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STEIN’S METHOD FOR STEADY-STATE DIFFUSION
APPROXIMATIONS OF M/Ph/n + M SYSTEMS1

BY ANTON BRAVERMAN AND J. G. DAI

Cornell University

We consider M/Ph/n + M queueing systems in steady state. We prove
that the Wasserstein distance between the stationary distribution of the nor-
malized system size process and that of a piecewise Ornstein–Uhlenbeck
(OU) process is bounded by C/

√
λ, where the constant C is independent of

the arrival rate λ and the number of servers n as long as they are in the Halfin-
Whitt parameter regime. For each integer m > 0, we also establish a similar
bound for the difference of the mth steady-state moments. For the proofs, we
develop a modular framework that is based on Stein’s method. The frame-
work has three components: Poisson equation, generator coupling, and state
space collapse. The framework, with further refinement, is likely applicable
to steady-state diffusion approximations for other stochastic systems.

1. Introduction. This paper focuses on M/Ph/n + M systems, which serve
as building blocks to model large-scale service systems such as customer contact
centers [1, 23] and hospital operations [2, 48]. In such a system, there are n iden-
tical servers, the arrival process is Poisson (the symbol M) with rate λ, the service
times are i.i.d. having a phase-type distribution (the symbol Ph) with mean 1/μ,
the patience times of customers are i.i.d. having an exponential distribution (the
symbol +M) with mean 1/α < ∞. When the waiting time of a customer in queue
exceeds her patience time, the customer abandons the system without service; once
the service of a customer is started, the customer does not abandon.

Let Xi(t) be the number of customers in phase i at time t for i = 1, . . . , d ,
where d is the number of phases in the service time distribution. Let X(t) be
the corresponding vector. Then the system size process X = {X(t), t ≥ 0} has a
unique stationary distribution for any arrival rate λ and any server number n due
to customer abandonment; although X is not a Markov chain, it is a function of
a Markov chain with a unique stationary distribution, see Section 4 for details. In
this paper, we prove, in Theorem 1, that

(1.1) sup
h∈H

∣∣E[
h
(
X̃(λ)(∞)

)] −E
[
h
(
Y(∞)

)]∣∣ ≤ C√
λ

for any λ > 0 and n ≥ 1
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satisfying

(1.2) nμ = λ + β
√

λ,

where β ∈ R is some constant and H is some class of functions h : Rd → R. In
(1.1), X̃(λ)(∞) is a random vector having the stationary distribution of a properly
scaled version of X = X(λ) that depends on the arrival rate λ, number of servers n,
the service time distribution, and the abandonment rate α, and Y(∞) is a random
vector having the stationary distribution of a piecewise Ornstein–Uhlenbeck (OU)
process Y = {Y (t), t ≥ 0}. The stationary distribution of X(λ) exists even when
β is negative because α is assumed to be positive. The constant C depends on
the service time distribution, abandonment rate α, the constant β in (1.2), and
the choice of H, but C is independent of the arrival rate λ and the number of
servers n. Two different classes H will used in our Theorem 1. First, we take H to
be the class of polynomials up to a certain order. In this case, (1.1) provides rates
of convergence for steady-state moments. Second, H is taken to be W(d), the class
of all 1-Lipschitz functions

(1.3) W(d) = {
h :Rd →R : ∣∣h(x) − h(y)

∣∣ ≤ |x − y|}.
In this case, (1.1) provides rates of convergence for stationary distributions under
the Wasserstein metric [47]; convergence under Wasserstein metric implies the
convergence in distribution [24].

In [14], an algorithm was developed to compute the stationary distribution of
the diffusion process Y . The distribution of Y(∞) is then used to approximate
the stationary distribution of X(λ). The approximation is remarkably accurate; see,
for example, Figure 1 there. It was demonstrated that computational efficiency, in
terms of both time and memory, can be achieved by diffusion approximations. For
example, in an M/H2/500 + M system studied in [14], where the system has 500
servers and a hyper-exponential service time distribution, it took around 1 hour and
peak memory usage of 5 GB to compute the stationary distribution of X(λ) using an
algorithm that fully explores the special structure of a three-dimensional Markov
chain. On the same computer, to compute the stationary distribution of the corre-
sponding two-dimensional diffusion process it took less than 1 minute and peak
memory usage was less than 200 MB. The computational saving by the diffusion
model is achieved partly through state space collapse (SSC), a phenomenon that
causes dimension reduction in state space. Theorem 1 quantifies the steady-state
diffusion approximations developed in [14].

In [29], the authors prove a version of (1.1) for the M/M/n + M system, a
special case of the M/Ph/n + M system where the service time distribution is
exponential. They do not impose assumption (1.2) on the relationship between the
arrival rate λ and number of servers n, resulting in a universal approximation that
is accurate in any parameter regime, from underloaded, to critically loaded, and to
overloaded. To our knowledge, this is the first paper to study convergence rates of
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steady state diffusion approximations. Their method relies on analyzing excursions
of a one-dimensional Markov chain and the corresponding diffusion process. It is
unclear how to generalize their method to the multi-dimensional setting.

To prove Theorem 1, we develop a framework that is based on Stein’s method
[49, 50]. The framework is modular and relies on three components: a Poisson
equation, generator coupling, and SSC. The framework itself is an important part
of our contribution, in addition to Theorem 1. We expect the framework will be
refined and used to prove rates of convergence of steady-state diffusion approxi-
mations for many other stochastic systems. This framework is closely related to a
recent paper [27] by Gurvich. We will discuss his work after giving an overview
of the framework.

We consider two sequences of stochastic processes {X(�)}∞�=1 and {Y (�)}∞�=1 in-
dexed by �, where X(�) = {X(�)(t) ∈R

d, t ≥ 0} is a continuous-time Markov chain
(CTMC) and Y (�) = {Y (�)(t) ∈ R

d, t ≥ 0} is a diffusion process. Suppose X(�)(∞)

and Y (�)(∞) are two random vectors having the stationary distributions of X(�)

and Y (�), respectively. Let GX(�) and GY(�) be the generators of X(�) and Y (�), re-
spectively; for a diffusion process, GY(�) is the second order elliptic operator as in
(5.3). For a function h : Rd → R in a “nice” (but large enough) class, we wish to
bound ∣∣Eh

(
X(�)(∞)

) −Eh
(
Y (�)(∞)

)∣∣.
Component 1. The first step is to set up the Poisson equation

(1.4) GY(�)fh(x) = h(x) −Eh
(
Y (�)(∞)

)
and obtain various estimates of a solution fh to the Poisson equation. Once we
have fh, one can take the expectation of both sides above to see that

(1.5) Eh
(
X(�)(∞)

) −Eh
(
Y (�)(∞)

) = EGY(�)fh

(
X(�)(∞)

)
.

The Poisson equation (1.4) is a partial differential equation (PDE). Even when
Y (�)(∞) = Y(∞) (i.e., independent of �), one of the biggest challenges is ob-
taining bounds on the partial derivatives of fh(x) (usually up to third order). We
refer to these as gradient bounds. In the one-dimensional case, (1.4) is an ordinary
differential equation (ODE) that usually has a closed form expression that one
can analyze directly, see, for instance, [12], Lemma 13.1. However, when d > 1
obtaining these gradient bounds becomes significantly harder. By exploiting prob-
abilistic solutions to the Poisson equation, gradient bounds were established for
cases when Y(∞) is a multivariate normal [5], multivariate Poisson [4] and multi-
variate Gamma [41].

Component 2. The next step is to produce the generator coupling. For that, we
use the basic adjoint relationship (BAR) for the stationary distribution of X(�)(∞).
One can check that a random vector X(�)(∞) ∈ R

d has the stationary distribution
of the CTMC X(�) if and only if

(1.6) EGX(�)f
(
X(�)(∞)

) = 0
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for all functions f : Rd → R that have compact support. For a given h, the corre-
sponding Poisson equation solution fh does not have compact support. An impor-
tant part of this step is to prove that (1.6) continues to hold for fh. Thus, it follows
from (1.5) and (1.6) that

(1.7)
Eh

(
X(�)(∞)

) −Eh
(
Y (�)(∞)

)
= E

[
GY(�)fh

(
X(�)(∞)

) − GX(�)fh

(
X(�)(∞)

)]
.

Note that two random variables in the left side of (1.7) are typically defined on
two different probability spaces, whereas two random variables in the right-hand
side of (1.7) are all defined in terms of X(�)(∞), thus producing a coupling on a
common probability space.

To bound the right-hand side of (1.7), we study

(1.8) GX(�)fh(x) − GY(�)fh(x)

for each x in the state space of X(�). By performing Taylor expansion on
GX(�)fh(x), we find that the difference involves the product of partial derivatives
of fh and a term bounded by a polynomial of x. Therefore, in addition to gradient
bounds on fh, in a lot of cases we need bounds on various moments of |X(�)(∞)|
which we refer to as moment bounds. The main challenge is that both gradient and
moment bounds must be uniform in �.

Component 3. In the last step, SSC comes into play when X(�) itself is not a
CTMC, but a projection of some higher dimensional CTMC U(�) = {U(�)(t) ∈
U, t ≥ 0}, where the dimension of the state space U is strictly greater than d . This
is the case, for example, in the M/Ph/n+M system. It is this difference in dimen-
sions that is responsible for most of the computational speedup in diffusion approx-
imations; most complex stochastic processing systems exhibit some form of SSC
[6, 9, 16, 18, 20, 32, 33, 45, 52, 54]. Let GU be the generator of U(�) and U(�)(∞)

have its stationary distribution. Now, BAR (1.6) becomes GU(�)F (U(�)(∞)) = 0
for each “nice” F : U →R. Furthermore, (1.7) becomes

(1.9)
Eh

(
X(�)(∞)

) −Eh
(
Y (�)(∞)

)
= E

[
GY(�)fh

(
X(�)(∞)

) − GU(�)Fh

(
U(�)(∞)

)]
,

where Fh : U → R is the lifting of fh : Rd → R defined by letting x ∈ R
d be the

projection of u ∈ U and then setting

(1.10) Fh(u) = fh(x).

As before, we can perform Taylor expansion on GU(�)Fh(u) to simplify the dif-
ference GU(�)Fh(u) − GY(�)fh(x). To use this difference to bound the right-hand
side of (1.9), we need a steady-state SSC result for U(�)(∞), which tells us how to
approximate U(�)(∞) from X(�)(∞) and guarantees that this approximation error
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is small. To obtain our SSC result, we need to rely heavily on the structure of the
M/Ph/n + M system.

In [27], Gurvich develops methodologies to prove statements similar to (1.1) for
various queueing systems. In particular, Gurvich develops important elements of
the first two components of our framework in the special case when dim(U) = d .
Along the way, he independently rediscovers many of the ideas central to Stein’s
method in the setting of steady-state diffusion approximations. He relies on the
existence of uniform Lyapunov functions for the diffusion processes. Putting the
Lyapunov functions together with the probabilistic solution for (1.4) and a-priori
Schauder estimates for elliptic PDEs (see [25]), he is able to obtain uniform gradi-
ent bounds for a large class of Poisson equations. Furthermore, he also obtains the
necessary uniform moment bounds using these Lyapunov functions by showing
that uniform moment bounds for the diffusion process imply the same moments
are uniformly bounded for the CTMC. However, his result on uniform moment
bounds no longer holds when dim(U) > d due to the need for SSC, which poses an
additional technical challenge. We overcome this challenge for the M/Ph/n + M

system in Lemma 7, in which moment bounds are established recursively.
The work in [27] is conceptually close to this paper. In that paper, Gurvich pack-

ages all the components required to prove his results into several conditions, with
the main condition being the existence of uniform Lyapunov functions for the dif-
fusion processes. In contrast, a key contribution of our framework is its modular
nature. The immediate benefit we gain is the ability to apply this framework to
cases when SSC occurs [dim(U) > d]. Moreover, although we also rely on Lya-
punov functions to establish both moment and gradient bounds in our particular
setting, our framework clearly illustrates that Lyapunov functions are merely tools
one can use to establish these moment and gradient bounds; the bounds themselves
are the actual drivers of our main results.

We have already mentioned that Lemma 13.1 of [12] presents a systematic way
to establish gradient bounds in the one-dimensional setting (d = 1), and [4, 5, 41]
establish gradient bounds in the multi-dimensional setting (d > 1) for a few spe-
cial cases of Y (�)(∞). However, establishing multi-dimensional gradient bounds
remains a very difficult problem that usually requires using structural properties
of the distribution of Y (�)(∞). Gurvich’s use of a priori Schauder estimates [25]
together with Lyapunov functions represents the first systematic approach to es-
tablishing multi-dimensional gradient bounds.

With regards to using Lyapunov functions to establish moment bounds, certain
systems may not require moment bounds at all. For example, approximating the
stationary distribution of the simple birth–death process corresponding to a single-
server queue does not require the use of moment bounds (although we do not
consider the M/M/1 queue in this paper, Stein’s method is easily applicable to
it). Thus, the modularity of our framework presents the components one needs to
justify approximations for various systems, and promotes the view that Lyapunov
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functions are merely one of many tools to tackle the difficulties in these compo-
nents.

It is useful to compare the challenge level of each component in our frame-
work. The generator coupling is the least challenging component, because the
class of functions for which (1.6) holds is usually rich enough. The remaining
major difficulties are moment bounds, gradient bounds and SSC. Moment bounds
and SSC are a property of the CTMC sequence {X(�)}∞�=1, and the difficulty in
establishing them will depend heavily on the CTMCs. On the other hand, gradi-
ent bounds are tied to the diffusion processes {Y (�)}∞�=1, and are typically only
difficult to establish when the diffusion processes are multi-dimensional. One im-
portant class of multi-dimensional diffusion processes for which we do not have
gradient bounds are semi-martingale reflected Brownian motions (SRBMs) [34].
An SRBM can approximate networks of single-server queues, such as generalized
Jackson networks. The Schauder gradient bounds of [27] are not immediately ap-
plicable to SRBMs, because the corresponding Poisson equation is defined on the
non-negative orthant, and has oblique reflection boundary conditions.

Stein’s method is a powerful method that has been widely used in probability,
statistics, and their wide range of applications such as bioinformatics; see, for ex-
ample, the survey papers [11, 47], the recent book [12] and the references within.
The connection between Stein’s method and diffusion processes was first made by
Barbour in [4, 5]. In the context of Stein’s method, generator coupling is a realiza-
tion of an abstract concept that first appeared in the famous commutative diagram
in (28) of [50]; a more refined explanation of which is provided in (4) of [11]. In
particular, using Chatterjee’s notation in [11], our EGX(�)fh(X

(�)(∞)) in (1.7) is
his ET αf (W).

Diffusion approximations are usually “justified” by heavy traffic limit theorems.
It is proved in [15] that for our M/Ph/n + M systems,

(1.11) X̃(λ) = {
X̃(λ)(t), t ≥ 0

} =⇒ Y = {
Y (t), t ≥ 0

}
as λ goes to infinity while satisfying (1.2) (we use the arrival rate λ to index these
systems instead of the abstract � as before). Proving these limit theorems has been
an active area of research in the last 50 years; see, for example, [7, 8, 31, 36, 37, 46]
for single-class queueing networks, [9, 43, 54] for multiclass queueing networks,
[38, 55] for bandwidth sharing networks, [15, 30, 44] for many-server queues.
The convergence used in these limit theorems is the convergence in distribution on
the path space D([0,∞),Rd), endowed with Skorohod J1-topology [19, 53]. The
J1-topology on D([0,∞),Rd) essentially means convergence in D([0, T ],Rd) for
each T > 0. In particular, it says nothing about the convergence at “∞”. Therefore,
these limit theorems do not justify the steady-state convergence.

In [13], the authors prove the convergence of distribution X̃(λ)(∞) to that of
Y(∞) by proving an interchange of limits. The proof technique follows that of the
seminal paper [22], where the authors prove an interchange of limits for general-
ized Jackson networks of single-server queues. The results in [22] were improved



556 A. BRAVERMAN AND J. G. DAI

and extended by various authors for networks of single-servers [10, 39, 56], for
bandwidth sharing networks [55], and for many-server systems [21, 28, 51]. These
“interchange limits theorems” are qualitative and thus do not provide rates of con-
vergence as in (1.1).

1.1. Notation. All random variables and stochastic processes are defined on a
common probability space (�,F,P) unless otherwise specified. For a stochas-
tic process X = {X(t), t ≥ 0} that has a unique stationary distribution we let
X(∞) be the random element having the stationary distribution of X. For a se-
quence of random variables {Xn}∞n=1, we write Xn ⇒ X to denote convergence
in distribution (also known as weak convergence) of Xn to some random variable
X. If a > b, we adopt the convention that

∑b
i=a(·) = 0. For an integer d ≥ 1,

R
d denotes the d-dimensional Euclidean space and Z

d+ denotes the space of d-
dimensional vectors whose elements are non-negative integers. For a, b ∈ R, we
define a ∨ b = max{a, b} and a ∧ b = min{a, b}. For x ∈R, we define x+ = x ∨ 0
and x− = (−x) ∨ 0. For x ∈ R

d , we use xi to denote its ith entry and |x| to de-
note its Euclidean norm. For x, y ∈ R

d , we write x ≤ y when xi ≤ yi for all i and
when x ≤ y we define the vector interval [x, y] = {z : x ≤ z ≤ y}. All vectors are
assumed to be column vectors. We let xT and AT denote the transpose of a vector
x and matrix A, respectively. For a matrix A, we use Aij to denote the entry in the
ith row and j th column. We reserve I for the identity matrix, e for the vector of all
ones and e(i) for the vector that has a one in the ith element and zeroes elsewhere;
the dimensions of these vectors will be clear from the context.

1.2. Outline for rest of paper. The rest of the paper is structured as fol-
lows. Section 2 formally defines the M/Ph/n + M system as well as the diffu-
sion process whose steady-state distribution will approximate the system. Sec-
tion 3 states our main results. Section 4 describes the CTMC representation of
the M/Ph/n + M system. Section 5 introduces the first two components of our
framework; the Poisson equation and generator coupling. Section 6 describes the
SSC result, illustrating the third component of our framework. It is here that the
reader may see the reason behind our slower rate of convergence. This framework
is then used in Section 7 to prove our main results. The Appendix contains the
proofs for most of the lemmas.

2. Models. In this section, we give additional description of the M/Ph/n+M

system and the corresponding diffusion model.

2.1. The M/Ph/n + M system. The basic description of the M/Ph/n + M

queueing system was given in the first paragraph of the Introduction. Here, we de-
scribe the dynamics of the system. Upon arrival to the system with idle servers, a
customer begins service immediately. Otherwise, if all servers are busy, the cus-
tomer enters an infinite capacity queue to wait for service. When a server com-
pletes serving a customer, the server becomes idle if the queue is empty, or takes
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a customer from the queue under the first-in-first-out (FIFO) service policy if it is
nonempty. Recall that the Ph indicates that customer service times are i.i.d. fol-
lowing a phase-type distribution. We shall provide a definition of a phase-type dis-
tribution shortly below. The phase-type distribution can approximate any positive-
valued distribution [3], Theorem III.4.2.

Recall that λ denotes the arrival rate of the system. We use 1/α to denote the
mean patience time. In our study, we take the service time distribution and α fixed,
but allow the arrival rate λ and the number of servers n to grow without bound.
Throughout this paper, we assume that n follows the square-root-safety staffing
rule in (1.2). In the pioneering paper of [30], the authors studied these systems
as λ → ∞ and n grows to infinity following (1.2). This parameter regime is now
known as the Halfin–Whitt regime. In this regime, the system has high server uti-
lization and at the same time has small customer waiting time and abandonment
fraction. Therefore, this regime is also known as the quality- and efficiency-driven
(QED) regime, a term coined by [23].

Phase-type service time distribution. A phase-type distribution is assumed
to have d ≥ 1 phases. Each phase-type distribution is determined by the tuple
(p, ν,P ), where p ∈ R

d is a vector of non-negative entries whose sum is equal
to one, ν ∈ R

d is a vector of positive entries and P is a d × d sub-stochastic ma-
trix. We assume that P is transient, that is,

(2.1) (I − P)−1 exists,

and without loss of generality, we also assume that the diagonal entries of P are
zero (Pii = 0).

A random variable is said to have a phase-type distribution with parameters
(p, ν,P ) if it is equal to the absorption time of the following CTMC. The state
space of the CTMC is {1, . . . , d + 1}, with d + 1 being the absorbing state. The
CTMC starts off in one of the states in {1, . . . , d} according to distribution p. For
i = 1, . . . , d , the time spent in state i is exponentially distributed with mean 1/νi .
Upon leaving state i, the CTMC transitions to state j = 1, . . . , d with probability
Pij , or gets absorbed into state d + 1 with probability 1 − ∑d

j=1 Pij .
The CTMC above is a useful way to describe the service times in the M/Ph/n+

M system. Upon arrival to the system, a customer is assigned her first service phase
according to distribution p. If the customer is forced to wait in queue because all
servers are busy, she is still assigned a first service phase, but this phase of service
will not start until a server takes on this customer for service. Once a customer with
initial phase i enters service, her service time is the time until absorption to state
d + 1 by the CTMC. We assume without loss of generality that for each service
phase i, either

(2.2) pi > 0 or Pji > 0 for some j .

This simply means that there are no redundant phases.
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We now define some useful quantities for future use. Define

(2.3) R = (
I − P T )

diag(ν) and γ = μR−1p,

where the matrix diag(ν) is the d × d diagonal matrix with diagonal entries given
by the components of ν. One may verify that

∑d
i=1 γi = 1. One can interpret γi to

be the fraction of phase i service load on the n servers.
For concreteness, we provide two examples of phase-type distributions when

d = 2. The first example is the two-phase hyper-exponential distribution, denoted
by H2. The corresponding tuple of parameters is (p, ν,P ), where

p = (p1,p2)
T , ν = (ν1, ν2)

T and P = 0.

Therefore, with probability pi , the service time follows an exponential distribution
with mean 1/νi .

The second example is the Erlang-2 distribution, denoted by E2. The corre-
sponding tuple of parameters is (p, ν,P ), where

p = (1,0)T , ν = (θ, θ)T and P =
(

0 1
0 0

)
.

An E2 random variable is a sum of two i.i.d. exponential random variables, each
having mean 1/θ .

2.2. System size process and diffusion model. Before we state the main results,
we introduce the process we wish to approximate, as well as the approximating
diffusion process—the piecewise OU process. Recall that X = {X(t) ∈ R

d, t ≥ 0}
is the system size process, where

X(t) = (
X1(t), . . . ,Xd(t)

)T
,

and Xi(t) is the number of customers of phase i in the system (queue + service)
at time t . We emphasize that X is not a CTMC, but it is a deterministic function of
a higher-dimensional CTMC, which will be described in Section 4.

The process X depends on λ,n,α,p,P , and ν. However, in this paper we keep
α,p,P , and ν fixed, and allow λ and n to vary according to (1.2). For the re-
mainder of the paper, we write X(λ) to emphasize the dependence of X on λ; the
dependence of X(λ) on n is implicit through (1.2).

Recall the definition of γ in (2.3) and define the scaled random variable

(2.4) X̃(λ)(∞) = δ
(
X(λ)(∞) − γ n

)
,

where, for convenience, we let

(2.5) δ = 1/
√

λ.
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To approximate X̃(λ)(∞), we introduce the piecewise OU process Y = {Y (t), t ≥
0}. This is a d-dimensional diffusion process satisfying

(2.6)
Y(t) = Y(0) − pβt − R

∫ t

0

(
Y(s) − p

(
eT Y (s)

)+)
ds

− αp

∫ t

0

(
eT Y (s)

)+
ds + √

�B(t).

Above, B(t) is the d-dimensional standard Brownian motion and
√

� is any d ×d

matrix satisfying

(2.7)

√
�

√
�

T = � = diag(p) +
d∑

k=1

γkνkH
k

+ (
I − P T )

diag(ν)diag(γ )(I − P),

where the matrix Hk is defined as

Hk
ii = Pki(1 − Pki), Hk

ij = −PkiPkj forj �= i.

Comparing the form of � above to (2.24) of [14] confirms that it is positive def-
inite. Thus,

√
� exists. Observe that Y depends only on β,α,p,P , and ν, all of

which are held constant throughout this paper.
The diffusion process in (2.6) has been studied by [17]. They prove that Y is

positive recurrent by finding an appropriate Lyapunov function. In particular, this
means that Y admits a stationary distribution.

3. Main results. We now state our main results.

THEOREM 1. For every integer m > 0, there exists a constant Cm =
Cm(β,α,p, ν,P ) > 0 such that for all locally Lipschitz functions h : Rd → R

satisfying ∣∣h(x)
∣∣ ≤ |x|2m for x ∈R

d,

we have

∣∣Eh
(
X̃(λ)(∞)

) −Eh
(
Y(∞)

)∣∣ ≤ Cm√
λ

for all λ > 0

satisfying (1.2), which we recall below as

nμ = λ + β
√

λ.

Theorem 1 will be proved in Section 7. As a consequence of the theorem, we
immediately have the following corollary.
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COROLLARY 1. There exists a constant C1 = C1(β,α,p, ν,P ) > 0 such that

sup
h∈W(d)

∣∣Eh
(
X̃(λ)(∞)

) −Eh
(
Y(∞)

)∣∣ ≤ C1√
λ

for all λ > 0

satisfying (1.2), where W(d) is defined in (1.3). In particular,

X̃(λ)(∞) ⇒ Y(∞) as λ → ∞.

PROOF. Suppose h ∈ W(d). Without loss of generality, we may assume that
h(0) = 0, otherwise we may simply consider h(x) − h(0). By definition of W(d),∣∣h(x)

∣∣ ≤ |x| for x ∈ R
d

and the result follows from Theorem 1 with m = 1. �

REMARK 1. For any fixed β ∈ R, there are only finitely many combinations
of λ ∈ (0,4) and integer n ≥ 1 satisfying (1.2). Therefore, it suffices to prove The-
orem 1 by restricting λ ≥ 4, a convenience for technical purposes.

4. Markov representation. The M/Ph/n + M system can be represented as
a CTMC

U(λ) = {
U(λ)(t), t ≥ 0

}
taking values in U , the set of finite sequences {u1, . . . , uk}. The sequence u =
{u1, . . . , uk} encodes the service phase of each customer and their order of arrival
to the system. For example, the sequence {5,1,4} corresponds to 3 customers in
the system, with the service phases of the first, second and third customers (in
the order of their arrival to the system) being 5, 1 and 4, respectively. We use |u|
to denote the length of the sequence u. The irreducibility of the CTMC U(λ) is
guaranteed by (2.1) and (2.2).

We remark here that U(λ) is not the simplest Markovian representation of the
M/Ph/n + M system. Another way to represent this system would be to consider
a d +1 dimensional CTMC that keeps track of the total number of customers in the
system, as well as the total number of customers in each phase that are currently
in service; this d + 1 dimensional CTMC is used in [15]. In this paper, we use
the infinite dimensional CTMC U(λ) because the system size process X(λ) cannot
be recovered sample path wise from the d + 1 dimensional CTMC, it can only be
recovered from U(λ). Also, the CTMC U(λ) will play an important role in our SSC
argument in Section 6.

In addition to the system size process X(λ), we define the queue size process
Q(λ) = {Q(λ)(t) ∈ Z

d+, t ≥ 0}, where

Q(λ)(t) = (
Q

(λ)
1 (t), . . . ,Q

(λ)
d (t)

)T
,
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and Q
(λ)
i (t) is the number of customers of phase i in the queue at time t . Then

X
(λ)
i (t) − Q

(λ)
i (t) ≥ 0 is the number phase i customers in service at time t .

To recover X(λ)(t) and Q(λ)(t) from U(λ)(t), we define the projection functions
�X : U →R

d and �Q : U →R
d . For each u ∈ U and each phase i ∈ {1, . . . , d},

(
�X(u)

)
i =

|u|∑
k=1

1{uk=i} and
(
�Q(u)

)
i =

|u|∑
k=n+1

1{uk=i}.

It is clear that on each sample path

(4.1) X(λ)(t) = �X

(
U(λ)(t)

)
and Q(λ)(t) = �Q

(
U(λ)(t)

)
for t ≥ 0.

Because there is customer abandonment the Markov chain U(λ) can be proved to
be positive recurrent with a unique stationary distribution [13]. We use U(λ)(∞)

to denote the random element that has the stationary distribution. It follows that
X(λ)(∞) = �X(U(λ)(∞)) has the stationary distribution of X(λ), and X̃(λ)(∞) in
(2.4) is given by

(4.2) X̃(λ)(∞) = δ
(
�X

(
U(λ)(∞)

) − γ n
)
.

For u ∈ U , we define

(4.3) x = δ
(
�X(u) − γ n

)
, q = �Q(u) and z = �X(u) − q.

When the CTMC is in state u, we interpret (�X(u))i , qi , and zi as the number of
the phase i customers in system, in queue, and in service, respectively. It follows
that z ≥ 0.

Let GU(λ) be the generator of the CTMC U(λ). To describe it, we introduce the
lifting operator A. For any function f :Rd →R, we define Af : U →R by

(4.4) Af (u) = f
(
δ
(
�X(u) − γ n

)) = f (x).

Hence, for any function f : Rd → R, the generator acts on the lifted version Af

as follows:

(4.5)

GU(λ)Af (u) =
d∑

i=1

λpi

(
f

(
x + δe(i)) − f (x)

)

+
d∑

i=1

αqi

(
f

(
x − δe(i)) − f (x)

)

+
d∑

i=1

νizi

[
d∑

j=1

Pijf
(
x + δe(j) − δe(i))

+
(

1 −
d∑

j=1

Pij

)
f

(
x − δe(i)) − f (x)

]
.

Observe that GU(λ)Af (u) does not depend on the entire sequence u; it depends
on x, q , and the function f only.
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5. The generator coupling of Stein’s method. This section is devoted to de-
veloping a generator coupling of Stein’s method. This framework will be used in
Section 7 to prove Theorem 1.

5.1. Poisson equation. The main idea behind Stein’s method is that instead of
bounding

(5.1) Eh
(
X̃(λ)(∞)

) −Eh
(
Y(∞)

)
,

one solves the Poisson equation

(5.2) GY fh(x) = h(x) −Eh
(
Y(∞)

)
,

where the generator GY of the diffusion process Y , applied to a function f ∈
C2(Rd), is given by

(5.3)

GY f (x) =
d∑

i=1

∂if (x)

[
piβ − νi

(
xi − pi

(
eT x

)+)

− αpi

(
eT x

)+ +
d∑

j=1

Pjiνj

(
xj − pj

(
eT x

)+)]

+ 1

2

d∑
i,j=1

�ij∂ijf (x) for x ∈R
d .

Then, to bound the difference in (5.1), it is sufficient to find a bound on

(5.4) EGY fh

(
X̃(λ)(∞)

)
.

The following lemma, based on the results of [27], guarantees the existence of
a solution to (5.2) and provides gradient bounds for it. The proof of this lemma is
given in Section A.1.

LEMMA 1. For any locally Lipschitz function h : Rd → R satisfying |h(x)| ≤
|x|2m, equation (5.2) has a solution fh. Moreover, there exists a constant
C(m,1) > 0 [depending only on (β,α,p, ν,P )] such that for x ∈ R

d

∣∣fh(x)
∣∣ ≤ C(m,1)

(
1 + |x|2)m

,(5.5) ∣∣∂ifh(x)
∣∣ ≤ C(m,1)

(
1 + |x|2)m(

1 + |x|),(5.6) ∣∣∂ijfh(x)
∣∣ ≤ C(m,1)

(
1 + |x|2)m(

1 + |x|)2
,(5.7)

sup
y∈Rd :|y−x|<1

|∂ijfh(y) − ∂ijfh(x)|
|y − x| ≤ C(m,1)

(
1 + |x|2)m(

1 + |x|)3
.(5.8)
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5.2. Generator coupling. Let W(λ) denote the random variable GY ×
fh(X̃

(λ)(∞)) in (5.4). To prove |EW(λ)| small, a common approach in using the
Stein’s method is to find a coupling W̃ (λ) for W(λ) so that∣∣EW̃ (λ)

∣∣ is small and(5.9)

E
∣∣W(λ) − W̃ (λ)

∣∣ is small.(5.10)

Constructing an effective coupling is an art that is problem specific. See [47] for a
recent survey that includes examples of various couplings.

We use W̃ (λ) = GU(λ)Afh(U
(λ)(∞)) to construct the coupling, where A is

the lifting operator defined in (4.4). The following lemma justifies the coupling
propety (5.9).

LEMMA 2. Let h : Rd → R satisfy |h(x)| ≤ |x|2m. The function fh given by
(5.2) satisfies

(5.11) EGU(λ)Afh

(
U(λ)(∞)

) = 0.

To prove the lemma, we need finite moments of the steady-state system size.

LEMMA 3. (a) Let L(u) = exp(eT �X(u)) for u ∈ U . Then

(5.12) EL
(
U(λ)(∞)

)
< ∞.

(b) All moments of eT X(λ)(∞) are finite.

PROOF. One may verify that

GU(λ)L(u) ≤ λ
(
exp(1) − 1

)
L(u) − α

(
eT �X(u) − n

)+(
1 − exp(−1)

)
L(u).

It follows that there exist a positive constant C = C(λ,n,α) such that, whenever
eT �X(u) is large enough,

(5.13) GU(λ)L(u) ≤ −CL(u) + 1.

Part (a) follows from [42], Theorem 4.2. Part (b) follows from (5.12) and the equal-
ity eT �X(U(λ)(∞)) = eT X(λ)(∞). �

The function L(u) is said to be a Lyapunov function. Inequality (5.13) is known
as a Foster–Lyapunov condition and guarantees that the CTMC is positive recur-
rent; see, for example, [42].

PROOF OF LEMMA 2. A sufficient condition for (5.11) to hold is given by
[35], Proposition 1.1 (alternatively, see [26], Proposition 3), namely

(5.14) E
[∣∣GU(λ)

(
U(λ)(∞),U(λ)(∞)

)∣∣∣∣Afh

(
U(λ)(∞)

)∣∣] < ∞.
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Above, GU(λ)(u,u) is the uth diagonal entry of the generator matrix GU(λ) . In our
case, the left side of (5.14) is equal to

= E
[∣∣GU(λ)

(
U(λ)(∞),U(λ)(∞)

)∣∣∣∣fh

(
X̃(λ)(∞)

)∣∣]

= E

∣∣∣∣∣λ + α
(
eT X(λ)(∞) − n

)+ +
d∑

i=1

νi(X
(λ)
i (∞) − Q

(λ)
i (∞)

∣∣∣∣∣
∣∣fh

(
X̃(λ)(∞)

)∣∣
≤ E

∣∣∣λ +
(
α ∨ max

i
{νi}

)
eT X(λ)(∞)

∣∣∣∣∣fh

(
X̃(λ)(∞)

)∣∣,
where the first equality follows from (4.2) and (4.4). One may apply (5.5) and
(5.12) to see that the quantity above is finite. �

5.3. Taylor expansion. To check that coupling property (5.10) is satisfied by
W̃ (λ) = GU(λ)Afh(U

(λ)(∞)), we need to prove that

E
∣∣W(λ) − W̃ (λ)

∣∣ = E
∣∣GU(λ)Afh

(
U(λ)(∞)

) − GY fh

(
X̃(λ)(∞)

)∣∣
is small. For that, we compare the generator GU(λ) of the CTMC with GY . By
performing Taylor expansion on GU(λ)Afh(u) in (4.5), one has

(5.15)

GU(λ)Afh(u)

=
d∑

i=1

λpi

(
δ∂ifh(x) + δ2

2
∂iifh

(
ξ+
i

))

+ αqi

(
−δ∂ifh(x) + δ2

2
∂iifh

(
ξ−
i

))

+
d∑

i=1

νizi

[(
1 −

d∑
j=1

Pij

)(
−δ∂ifh(x) + δ2

2
∂iifh

(
ξ−
i

))

+
d∑

j=1

Pij

(
−δ∂ifh(x)

+ δ∂jfh(x) + δ2

2
∂iifh(ξij ) + δ2

2
∂jjfh(ξij ) − δ2∂ijfh(ξij )

)]
,

where ξ+
i ∈ [x, x + δe(i)], ξ−

i ∈ [x − δe(i), x] and ξij lies somewhere between x

and x−δe(i)+δe(j). Using the gradient bounds in Lemma 1, we have the following
lemma, which will be proved in Section A.2.
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LEMMA 4. There exists a constant C(m,2) > 0 [depending only on (β,α,p,

ν,P )] such that for any u ∈ U ,

(5.16)

GU(λ)Afh(u) − GY fh(x)

=
d∑

i=1

∂ifh(x)

[(
νi − α −

d∑
j=1

Pjiνj

)(
δqi − pi

(
eT x

)+)] + E(u),

where q and x are as in (4.3), δ as in (2.5), and E(u) is an error term that satisfies∣∣E(u)
∣∣ ≤ δC(m,2)

(
1 + |x|2)m(

1 + |x|)4
.

6. State space collapse. One of the challenges we face comes from the fact
that our CTMC U(λ) is infinite-dimensional, while the approximating diffusion
process is only d-dimensional. Recall the process (X(λ),Q(λ)) defined in (4.1)
and the lifting operator A acting on functions f : Rd → R, as defined in (4.4).
When acting on the lifted functions Af (U(λ)(∞)), the CTMC generator GU(λ)

depends on both X̃(λ)(∞) and Q(λ)(∞), but its approximation GY f (X̃(λ)(∞))

only depends on X̃(λ)(∞). This is captured in (5.16) by the term

d∑
i=1

∂ifh(x)

[(
νi − α −

d∑
j=1

Pjiνj

)(
δqi − pi

(
eT x

)+)]
.

To bound this term, observe that for any 1 ≤ i ≤ d ,(
νi − α −

d∑
j=1

Pjiνj

)
∂ifh(x)

(
δqi − pi

(
eT x

)+)

=
(
νi − α −

d∑
j=1

Pjiνj

)

× (
∂ifh(x) − ∂ifh

(
x − δq + p

(
eT x

)+))(
δqi − pi

(
eT x

)+)

+
(
νi − α −

d∑
j=1

Pjiνj

)

× ∂ifh

(
x − δq + p

(
eT x

)+)(
δqi − pi

(
eT x

)+)
(6.1)

=
(
νi − α −

d∑
j=1

Pjiνj

)

×
d∑

k=1

∂ikfh(ξ)
(
δqk − pk

(
eT x

)+)(
δqi − pi

(
eT x

)+)
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+
(
νi − α −

d∑
j=1

Pjiνj

)

× ∂ifh

(
δ(z − γ n) + p

(
eT x

)+)(
δqi − pi

(
eT x

)+)
,

where z, defined in (4.3), is a vector that represents the number of customers of
each type in service, and ξ is some point between x and x − δq + p(eT x)+. In
particular, there exists some constant C that doesn’t depend on λ and n, such that

(6.2) |ξ | ≤ |x| + δ|q| + |p|(eT x
)+ ≤ C|x|,

because δqi ≤ (eT x)+ for each 1 ≤ i ≤ d (i.e., the number of phase i customers in
queue can never exceed the queue size).

In order to bound the expected value of (6.1), we must prove a relationship
between X̃(λ)(∞) and Q(λ)(∞). Intuitively, the number of customers of phase i

waiting in the queue should be approximately equal to a fraction pi of the total
queue size. The following two lemmas bound the error caused by the SSC approx-
imation. They are proved at the end of this section.

LEMMA 5. Let Z(λ)(∞) = X(λ)(∞) − Q(λ)(∞) be the vector representing
the number of customers of each type in service in steady-state. Then conditioned
on (eT X̃(λ)(∞))+, the random vectors Q(λ)(∞) and Z(λ)(∞) are independent.
Furthermore,

(6.3) E
[
δQ(λ)(∞) − p

(
eT X̃(λ)(∞)

)+|(eT X̃(λ)(∞)
)+] = 0,

and for any integer m > 0, there exists C(m,3) > 0 [depending only on
(β,α,p, ν,P )] such that for all λ > 0 and n ≥ 1 satisfying (1.2),

(6.4) E
[∣∣δQ(λ)(∞) − p

(
eT X̃(λ)(∞)

)+∣∣2m] ≤ δmC(m,3)E
[(

eT X̃(λ)(∞)
)+]m

,

where δ = 1/
√

λ as in (2.5).

LEMMA 6. For any integer m > 0, there exists C(m,4) > 0 [depending only
on (β,α,p, ν,P )] such that for any locally Lipschitz function h :Rd →R satisfy-
ing |h(x)| ≤ |x|2m, and all λ > 0 and n ≥ 1 satisfying (1.2)

(6.5)

∣∣∣∣∣
d∑

i=1

E

[
∂ifh

(
X̃(λ)(∞)

)

×
[(

νi − α −
d∑

j=1

Pjiνj

)(
δQ

(λ)
i (∞) − pi

(
eT X̃(λ)(∞)

)+)]]∣∣∣∣∣
≤ δC(m,4)E

[((
eT X̃(λ)(∞)

)+)2]√
E

[
1 + ∣∣X̃(λ)(∞)

∣∣8]
,

where fh(x) is the solution to the Poisson equation (5.2).
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PROOF OF LEMMA 5. We begin by proving (6.4), for which it suffices to show
that for all λ > 0 and n ≥ 1 satisfying (1.2)

E
[∣∣Q(λ)(∞) − p

(
eT X(λ)(∞) − n

)+∣∣2m] ≤ C(m,3)E
[(

eT X(λ)(∞) − n
)+]m

.

We first prove a version of (6.4) for any finite time t ≥ 0. Then, (eT X(λ)(t)−n)+
is the total number of customers waiting in queue at time t . Assume that the system
is empty at time t = 0, that is, X(λ)(0) = 0. Fix a phase i. Upon arrival to the
system, a customer is assigned to service phase i with probability pi . Consider
the sequence {ξj : j = 1,2, . . .}, where ξj is one if the j th customer to enter the
system was assigned to phase i, and zero otherwise. Then {ξj : j = 1,2, . . .} is a
sequence of iid Bernoulli random variables with P(ξj = 1) = pi . For t > 0, define
A(t) and B(t) to be the total number of customers to have entered the system, and
entered service by time t , respectively. Also let ζj (t) be the indicator of whether
customer j is still waiting in queue at time t . Then

(
eT X(λ)(t) − n

)+ =
A(t)∑

j=B(t)+1

ζj (t),(6.6)

Q
(λ)
i (t) =

A(t)∑
j=B(t)+1

ξj ζj (t).(6.7)

Let Z(λ)(t) = X(λ)(t) − Q(λ)(t) be the vector keeping track of the customer types
in service at time t and let B(�,pi) be a binomial random variable with � ∈ Z+
trials and success probability pi . Assuming X(λ)(0) = 0, by a sample path con-
struction of the process U(λ) one can verify that for any time t ≥ 0, the fol-
lowing three properties hold. First, for any z ∈ Z

d+, a, b ∈ Z+ with a ≥ 1, and
x1, . . . , xa, y1, . . . , ya ∈ {0,1},

P
(
ξb+1 = x1, . . . , ξb+a = xa | A(t) = b + a,

B(t) = b,Z(λ)(t) = z, ζb+1 = y1, . . . , ζb+a = ya

)
= P(ξ1 = x1)P(ξ2 = x2) · · ·P(ξa = xa)

= p

∑a
i=1 xi

i (1 − pi)
a−∑a

i=1 xi .

(6.8)

The right side of (6.8) is independent of b, z, y1, . . . , ya . It then follows from (6.6),
(6.7) and (6.8) that for any integer � ≥ 1, qi ∈ Z+, and z ∈ Z

d+,

(6.9)

P
(
Q

(λ)
i (t) = qi | (

eT X(λ)(t) − n
)+ = �,Z(λ)(t) = z

)
= P

(
Q

(λ)
i (t) = qi | (

eT X(λ)(t) − n
)+ = �

)
= P

(
B(�,pi) = qi

)
.

Since (6.9) holds for all t ≥ 0, it holds in stationarity as well.
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We now say a few words about how to construct U(λ) and argue (6.8)–(6.9).
One would start with four primitive sequences: a sequence of inter-arrival times,
potential service times, patience times, and routing decisions. The sequence of
potential service times would hold all the service information about each customer
provided they were patient enough to get into service. The routing sequence would
represent the phase each customer is assigned upon entering the system.

To see why (6.8) is true, we first observe that at any time t > 0, the random
variable A(t) depends only on the inter-arrival time primitives; in particular, it is
independent of the routing sequence {ξj , j ≥ 1}. Second, any customer to arrive
after customer number B(t) = b has no impact on any of the servers at any point in
time during [0, t]. In particular, the primitives including {ξb+j , j ≥ 1} associated to
those customers are independent of B(t) = b and Z(λ)(t). Lastly, the decisions of
those customers whether to abandon or not by time t depends only on their arrival
times, patience times, and the service history in the interval [0, t]. In particular,
the sequence {ζb+j (t), j ≥ 1} is independent of {ξb+j , j ≥ 1}. This proves the first
equality in (6.8).

We now move on to complete the proof of this lemma. We use (6.9) to see that
for any positive integer N ,

(6.10)

E
([

Q
(λ)
i (t) − pi

(
eT X(λ)(t) − n

)+]2m1{(eT X(λ)(t)−n)+≤N}
)

=
N∑

�=1

E
[(

B(�,pi) − pi�
)2m]

P
((

eT X(λ)(t) − n
) = �

)

≤
N∑

�=1

C(m,6)�m
P

((
eT X(λ)(t) − n

) = �
)

= C(m,6)E
([(

eT X(λ)(t) − n
)+]m1{(eT X(λ)(t)−n)+≤N}

)
,

where we have used the fact that there is a constant C(m,6) > 0 such that

E
[(

B(�,pi) − pi�
)2m] ≤ C(m,6)�m for all � ≥ 1;

see, for example, (4.10) of [40]. Letting t → ∞ in both sides of (6.10), by the
dominated convergence theorem, one has

E
([

Q
(λ)
i (∞) − pi

(
eT X(λ)(∞) − n

)+]2m1{(eT X(λ)(∞)−n)+≤N}
)

≤ C(m,6)E
([(

eT X(λ)(∞) − n
)+]m1{(eT X(λ)(∞)−n)+≤N}

)
.

Letting N → ∞, by the monotone convergence theorem, one has

E
(
Q

(λ)
i (∞) − pi

(
eT X(λ)(∞) − n

)+)2m ≤ C(m,6)E
[(

eT X(λ)(∞) − n
)+]m

.

Then (6.4) follows from this inequality for each i and the fact that there is a con-
stant Bm > 0 such that |x|2m ≤ Bm

∑d
i=1(xi)

2m for all x ∈R
d . One can check that

(6.3) can be obtained by an argument very similar to the one used to prove (6.4).
�
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PROOF OF LEMMA 6. Recall that

Z(λ)(∞) = X(λ)(∞) − Q(λ)(∞)

is the vector representing the number of customers of each type in service in
steady-state. Then from (6.1) we have

E
[
∂ifh

(
X̃(λ)(∞)

)(
δQ

(λ)
i (∞) − pi

(
eT X̃(λ)(∞)

)+)]

=
d∑

k=1

E
[
∂ikfh(ξ)

(
δQ

(λ)
k (∞)

− pk

(
eT X̃(λ)(∞)

)+)(
δQ

(λ)
i (∞) − pi

(
eT X̃(λ)(∞)

)+)]
+E

[
∂ifh

(
δ
(
Z(λ)(∞) − γ n

)
+ p

(
eT X̃(λ)(∞)

)+)(
δQ

(λ)
i (∞) − pi

(
eT X̃(λ)(∞)

)+)]
.

By Lemma 5, the second expected value equals zero. For the first term, one can
use the Cauchy–Schwarz inequality, together with the gradient bound (5.7) and the
SSC result (6.4) to see that for all 1 ≤ i, k ≤ d ,

E
[
∂ikfh(ξ)

(
δQ

(λ)
k (∞) − pk

(
eT X̃(λ)(∞)

)+)(
δQ

(λ)
i (∞) − pi

(
eT X̃(λ)(∞)

)+)]
≤ (

E
[(

∂ikfh(ξ)
)2]

× (
E

[(
δQ

(λ)
k (∞) − pk

(
eT X̃(λ)(∞)

)+)4]
×E

[(
δQ

(λ)
i (∞) − pi

(
eT X̃(λ)(∞)

)+)4])1/2)1/2

≤ δC(2,3)E
[(

eT X̃(λ)(∞)
)+]2

√
E

[(
∂ikfh(ξ)

)2]
≤ δC(2,3)E

[(
eT X̃(λ)(∞)

)+]2
C(m,1)

√
E

[(
1 + |ξ |2)2(

1 + |ξ |)4]
.

We now combine everything together with the fact that ξ satisfies (6.2) to conclude
that there exists a constant C(m,4) that does not depend on λ or n, such that∣∣∣∣∣

d∑
i=1

∂iE

[
fh

(
X̃(λ)(∞)

)[(
νi − α −

d∑
j=1

Pjiνj

)

×(
δQ

(λ)
i (∞) − pi

(
eT X̃(λ)(∞)

)+)]]∣∣∣∣∣
≤ δC(m,4)E

[(
eT X̃(λ)(∞)

)+]2
√
E

[
1 + ∣∣X̃(λ)(∞)

∣∣8]
,

which concludes the proof of the lemma. �
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7. Proof of Theorem 1. To prove Theorem 1, we need an additional lemma
on uniform bounds for moments of scaled system size. It will be proved in Sec-
tion A.3.

LEMMA 7. For any integer m ≥ 0, there exists a constant C(m,5) > 0 [de-
pending only on (β,α,p, ν,P )] such that

(7.1) E
∣∣X̃(λ)(∞)

∣∣m ≤ C(m,5).

We remark that in the special case when the service time distribution is taken to
be hyper-exponential, it is proved in [21] that

lim sup
λ→∞

E exp
(
θ
∣∣X̃(λ)(∞)

∣∣) < ∞
for θ in some positive interval. The proof relies on a result that allows one to
compare the system with an infinite-server system, whose stationary distribution
is known to be Poisson.

PROOF OF THEOREM 1. It follows from Lemmas 4 and 6 that

(7.2)

∣∣Eh
(
X̃(λ)(∞)

) −Eh
(
Y(∞)

)∣∣
= ∣∣EGU(λ)Afh

(
U(λ)(∞)

) −EGY fh

(
X̃(λ)(∞)

)∣∣
≤

∣∣∣∣∣
d∑

i=1

E

[
∂ifh

(
X̃(λ)(∞)

)[(
νi − α −

d∑
j=1

Pjiνj

)

× (
δQ

(λ)
i (∞) − pi

(
eT X̃(λ)(∞)

)+)]]∣∣∣∣∣
+ δC(m,2)E

[(
1 + ∣∣X̃(λ)(∞)

∣∣2)m(
1 + ∣∣X̃(λ)(∞)

∣∣)4]
≤ δC(m,4)E

[((
eT X̃(λ)(∞)

)+)2]√
E

[
1 + ∣∣X̃(λ)(∞)

∣∣8]
+ δC(m,2)E

[(
1 + ∣∣X̃(λ)(∞)

∣∣2)m(
1 + ∣∣X̃(λ)(∞)

∣∣)4]
.

By Lemma 7, there are constants B1(m),B2(m) > 0 [depending only on (β,α,p,

ν,P )] such that

E
[((

eT X̃(λ)(∞)
)+)2]√

E
[
1 + ∣∣X̃(λ)(∞)

∣∣8] ≤ B1(m),

E
[(

1 + ∣∣X̃(λ)(∞)
∣∣2)m(

1 + ∣∣X̃(λ)(∞)
∣∣)4] ≤ B2(m).

Therefore, the right-hand side of (7.2) is less than or equal to

δC(m,4)B1(m) + δC(m,2)B2(m)

≤ (
C(m,4)B1(m) + C(m,2)B2(m)

) 1√
λ

for λ > 0.

This concludes the proof of Theorem 1. �
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APPENDIX: PROOFS

A.1. Proof of Lemma 1 (gradient bounds). Before proving the lemma, we
first state the common quadratic Lyapunov function introduced in [17]. This Lya-
punov function plays a key role in our paper. As in (5.24) of [17], for x ∈ R

d ,
define

(A.1) V (x) = (
eT x

)2 + κ
[
x − pφ

(
eT x

)]′
M

[
x − pφ

(
eT x

)]
,

where κ > 0 is some constant, M is some d × d positive definite matrix, and the
function φ is a smooth approximation to x −→ x+ and is defined by

φ(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x if x ≥ 0,

−1

2
ε if x ≤ −ε,

smooth if − ε < x < 0.

In (5.24) of [17], the authors use Q̃ to represent the positive definite matrix that
we called M in (A.1). We use M instead of Q̃ on purpose, to avoid any potential
confusion with the queue size Q(t). For our purposes, “smooth” means that φ

can be anything as long as φ ∈ C3(Rd). We require that the “smooth” part of φ

also satisfies −1
2ε < φ(x) < x and 0 ≤ φ′(x) ≤ 1. For example, φ can be taken

to be a polynomial of sufficiently high degree on (−ε,0) and this will satisfy our
requirements. The vector p is as in (2.6). The constant κ and matrix M are chosen
just as in [17]; their exact values are not important to us. In their paper, they show
that V satisfies

GY V (x) ≤ −c1V (x) + c2 for all x ∈ R
d

for some positive constants c1, c2; this result requires α > 0, that is, a strictly
positive abandonment rate. Before proceeding to the proof of Lemma 1, we state
two bounds on V that shall be useful in the future. For some constant C > 0,

V (x) ≤ C
(
1 + |x|2)

,(A.2)

|x|2 ≤ C
(
1 + V (x)

)
.(A.3)

The first is immediate from the form of V , while the second is proved in [17].

PROOF OF LEMMA 1. Without loss of generality, we may assume that h(0) =
0, otherwise one may consider h(x) − h(0). This lemma is essentially a restate-
ment of equation (22) and equation (40) from the discussion that follows after
[27], Theorem 4.1. We verify that (22) and (40) are applicable in our case by first
confirming that we have a function satisfying Assumption 3.1 of [27]. Recalling
the definition of V from (A.1), when φ is taken to be a polynomial [of sufficiently
high degree to guarantee V ∈ C3(Rd)], the function

1 + V (x)
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satisfies Assumption 3.1. To verify condition (17) of Assumption 3.1, one observes
that

X(λ)(t) ≤ X(λ)(0) + n + A(λ)(t),

where A(λ)(t) is the total number of arrivals to the system by time t and it is a
Poisson random variable with mean λt for each t ≥ 0. The properties of Poisson
processes then yield (17). By [27], Remark 3.4,

C
(
1 + V (x)

)m
also satisfies Assumption 3.1 for any constant C > 0. Since we require that
|h(x)| ≤ |x|m, by (A.3) we have∣∣h(x) −Eh

(
Y(∞)

)∣∣ ≤ |x|m +E
∣∣Y(∞)

∣∣m ≤ Cm

(
1 + V (x)

)m
.

The finiteness of E|Y(∞)|m is guaranteed because one of the conditions of As-
sumption 3.1 is that

GY

(
1 + V (x)

)m ≤ −c1
(
1 + V (x)

)m + c2

for some positive constants c1 and c2. Therefore, equation (22) gives us (5.5) and
equation (40) gives us (5.6) and (5.7). We get (5.8) by observing that in the discus-
sion preceding (40), everything still holds if we replace Bx(l̄/

√
n) by an open ball

of radius 1 centered at x. We wish to point out that the constants in (40) and (22)
do not depend on the choice of function h. �

A.2. Proof of Lemma 4 (generator difference). The main idea here is that
GY fh(x) is hidden within GU(λ)Afh(u), where the lifting operator A is in (4.4).
We algebraically manipulate the Taylor expansion of GU(λ)Afh(u) to make this
evident. First, we first rearrange the terms in the Taylor expansion (5.15) to group
them by partial derivatives. Thus, GU(λ)Afh(u) equals

d∑
i=1

δ∂ifh(x)

[
piλ − αqi − νizi +

d∑
j=1

Pjiνj zj

]

+
d∑

i=1

δ2

2
∂iifh(x)

[
piλ + αqi + νizi +

d∑
j=1

Pjiνj zj

]

−
d∑

i �=j

δ2∂ijfh(x)[Pij νizi]

+
d∑

i=1

δ2

2

(
∂iifh

(
ξ−
i

) − ∂iifh(x)
)[

αqi +
(

1 −
d∑

j=1

Pij

)
νizi

]
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+
d∑

i=1

δ2

2

(
∂iifh

(
ξ+
i

) − ∂iifh(x)
)[λpi]

−
d∑

i �=j

δ2(
∂ijfh(ξij ) − ∂ijfh(x)

)[Pij νizi]

+
d∑

i=1

d∑
j=1

δ2

2

(
∂iifh(ξij ) − ∂iifh(x)

)[Pij νizi + Pjiνj zj ].

To proceed, we observe that (2.3) gives us the identity

(A.4) −νiγin +
d∑

j=1

Pjiνjγjn = −npi.

Recall the form of GY fh(x) from (5.3). From the form of � in (2.7), we see that

(A.5)
�ii = 2

(
pi +

d∑
j=1

Pjiγj νj

)
,

�ij = −(Pij νiγi + Pjiνjγj ) for j �= i

using (5.3), (A.4) and (A.5), the difference GU(λ)Afh(u) − GY fh(x) becomes
d∑

i=1

∂ifh(x)

[(
νi − α −

d∑
j=1

Pjiνj

)(
δqi − pi

(
eT x

)+)]

+
d∑

i=1

∂iifh(x)

[
d∑

j=1

Pjiνjγj

](
nδ2 − 1

)

−
d∑

i �=j

∂ijfh(x)[Pij νiγi + Pjiνjγj ](nδ2 − 1
)

−
d∑

i=1

δ2

2
∂iifh(x)

[
pi(λ − n) − αqi − νi(zi − γin)

−
d∑

j=1

Pjiνj (zj − γjn)

]

(A.6)

−
d∑

i �=j

δ2

2
∂ijfh(x)

[
Pij νi(zi − γin) + Pjiνj (zj − γjn)

]

+
d∑

i=1

δ2

2

(
∂iifh

(
ξ−
i

) − ∂iifh(x)
)[

αqi +
(

1 −
d∑

j=1

Pij

)
νizi

]
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+
d∑

i=1

δ2

2

(
∂iifh

(
ξ+
i

) − ∂iifh(x)
)[λpi]

−
d∑

i �=j

δ2(
∂ijfh(ξij ) − ∂ijfh(x)

)[Pij νizi]

+
d∑

i=1

d∑
j=1

δ2

2

(
∂iifh(ξij ) − ∂iifh(x)

)[Pij νizi + Pjiνj zj ].

We remind the reader that our target is to prove that

GU(λ)Afh(u) − GY fh(x)

=
d∑

i=1

∂ifh(x)

[(
νi − α −

d∑
j=1

Pjiνj

)(
δqi − pi

(
eT x

)+)] + E(u),

where E(u) is an error term that satisfies∣∣E(u)
∣∣ ≤ δC(m,2)

(
1 + |x|2)m(

1 + |x|)4
.

We choose E(u) to be all the terms in (A.6) except for the first line. We now
describe how to bound |E(u)|. Most of the summands in (A.6) look as follows:
a term in large square brackets multiplied by some partial derivative of fh. The
partial derivatives are very easy to bound; we simply use (5.6)–(5.8). We wish
to point out that ξ+

i , ξ−
i and ξij lie within distance 2δ of x. When 2δ < 1, (5.8)

implies

(A.7)
∣∣∂ijfh(ξ) − ∂ijfh(x)

∣∣ ≤ 2δC
(
1 + |x|2)m(

1 + |x|)3

for some constant C > 0 (i.e. an extra δ term is gained). When 2δ ≥ 1 (by Re-
mark 1 this occurs in finitely many cases), we may use (5.7) to obtain (A.7) with
a redefined C. From here on out, we shall let C > 0 be a generic positive constant
that will change from line to line, but will always be independent of λ and n.

Now we shall list the facts needed to bound all the square bracket terms in
(A.6) except for the very first one. Recall that we are operating in the Halfin–Whitt
regime as defined by (1.2). Therefore,(

nδ2 − 1
) = δβ and δ(λ − n) = −β.

Furthermore, it must be true that

δqi ≤ (
eT x

)+ ≤ C|x|,
as the number of phase i customers may never exceed the total queue size. Next,∣∣δ(zi − γin)

∣∣ = |xi − δqi | ≤ C|x|
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and lastly, ∣∣δ2zi

∣∣ ≤ ∣∣δ2γin
∣∣ + ∣∣δ2(zi − γin)

∣∣ ≤ C
(
1 + |x|).

It is now a simple matter to verify that the inequalities above, combined with the
bounds on the partials of fh are all that it takes to achieve our desired upper bound.

A.3. Proof of Lemma 7 (moment bounds). We first provide an intuitive
roadmap for the proof. The goal is to show that a Lyapunov function for the diffu-
sion process is also a Lyapunov function for the CTMC; this has two parts to it. In
the first part of this proof, we compare how the two generators GU(λ) and GY act on
this Lyapunov function, obtaining an upper bound for the difference GU(λ) − GY

in (A.12). One notes that the right-hand side of (A.12) is unbounded. This is due
to the difference in dimensions of the CTMC and diffusion process. To overcome
this difficulty, we move on to the second part of the proof, which exploits our SSC
result in Lemma 5 to bound the expectation of the right-hand side of (A.12). We
end up with a recursive relationship that guarantees the 2mth moment is bounded
[uniformly in λ and n satisfying (1.2)] provided that the mth moment is. Finally,
we rely on prior results obtained in [13] for a uniform bound on the first moment.

We remark that a version of this lemma was already proved [27], Theorem 3.3,
for the case where the dimension of the CTMC equals the dimension of the diffu-
sion process. However, the difference in dimensions poses an additional technical
challenge, which is overcome in the second part of this proof.

Its enough to prove (7.1) for the cases when m = 2j for some j ≥ 0. Further-
more, we may assume that λ ≥ 4 because by Remark 1, there are only finitely many
cases when λ < 4. In all those cases, E|X̃(λ)(∞)|m < ∞ by (5.12). Throughout the
proof, we shall use C,C1,C2,C3,C4 to denote generic positive constants that may
change from line to line. They may depend on (m,β,α,p, ν,P ), but will be inde-
pendent of both λ and n. Define

Vm(x) = (
1 + V (x)

)m
,

where V is as in (A.1). By [27], Remark 3.4, Vm also satisfies

GY Vm(x) ≤ −C1Vm(x) + C2

as long as V ∈ C3(Rd) and satisfies condition (30) of [27], which is easy to verify.
To prove the lemma, we will show that for large enough λ, V satisfies

EGU(λ)AVm

(
U(λ)(∞)

) ≤ −C1EVm

(
X̃(λ)(∞)

) + C2,

where A is the lifting operator defined in (4.4). We begin by observing

(A.8)
GU(λ)AVm ≤ GU(λ)AVm − GY Vm + GY Vm

≤ GU(λ)AVm − GY Vm − C1Vm + C2.
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Using (A.6), we write GU(λ)AVm − GY Vm as

d∑
i=1

∂iVm(x)

[(
νi − α −

d∑
j=1

Pjiνj

)(
δqi − pi

(
eT x

)+)]

+
d∑

i=1

∂iiVm(x)

[
d∑

j=1

Pjiνjγj

](
nδ2 − 1

)

−
d∑

i �=j

∂ijVm(x)[Pij νiγi + Pjiνjγj ](nδ2 − 1
)

−
d∑

i=1

δ2

2
∂iiVm(x)

[
pi(λ − n) − αqi − νi(zi − γin) −

d∑
j=1

Pjiνj (zj − γjn)

]

−
d∑

i �=j

δ2

2
∂ijVm(x)

[
Pij νi(zi − γin) + Pjiνj (zj − γjn)

]

+
d∑

i=1

δ2

2

(
∂iiVm

(
ξ−
i

) − ∂iiVm(x)
)[

αqi +
(

1 −
d∑

j=1

Pij

)
νizi

]

+
d∑

i=1

δ2

2

(
∂iiVm

(
ξ+
i

) − ∂iiVm(x)
)[λpi]

−
d∑

i �=j

δ2(
∂ijVm(ξij ) − ∂ijVm(x)

)[Pij νizi]

+
d∑

i=1

d∑
j=1

δ2

2

(
∂iiVm(ξij ) − ∂iiVm(x)

)[Pij νizi + Pjiνj zj ].

Now we wish to bound the derivatives of Vm. By [27], Remark 3.4, Vm satisfies
(16) and (30) of [27], namely

(A.9) sup
|y|≤1

Vm(x + y)

Vm(x)
≤ C

and

(A.10)
(∣∣∂iVm(x)

∣∣ + ∣∣∂ijVm(x)
∣∣ + ∣∣∂ijkVm(x)

∣∣)(1 + |x|) ≤ CVm(x).

For ξ being one of ξ+
i , ξ−

i or ξij ,

(A.11)

∣∣∂ijVm(ξ) − ∂ijVm(x)
∣∣(1 + |x|) ≤ δ

∣∣∂ijiVm(η) + ∂ijjVm(η)
∣∣(1 + |x|)

≤ CδVm(x),
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where the first inequality comes from a Taylor expansion and the second inequality
follows by (A.10), the fact that |η − x| ≤ 2δ < 1 and by (A.9). Following the exact
same argument that we used to bound (A.6) in the proof of Lemma 4 [with (A.10)
and (A.11) replacing the gradient bounds of fh there], we get

GU(λ)AVm − GY Vm ≤ CδVm(x) + C

d∑
i=1

∣∣∂iVm(x)
∣∣[∣∣qi − pi

(
eT x

)+∣∣].
Differentiating V , we see that(∇V (x)

)T = 2
(
eT x

)
eT + 2κ

(
xT − pT φ

(
eT x

))
Q̃

(
I − peT φ′(eT x

))
.

Combined with the fact that 0 ≤ φ′(x) ≤ 1, it is clear that∣∣∂iV (x)
∣∣ ≤ C

(
1 + |x|).

Therefore,

(A.12)

GU(λ)AVm − GY Vm

≤ CδVm(x) + C

d∑
i=1

mVm−1(x)
(
1 + |x|)[∣∣qi − pi

(
eT x

)+∣∣].
It remains to find an appropriate bound for

Vm−1(x)
(
1 + |x|)[∣∣qi − pi

(
eT x

)+∣∣]
= δVm−1(x)

(
1 + |x|)[ |qi − pi(e

T x)+|
δ

]
.

We have

δVm−1(x)
(
1 + |x|)[ |qi − pi(e

T x)+|
δ

]

≤ √
δVm−1(x)

(
1 + |x|)2 + √

δVm−1(x)

[ |qi − pi(e
T x)+|2

δ

]

≤ C
√

δVm(x) + √
δVm−2(x)V2(x)

+ √
δVm−2(x)

[ |qi − pi(e
T x)+|2

δ

]2

≤ C
√

δVm(x) + √
δVm(x) + √

δVm−4(x)V4(x)(A.13)

+ √
δVm−4(x)

[ |qi − pi(e
T x)+|2

δ

]4

≤ · · ·

≤ C
√

δVm(x) + √
δ

[ |qi − pi(e
T x)+|2

δ

]m

,
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where in the last inequality, we used the fact that m = 2j . Using (A.8), (A.12) and
(A.13),

GU(λ)AVm(u) ≤ −Vm(x)(C1 − √
δC3) + C2 + √

δC4

d∑
i=1

[ |qi − pi(e
T x)+|2

δ

]m

,

where x and q are related to u by (4.3). The arguments in the proof of Lemma 2
can be used to show

EGU(λ)AVm

(
U(λ)(∞)

) = 0.

Therefore, for δ small enough,

E
∣∣X̃(λ)(∞)

∣∣2m

≤ CEVm

(
X̃(λ)(∞)

)

≤ C

(C1 − √
δC3)

(
C2 + √

δC4

d∑
i=1

E|δQ(λ)
i (∞) − pi(e

T X̃(λ)(∞))+|2m

δm

)
.

By (6.4), it follows that

E
∣∣X̃(λ)(∞)

∣∣2m ≤ C

C1 − √
δC3

(
1 + √

δE
[(

eT X̃(λ)(∞)
)+]m)

.

Hence, we have a recursive relationship that guarantees

sup
λ>0

E
∣∣X̃(λ)(∞)

∣∣2m
< ∞

whenever

sup
λ>0

E
[(

eT X̃(λ)(∞)
)+]m

< ∞.

To conclude, we need to verify that

sup
λ>0

E
[(

eT X̃(λ)(∞)
)+]

< ∞,

but this was proved in equation (5.2) of [13].
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