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EVOLVING VOTER MODEL ON DENSE RANDOM GRAPHS

BY RIDDHIPRATIM BASU1 AND ALLAN SLY2

Stanford University and University of California, Berkeley

In this paper, we examine a variant of the voter model on a dynamically
changing network where agents have the option of changing their friends
rather than changing their opinions. We analyse, in the context of dense ran-
dom graphs, two models considered in Durrett et al. [Proc. Natl. Acad. Sci.
USA 109 (2012) 3682–3687]. When an edge with two agents holding differ-
ent opinion is updated, with probability β

n , one agent performs a voter model

step and changes its opinion to copy the other, and with probability 1 − β
n ,

the edge between them is broken and reconnected to a new agent chosen
randomly from (i) the whole network (rewire-to-random model) or, (ii) the
agents having the same opinion (rewire-to-same model). We rigorously es-
tablish in both the models, the time for this dynamics to terminate exhibits
a phase transition in the model parameter β. For β sufficiently small, with
high probability the network rapidly splits into two disconnected communi-
ties with opposing opinions, whereas for β large enough the dynamics runs
for longer and the density of opinion changes significantly before the process
stops. In the rewire-to-random model, we show that a positive fraction of both
opinions survive with high probability.

1. Introduction. In recent years, a significant research effort in various fields,
including biology, ecology, economics, sociology among others, has been con-
centrated on studying and modelling behaviour of large complex networks with
many interacting agents. Different dynamics on large networks has been studied
focussing on the structural impact of these dynamics on different models of net-
works. Some of the problems which received attention are consensus of opinion
and polarisation, spread of epidemics, information cascades, etc. (see [3, 16]). In
many real world networks, the evolution of the links in the network depend upon
the states of the connecting agents and vice versa. The general class of network
models that model this dependence are called adaptive or coevolutionary networks
(see [7, 19]). As in the case of static networks, the problems of spread of informa-
tion and epidemic, evolution of opinion and polarization into communities have
been studied numerically and also using a variety of rigorous and partly nonrigor-
ous methods ([6, 8, 12, 24, 25]; see also [4, 22] and references therein for more
background). The problems we consider in this paper belong to this general class.
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The voter model has classically been studied in the probability literature as an
interacting particle system mainly on lattices [9, 14]. More recently, voter models
have been studied in the context of general networks as a model for spread of opin-
ion [20, 21]. In the classical voter model on a fixed graph, each vertex has one of
the two prevalent opinions, neighbours interact at some fixed rate and one of the
neighbours adopts the opinion of the other after the interaction. A simplified model
of coevolution of network and opinion was introduced and studied using nonrig-
orous methods by Holme and Newman [10] where they try to model the property
that an agent is less likely to interact with (remain connected with) another agent
if their opinions do not match. Their model is similar to the classical voter model
(with number of opinions proportional to the size of the network) but with the
added feature that, whenever there is an interaction between two vertices (agents)
with different opinion, with probability α ∈ (0,1), one of the vertices breaks the
link and connects to a different vertex of the same opinion, that is, the network con-
nections evolve with time as well. Using finite size scaling, Holme and Newman
conjectured a phase transition in α, where in the supercritical phase all the opin-
ions eventually will have small number of followers, but in the subcritical phase a
giant community holding the same opinion will emerge. This model and its further
extensions were investigated in [11, 23].

Durrett et al. [4] studied two variants of this model on sparse random graphs us-
ing certain nonrigorous and numerical methods and formulated some conjectures
about the asymptotic behaviour of the models as network size becomes large. They
take the initial network to be a sparse Erdős–Rényi graph G with average degree
greater than 1 and the two initial opinions distributed as product measure with den-
sity u ∈ (0, 1

2 ] of 1’s. In each step, a uniformly chosen disagreeing edge is selected
and a voter model step is performed with probability 1 − α and a rewiring step
with probability α. They consider two variants of reconnecting edge (i) rewire-to-
random where the edge is connected to a randomly chosen vertex and (ii) rewire-
to-same where the edge is connected to a random vertex of the same opinion.
Based on numerical evidence and heuristics Durrett et al. conjecture in [4] that:

(1) Supercritical phase: In both variants, there exist αc(u) ∈ (0,1) (indepen-
dent of u in the rewire-to-same model) such that for α > αc, the process reaches
an absorbing state in time O(n) and the final fraction ρ of minority opinion is ≈ u.

(2) Subcritical phase: In the rewire-to-random model, for α < αc(u), the time
to absorption is order n2 on average and at the absorption time, the density of the
minority opinion ρ is bounded away from 0 and independent of u. In contrast,
for the rewire-to-same model, ρ ≈ 0, so one of the opinions takes over almost the
whole network at the time of absorption.

We rigorously establish analogous results in the dense case but without estab-
lishing a sharp transition. We also prove that both opinions survive in rewire-to-
random model, however, we cannot prove the contrasting result for the rewire-
to-same model as is conjectured in [4]. Durrett et al. also formulate conjectures
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about finer behaviours of the evolving voter model along the path to absorption
(see Conjecture 1 and Conjecture 2 in [4]). Further extensions of these models
with different social dynamics and multiple possible opinions were considered in
[15, 17, 18, 26].

1.1. Main results. In this paper, we study the dense version of the model
from [4] where the initial graph is G(n,1/2) with density 1

2 of both the opin-
ions. It is easy to see that to obtain a nontrivial transition, we must renormalise
the opinion update rate to 1 − α = β/n (this is due to the average degree being
linear in n). In the sequel, whenever we say some event happens with high proba-
bility, it means that the event happens with probability tending to 1, as the number
of vertices n → ∞. Also by saying that an event occurs with exponentially high
probability, we shall mean that the complement of the said event has probability
that is exponentially small in n. Let τ denote the time to reach an absorbing state,
that is, τ is the first time when there are no disagreeing edges in the graph (for
the rewire-to-same model absorbing states are slightly different, see Section 1.2
below). For 1

2 > ε > 0, let τ∗(ε) be the first time that the fraction of the minority
opinion reaches ε, that is, τ∗(ε) = min{t : N∗(t) ≤ εn}, where N∗(t) is the number
of vertices holding the minority opinion at time t . Now we state our main theorems.

THEOREM 1. Let 1
2 > ε′ > 0 be given. For both variants of the model, there

exist 0 < β0 < β∗(ε′) < ∞ such that each of the following hold:

(i) For all β < β0 and any η > 0, we have {τ ≤ 6n2,N∗(τ ) ≥ (1
2 − η)n} holds

with high probability as n → ∞.
(ii) For all β > β∗(ε′), we have that τ∗(ε′) ≤ τ with high probability as n → ∞

and

lim
c↓0

lim inf
n

P
[
τ > cn3]= 1.

The following theorem asserts that for the rewire-to-random model the fraction
of the minority opinion vertices is bounded away from 0 at the absorption time.

THEOREM 2. Let β > 0 be fixed. For the rewire-to-random model there exists
ε∗ = ε∗(β) > 0 such that τ < τ∗(ε∗) with high probability.

1.2. Formal model definitions. Now we describe formally the models we con-
sider in this paper. Let n be a fixed positive integer. Let V be a fixed set with
|V | = n. Let V (2) denote the set of all unordered pairs in V , we shall call elements
of V (2) as bonds. Also let E be a fixed set with |E | = N . We consider discrete time
Markov chains {G(t)}t≥0 taking values in{{0,1}V ,

(
V (2))E},
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that is, for each t , G(t) is a multi-graph on the vertex set V with labelled edges
coming from the set E (each edge in E is placed at one of the bonds); each vertex
has one of the two opinions 0 and 1. The following notation will be used through-
out this paper.

The opinion of a vertex v at time t shall be denoted by v(t). The vector
of opinions of vertices in G(t) shall be denoted by V (t). We shall denote by
N0(t) and N1(t) the number of 0s and 1s in V (t), respectively. Let N∗(t) =
min{N0(t),N1(t)}. For v ∈ V , let Cv(t) denote the set of all vertices in V which
have the same opinion as v in G(t). By G̃(t) = (V ,E(t)), we denote the underly-
ing graph of G(t), that is, G̃(t) is a (multi)graph with vertex set V and edge set
E(t). Often, when there is no scope of confusion we shall use G(t) instead of G̃(t)

to denote the same. Notice that we are allowing multi-edges but not self loops, that
is, at a time t , a bond (u, v) ∈ V (2) may be connected by more than one edge, but
there are no edges connecting v to itself. For an edge connecting the bond (u, v)

in G(t), we shall call it disagreeing if u(t) �= v(t) and agreeing otherwise.
Initial condition: To simplify matters, we only consider the following initial

condition. We take G̃(0) is distributed as G(n, 1
2), that is, each bond contains 0

edge with probability 1
2 and 1 edge with probability 1

2 independent of each other.
Also, let {v(0)}v∈V be i.i.d. Ber(1

2). Also denote the set of the labelled edges E =
{e0, e1, . . . , eN }.

Transition probabilities: We describe the one step evolution of the two variants
of the Markov chain as follows.

Let G(t) be the state of the chain at time t . Let Z(t) = Ber(β
n
) be independent

of G(t). If Z(t) = 1, we obtain G(t + 1) from G(t) by taking a voter model step,
and if Z(t) = 0 then we obtain G(t + 1) from G(t) by taking a rewiring step. We
call β > 0 the relabelling rate; this is a parameter of the model.

Let E×(t) ⊆ E denote the set of edges that are disagreeing in G(t). Choose one
edge e from E×(t) uniformly at random. Let (u, v) be the bond which this edge
connects in G(t). Choose one vertex randomly among u and v, say u. The vertex
u as above will be called the root of a relabelling/rewiring move.

The voter model step (relabelling step): If Z(t) = 1, then u adopts the opinion
of v, that is, G(t +1) is obtained from G(t) by taking G̃(t +1) = ˜G(t), v′(t +1) =
v′(t) for all v′ ∈ V \ {u} and u(t + 1) = v(t + 1).

The rewiring step: If Z(t) = 0, the two chains we consider evolve differently.
Rewire-to-random model: In this model, we choose a vertex v′ uniformly at

random from V \ {u}. We obtain G(t + 1) from G(t) by taking V (t + 1) = V (t)

and E(t + 1) is obtained from E(t) by removing the edge e from the bond (u, v)

and adding it to the bond (u, v′).
Rewire-to-same model: In this model, we choose a vertex v′ uniformly at ran-

dom from Cu(t) \ {u}. We obtain G(t + 1) from G(t) by taking V (t + 1) = V (t)

and E(t + 1) is obtained from E(t) by removing the edge e from the bond (u, v)

and adding it to the bond (u, v′).
We make the following basic observation characterising the absorbing states.
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OBSERVATION 1.1. On finite networks both the chains are absorbing. For the
rewire-to-random model, the only absorbing states are those which corresponds to
the graph having no disagreeing edges, that is, either one opinion has taken over
all the vertices, or the graph is split into disconnected communities, where all the
vertices in a community has the same opinion. For the rewire-to-same model, the
absorbing states are those that either have no disagreeing edges, or those in which
one of the opinions are held by only one vertex.

Notice that the number of edges is conserved in each step of the chain, that is,
we have that |E(t)| = |E | for all t . Also observe that even though we have labelled
edges, this fact does not affect the behaviour of the model at all. The edges are
labelled simply because it will be convenient while constructing a coupling of this
chain with another process which we shall use.

One of the main questions we are interested in for both the models described
above is the asymptotics of absorption time as a function of β as n → ∞, and
whether it exhibits a phase transition in β or not. Notice that if β = 0, then we
have only rewiring moves and the absorption time is �(n2), that is, the graph
splits immediately into two communities having different opinions. We investigate
whether similar phenomenon occurs if β > 0 is sufficiently small. In the other ex-
treme, if the rewiring moves are much rarer compared to the relabelling moves
(i.e., β 
 1) one might expect the model to behave similarly as the voter model on
a static graph, where the minority opinion density will become very small before
reaching an absorbing state, and the absorption time will be at least �(n3). This
is established in Theorem 1. A related quantity of interest is the fraction of the
minority opinion vertices when the process reaches an absorbing state. For β suffi-
ciently large does the minority opinion persist with a positive fraction? Theorem 2
provides the answer for the rewire-to-random model.

1.3. Outline of the proof. We prove parts (i) and (ii) of Theorem 1 separately.
The arguments are similar for the rewire-to-random model and the rewire-to-same
model. We provide details only for the rewire-to-random model while pointing
out the differences for the rewire-to-same model. To prove part (i), we essentially
show that before the density of either opinion changes, a rewiring move is likely
to decrease the number of disagreeing edges. Using a martingale argument, we
show that, by time �(n2) (by which time the opinion densities cannot change
significantly), the number of disagreeing edges decay to 0.

Most of the work goes into proving part (ii) of Theorem 1. We show that for
β = β(ε′) sufficiently large, with high probability the graph G(t) remains close
enough to an Erdős–Rényi graph, in a sense made precise later, as long as the
minority opinion density does not drop below ε′. To this end, we define a number
of stopping times detecting when G(t) deviates too much from an Erdős–Rényi
graph for the first time with respect to certain different properties, and roughly
show that all those stopping times are with high probability at least as large as
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τ∗(ε′). The properties we need to consider are vertex degrees, the Cheeger constant
and edge-multiplicities.

Corresponding to each of the properties we consider, we define two stopping
times, one with a stronger threshold and the other with a weaker threshold. We
show that provided none of the weaker thresholds have been reached, the opinions
quickly mix to an approximate product measure which guarantees that the prop-
erties of interest are sufficiently mean reverting for our purposes and with high
probability the stronger thresholds are also not reached.

For the proof of Theorem 2, we show that for a fixed β , there exists a sufficiently
small but positive ε∗, such that once the minority opinion reaches ε∗, the typical
vertices having minority opinions start losing disagreeing edges at a higher rate
than it gains them, and eventually all the disagreeing edges are lost before the
minority opinion density can substantially decrease further.

Organisation of the paper: The rest of the paper is organised as follows. In
Section 2, we prove part (i) of Theorem 1 for the rewire-to-random model. Most of
the work in this paper goes toward the proof of part (ii) of Theorem 1 for the rewire-
to-random model, which spans Section 3, Section 4 and Section 5. In Section 3,
we define all the stopping times that we need to use. In Section 4, we show that,
if by time t the graph does not reach any of the stronger stopping times, then for
β sufficiently large the graph does not reach any of the weaker stopping times by
time t + δn2 with high probability, where δ is a small constant. That the graph is
also unlikely to reach any of the strong stopping times by time t + δn2 as long
as the minority opinion density does not become too small is shown in Section 5.
Together these complete the proof of Theorem 1, part (ii). Theorem 2 is proved in
Section 6. In Section 7, we point out the significant adaptations to the argument
that are necessary to prove Theorem 1 for the rewire-to-same model. We finish
with the discussion of some open problems in Section 8.

2. Fast polarization for small β . In this section, we prove part (i) of The-
orem 1 for the rewire-to-random model with relabelling rate β . First, we make
the following definitions. Let Dmax(t) denote the maximum degree of a vertex
in G(t). The degree of a vertex is defined as the number of edges incident to it,
and not the number of bonds containing edges. Also, let Xt = |E×(t)| denote the
number of disagreeing edges at time t . Consider the following stopping times.
Let τ1 = min{t : Dmax(t) ≥ 8n} and let τ2 = τ∗(1

3), that is, τ2 = min{t : N∗(t) =
min{N0(t),N1(t)} ≤ n

3 }. Define τ0 = τ ∧ τ1 ∧ τ2. We have the following lemmas.

LEMMA 2.1. There exists β0 > 0, such that for all β < β0, we have τ0 ≤ 6n2

with high probability.

PROOF. Let Ft denote the filtration generated by the process up to time t .
Observe that whenever an edge is rewired, Xt either remains the same or decreases
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by 1. Conditional on Ft , the chance that Xt is decreased by a rewiring move is at
least N∗(t)−1

n−1 . Also notice that a relabelling move, that is, a voter model step can
increase Xt by at most Dmax(t). Hence, we have for λ > 0,

(2.1)
E
(
e

λXt+1
n | Ft

)
≤ e

λXt
n

((
1 − β

n

)(
1 + N∗(t) − 1

n − 1

(
e− λ

n − 1
))+ β

n
e

λDmax(t)
n

)
.

Now for large n on the event {t < τ0} we have N∗(t)−1
n−1 ≥ 1

4 . Take λ > 0 suffi-

ciently small so that e8λ ≤ 1 + 9λ and e− λ
n − 1 ≤ − λ

2n
. Then on {t < τ0}, we have

for β < 1
400 ,

E
(
e

λXt+1
n | Ft

)≤ e
λXt
n

((
1 − β

n

)(
1 + 1

4

(
e− λ

n − 1
))+ β

n
e8λ

)
≤ e

λXt
n

((
1 − β

n

)(
1 − λ

8n

)
+ β

n
(1 + 9λ)

)
(2.2)

≤ e
λXt
n

(
1 − λ

10n

)
.

It follows from above that

P[τ0 > t | F0] ≤ E
[
e

λXt
n 1{τ0>t} | F0

]
≤ e

λX0
n e− λt

10n(2.3)

≤ e
λn
2 e− λt

10n

since X0 ≤ n2

2 . Hence, we have

P
[
τ0 > 6n2]≤ e− λn

10 . �

LEMMA 2.2. We have τ1 > 6n2 with high probability.

PROOF. It is easy to see that the rewire-to-random dynamics can be imple-
mented in the following way. Without loss of generality, let V = [n]. And let
W = {Wi}i≥1 be a sequence of i.i.d. random variables with each Wi being uni-
formly distributed over {1,2, . . . , n}. Let us define L0 = 0, and define Li for i > 0
recursively as follows. Let, vi be the root of the ith rewiring move. Then we de-
fine Li = min{j > Li−1 : Wj �= vi}. Then in the ith rewiring move, we add the
edge to the bond (vi,WLi

). The algorithm can be described as follows. For each
rewiring move, start inspecting the list W from the first previously uninspected
element up to the first time you find a vertex which is not equal to the root of the
current rewiring. Rewire the edge to this vertex. Clearly, in this way the chosen
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vertex is uniform among all vertices other than vi , and hence this is indeed an
implementation of the rewire-to-random dynamics.

Now observe that Li+1 −Li are i.i.d. Geom(n−1
n

) variables. It follows by a large

deviation estimate that L6n2 < 13n2

2 with exponentially high probability. Now for
v ∈ V , let

N(v) = #
{
i ≤ 13n2

2
: Wi = v

}
.

Clearly, N(v) is distributed as Bin(13n2

2 , 1
n
), and a Chernoff bound implies

P
[
N(v) ≥ 7n

]≤ e−n/78.

Hence, noting that Dmax(0) ≤ n, we have using a union bound over all the vertices

(2.4) P
[
τ1 ≤ 6n2]≤ ne−n/78 + P

[
L6n2 >

13n2

2

]
.

This completes the proof of the lemma. �

LEMMA 2.3. There exists β0 > 0, such that for all β < β0, we have τ2 ≥
6n2 ∧ τ with high probability.

PROOF. For t ≥ 1, it is easy to see that RL(t), the number of relabelling moves
up to time t , is stochastically dominated by a Bin(t,

β
n
) variable. On {t < τ }, we

have that N0(t) − N0(0) is distributed as ZRL(t) where {Zi}i≥0 is a simple sym-
metric random walk on Z started from 0. Using a union bound, it follows that

P
[
τ2 < 6n2 ∧ τ

]
≤ P

[
N∗(0) ≤ 2n

5

]
+ P

[
RL
(
6n2)> 12βn

]+ P

[
max

i≤12βn
|Zi | ≥ 3n

20

]
.

By choosing β0 sufficiently small, the last term in the above inequality is 0 for all
β < β0. Noticing that P[N∗(0) < 2n

5 ] = 2P[Bin(n, 1
2) < 2n

5 ] and using Hoeffding
inequality to bound the first term and a Chernoff bound on the second term yields

(2.5) P
[
τ2 < 6n2 ∧ τ

]≤ 2e−2n/25 + e−2βn.

This completes the proof of the lemma. �

Now we are ready to prove Theorem 1(i).

PROOF OF THEOREM 1(i). From Lemma 2.1, Lemma 2.2 and Lemma 2.3, it
follows that with high probability we have {τ0 ≤ 6n2, τ1 ∧τ2 ≥ 6n2 ∧τ }. It follows
that, τ ≤ 6n2 with high probability. The second part of the theorem follows from
noting that using a random walk estimate as in Lemma 2.3, we see that for each
η > 0, the probability that the density of the minority opinion drops below 1

2 − η

within 6n2 steps tends to 0 as n → ∞. This completes the proof of the theorem.
�
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3. High relabelling rate case: Stopping times.

3.1. A time change: rewire-to-random-* dynamics. For the proof of Theo-
rem 1(ii), we shall consider a time changed variant of rewire-to-random dynamics,
which we call rewire-to-random-* model. This model is same as the rewire-to-
random model, except that now at time (t + 1), instead of choosing a disagreeing
edge at random, we choose an edge at random from G(t). If the edge is not dis-
agreeing, then we do nothing. It is clear that rewite-to-random-* model is a slowed
down version of rewire-to-random model. It is also clear that if we prove Theo-
rem 1(ii) for the rewire-to-random-* dynamics, then it will imply the same theorem
for the rewire-to-random dynamics.

Assumption on the initial condition: For this section and the next two, we shall
always assume that G(0) satisfies the following conditions:

(i) |E(0)|, the number of edges in G(0) is in [n2

4 − n3/2, n2

4 + n3/2].
(ii) #{v ∈ V : v(0) = 0} ∈ [n

2 − n3/4, n
2 + n3/4].

Since both the events hold with probability 1 − o(1), this assumption does not
affect any of our results.

Now we move toward proving Theorem 1(ii). Let us fix ε′ > ε > 0 for the rest
of this paper. Let τ∗ = τ∗(ε), that is,

τ∗ = min
{
t : min

(
N0(t),N1(t)

)≤ εn
}
.

Parameters: Now we define a number of stopping times. In the definition of
these stopping times and the proofs that follow, we use a number of parameters that
need to satisfy the following constraints. For a fixed ε, our parameters satisfy the
following inequalities. We choose C1 sufficiently large depending on ε, the exact
functional dependence not being of consequence. We then choose ε2 sufficiently
small such that ε2 < ε2/1000 and ε2 log 2C1

ε2
< ε

16 . Then we choose ε3 < ε2
2/1000

and ε7 < ε2
3/1000. Fixing these parameters, we choose C2 = 2, ε4 < 1

4 log 10 , δ <

ε3
10,000C2

∧ 10−10. We choose 0 < ε14 < ε2/100 ∧ ( ε
8 −2ε2 log 2C1

ε2
)2

4C2
. After fixing all

these parameters, C is chosen sufficiently large depending on these. There are also
many other parameters used in the proofs which are chosen either sufficiently small
or large depending on other parameters, again where the functional dependence is
not of importance to us. Finally, β is taken sufficiently large depending on all
the parameters used. Also we shall always take n sufficiently large depending on
everything else.

• Stopping times for large cuts:
Let S and T be two disjoints subsets of V with S ∪T = V . We denote by NST(t)

the number of edges in G(t) with one endpoint in S and another endpoint in T .
Define NSS(t) and NTT(t) similarly. Also let N(t) = N denote the total number of
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edges in G(t). Define

KST(t) =
(

NSS(t) − 1
4 |S|2

N(t)

)2
+
(

NTT(t) − 1
4 |T |2

N(t)

)2
.

Set

L(t) = max
S,T :min(|S|,|T |)≥ε2n

KST(t)

and

L′(t) = max
S,T :min(|S|,|T |)≥ε2n

∣∣∣∣NST(t) − 1
2 |S||T |

N(t)

∣∣∣∣∨ ∣∣∣∣NSS(t) − 1
4 |S|2

N(t)

∣∣∣∣.
Now the two stopping times are defined as follows:

• The stronger stopping time: τ2 = min{t : L(t) ≥ ε2
3}.• The weaker stopping time: τ ′

2 = min{t : L′(t) ≥ 2ε3}.
Notice that in the definitions above, the quantities we center by are expected

value of NST (resp., NSS, etc.) if the underlying graph were G(n, 1
2). Thus, these

stopping times control the “distance” of G(t) from an Erdős–Rényi G(n, 1
2) in

terms of the number of edges across a cut (S, T ) if neither of the sets S and T is
too small.

• Stopping times for individual edge multiplicities:
For u, v ∈ V , let Muv(t) denote the number of edges in the bond (u, v) in G(t).

Let M(t) = maxu�=v Muv(t). If the time t is clear from the context we shall drop it
from the above notation. Now the two stopping times are defined as follows:

• The stronger stopping time: τ3 = min{t : M(t) ≥ ε4 logn}.
• The weaker stopping time: τ ′

3 = min{t : M(t) ≥ 2ε4 logn}.
• Stopping times for balanced vertices:
Let us call a vertex v ε-balanced in G(t) if for all k, #{u ∈ V : Muv(t) ≥ k} ≤

ε10−kn. We define the two stopping times as follows:

• The stronger stopping time: τ4 = min{t : ∃v ∈ V notC1-balanced inG(t)}.
• The weaker stopping time: τ ′

4 = min{t : ∃v ∈ V not2C1-balanced inG(t)}.
• Stopping times for maximum and minimum degrees:
Let Dmax(t) and Dmin(t) denote the maximum and minimum degree in G(t),

respectively. The stopping times are defined as follows:

• The stronger stopping time: τ5 = min{t : Dmax(t) > (1 − ε
2)norDmin(t) < εn

2 }.
• The weaker stopping time: τ ′

5 = min{t : Dmax(t) > C2norDmin(t) < εn
4 }.

The following lemma is immediate from the definitions and we omit the proof.

LEMMA 3.1. For each i = 2,3,4,5, we have τ ′
i ≤ τi .
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One should interpret the above stopping times as follows. On t < τ2 ∧ τ3 ∧ τ4 ∧
τ5, the graph G(t) is sufficiently “close” to the random graph G(0) that we stared
with. The same is true on t < τ ′

2 ∧ τ ′
3 ∧ τ ′

4 ∧ τ ′
5 but the thresholds in the definition

of being “close” is now somewhat weaker.
Finally, we define τ0 = τ∗ ∧ τ2 ∧ τ3 ∧ τ4 ∧ τ5 and τ ′

0 = τ∗ ∧ τ ′
2 ∧ τ ′

3 ∧ τ ′
4 ∧ τ ′

5.
Part (ii) of Theorem 1 will follow from the next theorem which shows that the

process cannot reach the stopping time τ0 too much ahead of reaching the stopping
time τ∗.

THEOREM 3.2. There exist β∗ = β∗(ε) such that for all β > β∗, we have for
the rewire-to-random-* model τ0 ≥ τ∗ − n2 with high probability.

We shall prove Theorem 3.2 over the next two sections. Before that we show
how this implies part (ii) of Theorem 1 for the rewire-to-random-* model.

PROOF OF THEOREM 1(II). Notice that, it follows from a random walk esti-
mate that τ∗ ≥ τ∗(ε′) + n2 with high probability. On {τ0 ≥ τ∗(ε′)}, we have that
τ∗(ε′) − 1 < τ0. And hence, in particular, τ∗(ε′) − 1 < τ2. Let S be the set of all
vertices with the minority opinion at time τ∗ −1. Since ε2 < ε < ε′ and τ ′

2 ≥ τ2, we
have that NST(τ∗ − 1) ≥ 1

2 |S||T | − 2ε3N(t) > 0, since 2ε3 < ε2(1 − ε2). It then
follows that τ ≥ τ∗(ε′) for the rewire-to-random-* dynamics. Since the rewire-
to-random-* dynamics is merely a time changed version of the rewire-to-random
dynamics, the first statement in Theorem 1(ii) follows.

To prove the second statement, observe the following. For t ≥ 0, Let S(t) denote
the number of voter model steps up to time t . A random walk estimate as before
establishes that for β > β∗ (given by Theorem 3.2),

lim
c↓0

lim inf
n

P
[
S
(
τ∗(ε)

)
> 2cβn2]= 1.

Since the relative frequency of voter model steps is β
n

, it follows that for any fixed
c and β P[S(τ∗(ε)) > 2cβn2, τ∗(ε) < cn3] = o(1) as n → ∞. The result now fol-
lows from Theorem 3.2. �

Before proceeding with the proof of Theorem 3.2, further let us recall the overall
strategy. Given that the process has not reached the any of the stronger stopping
times τ2, τ3, τ4 and τ5 as well as τ∗ by some time t (i.e., on {t < τ0}) we shall show
that it is unlikely that by time t + δn2 the process reaches the stopping time τ ′

0
without reaching the stopping time τ∗. Once we have established that, we establish
that given that the process has not reached τ0 by time t , it is unlikely at time t +δn2

that the process will violate any of the conditions of the stronger stopping time τ0
without reaching the weaker stopping time τ ′

0 before that time. The proof will then
be completed by taking a union bound over times kδn2, k = 1,2, . . . .



1246 R. BASU AND A. SLY

We start by proving the following lemma which establishes the connection be-
tween the evolving voter model dynamics and our stopping times that we shall
exploit extensively.

LEMMA 3.3. Consider a single walker performing the following continuous
time random walk on G(t). Let each directed edge ring at rate β

2n
. Whenever an

edge rings if the walker is at the starting point of the edge, it moves along the
edge. Let λ(G(t)) denote the spectral gap of this Markov chain. Then there exists
ε2

100 > ε14 > 0, such that we have, on {t < τ ′
2 ∧ τ ′

3 ∧ τ ′
4 ∧ τ ′

5}, λ(G(t)) ≥ βε14.

PROOF. Let h(G(t)) denote the Cheeger constant of the corresponding ran-
dom walk. We have

h
(
G(t)

) := min
S,T :S∪T =V,S∩T =∅,|S|≤n/2

NST(t)β

2|S|n .

Now on {t ≤ τ ′
2}, if |S| ≥ ε2n, NST(t) ≥ 1

2 |S||T | − 2ε3N(t) ≥ 1
2 |S||T | − ε3n

2, and
hence

NST(t)β

2|S|n ≥ β

(
1

8
− ε3

2ε2

)
≥ 2β

√
C2

√
ε14

provided

ε14 ≤ (1
8 − ε3

2ε2
)2

4C2
.

On {t ≤ τ ′
4 ∧ τ ′

5}, we have

(3.1) NSS(t) + NST(t) ≥ ε|S|n
4

.

Now observe that by the definition of balanced vertices, on {t ≤ τ ′
4 ∧ τ ′

5} for any
vertex v, the total number of edges from v to any subset of at most ε2n vertices is
bounded above by

(3.2)
∑
k≥k0

2C1k10−kn,

where k0 is the smallest integer satisfying∑
k≥k0

2C110−kn ≤ ε2n.

Indeed, we get the above bound by considering the ε2n bonds adjacent to v that
contain maximum number of edges. It is easy to see that k0 ≈ log 20C1

9ε2
and the

quantity in (3.2) is bounded by 2nε2 log 2C1
ε2

. It follows that if |S| ≤ ε2n we have

(3.3) NSS(t) ≤ 2|S|nε2 log
2C1

ε2
.
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Combining (3.1) and (3.3), it follows that

NST(t)β

2|S|n ≥ β

(
ε

8
− 2ε2 log

2C1

ε2

)
≥ 2β

√
C2

√
ε14

provided

ε14 ≤ ( ε
8 − 2ε2 log 2C1

ε2
)2

4C2
.

Now it follows that on {t ≤ τ ′
2 ∧ τ ′

4 ∧ τ ′
5},

h
(
G(t)

)≥ 2β
√

C2
√

ε14.

Now, using Cheeger inequality (Theorem 13.14 of [13], see [5], equation (1.9),
for the variant used here) we get

λ
(
G(t)

)≥ h(G(t))2

2βDmax(t)
n

≥ h(G(t))2

2βC2
≥ βε14

which completes the proof of the lemma. �

4. Estimates for the weak stopping times. In this section, we show that pro-
vided the process has not reached any of the stronger stopping times by time t ,
that is, t < τ0, then within a small number of steps (δn2 in number), the pro-
cess is unlikely to reach any of the weaker stopping times, that is, t + δn2 < τ ′

0
with high probability. The general idea is that by time δn2, there are not enough
rewiring steps to change the graph substantially. We start with the following propo-
sition which controls the fraction of minority opinion vertices in the time interval
{t + 1, t + 2, . . . , t + δn2}.

PROPOSITION 4.1. We have that P(τ∗(4ε
5 ) ≤ t + δn2 | Ft , t < τ0) ≤ e−cn

where c = c(δ,β, ε) > 0.

PROOF. It follows from a Chernoff bound that the probability that there are
more than 2δβn many relabelling steps in [t + 1, t + δn2] is exponentially small in
n. Note that the number of vertices of a certain opinion does a simple symmetric
random walk in absorbed at 0 or n in the rewire-to-random dynamics. The lemma
now follows from a random walk estimate by observing that rewire-to-random-*
dynamics is slower than rewire-to-random dynamics. �

A remark is in order here. Observe that in the above proposition the condition
t < τ0 is not necessary; we could have replaced it with the condition t < τ∗. There
will be a number of such occurrences in this and a few in the following section,
where in the statement of the results we would assume t < τ0 or t < τ ′

0, although a
weaker condition might suffice for the proofs of those particular results. We shall
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keep be the generic estimates in the statements, as it will be necessary in putting
together estimates for different stopping times. However, in some of the significant
cases we shall point out the extent to which the assumptions can be relaxed.

The next proposition considers the weaker stopping times for the large cuts.
Note that the assumption t < τ0 can be replaced by t < τ2 in the statement below.

PROPOSITION 4.2. On the event {t < τ0}, t + δn2 < τ ′
2.

PROOF. Clearly, for all S,T that make a partition of V and any t ′ with t ≤ t ′ ≤
t + δn2, |NST(t ′)−NST(t)| ∨ |NSS(t

′)−NSS(t)| ≤ δn2. It follows from definitions
that if δ <

ε3
100 , then t + δn2 ≤ τ ′

2. �

The next proposition shows the weaker degree estimates continue to hold until
time t + δn2 with high probability if t < τ0 (as a matter of fact t < τ5 suffices).

PROPOSITION 4.3. We have P(t + δn2 ≥ τ ′
5 | Ft , t < τ0) ≤ e−cn for some

constant c > 0.

PROOF. Condition on Ft . For any fixed vertex v, the number of times in [t +
1, t + δn2] an edge is rewired to v is stochastically dominated by a Bin(δn2, 1

n−1)

variable. By Chernoff’s inequality and a union bound, it follows that the prob-
ability that any vertex gets more than 2δn edges is exponentially small in n. It
follows that with exponentially high probability maxt ′∈[t+1,t+δn2] Dmax(t

′) < C2n

provided C2 > (1 − ε
2) + 2δ.

For the lower bound, we do the following. Fix a vertex v. By hypothesis at time
t , the degree of v, denoted Dv(t) is at least εn/2. Consider the process {Dv(t

′) :
t ′ ∈ [t, t + δn2]}. Let Rv(t

′) denote the number of edges v loses up to time t ′ while
Dv is at most εn/2. Clearly, if Rv(t + δn2) ≤ εn/4 then Dv(t + δn2) > εn/4.
Now, at each time t ′, conditioned on everything up to time t ′ − 1, the chance that
Rv increases by one is bounded above by εn/2

n2/5
(since one of the at most εn/2 edges

adjacent to v must ring out of at least n2

5 edges). It follows that

P
(
Rv

(
t + δn2)≥ εn/4

)≤ P

(
Bin

(
δn2,

10ε

4n

)
≥ εn/4

)
which in turn is exponentially small in n by a Chernoff bound provided 12δ < 1.
Taking a union bound over all the vertices v completes the proof of the lemma.

�

Now we prove a similar statement for individual edge-multiplicities.

PROPOSITION 4.4. We have P(t + δn2 ≥ τ ′
3 | Ft , t < τ0) ≤ 1

n20 .
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PROOF. Condition on {Ft , t < τ0}. For every bond (u, v) in V (2), let Auv de-
note the event that Du(t

′)+Dv(t
′) ≤ 2C2n for all t ′ ∈ [t +1, t +δn2] where Dw(t ′)

denotes the degree of the vertex w in G(t ′). It follows from Lemma 4.3 that Auv

holds with exponentially high probability. Let Ruv denote the number of edges
added to the bond (u, v) in time [t + 1, t + δn2]. On Auv we have

Ruv � Bin
(
δn2,

10C2

n2

)
,

where � denotes stochastic domination. Indeed, observe that on Auv at each time
t ′ ∈ [t + 1, t + δn2] the chance that a new edge gets added to the bond (u, v) is at
most 10C2

n2 conditioned on everything till time t ′ − 1 (out of at least 2n2

9 edges in
total, one out of the at most 2C2n incident to u or v must ring at step t for this,
and the chance that it is rewired to the correct vertex is 1

n−1 ). By a Chernoff bound
again, provided n is sufficiently large we get that

P

(
Bin

(
δn2,

10C2

n2

)
≥ ε4 logn

)
≤ 1

n23 .

Taking a union bound over all bonds completes the proof of the lemma. �

Note that in the above proposition we could have replaced the condition t < τ0
by t < τ3 ∧ τ5.

Finally, we work out the estimates for the number of multi-edges incident to a
given vertex.

PROPOSITION 4.5. We have P(t + δn2 ≥ τ ′
4 | Ft , t < τ0) ≤ 1

n18 .

Fix v ∈ V and 0 < k < 2ε4 logn. Let N(� → k) denote the number of bonds
containing v that had � edges at time t and that gained at least (k −�) edges during
time [t + 1, t + δn2]. Clearly,

(4.1) max
t ′∈[t+1,t+δn2]

#
{
u : Muv

(
t ′
)≥ k

}≤ C110−kn +
k−1∑
�=0

N(� → k).

Therefore, we need to control the quantities N(� → k) for � = 0,1, . . . , k − 1. We
prove the following lemma.

LEMMA 4.6. Fix v ∈ V and 0 < k < 2ε4 logn. For � < k and N(� → k) as
above, we have

P
(
N(� → k) > 25−(k−�)C110−kn | Ft , t < τ0

)≤ e−C1
√

n

100 .

Condition on Ft , t < τ0. Fix v, � and k as in the statement of the lemma. As
in the proof of Proposition 4.4, we shall ignore without loss of generality the
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event with exponentially small probability that for some t ′ ∈ [t + 1, t + δn2]
there exists u, v ∈ V such that Du(t

′) + Dv(t
′) > 2C2n. Let u1, u2, . . . , uD be

the set of vertices in V such that Mvui
(t) = �. Without loss of generality, we

can assume D = C110−�n. Let Ti denote the number of edges gained by the
bond (v, ui) in [t + 1, t + δn2]. We construct a family of random variables
(Y1, Y2, . . . , YD) which jointly stochastically dominates (T1, T2, . . . , TD), denoted
(T1, T2, . . . , TD) � (Y1, Y2, . . . , YD), that is, for any (a1, a2, . . . , aD) we have

P[Ti ≥ ai ∀i] ≤ P[Yi ≥ ai ∀i].
LEMMA 4.7. Consider the following “balls and bins” model. Start with D

empty urns. For each i = {1,2, . . . , δn2}, at the ith step with probability 12C2D

n2 we
choose one of urns uniformly and put a ball in it. Let (Y1, Y2, . . . , YD) denote the
vector of the number of balls in the urns after δn2 steps. Then (T1, T2, . . . , TD) �
(Y1, Y2, . . . , YD).

PROOF. Observe that, at each step in the voter model the conditional probabil-
ity of a new edge being added to one of the bonds (v, ui) is at most 12C2

n2 (as shown
in Lemma 4.4), which is equal to the chance that an edge is added to the ith urn
in the balls and bins model at any step. It follows that there is a coupling between
the voter model and the balls and bin model such that if the bond (v, ui) gains an
edge at time t + h then the ith bin gains a ball at step h. The lemma follows. �

Notice that (Y1, Y2, . . . , YD) above is not a collection of independent variables.
However, to prove Lemma 4.6 we shall stochastically dominate (Y1, Y2, . . . , YD)

by a collection of independent binomials conditioned on a high probability event.
We have the following lemma.

LEMMA 4.8. Let (Y1, Y2, . . . , YD) be as in Lemma 4.7. Let (Y ′
1, Y

′
2, . . . , Y

′
D)

denote a collection of i.i.d. Bin(24δC2D, 2
D

) variables. Then the conditional joint
law of (Y1, Y2, . . . , YD) given

∑D
i=1 Yi ≤ 24δC2D is stochastically dominated by

the conditional joint law of (Y ′
1, Y

′
2, . . . , Y

′
D) given

∑D
i=1 Y ′

i ≥ 24δC2D.

PROOF. Fix X ∈ N. One way to sample the joint distribution of (Y1, Y2, . . . ,

YD) conditioned on
∑

Yi = X is the following. For any p ∈ [0,1], consider
throwing i.i.d. Y ′

i ∼ Bin(X ,p) balls into each of D bins. Condition on the event∑
i Y

′
i ≥ X , choose uniformly X of the balls and color them black. Now let Y ′′

i

denote the number of black balls in the ith bin. Clearly (Y1, Y2, . . . , YD) con-
ditioned on

∑
Yi = X ∈ N had the same distribution as (Y ′′

1 , Y ′′
2 , . . . , Y ′′

D) con-
ditioned on

∑
i Y

′
i ≥ X . Since Y ′

i ≥ Y ′′
i for all i, we get the lemma by special-

izing to X = 24C2D, p = 2
D

and noting that for X1 ≤ X2, the distribution of
(Y1, Y2, . . . , YD) conditioned on

∑
Yi = X1 is stochastically dominated by the dis-

tribution of (Y1, Y2, . . . , YD) conditioned on
∑

Yi =X2. �
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Now we are ready to prove Lemma 4.6.

PROOF OF LEMMA 4.6. Let C (resp., C′) denote the event that
∑D

i=1 Yi ≤
24δC2D (resp.,

∑D
i=1 Y ′

i ≥ 24δC2D). Further, let Zi (resp., Z′
i) denote the indica-

tor of Yi ≥ (k − �) [resp., Y ′
i ≥ (k − �)]. It follows from Lemma 4.8 that

P

[
D∑

i=1

Zi ≥ 25−(k−�)D

]
≤ P

[
Cc]+ P

[
D∑

i=1

Zi ≥ 25−(k−�)D | C
]

≤ e−4δC2D + P

[
D∑

i=1

Z′
i ≥ 25−(k−�)D | C′

]

≤ e−4δC2D + 2 × P
[
Bin

(
D,q(k − �)

)≥ 25−(k−�)D
]
,

where q(k − �) = P(Bin(24δC2D, 2
D

) ≥ (k − �)). In the above equation, we have
used Chernoff bounds to deduce P[Cc] ≤ e−4δC2D and P[C′] ≥ 1

2 . Using another
Chernoff bound, we get

q(k − �) ≤ e
− 1

2 (k−�) log( k−�
48C2δ

) ≤ 30−(k−�)

provided 1 > 48,000C2δ.
Finally, as observed before, without loss of generality we assume D = C110−�n

and by Lemma 4.7 we have N(� → k) �∑
Zi . Using another Chenoff bound, we

get

P
(
N(� → k) ≥ (25)−(k−�)C110−kn

)≤ 2e−C1
√

n

75 + e−4δC1C2
√

n/100

≤ e−C110−kn

100

since k < 2ε4 logn provided 2ε4 log 10 < 1
2 . �

Observe from the proof that we could have replaced the condition t < τ0 in this
lemma by the weaker condition t < τ4 ∧ τ5. The same is true of Proposition 4.5,
which we are now ready to prove.

PROOF OF PROPOSITION 4.5. Condition on {Ft , t < τ0}. Using Lemma 4.6,
a union bound over � ∈ [0, k − 1] and (4.1) we get that for a fixed v

P

[
max

t ′∈[t+1,t+δn2]
#
{
u : Muv

(
t ′
)≥ k

}
> 2C110−kn

]
≤ 1

n25 .

A union bound over all k ∈ [1,2ε4 logn], Lemma 4.4 and another union bound
over all vertices v complete the proof of the proposition. �

All the propositions in this section together imply the following theorem.
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THEOREM 4.9. For the rewire-to-random-* model, we have P(t + δn2 <

τ∗, t + δn2 ≥ τ ′
0 | Ft , t < τ0) ≤ 1

n17 .

5. Estimates for strong stopping times. Our goal in this section is to prove
that if by time t the process does not reach any of the strong stopping times, then
it is also unlikely that any of the strong stopping times will be hit by time t + δn2

unless the minority opinion density drops below ε. We shall prove this by separate
analysis of each of the stopping times. In the heart of the analysis, in each case, is
some estimate on how the opinions of the vertices get mixed in a short (compared
to δn2) time for β sufficiently large, which we prove by constructing a coupling of
a random walk on the graph G(t) with the evolving voter model dynamics.

5.1. The coupling construction. The dual relationship between the random
walk and the (continuous-time) voter model on a fixed graph H with vertex set
V (H) is well known. The distribution of the voter model X(t) = {Xu(t) : u ∈
V (H)} started from X(0) can be constructed by running coalescing random walks
for time t from each vertex and setting the opinion Xu(t) of the vertex u at time t

to be the value of X(0) at the location of the walker started from u (cf. Section 1.7,
[3]). We prove that an analogue of that result holds in our set-up. We want to say
that if t is small so that graph has not changed sufficiently in the meantime, then
the two distributions are not far apart. Now we formally describe the coupling.

An equivalent implementation of the rewire-to-random-* dynamics starting at
time t + 1: Let us condition on Ft . Let N = N(t) be the number of edges in
G(t). Let the set of all labelled edges be {e1, e2, . . . , eN }. For the purpose of
this subsection, we shall assume that these edges are directed, that is, the edges
have two identifiable ends e+

i and e−
i . When an edge is placed in a bond, we

think of it as e+
i being placed at one vertex of the bond and e−

i being placed
at the other. Suppose ei is placed in the bond (u, v) and e+

i is placed at u and
e−
i placed at v. Then if a rewiring move rewires e with root u to the vertex w,

then e−
i is placed at w. Consider the two independent sequences RW= {RWi}i≥1

and RL = {RLi}i∈Z where each RLi are chosen independently and uniformly
from the set E∗ = {e+

1 , e−
1 , e+

2 , e−
2 , . . . , e+

N, e−
N }. The sequence RW is also an

i.i.d. sequence where each, RWi = (e∗, v), where e∗ is picked uniformly from
E∗ = {e+

1 , e−
1 , e+

2 , e−
2 , . . . , e+

N, e−
N }, and v is a uniform random vertex v picked

from V independently of e∗. Also let {Zi}i≥1 be a sequence of i.i.d. Ber(β
n
) vari-

ables.
We construct the equivalent formulation of the process as follows. At time t + i,

if Zi = 0, then choose the first uninspected element from RW, let that element
be (e+

j , v). If the edge ej is not disagreeing in G(t + i − 1), then do nothing.

Otherwise, we try to rewire the edge ej to v, with the root as the vertex having e+
j .

If this rewiring is not legal, [i.e., e+
j is already placed at v in G(t + i − 1)], then

we choose the next element from RW and repeat the process until a successful
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rewiring. If Zi = 1, then we choose the first unused element from RL, let that
element be e+

j . If the edge ej is not disagreeing in G(t + i − 1) then do nothing.

Otherwise, we change the opinion of the vertex containing e+
j . Notice that RL is

a bi-infinite sequence but we start inspecting the elements starting from RL1. It
is clear from our construction that this indeed is an equivalent implementation of
the rewire-to-random-* dynamics. Let us run this dynamics starting with G(t) up

to Cn2

β
steps. Let σ and ω be the number of elements of RL and RW that gets

inspected in the process. Notice that σ is independent of the sequences RL and
RW.

Coupling with continuous time random walks: Now consider the following con-
tinuous time random walk on G(t). Each directed edge rings at rate β

2n
. When a

directed edge rings a walker at the starting point of the edge moves along the edge.
Consider the process where we start with one walker at each vertex of some ar-
bitrary subset W ⊆ V , and each walker independently performs the random walk
described above. We consider the following coupling between this process and the
evolving voter model process described above. To start with each of the random
walks are of type A. Now choose Ti i.i.d. exp(2N). At the ith step, wait time Ti .
If ZCn2/β+1−i = 0, then do nothing. If ZCn2/β+1−i = 1, then look at RLσ+1−k(i)

where k(i) = #{j ∈ [Cn2/β + 1 − i,Cn2/β] : Zj = 1}. If there is any walker of
type A at the starting point of that edge, then that walker takes a step along that
edge. If any walker of type A takes a step to a vertex where there is already one
or more walkers, then all the walkers become of type B . Type B walkers do a
random walk having the same waiting time distributions but using independent
randomness. It is clear that the random walks are independent. Also since σ is in-
dependent of RL, the random walks also have correct marginals. So this is indeed
a coupling as we claimed.

Let T =∑Cn2/β
i=1 Ti . Let us make the following definitions. For v ∈ V , let

E∗(v) = {
e∗ ∈ E∗ : (e∗, v

)= RWi for some i < ω
}
.

DEFINITION 5.1. Consider the random walks described above. At time s, we
call the walker starting at v0 happy if the following conditions are satisfied:

1. It is of type A at time s.
2. None of the edges the walker has traversed have been rewired in the voter

model process.
3. Let the path traversed by the walker be {v0, v1, . . . , vk}, with the times of

jumps being 0 = T ∗
0 < T ∗

1 < T ∗
2 < · · · < T ∗

k ≤ s. Then for each �, and each e∗ ∈
E∗(v�) there was no ring in e∗ in [T ∗

� , T ∗
�+1].

The following lemma records the most basic useful fact about this coupling
construction.
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LEMMA 5.2. Consider the coupling described above. At time T, if a walker
starting from v is happy, then the opinion of the position of that walker at time T is

the same as the opinion of v in the rewire-to-random-* dynamics at time t + Cn2

β
.

PROOF. This follows from the definition of the coupling. �

LEMMA 5.3. For the coupling described as above, let T = ∑Cn2
β

i=1 Ti be as

defined above. Then, for any κ3 > 0, with exponentially high probability 2C−κ3
β

≤
T≤ 2C+κ3

β
.

PROOF. The result follows from a large deviation estimate for sum of inde-
pendent exponential variables. �

5.1.1. Mixing time of the individual random walks. Now consider a continu-
ous time random walk on G(t) whose transitions are given as follows. The walker
at vertex v moves to a vertex u at rate βMuv(t)

n
. Clearly, this describes the random

walk performed by each of the individual walkers described above. It is easy to see
that the stationary measure for this random walk is the uniform measure on the ver-
tices of G(t). We show that if {t < τ ′

0}, that is, if G(t) is sufficiently close to G(0)

in the relevant metrics then the walk mixes in O( 1
β
) time, that is, the distribution

of the position of the walk becomes close to a uniform distribution.
For completeness, we recall the definitions of several metrics between probabil-

ity distributions that we will use to quantify the closeness in distribution.

DEFINITION 5.4. For any two distributions μ and ν on a finite probability
space �, define the total variation distance between μ and ν by

‖μ − ν‖TV := sup
A∈P

μ(A) − ν(A) = 1

2

∑
x∈�

∣∣μ(x) − ν(x)
∣∣.

The L1 and (relative) L2-distance between μ and ν are defined respectively by

‖μ − ν‖1 := ∑
x∈�

∣∣μ(x) − ν(x)
∣∣;

‖μ − ν‖2 =
(∑

x∈�

(μ(x) − ν(x))2

ν(x)

)1/2
.

It is a basic fact that

2‖μ − ν‖TV = ‖μ − ν‖1 ≤ ‖μ − ν‖2.
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Also for random variable X,Y with distribution μ and ν, respectively, we shall use
‖X−Y‖TV,‖X−Y‖1 or ‖X−Y‖2 to refer to the corresponding distance between
the respective distributions of X and Y .

The following proposition is the basic mixing time result on G(t) that we shall
need.

PROPOSITION 5.5. Consider the continuous time random walk on G(t) de-
scribed above starting from an arbitrary vertex v. Let Y(t + t ′) denote the position
of the walk at time t ′. Also let U be a uniformly chosen vertex from V . Then for
sufficiently large C, we have that on {t < τ ′

0}, for all t ′ ≥ C
β

,

∥∥Y (t + t ′
)− U

∥∥
TV ≤ e−

√
C

1000 .

PROOF. We know from Lemma 3.3 that on {t < τ ′
0}, λ := λ(G(t)) ≥ βε14.

Now let T1 be the time of the first jump of the walker initially at v. Then we know
by L2 contraction lemma (Lemma 3.26 in [1])∥∥Y (t + T1 + t∗

)− U
∥∥

2 ≤ e−t∗λ∥∥Y(t + T1) − U
∥∥

2.

Now we know that on {t < τ ′
0},∥∥Y(t + T1) − U

∥∥2
2 ≤

∞∑
k=1

9k2

n2 2C110−kn2

≤ 18C1

∞∑
k=1

k210−k

≤ 50C1.

Now observe that for t ′ ≥ C
β

,∥∥Y (t + t ′
)− U

∥∥
1 ≤ 2

∥∥Y (t + T1 + t ′/2
)− U

∥∥
1 + P

(
T1 ≥ t ′/2

)
≤ 2e− t ′λ

2
∥∥Y (t + T1 + t ′/2

)− U
∥∥

2 + P
(
T1 ≥ t ′/2

)
≤ 10

√
2C1e

−t ′βε14/2 + e−Cε
16

≤ e−Cε14/20 + e− 3Cε
40 ,

where we have used the relationships between ‖ · ‖TV,‖ · ‖1 and ‖ · ‖2. The lemma
follows by taking C sufficiently large. �

5.1.2. Properties of the coupling. In this subsection, we shall establish a few
useful properties of the coupling described above. We start with establishing some
basic estimates for a collection of independent random walks having the same
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law as the ones in the coupling. Notice that in the next five lemmas (Lemma 5.6–
Lemma 5.10) one can replace the condition t < τ ′

0 by the weaker condition t <

τ ′
4 ∧ τ ′

5.

LEMMA 5.6. Let κ > 0 be fixed. Let v1, v2, . . . , vε13n be given vertices in V .
From each of the vertices, we run independent discrete time simple random walks
in G(t) up to 20C steps. Then, on {t < τ ′

0}, we have for ε13 small enough, with ex-
ponentially high probability there exists at least (1 − κ)ε13n vertices among these
such that the paths of random walks started from these vertices do not intersect.

PROOF. Set V ∗ = {v1, v2, . . . , vε13n}. Let D1 be the set of vertices vi such that
vi is hit by the random walk started from some vj , j �= i and let D2 be the set
of vertices vi such that the random walk started from vi intersects a random walk
started from vj for some j < i. Clearly, for i, j ∈ V ∗ \ (D1 ∪ D2), random walks
started from vi and vj do not intersect. Hence, it is sufficient to control the sizes
of D1 and D2 only.

Condition on {Ft , t < τ ′
0}. For i = 1,2, . . . , ε13n, and j = 1,2, . . . ,4C, let Zij

denote the indicator of the event that the random walk started from i hits the set
V ∗ = {v1, v2, . . . , vε13n} in step j . Let Fi,j denote the filtration generated by the
random walk paths of the walks started from v1, v2, . . . , vi−1 and the first (j − 1)

steps of the random walk started from vi . Now notice that on {t < τ ′
0}, for any

vertex v, the number of edges from v to V ∗ in G(t) is at most∑
j :∑k≥j 2C110−k≤ε13

2C1j10−jn ≤ ∑
j≥log(

4C1
ε13

)

2C1j10−jn

≤ 25ε13 log
(

4C1

ε13

)
n

≤ εκn

400C

for ε13 sufficiently small. Since the degree of each vertex is at least εn
4 , it follows

that

E[Zij | Fi,j−1] ≤ κ

100C
.

It follows from Azuma’s inequality that

(5.1) P

(
ε13n∑
i=1

20C∑
j=1

[
Zij −E[Zij | Fi,j−1]]≥ κε13

4
n

)
≤ e−κ2ε13n/640C.

Hence,

(5.2) P

(
ε13n∑
i=1

20C∑
j=1

Zij ≥ κε13

2
n

)
≤ e−κ2ε13n/640C.



EVOLVING VOTER MODEL ON DENSE RANDOM GRAPHS 1257

Now let Bi denote the event that the random walk starting from vi intersects a
random walk started from vj for some j < i at a point other than vi . Let Yi = 1Bi

.
Let Gi denote the filtration generated by the paths of random walks started from
v1, v2, . . . , vi . Let Ci be the set of vertices visited by the first (i −1) random walks
except possibly vi . Clearly, |Ci | ≤ 25Cε13n. Arguing as before, the number of
edges from any vertex v to Ci is at most 625Cε13 log( 4C1

25Cε13
)n ≤ κεn

400C
for ε13

sufficiently small. By a union bound over the steps of the random walk started
from vi , it follows that E(Yi | Gi−1) ≤ κ

4 . Using Azuma’s inequality as before, we
get

(5.3) P

(
ε13n∑
i=1

[
Yi −E[Yi | Gi−1]]≥ κε13

4
n

)
≤ e−κ2ε13n/32.

Hence,

(5.4) P

(
ε13n∑
i=1

Yi ≥ κε13

2
n

)
≤ e−κ2ε13n/32.

Clearly,

|D1| ≤
ε13n∑
i=1

20C∑
j=1

Zij

and

|D2| ≤
ε13n∑
i=1

Yi.

The lemma now follows from (5.2) and (5.4) and the observation at the start of
the proof. �

LEMMA 5.7. Let v1, v2, . . . , vε13n be given vertices in V . From each of the
vertices, we run independent continuous time random walks in G(t) as described
in the coupling up to time 10C

β
. Let W1 denote the number of walks that take more

than 20C steps in this time. Then P[W1 ≥ κε13n | Ft , t < τ ′
0] is exponentially small

in n for C sufficiently large.

PROOF. Condition on {Ft , t < τ ′
0}. Since the number of steps taken by each

random walk is independent and are stochastically dominated by a Poi(5CC2)

variable, it follows from a large deviation estimate and C2 ≤ 2, that P(W1 > κε13n)

is exponentially small in n by taking C sufficiently large. �

LEMMA 5.8. Assume the hypothesis of Lemma 5.7. Consider the coupling
of the random walks with the evolving voter model as described above. Let W2
denote the number of walkers which traverse by time 10C

β
, some edge that is rewired
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during the voter model process. Then P(W2 ≥ 3κε13n | Ft , t < τ ′
0) ≤ e−γ n for C

sufficiently large, ε13 = ε13(C) sufficiently small and β = β(C) sufficiently large
and for some γ > 0 that does not depend on β .

PROOF. Condition on {Ft , t < τ ′
0}. In the coupling construction, let ω be the

number of entries in RW that were inspected. We consider the case ω ≤ 6Cn2

β

since the complement of this event has probability that is exponentially small in
n2 and can be ignored. Notice that RW is independent of RL, and hence is also
independent of the random walks. Let H denote the filtration generated by the
random walk paths. Let Di denote the set of edges traversed by the random walk
started at vi . Let D denote the event that there is J ⊆ [ε13n] with |J | ≥ (1 −
2κ)ε13n such that for all j1, j2 ∈ J , Dj1 ∩ Dj2 = ∅ and |Dj1 | ≤ 20C. It follows
from Lemma 5.7 and Lemma 5.6 that P(Dc | Ft , t < τ ′

0) is exponentially small in
n for C sufficiently large and ε13 = ε13(C) sufficiently small. Now let us condition
on H and D. Since RW is independent of H, for j ∈ J , we have

P

(
the edge in RWk ∈ Dj for some k ≤ 6Cn2

β

)
≤ 600C2

β
.

By a large deviation estimate, it follows that if β is sufficiently large so that

β > 6000C2

κ
then

P
(
W2 ≥ 3κε13n | Ft , t < τ ′

0,H,D
)

is exponentially small in n. This completes the proof of the lemma. �

LEMMA 5.9. Assume the hypothesis of Lemma 5.7. Consider the coupling
of the random walks with the evolving voter model as described above. Let W3
be the number of walks that take less than 20C steps up to time 10C

β
but violates

condition 3 in Definition 5.1 at time T . Then P(W3 > κε13n) is exponentially small
in n for β sufficiently large where the exponent does not depend on β .

PROOF. Let us fix a function q(·) such that q(β) � β � q(β) logq(β) as
β → ∞. Since the random walks are independent of RW, we condition on RW

and the following event:

G =
{
ω <

6Cn2

β
,
∣∣E∗(v)

∣∣≤ 4Cnq(β)

β
∀v ∈ V

}
.

By a Chernoff bound P(G) ≥ 1 − e−γ n where γ is bounded away from 0 indepen-
dent of β .

Now observe the following. For every vertex v, the chance that condition 3 in
Definition 5.1 is violated while a walker takes a step from v is upper bounded by
the chance that out of all the edges adjacent to v, the one to ring first is in E∗(v).
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On t < τ ′
0, the degree of v is at least εn

4 , and hence conditional on G, this chance is

upper bounded by 16Cq(β)
εβ

. Taking a union bound over the first 20C jumps made by
the walk started at vi , it follows that conditional on G, the chance that the random
walk started from vi violates condition 3 in Definition 5.1 before making 20C

many jumps is at most 320C2q(β)
εβ

. Since the events are independent for different i

conditional on G, the lemma follows for β sufficiently large. �

Now recall the coupling between the continuous time random walks on G(t)

and the evolving voter model defined at the start of this section. We shall need the
following result for the coupling.

LEMMA 5.10. Let v1, v2, . . . , vε13n be fixed vertices in V . Consider the cou-
pling between the evolving voter model starting with G(t) at time t , with inde-
pendent continuous time random walks on G(t) starting with one walker at each
vi as described above. Let us denote the position of the random walk started
at vi at time s by Yi(t + s). Let � denote the event that there exists a time
σ0 ∈ {C/β + 1

n3 ,C/β + 2
n3 , . . . ,3C/β} and J ⊆ [ε13n] with |J | ≥ (1 − 8κ)ε13n,

such that for each i ∈ J , opinion of Yi(t +σ0) in G(t) is same as vi(t + Cn2

β
). Then

for C sufficiently large, ε13 = ε13(C) sufficiently small and β = β(C) sufficiently
large, we have that P(� |Ft , t < τ ′

0) ≥ 1 − e−γ n/2 where γ is bounded away from
0 independent of β .

PROOF. In this proof, the value of the constant γ may change from line to
line but γ is always a positive constant bounded away from 0 independent of β .
Condition on {Ft , t < τ ′

0}. Let W ′ denote the number of walkers at time 3C
β

of
type B . Then it follows from Lemma 5.7 and Lemma 5.6 that P(W ′ > 2κε13n) ≤
e−γ n for some γ > 0. Let Q denote the event that there exists J ⊆ [ε13n] with
|J | ≥ (1 − 5κ)ε13n such that for all j ∈ J , the opinion of Yj (t + T ) in G(t) is

same as vj (t + Cn2

β
). It now follows from Lemma 5.2, Lemma 5.8 and Lemma 5.9

that for appropriate choices of C,ε13 and β , P(Qc,T < 3C
β

| Ft , t < τ ′
0) ≤ e−γ n.

Now let A denote the event there exist k ∈ {1,2, . . . , 2n3C
β

} such that there are

more than κε13n of the random walks take a step within time [C
β

+ k
n3 , C

β
+ k+1

n3 ].
By a union bound it follows that P(A | Ft , t < τ ′

0) ≤ e−γ n. Since

P
(
� | Ft , t < τ ′

0
)

≥ 1 − P

(
T ≥ 3C

β

∣∣∣Ft , t < τ ′
0

)

− P
(
A | Ft , t < τ ′

0
)− P

(
Qc,T <

3C

β

∣∣∣Ft , t < τ ′
0

)
,

the proof of the lemma is completed using Lemma 5.3. �
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5.2. Bound for large cuts. Our aim in this section is to show that if {t < τ0}
and {t + δn2 < τ ′

0}, then it is unlikely that the process violates the stronger thresh-
old condition for large cuts by time t + δn2, that is, we shall show that with high
probability {t + δn2 < τ2}.

Before proceeding with the proof, let us explain our strategy. We shall show that
under the above conditions if the number of edges across any fixed cut becomes
too small or too large at any time step during the evolution, then at the next step it
receives a drift toward the mean, and then use a Martingale argument to show that
the chance that the number of edges across that cut moves beyond the threshold is
exponentially small. A union bound over all large cuts then completes the proof.

To show that the number of edges across a fixed cut is indeed mean revert-
ing, we establish and use the fact that on {t + δn2 < τ ′

0}, for most of the times in
[t, t + δn2], the number of disagreeing edges across the cut is approximately the
fraction of total number of edges across the cut that one would expect if the opin-
ions were randomly distributed [i.e., if the number of minority opinion vertices is
approximately pn, then the fraction of disagreeing edges across the cut is approx-
imately 2p(1 − p)]. We start by moving toward establishing this assertion using
Proposition 5.5 which tells us that the opinion of the vertices become sufficiently
mixed within O(n2

β
) steps.

5.2.1. Fraction of disagreeing edges. Let us fix S,T ⊆ V , such that S∩T =∅

and S ∪ T = V with ε2n ≤ |S| ≤ |T |. We have the following proposition.

PROPOSITION 5.11. For the rewire-to-random-* dynamics, let us condition
on {Ft , t < τ ′

0,N1(t) = pn}. For t ′ ≥ t , let XST(t ′) denote the number of disagree-
ing edges at time t ′ with one end in S and the other in T and let I (t ′) denote the
interval ((2p(1 − p) − ε7)NST(t ′), (2p(1 − p) + ε7)NST(t ′)). Then there exists a
constant C sufficiently large, and β = β(C) sufficiently large such that

P

(
XST

(
t + Cn2

β

)
/∈ I

(
t + Cn2

β

) ∣∣∣Ft , t < τ ′
0

)
≤ e−γ n

for some γ > 0 that does not depend on β .

We shall need the following lemma in order to prove Proposition 5.11.

LEMMA 5.12. Let ES,T (t) denote the set of edges that have one endpoint in
S and another endpoint T at time t . On {t < τ ′

2}, and hence on {t < τ ′
0}, we have

|EST(t)| ≥ ε2n
2

5 provided 1000ε3 < ε2. Let κ > 0 be fixed. Let e1, e2, . . . , eε12n be
uniformly chosen edges from EST(t). For ε12 sufficiently small, with exponentially
high probability there exists at least (1 − κ)ε12n many edges among the sample
that are vertex disjoint at time t .
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PROOF. For i = 1,2, . . . , ε12n, let Ai denote the event that ei is not vertex
disjoint with e1, e2, . . . , ei−1. Let Zi = 1Ai

. Let Gi−1 denote the filtration generated
by e1, e2, . . . , ei−1. Then it is clear from the assumption on the graph that

E(Zi | Gi−1) ≤ C2n

|EST(t)|2ε12n ≤ 12C2ε12

ε2
.

Also notice that |Zi −E(Zi | Gi−1)| ≤ 1, and hence Azuma’s inequality yields

(5.5) P

(
ε12n∑
i=1

[
Zi −E[Z | Gi−1]]≥ κε12

2
n

)
≤ e−κ2ε12n/8.

It follows that

(5.6) P

(
ε12n∑
i=1

Zi ≥ 12C2ε
2
12n

ε2
+ κε12

2
n

)
≤ e−κ2ε12n/8.

By choosing ε12 sufficiently small such that 12C2ε12
ε2

≤ κ
2 completes the proof.

�

Now we continue with the proof of Proposition 5.11.

PROOF OF PROPOSITION 5.11. Let us condition on {Ft , t < τ ′
0,N1(t) = pn}.

Let NST(t) be the number of edges in G(t) with one endpoint in S and another
endpoint in T . Let {e1, e2, . . . , eNST (t)} denote the set of those edges. Let Xi be the

indicator that endpoints of ei in G(t) are disagreeing in G(t + Cn2

β
). Observe that

in Cn2

β
steps, at most Cn2

β
edges can be rewired. Hence, we have |NST(t + Cn2

β
) −

NST(t)| ≤ Cn2

β
and also∣∣∣∣∣XST

(
t + Cn2

β

)
−

NST (t)∑
i=1

Xi

∣∣∣∣∣≤ Cn2

β
.

It follows using NST(t) ≥ ε2n
2

5 that for β sufficiently large, the difference between
XST (t+Cn2

β
)

NST (t+Cn2
β

)
and

∑
Xi

NST (t)
can be made smaller than ε7/2 and hence it suffices to prove

that

P

(
1

NST(t)

NST (t)∑
i=1

Xi /∈
(

2p(1 − p) − ε7

2
,

2p(1 − p) + ε7

2

) ∣∣∣Ft , t < τ ′
0

)
≤ e−γ n.
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Let J be a set of size ε12n where each element is an independent uniform sample
from [NST(t)]. Clearly, by Hoeffding’s inequality,

P

(∣∣∣∣∣ 1

ε12n

∑
j∈J

Xj − 1

NST(t)

NST (t)∑
i=1

Xi

∣∣∣∣∣≥ ε7

4

)
≤ e− ε2

7ε12n

32 .

So it suffices for us to prove that with probability at least 1 − e−2γ n,

1

ε12n

∑
j∈J

Xj ∈ (2p(1 − p) − ε7/4,2p(1 − p) + ε7/4
)
.

Choose ε12 sufficiently small, and set ε13 = 2ε12(1 − κ) so that the conclusions
of Lemma 5.12 and Lemma 5.10 are satisfied. Let H1 denote the event that there
is a subset J ∗ ⊆ J with |J ∗| = (1 − κ)ε12n such that endpoints of ej are disjoint
for all j ∈ J ∗. It follows from Lemma 5.12 that P(H1 | Ft , t < τ ′

0) ≥ 1 − e−100γ n.
Condition on H1 and J ∗. Let v1, v2, . . . , vε13n be endpoints of edges of J ∗. By
choosing 100κ < εε7 it follows that it suffices to prove

(5.7)

P

[
2

ε13n

∑
j∈J ∗

Xj /∈ (2p(1 − p) − ε7/8,2p(1 − p) + ε7/8
) |

Ft , t < τ ′
0,N1(t) = pn,H1, J

]
≤ e−10γ n.

Consider the coupling described in Section 5.1. Fix j ∈ J ∗, let vj1 and vj2

be endpoints of ej in G(t). For σ̃ ∈ � = {C/β + 1
n3 ,C/β + 2

n3 , . . . ,3C/β}, let
Uj,σ̃ denote the indicator that the position of the coupled random walks started
from vj1 and vj2 at time σ̃ have different opinions in G(t). Clearly, for a fixed σ̃ ,
for all j ∈ J ∗, Uj,σ̃ are conditionally independent. Also, it follows from Proposi-
tion 5.5 that E(Uj,σ̃ | Ft , t < τ ′

0,N1(t) = pn) ∈ [2p(1 − p) − ε7/32,2p(1 − p) +
ε7/32]. A standard Hoeffding bound now shows that conditional on G = {Ft , t <

τ ′
0,N1(t) = pn,H1, J

∗}, with probability at least 1 − e−20γ n,

(5.8)
2

ε13n

∑
j∈J ∗

Uj,σ̃ ∈ (2p(1 − p) − ε7/16,2p(1 − p) + ε7/16
)
.

By taking a union bound over all possible values of σ̃ , it follows that above holds
for all σ̃ in � with conditional probability at least 1 − e−15γ n.

By observing that by Lemma 5.10, we have, conditional on G, there exists σ̃ ∈ �

2

ε13n

∑
j∈J ∗

|Uj,σ̃ − Xj | ≤ 12κ ≤ ε7/32

with probability at least 1 − e−15γ n. This and the previous observation imply (5.7)
and the proof of the proposition is complete. �



EVOLVING VOTER MODEL ON DENSE RANDOM GRAPHS 1263

We shall also need to consider the fraction of disagreeing edges with both end-
points in S. The following proposition follows along the same lines as Proposi-
tion 5.11 and we shall omit the proof.

PROPOSITION 5.13. Fix S ⊆ V with |S| ≥ ε2n. For the rewire-to-random-*
dynamics, let us condition on {Ft , t < τ ′

0,N1(t) = pn}. For t ′ ≥ t , let XSS(t
′) de-

note the number of disagreeing edges at time t ′ and let I ′(t ′) denote the interval
((2p(1 − p) − ε7)NSS(t

′), (2p(1 − p) + ε7)NSS(t
′)). Then there exists a constant

C sufficiently large, and β = β(C) sufficiently large such that

P

(
XSS

(
t + Cn2

β

)
/∈ I ′

(
t + Cn2

β

) ∣∣∣Ft , t < τ ′
0

)
≤ e−γ n

for some γ > 0 that does not depend on β .

Fix S and T as in Proposition 5.11. We shall need to number of times in [t +
1, t + δn2] for which among the edges across (S, T ), within S and within T each
has the “correct” fraction of disagreeing edges. We shall show that the probability
that this fraction of times is bigger than a small constant is exponentially small.
There is a subtle point here. We will ultimately want to take a union bound over
all large cuts (S, T ) which are exponentially many in number. Hence, we need
to make sure that the exponent one gets in the exponentially small probability
described above is sufficiently large to offset this large union bound. To this end,
we shall use the fact that the time taken for the opinions to mix is O(n2

β
) � δn2

which can be ensured by taking β sufficiently large. We now move toward making
the above discussion quantitative.

Condition on {Ft , t < τ0,N1(t) = pn}. Let D∗(t ′) denote the event that
N1(t

′′) ∈ ((p − ε7)n, (p + ε7)n) for all t ′′ ∈ [t + 1, t ′]. Fix S and T as in Propo-
sition 5.11. For t ′ ∈ [t + 1, t + δn2], let us define events At ′

ST , At ′
SS and At ′

TT as
follows:

At ′
ST = {

XST
(
t ′
) ∈ (2p(1 − p) − 2ε7,2p(1 − p) + 2ε7

)
NST

(
t ′
)}

,

At ′
SS = {

XSS
(
t ′
) ∈ (2p(1 − p) − 2ε7,2p(1 − p) + 2ε7

)
NSS

(
t ′
)}

,

At ′
TT = {

XTT
(
t ′
) ∈ (2p(1 − p) − 2ε7,2p(1 − p) + 2ε7

)
NTT

(
t ′
)}

.

Finally, let us define

At ′ = At ′
SS ∩At ′

ST ∩At ′
TT .

Let Zt ′ be the indicator of At ′ , that is, the complement of At ′ . We have the follow-
ing lemma controlling the fraction of times t ′ for which At ′ hold.
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LEMMA 5.14. Set G = {Ft , t < τ0,N1(t) = pn}. Then for each ε15 > 0 we
have

P

(
1

δn2

t+δn2∑
t ′=t+1

Zt ′ ≥ ε15, t + δn2 < τ ′
0,D

∗(t + δn2) | G)≤ e−h(β)n,

where h(β) can be made arbitrarily large by taking β sufficiently large.

PROOF. For i = 1,2, . . . , Cn2

β
, and for k = 1,2, . . . ,

δβ
C

− 1 let ti,k = t + i +
k Cn2

β
. Let

Wi =
δβ
C

−1∑
k=1

Zti,k .

From Proposition 5.11 and Proposition 5.13, it follows that for a fixed i, P[Zti,k+1 =
1 | Fti,k , ti,k < τ ′

0,D
∗(ti,k)] ≤ e−γ n/5. Observe that even though Zti,k are not inde-

pendent (as k varies), the above bound implies that they are jointly stochastically
dominated by an independent collection of indicators and in particular one can
bound the exponential moment of Wi , in exactly the same manner in the standard
proof of Chernoff’s inequality, and hence the standard Chernoff bound applies in
this case. Hence, we have

P

[
C

δβ
Wi ≥ ε15/2, t + δn2 ≤ τ ′

0,D
∗(t + δn2) | G

]

≤ exp
(
−ε15δβ log

(
ε15e

−γ n/5

2

)/
4C

)
(5.9)

≤
(

2

ε15

)1/4C

exp(−ε15δβηn/20C).

Taking a union bound over all i and choosing β sufficiently large so that C
δβ

≤
ε15/2, it follows that

P

(
1

δn2

t+δn2∑
t ′=t+1

Zt ′ ≥ ε15, t + δn2 < τ ′
0,D

∗(t + δn2) | Ft

)

≤ Cn2

β

(
2

ε15

)1/4C

exp(−ε15δβγ n/20C).

Taking β sufficiently large completes the proof of the lemma. �
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5.2.2. Obtaining a bound for τ2. Now we move toward the main result in
this subsection, that is, showing that the evolving voter model process is unlikely
to reach τ2 before time t + δn2. We start with a fixed cut (S, T ) as above with
ε2n ≤ |S| ≤ |T |. Recall that

KST
(
t ′
)= (

NSS(t
′) − 1

4 |S|2
N(t ′)

)2
+
(

NTT(t ′) − 1
4 |T |2

N(t ′)

)2
.

We have the following proposition.

PROPOSITION 5.15. Set G = {Ft , t < τ0,N1(t) = pn}. Let S,T be as above.
Then we have

P
(
KST

(
t + δn2)> ε2

3, t + δn2 < τ ′
0,D

∗(t + δn2) | G)≤ exp
(−h(β)n

)
,

where h(β) can be made arbitrarily large by taking β sufficiently large.

PROOF. For s ∈ [t, t + δn2 − 1], let Fs denote the filtration generated by the
process up to time s. Conditioned on Fs the transition rule for the evolution of
(NSS(s),NTT(s)) is given by the following:(

NSS(s + 1),NTT(s + 1)
)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
NSS(s) + 1,NTT(s)

)
w.p.

XST(s)

N(s)

1

2

|S| − 1

n − 1

(
1 − β

n

)
,

(
NSS(s),NTT(s) + 1

)
w.p.

XST(s)

N(s)

1

2

|T | − 1

n − 1

(
1 − β

n

)
,

(
NSS(s) − 1,NTT(s)

)
w.p.

XSS(s)

N(s)

|T |
n − 1

(
1 − β

n

)
,

(
NSS(s),NTT(s) − 1

)
w.p.

XTT(s)

N(s)

|S|
n − 1

(
1 − β

n

)
,(

NSS(s),NTT(s)
)

otherwise.

For this proof, let us write � = 2p(1 − p)(1 − β
n
) and ε8 = ε7/2p(1 − p).

Recall that on Zs = 0, we have that the ratios XSS(s)
NSS(s)

,
XST (s)
NST (s)

, XTT (s)
NTT (s)

each belong to
the interval (2p(1 − p) − ε7,2p(1 − p) + ε7). Hence, for n sufficiently large we
have on {Zs = 0}(

NSS(s + 1),NTT(s + 1)
)

= (
NSS(s) + 1,NTT(s)

)
w.p. ∈ �

NST(s)

N(s)

1

2

|S|
n

(1 ± 3ε8)

and the other transition probabilities above can be expressed similarly.
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Doing a change of variable

WS(s) = NSS(s) − |S|2/4

N

and

WT (s) = NTT(s) − |T |2/4

N

it follows that on {Zs = 0}, we have(
WS(s + 1),WT (s + 1)

)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
WS(s) + 1/N,WT (s)

)
w.p. ∈ �

(
1 − WS(s) − WT (s) − |S|2 + |T |2

4N

) |S|
2n

±3ε7,(
WS(s),WT (s) + 1/N

)
w.p. ∈ �

(
1 − WS(s) − WT (s) − |S|2 + |T |2

4N

) |T |
2n

±3ε7,(
WS(s) − 1/N,WT (s)

)
w.p. ∈ �

(
WS(s) + |S|2

4N

) |T |
n

± 3ε7,(
WS(s),WT (s) − 1/N

)
w.p. ∈ �

(
WT (s) + |T |2

4N

) |S|
n

± 3ε7.

It follows that on {Zs = 0},
E
[
WS(s + 1)2 | Fs

]
= WS(s)2 + 2WS(s)

N

(
�

|S|
2n

(
1 − WS(s) − WT (s)

)
− 2WS(s)

N

( |S|2 + |T |2
4N

)
− �

|T |
n

(
WS(s) + |S|2

4N

)
± 6ε7

)
+ O

(
1

N2

)
= WS(s)2 + 2WS(s)�

N

[ |S|
2n

− |S|n
8N

− WS(s)

( |S| + 2|T |
2n

)
− WT (s)

|S|
2n

]
+ o

(
1

n2

)
± 25ε7

n2 .
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Doing a similar calculation for WT (s + 1)2 we get, on {Zs = 0},
E
[
WS(s + 1)2 + WT (s + 1)2 | Fs

]
≤ WS(s)2 + WT (s)2

+ 2WS(s)�

N

[ |S|
2n

− |S|n
8N

− WS(s)

( |S| + 2|T |
2n

)
− WT (s)

|S|
2n

]
+ 2WT (s)�

N

[ |T |
2n

− |T |n
8N

− WT (s)

(
2|S| + |T |

2n

)
− WT (s)

|T |
2n

]
+ 50ε7

n2 + o

(
1

n2

)
≤ WS(s)2 + WT (s)2

− 4�

n2

[
1

4

(
WS(s)2 + WT (s)2)+ 1

4

(
Ws(s) + WT (s)

)2]
− 4�

n2

[ |T |
2n

WS(s)2 + |S|
2n

WT (s)2
]

+ 64ε7

n2

≤ WS(s)2 + WT (s)2 − �

n2

[(
WS(s)2 + WT (s)2)− 64ε8

]
.

Recall that

KST(t) =
(

NSS(t) − 1
4 |S|2

N(t)

)2
+
(

NTT(t) − 1
4 |T |2

N(t)

)2
.

Hence, we have from above

E
[
KST(s + 1) − KST(s) |Fs,Zs = 0

]≤ − �

n2

(
KST(s) − 64ε8

)
.

In particular, on {Zs = 0} ∩ {KST(s) ≥ ε2
3/2}, we have

E
[
KST(s + 1) − KST(s) | Fs

]≤ − �

4n2 ε2
3

by choosing ε2
3 ≥ 256ε8. Let C denote the event

C =
{

min
s∈[t,t+δn2]

KST(s) ≤ ε2
3/2

}
.

Let D denote the event

D =
{

t+δn2−1∑
s=t

E
[
KST(s + 1) − KST(s) | Fs

]
> δ

(
16ε15 − (1 − ε15)�ε2

3/4
)}

.

Observe that on {D∗(t + δn2), t + δn2 < τ ′
0}, we have that Cc ∩D implies that the

number of s ∈ [t, t + δn2 − 1] such that Zs = 1, is at least ε15δn
2. It follows now
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from Lemma 5.14 that

P
[
Cc,D,D∗(t + δn2), t + δn2 < τ ′

0 | G]≤ exp
(−h(β)n

)
,

where h(β) can be made arbitrarily large by choosing β sufficiently large.
Now an application of Azuma–Hoeffding inequality gives

P

[
t+δn2−1∑

s=t

KST(s + 1) − KST(s)

−E
(
KST(s + 1) − KST(s) | Fs

)≥ δε2
3

10

∣∣∣ G](5.10)

≤ exp
(
− δε4

3n
2

204,800

)
.

It follows that if ε15 is chosen sufficiently small so that εε2
3 >

64ε15
1−ε15

, then we
have

P
[
KST

(
t + δn2)> KST(t),Cc,D∗(t + δn2)t + δn2 < τ ′

0 | G]
≤ exp

(−h(β)n
)
.

Now notice that KST(s + 1) − KST(s) ≤ 16
n2 . Observe further that by choosing δ

sufficiently small (16δ < ε2
3), it follows that on C, KST(t + δn2) < ε2

3. Hence,

P
[
KST

(
t + δn2)> ε2

3,D
∗(t + δn2), t + δn2 < τ ′

0 | G]
≤ exp

(−h(β)n
)
.

This completes the proof of the proposition. �

Now we are ready to prove the main result of this subsection.

THEOREM 5.16. We have for all t ≥ δn2,

P
[
t + δn2 ≥ τ2, t + δn2 < τ∗, t < τ0

]≤ 1

n14 .

PROOF. Let D̃(t + δn2) be defined as follows:

D̃
(
t + δn2)= {∀t ′ ∈ [t + 1, t + δn2] : ∣∣N1

(
t ′
)− N1(t)

∣∣≤ ε7n
}
.

Recall that

L(t) = max
S,T :min(|S|,|T |)≥ε2n

KST(t).
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By taking a union bound over all cuts S,T such that ε2n ≤ |S| ≤ |T | and using
Proposition 5.15 we get that

P
[
L
(
t +δn2)≥ ε2

3, D̃
(
t +δn2), t +δn2 < τ ′

0 | Ft , t < τ0
]≤ 2n exp

(−h(β)n
)≤ 1

n18

by taking β sufficiently large. It follows by a random walk estimate that P[D̃(t +
δn2) | Ft , t < τ0] is exponentially close to 1, and hence we have

P
[
L
(
t + δn2)≥ ε2

3, t + δn2 < τ ′
0 | t < τ0,Ft

]≤ 2

n18 .

By Theorem 4.9, we know that P[t + δn2 ≥ τ ′
0, t + δn2 < τ∗ | Ft , t < τ0] ≤ 1

n17 .

Since {L(t + δn2) ≥ ε2
3, t + δn2 < τ } is contained in the union of {t + δn2 ≥

τ ′
0, t + δn2 < τ∗} and {L(t + δn2) ≥ ε2

3, t + δn2 < τ ′
0}, it follows that

P
[
L
(
t + δn2)≥ ε2

3, t + δn2 < τ∗ | Ft , t < τ0
]≤ 2

n17 .

Now to infer τ2 > t + δn2, we need to show that L(t + δn2 − s) ≤ ε2
3 for each

s ∈ [0, δn2 −1]. As {t < τ0} ⊆ {t − s < τ0} and {t +δn2 < τ∗} ⊆ {t +δn2 − s < τ∗}
for each s ≥ 0, by taking a union over s ∈ [0, δn2 − 1] we get that

P
[
τ2 ≤ t + δn2, t + δn2 < τ∗, t < τ0

]≤ 1

n14 .

This completes the proof of the theorem. �

5.3. Edge multiplicity. In this subsection, we consider the strong stopping
time associated with edge multiplicities, that is, τ3. We shall prove that if t < τ0,
then it is unlikely for the process to reach τ3 by time t + δn2.

THEOREM 5.17. Let t < n4. Then P[t ≥ τ3, t < τ ′
0] ≤ 1

n4 .

To prove Theorem 5.17, we shall argue that if a bond contains too many edges
then it becomes likely for it to lose edges as well. To establish this, we shall need
to show that each bond spends a positive fraction of the time in [t, t + δn2] being
disagreeing. We start with the following lemma.

LEMMA 5.18. Let u, v be two fixed vertices in V . Let Xuv(t
′) be the indicator

that u and v are disagreeing in G(t ′). Then we have E(Xuv(t + Cn2

β
) | Ft , t <

τ ′
0) ≥ ε

2 .

PROOF. To prove this, consider the coupling of the evolving voter model with
independent continuous time random walk started from u and v as described in
Section 5.1, and recall that T corresponds, in continuous time, to the time t + Cn2

β
.
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Let Yuv denote the indicator that the positions of the random walks started from
u and v after time T are disagreeing in G(t). We claim that P(Xuv(t + Cn2

β
) �=

Yuv) ≤ ε/4. Indeed as in Lemma 5.2, it suffices to prove that the chance that any
of the following three events occur is at most ε

4 : (a) the random walks started from
u and v intersect up to time T, (b) either of the random walks traverse an edge that
was rewired and (c) either of the walks violate condition 3 in Definition 5.1.

Notice that arguing as in Lemma 5.6, the chance that the random walks intersect
up to time 3C

β
is o(1) as n → ∞. Also notice that, following the argument in

Lemma 5.8 the chance that either of the walk traverses any edge that was rewired
by time 3C

β
can be made less than ε

100 by choosing β sufficiently large. Arguing as
in the proof of Lemma 5.9, it follows that for β sufficiently large the chance that
either of the walks violate condition 3 in Definition 5.1 is also less than ε

100 . The
claim follows by noting that with high probability T ≤ 3C

β
by Lemma 5.3.

Also let Y ∗
uv be the indicator that the position of random walks started from u

and v after time 2C−0.01ε
β

are disagreeing in G(t). Observe that using Lemma 5.3
it follows that the chance that either of the random walks took a step during
time [2C−0.01ε

β
,T] is bounded by ε

100 , and hence P(Yuv �= Y ∗
uv) ≤ ε/4. The lemma

now follows by noticing that Proposition 5.5 implies that for C sufficiently large
E(Y ∗

uv) ≥ ε. �

LEMMA 5.19. Let u, v ∈ V be two vertices in V . Fix t > ε16n
2 logn. For

ε16n
2 logn < t ′ < t , let At ′ denote the event that there exists T ∈ {1,2, . . . , t − t ′}

such that

#
{
s ∈ {T ,T + 1, . . . ,T + t ′

} : u(s) �= v(s)
}≤ t ′ε/4.

Then we have

P

[⋃
t ′

At ′, t < n4 ∧ τ ′
0

]
≤ 1

nr(β)
,

where r(β) can be made arbitrarily large by taking β sufficiently large.

PROOF. Fix ε16n
2 logn < t ′ < t ∧ n4 and T ∈ {1,2, . . . , t − t ′}. For t ′′ ∈

{T ,T + 1, . . . ,T + t ′} it follows from Lemma 5.18 that P[u(t ′′ + Cn2/β) �=
v(t ′′ + Cn2/β) | Ft ′′, t ′′ < τ ′

0] ≥ ε/2 for β sufficiently large. It follows using a
Chernoff’s bound that for each i = 1,2, . . . ,Cn2/β ,

P

[
#
{
t ′′ ∈ {T + i + kCn2/β : k ∈ [βt ′/n2C

]} : u(t ′′) �= v
(
t ′′
)}

≤ βt ′ε
4Cn2 , t < τ ′

0

]
(5.11)

≤ exp
(
− βt ′ε

12Cn2

)
.
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For all t ′ > ε16n
2 logn, we have the right-hand side of the above inequality is at

most ( 1
n
)βε16ε/12C . Let A∗

t ′,T ,i denote the event

A∗
t ′,T ,i =

{
#
{
t ′′ ∈ {T + i + kCn2/β : k ∈ [βt ′/n2C

]} : u(t ′′) �= v
(
t ′′
)}

≤ βt ′ε
4Cn2

}
.

Observe that on
⋂

i A
∗
t ′,T ,i , the number of times s ∈ {T ,T + 1, . . . ,T + t ′} is at

least εt ′
4 , and hence it follows by taking a union bound over all i ∈ [Cn2/β] and all

T ∈ {1,2, . . . , t − t ′} and using (5.11) that

P
[
At ′, t < n4 ∧ τ ′

0
]≤ 1

nr ′(β)
,

where r ′(β) can be made sufficiently large by choosing β to be sufficiently large.
The lemma now follows by taking union bound over t ′ ∈ (ε16n

2 logn, t ∧ n4). �

Now we define the following family of random walks which we couple with
the rewire-to-random-* dynamics as follows, Xs(·) indexed by s ∈ {1,2, . . . , t}
with each starting from K > 0 [i.e., Xs(0) = K ∀s] with transition probabilities as
described below:

Xs(h + 1) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
Xs(h) + 1 w.p.

9C2

n2 ,

Xs(h) − 1 w.p.
K

n2 if u(s + h) �= v(s + h),

Xs(h) otherwise.

The following lemma is immediate by comparing one step transition probabili-
ties of Muv(t) and Xs(t − s).

LEMMA 5.20. Let M∗
uv(t) = maxt ′∈[1,t] Muv(t

′) and X∗(t) =
maxs,h:s+h≤t X

s(h). Then we have, on {t < τ ′
0}, M∗

uv(t) � X∗(t) where � denotes
stochastic domination.

From the previous lemma, we deduce the following.

LEMMA 5.21. We have P[M∗
uv(t) > ε4 logn, t < τ ′

0 ∧ n4] ≤ 1
n10 .

PROOF. By Lemma 5.20, it suffices to prove the inequality in the statement
with M∗

uv(t) replaced by X∗(t). Let C denote the following event:

C = {∀T ∈ [1, t], t ′ > ε16n
2 logn #

{
s ∈ [T ,T + t ′

] : u(s) �= v(s)
}≥ t ′ε/4

}
.
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Then we have that for all t − s > t ′ > ε16n
2 logn,

E
(
eλXs(t ′)1C∩{t<τ ′

0}
)

≤ eλK

(
1 + 9C2

n2

(
eλ − 1

))t ′(1−ε/4)

×
(

1 + 9C2

n2

(
eλ − 1

)+ K

n2

(
1 − e−λ))t ′ε/4

.

Fix λ large enough such that λε4 > 20. Choosing K sufficiently large depending
on λ and ε, it follows that(

1 + 9C2

n2

(
eλ − 1

))1−ε/4(
1 + 9C2

n2

(
eλ − 1

)+ K

n2

(
1 − e−λ))ε/4

< 1

and hence

E
(
eλXs(t ′)1C∩{t<τ ′

0}
)≤ eλK.

By Markov’s inequality, it follows that

P
({

Xs(t ′)> ε4 logn
}∩ C ∩ {

t < τ ′
0
})≤ e−λ(K−ε4 logn) ≤ 1

n19 .

For t ′ < ε16n
2logn, Xs(t ′)−K is stochastically dominated by a Bin(ε16n

2logn,
9C2
n2 ) variable. Using a Chernoff bound in this case, we get for n sufficiently large

P
[
Xs(t ′)≥ ε4 logn

]≤ e−ε4 logn log(ε4/9C2ε16)/2 ≤ 1

n19

by choosing ε16 sufficiently small such that ε4 log(ε4/9C2ε16) > 38.
By taking a union bound over all s, t ′, it follows that

P
[
X∗(t) > ε4 logn,C,

{
t < τ ′

0
}]≤ 1

n11 .

The result now follows from Lemma 5.19. �

We are now ready to prove Theorem 5.17.

PROOF OF THEOREM 5.17. The theorem follows from using Lemma 5.21,
taking a union bound over all (u, v) ∈ V (2). �

5.4. Degree estimate. In this section, we consider the stronger stopping time
τ5 associated with the vertex degrees in G(t) and prove the following theorem.

THEOREM 5.22. We have for all t ≥ δn2, P[t + δn2 ≥ τ5, t + δn2 < τ∗, t <

τ ] ≤ 1
n14 .
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The strategy to prove Theorem 5.22 is same as before. We shall show that when-
ever the degree of a vertex becomes too small or too large it gets a drift to the other
side. To understand how we shall establish this, consider the example of a ver-
tex degree becoming too large. We shall show that at most of the times a positive
fraction of the edges incident to a given vertex v will be disagreeing, and hence if
the degree becomes too large then the vertex will lose edges at a higher rate, thus
providing a negative drift. We shall start with the following lemma.

LEMMA 5.23. Let κ2 > 0 be fixed. Let us condition on {Ft1, t1 < τ ′
0,N∗(t) =

pn}. Let v be a fixed vertex in V . Let Xv(t
′) denote the number of disagree-

ing edges incident to v at time t ′. Then for sufficiently large C and sufficiently

large β = β(C), at time t2 = t1 + Cn2

β
we have P[Xv(t2) /∈ (p(1 − κ2),1 − p(1 −

κ2))Dv(t2) | Ft1, τ
′
0 > t1] ≤ e−ε20n for some constant ε20 > 0.

PROOF. The proof of this lemma goes along the same lines as that of Propo-
sition 5.11. We shall therefore only give the sketch of the steps. Let the edges
incident to v at time t1 be {e1, e2, . . . , eDv(t1)}. Let Yi denote the indicator that the
endpoints of ei are disagreeing in G(t2). Notice that the number of edges adjacent

to v that gets rewired in Cn2

β
steps is O(n

β
) with exponentially high probability,

and hence arguing as in the proof of Proposition 5.11 it follows that the fraction of
disagreeing edges incident to v at time t2 is well approximated by 1

Dv(t1)

∑Dv(t1)
i=1 Yi

if β is sufficiently large. Hence, it suffices to prove that

1

Dv(t1)

Dv(t1)∑
i=1

Yi ∈ (p(1 − κ2/2),1 − p(1 − κ2/2)
)

with exponentially high probability. To this end, we choose a random subset of
these edges of size ε17n. Condition on a subset J of these edges of size at least
ε18n = (1 − κ2

100)ε12n which correspond to distinct bonds in V (2). Arguing as in
the proof of Proposition 5.11, we see that it suffices to show that, conditionally,

1

ε13n

∑
j∈J

Yj ∈ (p(1 − κ2/50),1 − p(1 − κ2/50)
)

with exponentially high probability.
Consider the coupling described in Section 5.1 of the rewire-to-random-* dy-

namics started with G(t1) with independent random walks started from vj where
ej is placed in the bond (v, vj ) is G(t1). Let for j ∈ J and σ̃ > C

β
, U0

j,σ̃
and U1

j,σ̃

denote the indicators that the position of the random walk started from vj has the
opinion 0 and opinion 1, respectively, at time σ̃ . It follows by taking C sufficiently
large that E(U0

j,σ̃
),E(U1

j,σ̃
) ∈ (p(1−κ2/100),1−p(1−κ2/100)). Now the proof

is completed arguing as in the proof of Proposition 5.11. �
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LEMMA 5.24. With the notation as in Lemma 5.23, let At denote the event
that for some t ′ with t ′ ∈ [t + Cn2

β
, t + δn2], Xv(t

′) /∈ (p − ε/20,1 − (p −
ε/20))Dv(t

′). Then we have

P
(
At, t + δn2 < τ ′

0 | Ft , t < τ ′
0,N∗(t) = pn

)≤ e−ε20n/2.

PROOF. This follows from a union bound and the previous lemma. �

LEMMA 5.25. We have P[Dv(t + δn2) /∈ (ε/2,1 − ε/2)n, t + δn2 < τ ′
0 |

Ft , t < τ0,N∗(t) = pn] ≤ e−ε21n.

PROOF. Let Ct denote the event that for all t ′ ∈ [t + 1, t + δn2], |N∗(t ′) −
N∗(t)| ≤ ε2n

100 . Let Ht = Ac
t ∩ Ct ∩ {t + δn2 < τ ′

0}. Notice that on Ht , we have at
time t ′ ∈ [t, t + δn2], the number of disagreeing edge at time t ′, denoted Z(t ′)
is in (

p(1−p)
2 ± ε2

20)n2. Also notice that on At , the number of disagreeing edges
incident to v is at time t ′ is in [p − ε/20,1 − (p − ε/20)]Dv(t). Set X(t ′) =
Dv(t

′) − (1 − 3ε/4)n, also set �∗ = (1 − β
n
). It follows therefore that for λ > 0

E
(
eλXt ′+11Ht | Ft ′

)
≤ eλXt ′

(
1 + (

eλ − 1
) �∗Z(t ′)
N(n − 1)

+ (
e−λ − 1

)�∗(p − ε/8)(Xt ′ + (1 − 3ε/4)n)

2N

)
.

Now take λ so small such that eλ − 1 ≤ (1 + ε2/100)λ and e−λ − 1 ≤ −(1 −
ε2/100)λ. Then we have

(5.12)

E
(
eλXt ′+11Ht | Ft ′

)
≤ eλXt ′

(
1 + λ�∗

(
(1 + ε2/50)Zt ′

nN
− (p − ε/10)Xt ′

2N

− (p − ε/10)(1 − 3ε/4)n

2N

))
≤ eλXt ′

(
1 − λ

εXt ′

8N

)
≤ eλ∗Xt ′ ,

where 0 < λ∗ < λ(1 − ε
10N

) and since p > ε implies that on Ht we have
(1+ε2/50)Zt ′

nN
<

(p−ε/10)(1−3ε/4)n
2N

. It follows that there exists λ0 bounded away from
λ such that

E
(
e
λX

t+δn2 1Ht | Ft+Cn2/β

)≤ e
λ0Xt+Cn2/β 1Ht ≤ eλ0εn/4,
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that is,

E
(
e
λX

t+δn2 1Ht | Ft , t < τ0
)≤ eλ0εn/4.

By Markov’s inequality, it now follows that

P
[
Dv

(
t + δn2)≥ (1 − ε/2)n,Ht | Ft , t < τ0

]≤ e−(λ−λ0)εn/4.

It follows from Lemma 5.24 and another random walk estimate that P(Hc
t , t +

δn2 < τ ′
0) is exponentially small in n, which completes the proof of one side of the

bound in this lemma.
The other side of the bound can be proved similarly by starting with λ negative

and X(t) = Dv(t) − 3ε/4. This completes the proof of the lemma. �

PROOF OF THEOREM 5.22. This theorem follows from Lemma 5.25 by taking
a union bound over all vertices v, and all times t ′ ∈ [t − δn2, t] as in the proof of
Theorem 5.16, and using Theorem 4.9. �

5.5. Multiple-edge estimates. Finally, we consider the stronger stopping time
τ4 corresponding to the number of multiple edges adjacent to a fixed vertex in
G(t). Our main theorem in this subsection is the following.

THEOREM 5.26. We have for all t ≥ δn2, P[t + δn2 ≥ τ4, t + δn2 < τ∗, t <

τ ] ≤ 1
n4 .

Theorem 5.26 will follow from the following proposition.

PROPOSITION 5.27. Condition on {Ft , t < τ0}. Let v be a vertex in V . Let
Xv,k(t) denote the number of vertices u ∈ G(t) such that Muv(t) ≥ k. Then for
each 1 ≤ k ≤ 2ε4 logn, we have

P
[
Xv,k

(
t + δn2)> C110−kn, t + δn2 < τ ′

0 | Ft , t < τ
]≤ 1

n10 .

We postpone the proof of Proposition 5.27 for the moment and first show how
this lemma implies Theorem 5.26.

PROOF OF THEROEM 5.26. For each fixed v, taking a union bound over all
k, and then taking a union bound over all v, and then taking a union bound over
times in [t − δn2, t] yields the theorem from Lemma 5.27. �

Now we proceed with the proof of Proposition 5.27. For a fixed time t , by an
r-edge in G(t), we shall refer to a bond containing r edges at time t . To control
the number of bonds with more than k edges adjacent to v at time t + δn2 we do
the following. We show first that for � < k, the fraction of bonds that contained �



1276 R. BASU AND A. SLY

edges at time t but gains at least (k − �) edges in the interval [t, t + δn2] is small
with high probability. Next, we show that the number of k-edges at time t that
gains at least one edges in the same time period is also small with high probability.
Next, we show that a not too small fraction of the k-edges lose at least one edge in
time [t, t +δn2] with high probability. Proposition 5.27 follows from the following
three estimates.

LEMMA 5.28. Condition on {Ft , t < τ0}. Fix v and k as in Proposition 5.27.
For � = 0,1, . . . , k − 1, recall N(� → k) is the number of �-edge at time t that
gained at least (k−�) edges in time [t, t +δn2]. Then we have for each � ≤ (k−5):

P
[
N(� → k) ≥ δ5−(k−�)C110−kn | Ft , t < τ0

]≤ 1

n20 .

Further, for k − 5 < � < k, we have

P
[
N(� → k) ≥ 100δ10(k−�)C110−kn | Ft , t < τ0

]≤ 1

n20 .

PROOF. This lemma is essentially obtained by reworking the proof of
Lemma 4.6, and hence we give only a sketch. Condition on {Ft , t < τ0}; fix v

and k as in the statement of the lemma. Also fix � < k. Let u1, u2, . . . , uD be the
vertices in V such that {Mvui

(t) = �}. Now without loss of generality we assume
D = C110−�n. Following the sequence of arguments in the proofs of Lemma 4.7,
Lemma 4.8 and Lemma 4.6 (using the same notation as there), it follows that

P
[
N(� → k) ≥ δ5−(k−�)C110−kn | Ft , t < τ0

]
≤ e−4δC2D + 2P

[
D∑

i=1

Z′
i ≥ δ50−(k−�)D

]
,

where Z′
i = 1{Y ′

i ≥k−�} and {Y ′
i }1≤i≤D a sequence of i.i.d. Bin(24δC2D, 2

D
) vari-

ables. Using a Chernoff bound as before, it follows that if k − � ≥ 5 then P[Z′
i =

1] ≤ δ100−(k−�) since 480000C2δ < 1. The first statement in the lemma now fol-
lows using a further Chernoff bound on

∑
Z′

i .
For the case k −5 < � < k, a simple first moment estimate gives an upper bound

of 48C2δ on P[Z′
i = 1]. The second statement follows using another Chernoff

bound and observing C2 ≤ 2. �

LEMMA 5.29. Assume the set-up of Lemma 5.28. Let N̂(k) denote the number
of bonds adjacent to v having at least k edges at time t that gained at least one
edge during time [t, t + δn2]. We then have

P
[
N̂(k) ≥ 100δC110−kn

]≤ 1

n20 .
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PROOF. This proof is the same as the proof of the case � = k − 1 case in
Lemma 5.28; we omit the details. �

Now observe the following. Let Yv,k(t) denote the number of vertices u ∈ G(t)

such that Muv(t) = k. In the set-up of Proposition 5.27, if Yv,k(t) < 4
5C110−kn,

since t < τ0 it follows that Xv,k(t) ≤ Yv,k(t) + Xv,k+1(t) ≤ 9
10C110−kn. Clearly,

since

Xv,k

(
t + δn2)≤ Xv,k(t) +

k−1∑
�=0

N(� → k),

in this case Proposition 5.27 would follow from Lemma 5.28 by taking a union
bound over all � < k. So, without loss of generality for the rest of this argument,
we shall assume Yv,k(t) ≥ 4

5C110−kn. We have the following lemma.

LEMMA 5.30. Assume the set-up of Lemma 5.28. Let k > 1010

ε
and let

Yv,k(t) ≥ 4
5C110−kn. Also let Ñ(k) denote the number of k-edges at time t which

lost at least one edge in time [t, t + δn2]. Then

P
[
Ñ(k) < 107δC110−kn

]≤ 1

n20 .

We defer the proof of Lemma 5.30 and instead first prove Proposition 5.27 using
Lemmas 5.28, 5.29 and 5.30.

PROOF OF PROPOSITION 5.27. Condition on {Ft , t < τ0}. Fix a vertex v.
Now let C1 be chosen sufficiently large depending (only) on ε, such that for all k ≤
1010

ε
we have C110−k > C2, and hence the proposition follows from Theorem 5.22.

Now fix k > 1010

ε
.

As argued above using Lemma 5.28, it suffices only to consider the case
Yv,k(t) ≥ 4

5C110−kn. Clearly, we have

Xv,k

(
t + δn2)≤ Xv,k(t) +

k−1∑
�=0

N(� → k) + N̂(k) − Ñ(k).

Let A denote the event that for all � ≤ k − 5, we have N(� → k) ≤
δ10−(k−�)C110−kn. Let B denote the event that for k − 5 < � < k we have N(� →
k) ≤ 100δ10(k−�)C110−kn. Let D denote the event that N̂(k) ≤ 100δC110−kn. Fi-
nally, let H denote the event that Ñ(k) ≥ 107δC110−kn. Clearly, on A∩B∩D∩H
we have

k−1∑
�=0

N(� → k) + N̂(k) − Ñ(k) ≤ 0
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and since Xv,k(t) ≤ C110−kn on {t < τ0} it follows that Xv,k(t +δn2) ≤ C110−kn.
The proposition now follows from Lemmas 5.28, 5.29 and 5.30. �

Coming back to the proof of Lemma 5.30 we shall need to show that a not too
small fraction of the k-edges at time t loses at least one edge in time [t, t + δn2].
For this particular argument, it will be convenient to work with the continuous time
rewire-to-random-* dynamics. First, we show that most k-edges spend a consider-
able fraction of the time with their endpoints disagreeing (clearly without this they
cannot lose any edges). We have the following proposition.

PROPOSITION 5.31. Let us condition on {Ft , t < τ0}. Let v be a fixed vertex

in V and let 2ε4 logn > k > 1010

ε
be fixed. Let u1, u2, . . . , uD be the vertices in v

such that we have Mvui
(t) = k. Set G(t) = H(0) and Run the following continuous

time rewire-to-random-* process H(·) from time 0 to δ/2. Each directed edge rings
at rate 1. If the endpoints of the edge are agreeing in the current graph, no change
occurs. If they are disagreeing, then we do a voter model step with probability β

n

and a rewire-to-random step with probability (1 − β
n
). Let Zi be the indicator that

(v, ui) is disagreeing for less that εδ
200 time in H(·). Then we have P(

∑D
i=1 Zi >

δ
10C110−kn, τ ′

0 > δ/2) ≤ e−γ
√

n for some γ > 0.

PROOF. Without loss of generality, we assume D = 4
5C110−kn 
 √

n. Let us
choose a random subset D∗ ⊆ 1,2, . . . ,D with |D∗| = √

n. It therefore suffices
to prove that P(

∑
i∈D∗ Zi > δ

100

√
n | D∗) ≤ e−γ

√
n. This fact is established by

Lemma 5.32 and Lemma 5.33 below which completes the proof. �

For the proof of the above proposition, we shall consider the coupling with the
continuous time independent random walks on G(t) described in Section 5.1. First,
we show that for most of the vertices ui the opinion of the random walkers started
at ui is different from the opinion of v in the continuous time rewire-to-random-*
dynamics for a significant amount of time. We have the following lemma.

LEMMA 5.32. Condition on {Ft , t < τ0}. Let us set G(t) = H(0), and con-
sider running the continuous time rewire-to-random-* dynamics H(·) from time 0
to δ/2. Let v, v1, v2, . . . , v

√
n be fixed vertices in V . Let us consider the indepen-

dent continuous time random walks described in Section 5.1. Let us X
j
i (·) be the

random walk started from vi on H(2j C
β
) run for time 2C

β
. For C

β
≤ s ≤ 2C

β
, let

Yi(2j C
β

+ s) is the indicator of the event that the opinion of X
j
i (s) in H(0) is dif-

ferent from the opinion of v in H(s). Let Y ∗
i = ∫ δ

2
0 Yi(s)ds. Further, let Z∗

i denote
the indicator that Y ∗

i < εδ
64 . Then we have

P

[∑
i

Z∗
i ≥ δ

1000

√
n

]
≤ e−c

√
n.
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PROOF. For h = 0,2, . . . , C
θ

− 1, j = 1,2, . . . ,
δβ
4C

, let χ
j,h
v = 1 if v spends

majority of its time in the interval [(2j − 1)C
β

+ hθ
β

, (2j − 1)C
β

+ (h+1)θ
β

] with

opinion 1 and 0 otherwise. Let χ
j,h
i = 1 if the opinion of X

j
i (s) = 1 for all s ∈

[(2j − 1)C
β

+ hθ
β

, (2j − 1)C
β

+ (h+1)θ
β

], χ
j,h
i = 0 if the opinion of X

j
i (s) = 0 for

all s ∈ [(2j − 1)C
β

+ hθ
β

, (2j − 1)C
β

+ (h+1)θ
β

], and χ
j,h
i = � otherwise. Now let

U
j,h
i = 1{χj,h

i =1,χ
j,h
v =0} + 1{χj,h

i =0,χ
j,h
v =1}.

Let us fix h. Now choose θ sufficiently small so that the chance that the ran-
dom walk takes a step in time θ/β is at most ε

4 . Clearly, for a fixed realisation

of the sequence χ
j,h
v , and on {2(j −1)C/β < τ ′

0}, we have by Proposition 5.5, that

E[Uj,h
i | F2(j−1)C/β] ≥ ε/4. Since the random walks are independent, it follows

that

P

[
#
{
i :∑

j

U
j,h
i ≤ δβε

8C

}
≥ e−γ ′β√

n,χj,h
v ,

δ

2
< τ ′

0

]
≤ e−c

√
n.

Taking a union bound over 3δβ/4C possible realisations of the sequence χ
j,h
v

(for a fixed h), we get that

P

[
#
{
i :∑

j

U
j,h
i ≤ δβε

32C

}
≥ e−γ ′β√

n,
δ

2
< τ ′

0

]
≤ e−c

√
n

for some constant γ ′ and c > 0.
Now taking a union bound over h, we get

P

[
#
{
i :∑

j

∑
h

U
j,h
i ≤ δβε

32θ

}
≥ C

θ
e−γ ′β√

n,
δ

2
< τ ′

0

]
≤ C

θ
e−c

√
n.

Now notice that on {∑j

∑
h U

j,h
i >

δβε
32θ

}, we have Y ∗
i > εδ

64 , and the proof of the
lemma is completed by taking β sufficiently large. �

To complete the proof of Proposition 5.31, we still need to show that approx-
imating the opinions of the vertices ui by the opinion of the random walkers via
the above coupling is good enough for our purposes. This is the content of the next
lemma.

LEMMA 5.33. Assume the setting of Lemma 5.32. Also let Ỹi denote the
amount of time the bond (v, vi) is disagreeing in [0, δ

2 ]. Then there is a coupling of
the continuous time evolving voter model with the continuous time random walks
started at vi as described in Lemma 5.32 such that

P

[
#
{
i : Ỹi ≤ Y ∗

i − εδ

128

}
≥ δ

1000

√
n,

δ

2
< τ ′

0

]
≤ e−c

√
n

for some constant c.
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PROOF. Consider the coupling described in Section 5.1, with the obvious
modification for the continuous time dynamics. Define Yi,j = 0 if the opinion of

X
j
i (s) is the same as the opinion of vi in H(

2jC
β

+s) for all s ∈ [0, 2C
β

] and Yi,j = 1
otherwise. There exists a function g(β) � β such that g(β) → ∞ as β → ∞ for
which we have

(5.13) P

[δβ/4C∑
j=1

√
n∑

i=1

Yi,j ≥ 10Cδg(β)
√

n,
δ

2
< τ ′

0

]
≤ e−c

√
n

for some constant c > 0. Indeed we can prove (5.13) by following the sequence of
arguments in Lemma 5.6, Lemma 5.7, Lemma 5.8 and Lemma 5.9. We omit the
proof. Again notice that, Ỹi − Y ∗

i ≥ −(
∑

j Yi,j )
2C
β

. It follows that

P

[
#
{
i : Ỹi ≤ Y ∗

i − εδ

128

}
≥ 2560C2g(β)

βεδ

√
n,

δ

2
< τ ′

0

]
≤ e−c

√
n.

The proof of the lemma is completed by taking β sufficiently large. �

Now that we have established Proposition 5.31, we still need to show that if
most of the bonds (v, ui) are disagreeing for a significant time then a not too small
fraction of them loses at least one edge in time [0, δ

2 ] with high probability.

LEMMA 5.34. Condition on {Ft , t < τ0}. Assume the setting of Proposi-
tion 5.31 and let v, k be fixed as there. Also assume D ≥ 4

5C110−kn. Let Wi be
the indicator that the bond (v, ui) loses at least one edge by time δ

2 . Then we have

P

[
D∑

i=1

Wi < 107δC110−kn, τ ′
0 >

δ

2

]
≤ 1

n20 .

PROOF. Without loss of generality, assume D = 4
5C110−rn >>

√
n. In the

continuous time model, the rate at which a bond with k disagreeing edges lose
an edge is k(1 − 1

n
), and the rings of the different edges are independent. Let

S1, S2, . . . , SD be the number of edges lost by the bonds vu1, vu2, . . . , vuD , re-
spectively. Let {S′

i}1≤i≤D be a collection of independent Poi(4 × 107δ) variables.
Since kδε

200 > 5 × 107δ, it follows from Proposition 5.31 that there exist a coupling
such that

P

[
#
{
i : Si ≤ S′

i

}≥ δ

10
C110−kn, τ ′

0 >
δ

2

]
≤ e−c

√
n

for some constant c > 0. Also observe that P[S′
i ≥ 1] ≥ 2 × 107δ (recall δ <

10−10), and hence by a large deviation estimate it follows that

P
[
#
{
i : S′

i ≥ 1
}
< 1.5 × 107δC110−kn

]≤ 1

n25 .
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The lemma follows combining the above estimates. �

Finally, we are ready to prove Lemma 5.30.

PROOF OF LEMMA 5.30. Without loss of generality, we assume Yv,k(t) =
4
5C110−kn. The proof now follows from Lemma 5.34 and the obvious coupling of
the continuous time rewire-to-random-* dynamics with the discrete time rewire-
to-random-* dynamics and observing that with exponentially high probability, the
number of steps taken in the discrete time process up to time δ

2 in the continuous
time process is less that δn2. �

5.6. Completing the proof of Theorem 3.2. Now we are ready to prove Theo-
rem 3.2.

PROOF OF THEOREM 3.2. Using a random walk estimate, it is clear that
P[τ0 > n4] = o(1). Also it is clear from the properties of an Erdős–Rényi graph
that P[τ0 < δn2] = o(1). Now for k ≥ 0, and i = 2,3,4,5, let Ak,i denote the
event {kδn2 < τ0, (k + 1)δn2 < τ∗, (k + 1)δn2 ≥ τi}. Using Theorem 5.16, Theo-
rem 5.17, Theorem 5.26 and Theorem 5.22 and taking a union over 0 ≤ k ≤ n2/δ,
it follows that

P
[
τ0 < τ∗ − δn2]≤ o(1) +∑

i,k

P(Ak,i) = o(1).

This completes the proof. �

6. Rewire-to-random eventually splits. In this section, we prove Theorem 2.
For this section, we shall consider running the rewire-to-random model with a dif-
ferent initial condition. For 0 < p < 1, let G∗(p) be the following subset of the
state space of our Markov chain, that is, let G∗(p) is a set of multi-graphs of n

vertices with labelled edges where each vertex has either of the two opinions 0
and 1, such that N1(G) = pn and the number of edges in G is in [12n2

50 , 13n2

50 ].
Recall the stopping times τ = min{t : E×(t) = ∅} for the process to terminate

and for η ∈ (0, 1
2 ], recall τ∗(η) = min{t : N∗(t) ≤ ηn} is the first time the minority

opinion density reaches η. Denote τ̃ = τ̃ (p) = τ∗(p/2). Theorem 2 will follow
from the next theorem.

THEOREM 6.1. Let β > 0 be fixed. Consider running the rewire-to-random
model with relabelling rate β starting with the state G(0). Then there exists p =
p(β) sufficiently small such that for all G(0) ∈ G∗(p), we have τ < τ̃ with high
probability.

We postpone the proof of Theorem 6.1 and instead show first how this implies
Theorem 2.
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PROOF OF THEOREM 2. Since in the set up of this theorem G(0) is dis-
tributed as G(n, 1

2), it follows that with high probability the number of edges in

G(0) is in [12n2

50 , 13n2

50 ]. Let p = p(β) be sufficiently small so that the conclu-
sion of Theorem 6.1 holds. It follows that on {τ∗(p) < ∞}, with high probability
G(τ∗(p)) ∈ G∗(p). Since the rewire-to-random dynamics is symmetric in the opin-
ions 0 and 1, it follows from Theorem 6.1 that τ < τ̃ with high probability. This
completes the proof of the theorem. �

Before starting with the proof of Theorem 6.1 we make the following defini-
tions. Let us fix G(0) ∈ G∗(p). Let S be the set of vertices in G(0) with de-
gree at most 10n and let T be the set of vertices with degree more than 10n.
Clearly, |S| ≥ 24n

25 . We next describe an equivalent way of constructing the rewire-
to-random dynamics started with G(0).

An equivalent construction of the dynamics:
Let {Xi} and {X′

i} be two sequences of i.i.d. Geom(
β
n
) variables (taking values

in {0,1, . . .}). Let {Zi} be a sequence of i.i.d. Ber(1
2) variables. Let {Wi} be a

sequence of vertices of G where each Wi is a uniformly chosen vertex of G. All
these sequences are distributed independently of each other.

We now describe how to run the process starting with G(0) using only the ran-
domness in the above sequences and the randomness used to choose a disagreeing
edge uniformly at each step. Having chosen a disagreeing edge the variables Zi

will be used to designate one of the endpoints of the edge uniformly as the root
of the current (relabelling or rewiring) update. Also for each vertex v in V , we
shall define a sequence Ki(v). To start with, list the vertices in V in some order,
say {v1, v2, . . . , vn}. Define K0(vj ) = X′

j for all j . This encodes the number of
updates at the vertex vj (i.e., the number of moves with vj being the root) before
it changes its opinion for the first time which clearly has a Geom(

β
n
) distribution.

Roughly speaking, for each vertex v the sequence {Ki(v)} will be a counter which
shall denote how many more rewiring updates one needs to make at v before the
next relabelling update. Once the counter runs to 0, the next update at that vertex
is a relabelling one, and a new value from either the sequence {Xi} or the sequence
{X′

i} will be assigned to the counter. We describe the process formally below.
We shall define the sequences Li,L

′
i , Ti recursively; these will be indices of

different elements chosen from {Xi}, {X′
i} and {Wi}, respectively. Let L0 = T0 = 0

and L′
0 = n. At step i, pick a disagreeing edge e uniformly at random, if such

an edge exists. If Zi = 1, then choose the vertex with opinion 1 to be the root
of the rewiring or relabelling step, if Zi = 0, choose the other one. Let v be the
chosen vertex. If v is in S and the opinion of v is 0, do the following. Set L′

i =
L′

i−1. If Ki−1(v) is positive, then define Ti = min{k > Ti−1 : Wk �= v}, that is Ti

is the index of the first hitherto uninspected element in {Wj } which allows a legal
rewiring move. Rewire the edge to Wk and reduce Ki(v) by 1, and set Li = Li−1.
If Ki−1(v) = 0, then relabel v and set Li = Li−1 + 1 and Ki(v) = XLi

, in this
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case, also set Ti = Ti−1. If v is not in S, or the opinion of v is 1, then do the same
as in the previous case except use elements from the sequence X′ and L′ in stead
of the elements from sequence X and L, and change the values in the sequence L′
instead of the sequence L. It is easy to see that this is indeed an implementation of
the rewire-to-random dynamics.

With this implementation let us consider running the process for 10n2 steps if
possible, that is, if it does not reach τ . We shall need the following sequence of
lemmas. The first follows immediately from the fact that the number of vertices
with opinion 1 does a random walk until time τ .

LEMMA 6.2. For a fixed p > 0 and G(0) ∈ G∗(p), the number of vertices of
opinion 1 remains between pn/2 and 3pn/2 throughout the first 10n2 steps w.h.p.

We call an element of the sequence X stubborn if it is at least 25n.

LEMMA 6.3. Let Y = #{i ≤ L10n2 : Xi > 25n} denote the number of stub-
born elements of X which are used in first 10n2 steps. Then with high probability,
N1(10n2) ≥ Y , that is, the number of vertices with label 1 after 10n2 steps is at
least the number of used stubborn elements of the sequence X.

PROOF. Let S denote the following event:

S = {∀v ∈ G : #{i ≤ T10n2 : Wi = v} ≤ 14n
}
.

We show that on S , the vertices in S that each stubborn element gets assigned to
[i.e., those v such that X� = Ki(v) for some i and some stubborn X�] are distinct
and each of them has label 1 after 10n2 steps. Consider a specific stubborn ele-
ment, suppose it was used and assigned to the vertex v. By definition, at that point
the opinion of v was 1. Now by definition of stubbornness, before it changes its
opinion again, v needs to be the root of at least 25n rewiring moves. Notice now
that the number of rewirings rooted at v is at most the sum of the initial degree of
v (which is at most 10n since v ∈ S) and the number of rewirings to v (which is at
most 14n on S). Hence, the vertex v never changes its opinion again and in partic-
ular is never associated with any other stubborn element. Hence, corresponding to
each used stubborn element, there are distinct vertices in V which have opinion 1
after 10n2 steps.

It remains to show that S occurs with high probability. First, notice that us-
ing an argument similar to that used in the proof of Lemma 2.2, it follows that
P(T10n2 > 11n2) is exponentially small in n. Also, we note that for each v ∈ V ,
the chance that v occurs more than 14n times in the first 11n2 elements of the list
W is exponentially small in n using a Chernoff bound. Taking a union bound over
all the vertices completes the proof of the lemma. �



1284 R. BASU AND A. SLY

LEMMA 6.4. Let RLSS denote the number of times (up to 10n2 steps) a re-
labelling occurs when an edge with both endpoints in S was chosen. Then, for p

sufficiently small, RLSS ≤ βn
20 w.h.p.

PROOF. Let RL+
SS denote the number of times (up to 10n2 steps) we have a

relabelling changing an opinion to 1 after an edge with both endpoints in S was
chosen. Notice that each time we choose an edge with both endpoints in S, and do a
relabelling update changing an opinion from 0 to 1, and element from the sequence
X gets used. Hence, it follows from Lemma 6.2 and Lemma 6.3 it follows that
w.h.p.

RL+
SS ≤ min

i

{
#{j ≤ i : Xj ≥ 25n} >

3pn

2

}
.

Since each Xj is a Geom(
β
n
) variable it follows that P(Xj ≥ 25n) = (1 −

β
n
)25n ≥ e−50β . Since Xj ’s are i.i.d., it follows that for p sufficiently small (de-

pending on β), within first βn
50 elements of X, there are more than 3pn

2 stubborn

elements with high probability. It follows that with high probability RL+
SS ≤ βn

50 .
Now notice that each time a relabelling occurs when an edge with both end-

points in S is chosen, with probability 1
2 the relabelling changes an opinion to

1 and these events are independent of one another. It follows that P(RLSS >
βn
20 ,RL+

SS ≤ βn
50 ) is exponentially small in n. It now follows that for p sufficiently

small, RLSS ≤ βn
20 w.h.p. �

LEMMA 6.5. Let RSS be the number of times up to 10n2 an edge with both

endpoints on S was picked. For p sufficiently small, RSS ≤ n2

10 w.h.p.

PROOF. Each time an edge is picked, it leads to a relabelling with probability
β
n

. It follows using a Chernoff bound that

P

(
RSS >

n2

10
,RLSS ≤ βn

20

)
≤ P

(
Bin

(
n2

10
,
β

n

)
≤ βn

20

)
≤ e− βn

80 .

The lemma now follows from Lemma 6.4. �

Let WST denote the total number of rewiring moves (up to time 10n2) where a
disagreeing edge with one endpoint in S and another endpoint in T is rewired. Let
WSS and WTT be defined similarly. Let YSS denote the number of edges with both
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endpoints in S at the end of the process (i.e., after running 10n2 steps). YST , YTT
are defined similarly. Finally, let RST (resp., RTT ) be the number of times (up to
10n2) a disagreeing edge is picked with one endpoint in S and another in T (resp.,
both endpoints in T ). We have the following lemmas.

LEMMA 6.6. For p sufficiently small, RST ≤ 3n2 w.h.p.

PROOF. Each time an edge with one endpoint in S and the other in T is
rewired, with probability 1

2 it is rewired with the root at the vertex in S and in-

dependent of that with probability at least |S|−1
n−1 the edge is rewired to a vertex

in S. That is, after rewiring an edge with one endpoint in S and another in T , the
chance that it becomes an edge with both endpoints in S is at least |S|−1

2(n−1)
≥ 23

50 for
n sufficiently large. Let WST→SS denote the number of such rewirings. It follows
that P(WST→SS ≤ 11n2

10 ,WST > 5n2

2 ) is exponentially small in n2. Now notice that

n2 ≥ YSS ≥ −RSS + WST→SS

and it follows from Lemma 6.5 that for p sufficiently small WST →SS ≤ 11n2

10 w.h.p.,

and hence WST ≤ 5n2

2 w.h.p. Since each time a disagreeing edge is picked, with

probability 1 − β
n

, it leads to a rewiring, it follows that P(RST > 3n2,WST ≤ 5n2

2 )

is exponentially small in n2, and hence for p sufficiently small RST ≤ 3n2 w.h.p.
�

LEMMA 6.7. For p sufficiently small RTT ≤ 6n2 w.h.p.

PROOF. Arguing as in the proof of Lemma 6.6, we have that after rewiring
an edge with both endpoints in T , the chance that it becomes an edge with one
endpoint in S and another in T is |S|

n
≥ 24

25 . Let WTT→ST denote the number of
such rewirings. It follows that P(WTT→ST ≤ 4n2,WTT > 5n2) is exponentially
small in n2. Now notice that

n2 ≥ YST ≥ −RST + WTT→ST

and it follows from Lemma 6.6 that for p sufficiently small WTT→ST ≤ 4n2 w.h.p.
It follows that WTT ≤ 5n2 w.h.p. Arguing as in the proof of Lemma 6.6 we con-
clude that RTT ≤ 6n2 w.h.p. �

We are now ready to prove Theorem 6.1.

PROOF OF THEOREM 6.1. From Lemma 6.5, Lemma 6.6 and Lemma 6.7
we have that for p = p(β) sufficiently small and G(0) ∈ G∗(p), we have RSS +
RST + RTT < 10n2 with high probability. This implies after 10n2 steps there are
no disagreeing edge in the graph, that is, for p sufficiently small τ ≤ 10n2 w.h.p.
The theorem now follows from Lemma 6.2. �
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7. Modifications for the rewire-to-same model. We can prove Theorem 1
for the rewire-to-same model in a similar manner. To avoid repetitions, we only
point out the main differences here. Notice that, with respect to our proof in pre-
vious sections, the major difference between the two dynamics that causes some
inconvenience is that in the rewire-to-same dynamics a vertex with minority opin-
ion is likely to receive edges at a higher rate than a vertex with majority opinion.
But as long as the minority opinion density does not become too small, the differ-
ence is of a bounded factor, and it turns out that the arguments can be modified to
accommodate this. We now point out the main lemmas from the previous sections
that need to be modified for the rewire-to-same dynamics.

7.1. Small β case. Notice that the only place that needs a modification is
Lemma 2.2. One needs to define for this case Li+1 as the first entry after Li to
which a rewiring move is legal. Here, it is not true that L6n2 ≤ 13n2/2 with expo-
nentially high probability. But notice that, on t < τ∗(1/3), Li+1 − Li is stochasti-
cally dominated by a Geom(1

3) variable, and hence, one can say L6n2 < 20n2 with
exponentially large probability. The rest of the proof is in essence same up to some
minor changes in constants.

7.2. Large β case. The proof in the large β case also follows along the similar
lines. Instead of the rewire-to-same dynamics, we consider the rewire-to-same-
* dynamics, where instead of a disagreeing edge, at each step we pick an edge
at random, and do not do anything if the edge happens to be agreeing. Most of
necessary changes occur while bounding the number of incoming edges to a vertex
in time [t, t +δn2]. But on τ < τ∗(ε), one can bound the number of incoming edges
to a vertex v in that time by a Bin(δn2, 1

εn
) variable.

The only other place where a somewhat significant modification is necessary is
in the bound for large cuts. Instead of Proposition 5.11 and Proposition 5.13, one
needs to show that for any given cut S and T , with |S| ∧ |T | ≥ ε2n, the number of
edges with one endpoint in S and another endpoint in T , such that the S end point
has opinion 0 and the T endpoint has opinion 1, is roughly about p(1 − p) frac-
tion of the total number of edges with exponentially high probability, and similar
bounds on other similar quantities. It can be checked that all these can be obtained
following a similar line of arguments as in the proof of Proposition 5.11. We omit
the details. The rest of the bounds can then be obtained by suitably modifying the
martingale calculations in Proposition 5.15. The whole proof can then be carried
out with some minor changes of constants.

8. Open questions. While we establish some rigorous results for the evolving
voter model on dense random graphs, the picture is far from clear. We conclude
with the following natural questions, that are still open:
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• What happens eventually in the rewire-to-same model? Notice that we do not
have any result analogous to Theorem 2 in the rewire-to-same model. It is a
natural question to ask whether in the rewire-to-same model, is there a posi-
tive fraction of both opinions present when the process reaches an absorbing
state? As we have mentioned before, in [4] it was conjectured that, for the sparse
graphs (with constant average degree), in the rewire-to-same model, one of the
opinions take over almost the whole graph, but it is not known rigorously.

• Is there a sharp transition in β? Another natural question to ask is if there is
any value β0 such that for β < β0 we have behaviour as in Theorem 1(i) and for
β > β0, we have behaviour as in Theorem 1(ii)?

• What can we say about sparser graphs? We can prove by an argument similar
to proof of Theorem 2. for sparser graph with suitably rescaled relabelling rate
[i.e., G(0) ∼ G(n, λ

n
)] that there exists β0 > 0, such that for all β < β0, with

high probability the process stops before the density of the opinions change.
But the other side of the phase transition seems harder to prove. The main
difficulty seems to be the presence of a few vertices of very high degree. It
is another interesting question to investigate whether one could prove results
about evolving voter models starting with not too sparse graphs, for example,
G(0) ∼ G(n,nα−1) for some 0 < α < 1? Following our arguments, Basak, Dur-
rett and Zhang [2] very recently observed that analogues of Theorem 1(i) and
Theorem 2 holds in this case.

Acknowledgements. The authors would like to thank Rick Durrett for intro-
ducing them to the model and an anonymous referee for helpful suggestions that
helped improve the exposition of the paper. This work was completed while Rid-
dhipratim Basu was a graduate student at the Department of Statistics, University
of California, Berkeley.

REFERENCES

[1] ALDOUS, D. and FILL, J. A. (2002). Reversible Markov Chains And Random Walks
On Graphs. Unfinished monograph. Recompiled 2014. Available at http://www.stat.
berkeley.edu/~aldous/RWG/book.html.

[2] BASAK, A. DURRETT, R. and ZHANG, Y. (2015). The evolving voter model on thick graphs.
Preprint. Available at arXiv:1512.07871.

[3] DURRETT, R. (2010). Random Graph Dynamics. Cambridge Univ. Press, Cambridge.
MR2656427

[4] DURRETT, R., GLEESON, J. P., LLOYD, A. L., MUCHA, P. J., SHI, F., SIVAKOFF, D., SO-
COLAR, J. E. S. and VARGHESE, C. (2012). Graph fission in an evolving voter model.
Proc. Natl. Acad. Sci. USA 109 3682–3687. MR2903372

[5] FRIEDLAND, S. and NABBEN, R. (2002). On Cheeger-type inequalities for weighted graphs.
J. Graph Theory 41 1–17. MR1919163

[6] GIL, S., ZANETTE, D. H., BARILOCHE, C. A. and NEGRO, R. (2006). Coevolution of agents
and networks: Opinion spreading and community disconnection. Phys. Lett. A 356 89–94.

[7] GROSS, T. and BLASIUS, B. (2008). Adaptive coevolutionary networks: A review. J. R. Soc.
Interface 5 259–271.

http://www.stat.berkeley.edu/~aldous/RWG/book.html
http://www.stat.berkeley.edu/~aldous/RWG/book.html
http://arxiv.org/abs/arXiv:1512.07871
http://www.ams.org/mathscinet-getitem?mr=2656427
http://www.ams.org/mathscinet-getitem?mr=2903372
http://www.ams.org/mathscinet-getitem?mr=1919163


1288 R. BASU AND A. SLY

[8] HENRY, A. D., PRAŁAT, P. and ZHANG, C.-Q. (2011). Emergence of segregation in evolving
social networks. Proc. Natl. Acad. Sci. USA 108 8605–8610. MR2813308

[9] HOLLEY, R. A. and LIGGETT, T. M. (1975). Ergodic theorems for weakly interacting infinite
systems and the voter model. Ann. Probab. 3 643–663. MR0402985

[10] HOLME, P. and NEWMAN, M. (2006). Nonequilibrium phase transition in the coevolution of
networks and opinions. Phys. Rev. E 74 056108.

[11] KIMURA, D. and HAYAKAWA, Y. (2008). Coevolutionary networks with homophily and het-
erophily. Phys. Rev. E 78 016103.

[12] KOZMA, B. and BARRAT, A. (2008). Consensus formation on coevolving networks: Groups’
formation and structure. J. Phys. A 41 224020. MR2453832

[13] LEVIN, D. A., PERES, Y. and WILMER, E. L. (2009). Markov Chains and Mixing Times.
Amer. Math. Soc., Providence, RI. MR2466937

[14] LIGGETT, T. M. (1985). Interacting Particle Systems. Grundlehren der Mathematischen Wis-
senschaften [Fundamental Principles of Mathematical Sciences] 276. Springer, New
York. MR0776231

[15] MALIK, N. and MUCHA, P. J. (2013). Role of social environment and social clustering in
spread of opinions in coevolving networks. Chaos 23 043123. MR3389752

[16] NEWMAN, M. E. J. (2010). Networks. An Introduction. Oxford Univ. Press, Oxford.
MR2676073

[17] ROGERS, T. and GROSS, T. (2013). Consensus time and conformity in the adaptive voter
model. Phys. Rev. E 88 030102.

[18] SHI, F., MUCHA, P. J. and DURRETT, R. (2013). Multiopinion coevolving voter model with
infinitely many phase transitions. Phys. Rev. E 88 062818.

[19] SKYRMS, B. and PEMANTLE, R. (2000). A dynamic model of social network formation. Proc.
Natl. Acad. Sci. USA 97 9340–9346.

[20] SOOD, V. and REDNER, S. (2005). Voter model on heterogeneous graphs. Phys. Rev. Lett. 94.
[21] SUCHECKI, K., EGUÍLUZ, V. M. and SAN MIGUEL, M. (2005). Voter model dynamics in

complex networks: Role of dimensionality, disorder, and degree distribution. Phys. Rev.
E 72 036132.

[22] VAZQUEZ, F. (2013). Opinion dynamics on coevolving networks. In Dynamics on and of
Complex Networks. Vol. 2. Model. Simul. Sci. Eng. Technol. (A. Mukherjee, M. Choud-
hury, F. Peruani, N. Ganguly and B. Mitra, eds.) 89–107. Birkhäuser/Springer, New York.
MR3156593

[23] VAZQUEZ, F., EGUÍLUZ, V. M. and MIGUEL, M. S. (2008). Generic absorbing transition in
coevolution dynamics. Phys. Rev. Lett. 100 108702.

[24] VOLZ, E. and MEYERS, L. A. (2007). Susceptible-infected recovered epidemics in dynamic
contact networks. Proc. Biol. Sci. 274 2925–2933.

[25] VOLZ, E. and MEYERS, L. A. (2009). Epidemic thresholds in dynamic contact networks. J. R.
Soc. Interface 6 233–241.

[26] YI, S. D., BAEK, S. K., ZHU, C.-P. and KIM, B. J. (2013). Phase transition in a coevolving
network of conformist and contrarian voters. Phys. Rev. E 87 012806.

DEPARTMENT OF MATHEMATICS

STANFORD UNIVERSITY

STANFORD, CALIFORNIA 94305
USA
E-MAIL: rbasu@stanford.edu

DEPARTMENT OF STATISTICS

UNIVERSITY OF CALIFORNIA, BERKELEY

BERKELEY, CALIFORNIA 94720
USA
E-MAIL: sly@stat.berkeley.edu

http://www.ams.org/mathscinet-getitem?mr=2813308
http://www.ams.org/mathscinet-getitem?mr=0402985
http://www.ams.org/mathscinet-getitem?mr=2453832
http://www.ams.org/mathscinet-getitem?mr=2466937
http://www.ams.org/mathscinet-getitem?mr=0776231
http://www.ams.org/mathscinet-getitem?mr=3389752
http://www.ams.org/mathscinet-getitem?mr=2676073
http://www.ams.org/mathscinet-getitem?mr=3156593
mailto:rbasu@stanford.edu
mailto:sly@stat.berkeley.edu

	Introduction
	Main results
	Formal model deﬁnitions
	Outline of the proof

	Fast polarization for small beta
	High relabelling rate case: Stopping times
	A time change: rewire-to-random-* dynamics

	Estimates for the weak stopping times
	Estimates for strong stopping times
	The coupling construction
	Mixing time of the individual random walks
	Properties of the coupling

	Bound for large cuts
	Fraction of disagreeing edges
	Obtaining a bound for tau2

	Edge multiplicity
	Degree estimate
	Multiple-edge estimates
	Completing the proof of Theorem 3.2

	Rewire-to-random eventually splits
	Modiﬁcations for the rewire-to-same model
	Small beta case
	Large beta case

	Open questions
	Acknowledgements
	References
	Author's Addresses

