 4.2. Item (1) holds thanks to Theorem 1.1 since in
the one-period model there is no difference between dynamic and static hedging.
Notice also that the equalities π�(g1)= 0 = supQ∈M�

EQ[g1] are consequences
of (4.1) and the fact that (H,h)= (0,0) is a superhedging strategy for g1 on ��.
As g2 is upper semicontinuous, the superhedging duality in item (3) holds thanks
to Theorem 1.4 in [1]; see (1.7). In the remainder of this section, we conclude the
proof by showing π�(g1) = min{ s0

K0
,1} = s0

K0
(by the assumption K0 > s0) and

hence item (2).
Let us consider the model independent superhedging strategies, namely, the

set of (H,h) ∈ R2 × R2 such that x + (H · S)T (ω) + h�(ω) ≥ g1(ω) for any
ω ∈�. Any admissible trading strategy is given by (H,h) := [H 0,H 1, h0, h1] ∈
R4 which correspond to positions in the securities [S0, S1, φ0, φ1] so that

price: V0(H,h) :=H 0 +H 1s0 + h1c1,
(4.2)

payoff: VT (H,h) :=H 0 +H 1ω+ h0φ0(ω)+ h1φ1(ω).

Trivial superhedges. There are two immediate strategies whose terminal payoff
is a superhedge for g1:

1. S0 [namely, H 0 = 1 in (4.2) and H 1 = h0 = h1 = 0] with initial cost 1.
2. 1

K0
S1 [namely, H 1 = 1

K0
in (4.2) and H 0 = h0 = h1 = 0] with initial cost

s0
K0

.

Consider now a generic superhedging strategy (H,h) for the option g1 and sup-
pose first that H 1 ≥ 0.

Observe that for every ω ∈ [0,K0] we have: VT (H,h)(ω) = H 0 + H 1ω and
g1(ω)= 0. If H 0 < 0, there exists ω̃ ∈ [0,K0] such that H 0 +H 1ω̃ < 0 = g1(ω̃)

so that the strategy does not dominate the payoff of g1; necessarily H 0 ≥ 0.
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FIG. 2. φ1 has no positive wealth on (K0,K0 + 2).

h1 �= 0 is not optimal for superhedging g1. If h1 �= 0, we necessarily have
h1 ≥ 0, otherwise VT (H,h)(ω) < 0 for ω large enough (because of the super-
linearity of f 1) and (H,h) is not a superhedge for g1. Since f 1(x) = 0 on
(K0,K0 + 2) and c1 > 0, the most convenient superhedge is with h1 = 0 (cf.
Figure 2).

From now on, with no loss of generality, h1 = 0.
h0 �= 0 is not optimal for superhedging g1. Since φ0 has a positive payoff, if

h0 �= 0, we might take h0 ≥ 0 otherwise we have a better superhedge (at the same
cost) by replacing h0φ0 with the zero portfolio. Suppose now h0 > 0. By recalling
that H 0,H 1 ≥ 0, we note that VT (H,h) as in (4.2) satisfies

inf
ω∈(K0,K0+2)

H 0 +H 1ω+ h0φ0(ω)=H 0 +H 1K0

so that the same superhedge is achieved by trading only in S0 and S1. In other
words, with no loss of generality h0 = 0 (cf. Figure 3).

We finally discuss the case H 1 < 0.
This is, in general, a more expensive choice for the strategy (H,h). Indeed,

we have, for instance, that for ω̃ = K0 + 1, H 1S1(ω̃) = H 1(K0 + 1) < 0 while
g1(ω̃) = 1. Since for any strategy (H,h) ∈ R4, VT (H,h)(ω̃) = H 0 + H 1ω̃, we
need H 0 ≥ 1−H 1(K0 + 1); hence, the initial price V0(H,h)≥ 1−H 1(K0 + 1−
s0). By choosing the parameters s0,K0 such that K0 + 1− s0 < 0 any superhedg-
ing strategy with H 1 < 0 is more expensive than the trivial superhedge given by
H 0 = 1,H 1 = h0 = h0 = 0. Note moreover that in order to cover the losses in
H 1S1 for large value of ω we would need to take a long position in the op-
tion φ1 (whose payoff dominates S1) for an additional cost of h1c1 > 0 with
h1 >−H 1 > 0.
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FIG. 3. h0φ0 does not dominate g1 on (K0,K0 + ε) for any h0 with ε = ε(h0).

We can conclude that the cheapest super-replicating strategies are, in general,
given by H 0S0 +H 1S1 with H 0,H 1 ≥ 0 and it is easy to see that

π�(g1)=min
{

s0

K0
,1

}
= s0

K0
> 0. �

5. Technical results and proofs. Recall that {Ft }t∈I is the universal filtration
which satisfies in particular that Ft contains the family of analytic sets of (�,FS

t )

for any t ∈ I .
We indicate by Mat(d× (T +1);R) the space of d× (T +1) matrices with real

entries representing the set of all the possible trajectories of the price process: for
every ω ∈� we have (S0(ω), S1(ω), . . . , ST (ω)) ∈ Mat(d × (T + 1);R). Fix t ≤
T : in the following, we indicate S0:t = (S0, S1, . . . , St ) and recall that S−1

0:t (A) =
{ω ∈�|S0:t (ω) ∈ A} for A⊂ Mat(d × (t + 1);R). We set �St := St − St−1, t =
1, . . . , T .

5.1. �∗ and �� are analytic sets.

LEMMA 5.1. The set Pf = {P ∈ P|P has finite support} is an analytic subset
of P endowed with the sigma-algebra generated by the σ(P,Cb) topology.

PROOF. Set E = {δω|ω ∈ �} which is σ(P,Cb) closed (Theorem 15.8 [2])
and observe that Pf is the convex hull of E. Consider for any n ∈ N the simplex
�n ⊂Rn and the map

γn :En ×�n −→ Pf

defined by γn(δω1, . . . , δωn, λ1, . . . , λn)=∑n
i=1 λiδωi

which is a continuous func-
tion in the product topology. Since En×�n is closed in the product topology of the
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Borel space Pn × Rn, then the image γn(E
n ×�n) is analytic (Proposition 7.40

[4]). Finally, we notice that Pf = ⋃
n γn(E

n × �n) which is therefore analytic,
being countable union of analytic sets. �

DEFINITION 5.2. Let L∞(�,F) := {f ∈ L(�,F)|f is bounded}. A subset
U ⊂ Pf is countably determined if there exists a countable set L ⊆ L∞(�,F)

such that

U := {
μ ∈ Pf |Eμ[f ] ≤ 0 ∀f ∈ L

}
.

LEMMA 5.3. If U ⊆ Pf is countably determined, then it is analytic.

PROOF. For each fn ∈ L, define

Fn : P →R such that Fn(μ)=
∫
�

fn dμ.

From Theorem 15.13 in [2], Fn is Borel measurable so that

U := {
μ ∈ Pf |Eμ[fn] ≤ 0 for all n ∈N

}= ⋂
n∈N

(Fn)
−1(−∞,0] ∩Pf

is analytic, being countable intersection of analytic sets. �

LEMMA 5.4. Let Z1(ω) := maxi=1,...,d maxu=0,...,T |Si
u(ω)|, Z2(ω) :=

maxj=1,...,k |φj (ω)| and Z =max(Z1,Z2) then

PZ =
{
μ ∈ Pf |∃Q ∈Mf such that

dQ

dμ
= c(μ)

1+Z

}
,

PZ,� =
{
μ ∈ Pf |∃Q ∈M� such that

dQ

dμ
= c(μ)

1+Z

}
are analytic subsets of P where c(μ)=Eμ[(1+Z)−1]−1.

PROOF. Assume PZ �= ∅ (resp., PZ,� �= ∅) otherwise there is nothing to
prove. Fix any t ∈ {1, . . . , T }. Let Mat(d × t;Q) be the countable set of d × t ma-
trices with rational entries and denote its elements by qn, n ∈N. For qn ∈Mat(d×
t;Q), consider the set {An,m} with An,m = {ω ∈ �|S0:t−1 ∈ B1/m(qn)} ∈ Ft−1,
where B1/m(qn) denotes the ball [in the Euclidean norm of Mat(d × t;R)] with
radius 1/m centered in qn. Define

f i
n,m :=

(
Si

t − Si
t−1

1+Z

)
1An,m ∈ L∞(�,F),

(5.1)

gj :=
(

φj

1+Z

)
∈ L∞(�,F).
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The following sets

U := {
μ ∈ Pf |Eμ

[
f i

n,m

]= 0 ∀i, n,m
}
,

U� := {
μ ∈ Pf |Eμ

[
f i

n,m

]= 0 and Eμ

[
gj ]= 0 ∀i, n,m, j

}
,

are analytic since they are countably determined. We now show U = PZ and U� =
PZ,� and this will complete the proof.

For any fixed μ ∈ U, we have by construction

(5.2)
∫
�

Si
t

1+Z
1An,m dμ=

∫
�

Si
t−1

1+Z
1An,m dμ for every An,m.

Consider the finite set of matrices {sj }hj=1 := {S0:t−1(ω) ∈ Mat(d × t;R)|ω ∈
supp(μ)} where h = h(μ) depends on μ. For every j = 1, . . . , h, there exists
qn(j),m(j) such that sj ∈ B1/m(j)(qn(j)) and the balls B1/m(j)(qn(j)) are all dis-
joint. Therefore, An(j),m(j) is such that

μ(Bj )= μ(An(j),m(j)),

where Bj := {S0:t−1 = sj }. Since {Bj }hj=1 are atoms for μ in Ft−1, we conclude
that ∫

�

Si
t

1+Z
1Bj

dμ=
∫
�

Si
t−1

1+Z
1Bj

dμ for every j = 1, . . . , h

and Eμ(
Si

t

1+Z
|Ft−1) = Eμ(

Si
t−1

1+Z
|Ft−1). Define Q by dQ

dμ
:= c

1+Z
where c :=

c(μ) > 0 is the normalization constant. Then Q∼ μ, Q ∈ Pf and

Eμ

(
Si

t

1+Z

∣∣∣Ft−1

)
(5.3)

=Eμ

(
Si

t−1

1+Z

∣∣∣Ft−1

)
if and only if EQ

(
Si

t |Ft−1
)= Si

t−1.

Thus, we can conclude Q ∈Mf and U ⊆ PZ . Take now μ ∈ PZ then there exists
Q such that EQ(Si

t |Ft−1) = Si
t−1 and dQ

dμ
= c

1+Z
. From equation (5.3), we have

that condition (5.2) holds, and hence μ ∈ U .
Recall that M� is defined in (1.4) and consider now μ ∈ U� ⊆ U . Then there

exists Q ∈Mf such that dQ
dμ

= c(μ)
1+Z

. Moreover, Eμ[gj ] = 0 for every j = 1, . . . , k

so that, by (5.1), EQ[φj ] = 0. In this way, U� ⊆ PZ,�. Take now μ ∈ PZ,�, then
μ ∈ PZ from the previous part of the proof. Moreover, there exists Q ∈M� such
that EQ[φj ] = 0 and dQ

dμ
= c

1+Z
. Again by (5.1), we have Eμ[gj ] = 0 for every

j = 1, . . . , k, and hence μ ∈ U�. �

PROPOSITION 5.5. �∗ and �� are analytic subsets of (�,F).
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PROOF. Consider the Baire space NN of all sequences of natural numbers. In
this proof, we denote by Bε(ω) the closed ball of radius ε, centered in ω in (�,d).

Consider a dense subset {ωi}∞i=1 of �. For any n = (n1, . . . , nk, . . .) ∈ NN, we
denote by n(1), . . . ,n(k) the first k terms (namely, n1, . . . , nk). Define

An(1) := B1(ωn(1)).

Let now {ωn(1),i}∞i=1 a dense subset of An(1) we define

An(1),n(2) := B 1
2
(ωn(1),n(2))∩An(1).

At the kth step, we shall have {ωn(1),...,n(k−1),i}∞i=1 a dense subset of An(1),...,n(k−1)

and we define the closed set

An(1),...,n(k) := B 1
k
(ωn(1),...,n(k))∩An(1),...,n(k−1).

Notice that for any ω ∈� there will exist an n ∈NN such that

(5.4)
⋂
k∈N

An(1),...,n(k) = {ω}.

We consider the nucleus of the Souslin scheme given by

(5.5)
⋃

n∈NN

⋂
k∈N

An(1),...,n(k) × {
Q ∈ PZ|Q(An(1),...,n(k)) > 0

}
.

Observe that An(1),...,n(k) closed in � implies {Q ∈ P|Q(An(1),...,n(k)) ≥ 1
m
} is

σ(P,Cb)-closed from Corollary 15.6 in [2]. Therefore,{
Q ∈ P|Q(An(1),...,n(k)) > 0

}=⋃
m

{
Q ∈P|Q(An(1),...,n(k))≥ 1

m

}
is Borel measurable in (P, σ (P,Cb)). Lemma 5.4 implies {Q ∈ PZ|
Q(An(1),...,n(k)) > 0} is analytic. We can thus conclude that An(1),...,n(k) × {Q ∈
PZ|Q(An(1),...,n(k)) > 0} is an analytic subset of �×P (which is a Polish space).

From Lemma 5.4, we observe that any μ ∈ PZ admits an equivalent martingale
measure with finite support. From �∗ = {ω ∈ �|∃Q ∈Mf such that Q(ω) > 0},
if ω /∈ �∗ we then have ω /∈ supp(μ) for any μ ∈ PZ . Taking (5.4) into account,
if ω /∈�∗ we can find a large enough k̄ such that An(1),...,n(k̄) ∩ supp(μ)=∅. We
then have ⋂

k∈N
An(1),...,n(k) × {

Q ∈ PZ|Q(An(1),...,n(k)) > 0
}

(5.6)

=
{{ω} ×Pω, if ω ∈�∗,
∅, if ω /∈�∗,

where Pω = {Q ∈ PZ|Q({ω}) > 0}.
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From Proposition 7.35 and Proposition 7.41 in [4], any kernel of a Souslin
scheme of analytic sets is again an analytic set. Then⋃

n∈NN

⋂
k∈N

An(1),...,n(k) × {
Q ∈ PZ|Q(An(1),...,n(k)) > 0

}
is an analytic set in �×P whose projection on �, thanks to (5.6), is equal to �∗.
Since the projection � :�× P →� is continuous, we finally deduce that �∗ is
analytic.

For ��, repeat the same proof replacing PZ with PZ,�. �

REMARK 5.6. Let �̂⊆� be an analytic subset of (�,F). An inspection of
the proof shows that

�̂∗ := {
ω ∈ �̂|∃Q ∈Mf such that Q(�̂)= 1 and Q(ω) > 0

}
,

(5.7)
�̂� := {

ω ∈ �̂|∃Q ∈M� such that Q(�̂)= 1 and Q(ω) > 0
}

are also analytic subsets of (�,F). Indeed, P�̂ := {P ∈ P|P(�̂) = 1} is an ana-
lytic subset of P , by Proposition 7.43 in [4], therefore, PZ ∩ P�̂ is analytic and
one may replace in the above proof PZ with PZ ∩ P�̂ and �∗ with �̂∗ to obtain
the conclusion.

REMARK 5.7. In one-period markets (T = 1), �∗ is a Borel measurable set.
To see this, observe that if there are no one point arbitrages then �∗ =� ∈ B(�)

by Corollary 4.11 in [7]. When this condition is violated, there exists a strategy
H 1 ∈ Rd such that H 1 · (S1 − S0) ≥ 0 and B1 := {ω ∈ �|H 1 · (S1(ω) − S0) >

0} is nonempty and Borel measurable. Indeed, B1 = (f ◦ S1)
−1(0,∞) with

f (x) := H 1 · (x − S0) continuous and S1 Borel measurable. Observe now that,
restricted to the set � \ B1, one asset is redundant (say Sd ) so that the market
can be described by (S0, . . . , Sd−1). If there is no one point arbitrage, we have
�∗ =� \ B1 ∈ B(�). Otherwise, we can iteratively repeat the same argument to
construct Bi := {ω ∈ � \⋃i−1

j=1 Bj |Hi · (S1(ω)− S0) > 0} ∈ B(�) and dropping
iteratively one additional asset. Since the number of assets is finite, the procedure
takes β ≤ d steps. On the resulting set, there are no one point arbitrages so that
�∗ = (

⋃β
i=1 Bj)C ∈ B(�).

5.2. On the key Proposition 2.1.

REMARK 5.8. We point out at this stage that �∗ is not only analytic but also it
belongs to FT where FT is the universal completion of σ(St |t ≤ T ). Indeed, �∗ ⊆
S−1

0:T (S0:T (�∗)). Moreover, for any ω1 ∈ S−1
0:T (S0:T (�∗)) there exists ω2 ∈�∗ such

that S0:T (ω1)= S0:T (ω2). Therefore, for any Q ∈Mf such that Q({ω2}) > 0 and
Q({ω1}) = 0, the measure Q̃ such that Q̃({ω1}) := Q({ω2}), Q̃({ω2}) := 0 and
Q̃=Q elsewhere is a martingale measure; necessarily ω1 ∈�∗.
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In the proof of Proposition 2.1, we will make use of the following simple fact:
first set �T∗ :=�∗ ∈FT then by backward recursion we have

�t∗ := S−1
0:t

(
S0:t

(
�t+1∗

)) ∈Ft ,

�t+1∗ ⊆ �t∗ for any t = 0, . . . , T − 1, and �∗ =
T⋂

t=1

�t∗.

Notice that �t∗ can be interpreted as the Ft -measurable projection of �∗ since we
have �t∗ = S−1

0:t (S0:t (�∗)).
We also recall that the condition no one point arbitrage holds true on �∗. If

indeed there exists H ∈H such that (H · S)T ≥ 0 with (H · S)T (ω) > 0 for some
ω ∈�∗, then any measure P such that P(ω) > 0 cannot be a martingale measure,
which contradicts (1.1).

5.2.1. Proof of Proposition 2.1. We show, in several steps, that π∗(g) =
supQ∈Mf

πQ(g) where π∗ and πQ are defined in (2.3) and (2.4) and g ∈ L(�,F).

Step 1: The first step is to construct, for any 1 ≤ t ≤ T , an Ft−1-measurable
random set Rt,X,D ⊆Rd+1 whose interpretation is the following: if ω occurs, any
H 1, . . . ,Hd , Hd+1 ∈ Rt,X,D(ω) represents a strategy at time t − 1 that allows to
superhedge the random variable X at time t , for any trajectory in D ⊆ �. Here,
Hd+1 represents the investment in the nonrisky asset. Note that we need to incor-
porate the additional feature given by the choice of the set D since we want to
superhedge the random variable g only on �∗ ⊆�.

Recall �St = St − St−1. Consider, for an arbitrary 1 ≤ t ≤ T , D ∈ Ft and X ∈
L(�,F), the multifunction

ψt,X,D : ω �→ {[
�St(ω̃);1;X(ω̃)

]
1D|ω̃ ∈�ω

t−1
}⊆Rd+2,

where [�St ;1;X]1D = [�S1
t 1D, . . . ,�Sd

t 1D,1D,X1D] and �ω
t−1 is the level

set of the trajectory ω up to time t − 1 namely, �ω
t−1 = {ω̃ ∈ �|S0:t−1(ω̃) =

S0:t−1(ω)}. We show that ψt,X,D is an Ft−1-measurable multifunction. Indeed,
we need to show that, for any open set O ⊆Rd ×R2,{

ω ∈�|ψt,X,D(ω)∩O �=∅
}= S−1

0:t−1

(
S0:t−1(B)

) ∈Ft−1,

where B := ([�St ;1;X]1D)−1(O). First [�St,1,X]1D is an F -measurable ran-
dom vector then B ∈F . Second, Su is a Borel measurable function for any 0≤ u≤
t − 1 so that we have, as a consequence of Theorem III.18 in [10], that S0:t−1(B)

belongs to the sigma-algebra generated by the analytic sets in Mat(d × t;R) en-
dowed with its Borel sigma-algebra. Applying now Theorem III.11 in [10], we
deduce that S−1

0:t−1(S0:t−1(B)) ∈ Ft−1 and hence the desired measurability for
ψt,X,D .
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By preservation of measurability (see [22] for instance), the multifunction

ψ∗
t,X,D(ω) := {

H ∈Rd+2|H · y ≤ 0 ∀y ∈ψt,X,D(ω)
}

is also Ft−1-measurable and thus, the same holds true for −ψ∗
t,X,D ∩ {Rd+1 ×

{−1}}. The projection on the first d + 1 components, Rt,X,D :=
�x1,...,xd+1(−ψ∗

t,X,D ∩{Rd+1×{−1}}), provides the building blocks for the super-
replicating strategy for X. By the previous construction, we have indeed that

Rt,X,D(ω)
(5.8)

=
{
H ∈Rd+1|Hd+11D +

d∑
i=1

Hi�Si
t (ω̃)1D ≥X(ω̃)1D ∀ω̃ ∈�ω

t−1

}
.

Notice that if D ∩�ω
t−1 =∅ then Rt,X,D(ω)=Rd+1. Note also that Rt,X,D is, by

construction, a closed set.
Denote by �xd+1(Rt,X,D) the projection on the (d + 1)th component, which is

a random interval in R with possible values {∅}, {R}. Observe now that the pro-
jection is continuous and that the infimum of a real-valued random set A preserve
the measurability since{

ω ∈�| inf
{
a|a ∈A(ω)

}
< y

}= {
ω ∈�|A(ω)∩ (−∞, y) �=∅

}
.

Conclude, therefore, that Xt−1 := inf�xd+1(Rt,X,D) is an Ft−1-measurable func-
tion with values in R∪ {±∞}.

Step 2. We prove that for every ω ∈ {|Xt−1| < ∞} the infimum in Xt−1 is ac-
tually a minimum. To this aim, fix ω ∈ {|Xt−1|<∞} and notice that there might
exist L ∈Rd \ {0} such that L ·�St = 0 on �ω

t−1 ∩�t∗, meaning that some assets
are redundant on this level set. We can reduce the number of assets by selecting
i1, . . . , ik ∈ (1, . . . , d) such that l1�S

i1
t +· · ·+ lk�S

ik
t = 0 implies lj = 0 for every

j = 1, . . . , k. Consider the closed set

R̃(ω)= {
H ∈Rt,X,D(ω)|Hij = 0 for every j = 1, . . . , k

}
and observe that

Xt−1(ω)= inf�xd+1

(
Rt,X,D(ω)

)= inf�xd+1

(
R̃(ω)

)
= inf�xd+1

(
R̃(ω)∩ {

Rd × [
Xt−1(ω),Xt−1(ω)+ 1

]})
.

The set Ko(ω) := R̃(ω) ∩ {Rd × [Xt−1(ω),Xt−1(ω)+ 1]} is closed being the
intersection of closed sets. We claim that Ko(ω) is bounded. By contradiction,
suppose it is unbounded. Let Ĥn = (Hn,H

d+1
n ) ∈ Ko(ω) ⊂ Rd × R, such that

‖Hn‖→+∞. By definition, H
ij
n = 0 for every j = 1, . . . , k and Hd+1

n is bounded
by Xt−1(ω)+ 1. For any ω̃ ∈D ∩�ω

t−1 and any n, we have

Xt−1(ω)+ 1

‖Hn‖ + Hn

‖Hn‖ ·�St(ω̃)≥ Xt(ω̃)

‖Hn‖ .
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Since Hn‖Hn‖ lies on the unit sphere of Rd , we can extract a subsequence converging
to H ∗ with ‖H ∗‖ = 1. Thus, passing to the limit over this subsequence, we have
H ∗ ·�St(ω̃) ≥ 0 for every ω̃ ∈D ∩�ω

t−1. From the No one point arbitrage con-
dition, we deduce H ∗ ·�St = 0 on D ∩�ω

t−1. Since Hn ∈Ko(ω) then (H ∗)ij = 0
on the redundant assets, and thus H ∗ = 0 which is a contradiction.

The set Ko(ω) is closed and bounded in Rd+1, hence compact. From the conti-
nuity of the projection, �xd+1(Ko(ω)) is compact, so that the infimum is attained.

Step 3: We now provide a backward procedure which yields the super-
replication price and the corresponding optimal strategy. By classical arguments,
when we fix a reference probability Q ∈Mf this procedure yields two processes
Xt(Q) and Ht(Q) such that

(5.9) g ≤
T∑

u=t+1

Hu(Q) ·�Su+Xt(Q)=
T∑

t=1

Ht(Q) ·�St +X0(Q), Q-a.s.,

where Xt(Q) represents the minimum amount of cash that we need at time t in
order to superhedge g in the Q-a.s. sense. Recall that NA(Q) implies Xt(Q) >

−∞ on supp(Q). With no loss of generality, set Xt(Q)(ω) = −∞ for any ω /∈
supp(Q). Now we prove the pathwise counterpart of (5.9).

Set XT := g and DT :=�∗ which belongs to FT by Remark 5.8 and consider
first the random set RT,XT ,DT

. The random variable XT−1 := inf�xd+1(RT,XT ,DT
)

represents the minimum amount of cash that we need at time T − 1 in order to
superhedge g on �∗. XT−1 is therefore the FT−1-measurable random variable
that needs to be super-replicated at time T − 2.

For t = T − 1, . . . ,0, we iterate the procedure by taking Xt :=
inf�xd+1(Rt+1,Xt+1,Dt+1), Dt = S−1

0:t (S0:t (Dt+1)) ∈ Ft and the random set
Rt+1,Xt+1,Dt+1 as defined before. We again have that Xt is an Ft -measurable func-
tion with values in R∪ {±∞}.

This backward procedure yields the superhedging price X0 on �∗ but also
provide the corresponding cheapest portfolio as follows: Note first that for ev-
ery ω ∈ �∗, Xt(ω) > −∞. If this is not the case, there exists a sequence
(Hn, xn)n∈N ∈ Rd ×R such that xn ↓ −∞, xn +Hn�St+1(ω̃)≥Xt+1(ω̃) for ev-
ery ω̃ ∈ Dt+1 ∩�ω

t , and hence Q-a.s. for every Q ∈Mf such that Q(�ω
t ) > 0.

This would lead to a contradiction with Xt(Q) >−∞. From now on, we therefore
assume that Xt(ω) > −∞. In the case Xt(ω) < ∞ for every t = 0, . . . , T − 1,
Step 2 provides that Xt is actually a minimum. The Ft -measurable multifunc-
tion given by �x1,...,xd

(Rt+1,Xt+1,Dt+1 ∩ {Rd ×Xt }) is therefore nonempty for ev-
ery t = 0, . . . , T − 1 and thus admits a measurable selector Ht+1. The strategy
H1, . . . ,HT satisfy the inequalities

g ≤HT ·�ST +XT−1 on DT ,

XT−1 ≤HT−1 ·�ST−1 +XT−2 on DT−1,

. . .

X1 ≤H1 ·�S1 +X0 on D1
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and it represents a superhedge on �∗ =⋂T
t=1 Dt as

g ≤HT ·�ST +XT−1 ≤
T∑

t=T−1

Ht ·�St +XT−2 ≤ · · ·
(5.10)

≤
T∑

t=1

Ht ·�St +X0

holds true for any ω ∈ �∗. When instead Xt(ω) =∞ for some ω ∈ �∗ and for
some t ≥ 0 then by simply taking Xu ≡∞ and Hu arbitrary for every u ≤ t , the
inequality (5.10) is trivially satisfied.

Step 4: In order to prove (2.5), we recursively show that Xt(ω) =
supQ∈Mf

Xt(Q)(ω) for any ω ∈ �∗ which, in particular, implies X0 =
supQ∈Mf

X0(Q). Obviously, we have Xt(ω)≥Xt(Q)(ω) for any ω ∈�∗ so that
Xt ≥ supQ∈Mf

Xt (Q). Thus, we need only to prove the reverse inequality.
For t = T , the claim is obvious: XT = g. By backward recursion, suppose now

it holds true for any u with t + 1≤ u≤ T , namely, Xu(ω)= supQ∈Mf
Xu(Q)(ω)

for any ω ∈�∗.
From the recursive hypothesis in order to find a super-replication strategy with

the same price for any Q ∈Mf , we need to super-replicate Xt+1. We fix a level
set �ω

t and recall that Xt is Ft -measurable, hence it is constant on �ω
t . We first

treat two trivial cases:

• If Xt+1(ω) =∞ for some ω ∈ �∗, then the claim is not super-replicable at a
finite cost, hence the thesis follows with X0 = supQ∈Mf

X0(Q)=∞.

• If �ω
t ∩�t+1∗ =∅, we have two consequences: �ω

t is an Mf -polar set, hence
by assumption, Xt(Q)=−∞ on �ω

t , for any Q ∈Mf . Moreover, as explained
after equation (5.8), �xd+1(Rt+1,Xt+1,Dt+1) = R so that Xt(ω) = −∞ and the
desired equality follows.

From now on, we therefore assume Xt+1 <∞ and �ω
t ∩�t+1∗ �=∅. Define, for

any y ∈R, the set


y := co
(
conv

{[
�St+1(ω̃);y −Xt+1(ω̃)

]|ω̃ ∈�ω
t ∩�t+1∗

})
.

We claim that

(5.11) 0 ∈ int(
y) =⇒ Xt > y.

Indeed, from 0 ∈ int(
y) there is no (H,h) ∈ Rd × R (different from zero) such
that either h(y − Xt+1) + H · �St+1 ≥ 0 or h(y − Xt+1) + H · �St+1 ≤ 0 on
�ω

t ∩�t+1∗ . In particular, there is no H ∈Rd such that

(5.12) y +H ·�St+1 ≥Xt+1 on �ω
t ∩�t+1∗ .

Recalling that, by definition, Xt is the infimum of real numbers for which (5.12)
is satisfied, we have Xt ≥ y. Since, from Step 2, Xt , when finite, is actually a
minimum, we have Xt > y and (5.11) follows.
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Premise: As in Step 1, we may suppose, without loss of generality, that if for
some H ∈Rd , H ·�St+1 = 0 on �ω

t ∩�t+1∗ then H = 0. In fact, if this is not the
case we can reduce, with an analogous procedure, the number of assets needed for
super-replication on the level set.

We now distinguish two cases.
Case 1: Suppose there exist (H,h,α) ∈ Rd+2 with (H,h,α) �= 0 which satis-

fies the equality h(y−Xt+1)+H ·�St+1 = α on �ω
t ∩�t+1∗ . We claim that h �= 0.

Indeed, if h= 0 then α �= 0, since H ·�St+1 = 0 implies (H,h,α)= 0. However,
α �= 0 implies H ·�St+1 = α on �ω

t ∩�t+1∗ which would yield a trivial one point
arbitrage on �∗, hence a contradiction.

Since h �= 0, we have y − α
h
+ H

h
·�St+1 = Xt+1 on �ω

t ∩ �t+1∗ : this means
that Xt from Step 3 coincides with y − α

h
and Xt+1 is replicable implementing

the strategy H̄ := H
h

in the risky assets and Xt = y − α
h

in the nonrisky asset. If
now for some Q ∈Mf such that Q(�ω

t ) > 0, we have the existence of x ≤Xt and
Hx ∈Rd such that x+Hx ·�St+1 ≥Xt+1 Q-a.s. then x−Xt + (Hx−H̄ )�St+1 ≥
0 Q-a.s. hence, since NA(Q) holds true, x ≥Xt . Therefore, Xt =Xt(Q) on �ω

t−1.
Case 2: If a triplet (H,h,α) ∈ Rd+2 such as in Case 1 does not exist, then we

define

ȳ = sup
{
y ∈R|∃H ∈Rd : y +H ·�St+1 ≤Xt+1 on �ω

t ∩�t+1∗
}
.

Obviously, ȳ < Xt otherwise we are back to Case 1. For every 0 < ε < Xt − ȳ and
for every H ∈Rd , neither Xt−ε+H�St+1 ≥Xt+1 nor Xt−ε+H�St+1 ≤Xt+1
holds true on �ω

t ∩ �t+1∗ . Moreover, if there exists h ∈ R such that h(Xt − ε −
Xt+1)+H�St+1 ≥ 0 [or h(Xt − ε −Xt+1)+H�St+1 ≤ 0] on �ω

t ∩�t+1∗ nec-
essarily h would be 0 (otherwise simply divide by h). In such a case, H�St+1 ≥ 0
(or H�St+1 ≤ 0) on �ω

t ∩ �t+1∗ and by absence of one point arbitrage we get
H�St+1 = 0, and hence H = 0. For this reason, neither h(Xt − ε − Xt+1) +
H�St+1 ≥ 0 nor h(Xt − ε −Xt+1)+H�St+1 ≤ 0 for any (H,h) ∈ Rd+1 \ {0}
so that 0 ∈ int
Xt−ε . Take a finite set {ωi}ki=1 ⊂ �ω

t ∩�∗ (with k ≤ d) with the
following properties: {[�St+1(ωi);Xt − ε −Xt+1(ωi)]|i = 1, . . . , k} are linearly
independent and generate the same linear space in Rd+1 as 
Xt−ε . By Proposi-
tion 3.1, and the convexity of the set of martingale measures, there exists Q ∈Mf

such that Q({ωi}) > 0 for any i = 1, . . . , k. For such a Q, we get


Xt−ε = co
(
conv

{[
�St+1(ω̃);Xt − ε−Xt+1(ω̃)

]|ω̃ ∈ supp(Q)∩�ω
t

})
.

From 0 ∈ int
Xt−ε , there is no H(Q) ∈ Rd such that Xt − ε +H(Q) ·�St+1 ≥
Xt+1 Q-a.s. We can conclude that Xt ≥ supQ∈Mf

Xt (Q)≥Xt − ε. Letting ε ↓ 0
we get supQ∈Mf

Xt (Q)=Xt as desired.

Step 5: Finally, we prove (2.6). Notice that obviously C ⊆⋂
Q∈Mf

C(Q). More-
over, if g ∈ ⋂

Q∈Mf
C(Q), then (5.9) holds with X0(Q) ≤ 0 for every Q ∈Mf .

Therefore, also in equation (5.10) we have X0 = supQ∈Mf
X0(Q) ≤ 0 and g ≤∑T

t=1 Ht ·�St on �∗, namely, g ∈ C.
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REMARK 5.9. Note that the proof of Proposition 2.1 relies only on the fact
that �∗ is an analyitc set and that (�∗)C is the maximal polar set for the class
of finite support martingale measure. Given �̂⊆�, an analytic subset of (�,F),
from Proposition 5.5 it also follows that

Ĉ = ⋂
{Q∈Mf |Q(�̂)=1}

C(Q),

where Ĉ := {f ∈ L(�,F)|f ≤ k on �̂∗ for some k ∈K} and �̂∗ as in (5.7).

5.3. Proof of Theorem 1.2. Recall that π� is defined in (1.6) and M� in (1.4).
Set

π̃�(g) := inf
{
x ∈R|∃H ∈H such that x + (H · S)T (ω)≥ g(ω) ∀ω ∈��

}
.

LEMMA 5.10. Let g : � �→ R and φj : � �→ R, j = 1, . . . , k, be F -
measurable random variables. Then

π�(g)= inf
h∈Rk

π̃�(g − h�).

PROOF. Note that π�(g) ≤ π̃�(g − h�) ∀h ∈ Rk , hence, π�(g) ≤
infh∈Rk π̃�(g−h�). By contradiction, assume π�(g) < infh∈Rk π̃�(g−h�), then
there exist (x̄, h̄, H̄ ) ∈ (R,Rk,H) such that

x̄ < inf
h∈Rk

π̃�(g − h�) and

x̄ + (H̄ · S)T (ω)+ h̄�(ω)≥ g(ω) for all ω ∈��.

Clearly we have a contradiction since

x̄ < π̃�(g − h̄�)

= inf
{
x ∈R|∃H ∈H such that x + (H · S)T (ω)≥ g(ω)− h̄�(ω) ∀ω ∈��

}
≤ x̄. �

PROOF OF THEOREM 1.2. Since also �� is analytic (Proposition 5.5), by
comparing the definition of �� in (1.5) with (3.1), we may repeat step by step the
same arguments used in the proof of Theorem 1.1 and Proposition 2.1 replacing �∗
with ��. We then conclude that π̃�(g) = sup{Q∈Mf | supp(Q)⊆�φ}EQ[g] for any
F -measurable random variable g. From the hypothesis, we also have π̃�(g) =
supQ∈M�

EQ[g]. Since EQ[h�] = 0 for all Q ∈ M� and h ∈ Rk , for the F -
measurable random variable g − h� we have

π̃�(g − h�)= sup
Q∈M�

EQ[g − h�] = sup
Q∈M�

EQ[g], ∀h ∈Rk.

Lemma 5.10 then implies: π�(g)= infh∈Rk π̃�(g − h�)= supQ∈M�
EQ[g]. �
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