
The Annals of Applied Probability
2017, Vol. 27, No. 2, 651–685
DOI: 10.1214/16-AAP1183
© Institute of Mathematical Statistics, 2017

RECONSTRUCTION OF A MULTIDIMENSIONAL SCENERY
WITH A BRANCHING RANDOM WALK

BY HEINRICH MATZINGER, ANGELICA PACHON1

AND SERGUEI POPOV

Georgia Institute of Technology, University of Turin and University of Campinas

We consider a d-dimensional scenery seen along a simple symmetric
branching random walk, where at each time each particle gives the color
record it observes. We show that up to equivalence the scenery can be recon-
structed a.s. from the color record of all particles. To do so, we assume that
the scenery has at least 2d + 1 colors which are i.i.d. with uniform probabil-
ity. This is an improvement in comparison to Popov and Pachon [Stochastics
83 (2011) 107–116], where at each time the particles needed to see a win-
dow around their current position, and in Löwe and Matzinger [Ann. Appl.
Probab. 12 (2002) 1322–1347], where the reconstruction is done for d = 2
with a single particle instead of a branching random walk, but millions of
colors are necessary.

1. Introduction. The classical scenery reconstruction problem considers a
coloring ξ : Z → {1,2, . . . , κ} of the integers Z. To ξ , one refers as the scenery
and to κ as the number of colors of ξ . Furthermore, a particle moves according to
a recurrent random walk S on Z and at each instant of time t observes the color
χt := ξ(St) at its current position St . The scenery reconstruction problem is formu-
lated through the following question: From a color record χ = χ0χ1χ2 . . . , can one
reconstruct the scenery ξ? The complexity of the scenery reconstruction problem
varies with the number of colors κ , it generally increases as κ decreases.

In [10], it was shown that there are some strange sceneries which cannot be
reconstructed. However, it is possible to show that a.s. a “typical” scenery, drawn
at random according to a given distribution, can be reconstructed (possibly up to
shift and/or reflection).

In [13, 14], it is proved that almost every scenery can be reconstructed in the
one-dimensional case. In this instance, combinatorial methods are used; see, for
example, [9, 11, 15–17, 19] and [18]. However, all the techniques used in one
dimension completely fail in two dimensions; see [8].

In [12], a reconstruction algorithm for the 2-dimensional case is provided. How-
ever, in [12] the number of colors in the scenery is very high (order of several

Received March 2014; revised June 2015.
1Supported in part by the project AMALFI (Universitá di Torino/ Compagnia di San Paolo).
MSC2010 subject classifications. 60J05, 60J80.
Key words and phrases. Random walk, branching random walk, reconstruction algorithm.

651

http://www.imstat.org/aap/
http://dx.doi.org/10.1214/16-AAP1183
http://www.imstat.org
http://www.ams.org/mathscinet/msc/msc2010.html

652 H. MATZINGER, A. PACHON AND S. POPOV

billions). The d-dimensional case is approached in [21] using a branching ran-
dom walk and assuming that at each instant of time t , each particle is seeing the
observations contained in a box centered at its current location.

In the present article, we show that we can reconstruct a d-dimensional scenery
using again a branching random walk but only observing at each instant of time t ,
the color at the current positions of the particles. For this, we only need at least
2d + 1 colors. Our method exploits the combinatorial nature of the d-dimensional
problem in an entirely novel way.

The scenery reconstruction problem goes back to questions from Kolmogorov,
Kesten, Keane, Benjamini, Perez, Den Hollander and others. A related well-known
problem is to distinguish sceneries: Benjamini, den Hollander and Keane inde-
pendently asked whether all nonequivalent sceneries could be distinguished. An
outline of this problem is as follows: Let η1 and η2 be two given sceneries, and
assume that either η1 or η2 is observed along a random walk path, but we do not
know which one. Can we figure out which of the two sceneries was taken? Kesten
and Benjamini in [1] proved that one can distinguish almost every pair of scener-
ies even in two dimensions and with only two colors. For this, they take η1 and
η2 both i.i.d. and independent of each other. Prior to that, Howard had shown in
[3, 4] and [5] that any two periodic one-dimensional nonequivalent sceneries are
distinguishable, and that one can a.s. distinguish single defects in periodic scener-
ies. Detecting a single defect in a scenery refers to the problem of distinguishing
two sceneries which differ only in one point. Kesten proved in [7] that one can a.s.
recognize a single defect in a random scenery with at least five colors. As fewer
colors lead to a reduced amount of information, it was conjectured that it might
not be possible to detect a single defect in a 2-color random scenery. However, in
[14] the first named author showed that the opposite is true—a single defect in a
random 2-color scenery can be detected. He also proved that the whole scenery
can be reconstructed without any prior knowledge.

One motivation to study scenery reconstruction and distinguishing problems
was the T ,T −1-problem that origins in a famous conjecture in ergodic theory due
to Kolmogorov. He demonstrated that every Bernoulli shift T has a trivial tail-field
and conjectured that also the converse is true. Let K denote the class of all trans-
formations having a trivial tail-field. Kolmogorov’s conjecture was shown to be
wrong by Ornstein in [20], who presented an example of a transformation which is
in K but not Bernoulli. His transformation was particularly constructed to resolve
Kolmogorov’s conjecture. In 1971, Ornstein, Adler and Weiss came up with a very
natural example which is K but appeared not to be Bernoulli; see [22]. This was
the so-called T ,T −1-transformation, and the T ,T −1-problem was to verify that
it was not Bernoulli. It was solved by Kalikow in [6], showing that the T ,T −1-
transformation is not even loosely Bernoulli. A generalization of this result was
recently proved by den Hollander and Steif [2].

RECONSTRUCTION OF A MULTIDIMENSIONAL SCENERY 653

2. Model and statement of results. We consider a random coloring of the
integers in d-dimension. Let ξz be i.i.d. random variables, where the index z ranges
over Zd . The variables ξz take values from the set {0,1,2, . . . , κ −1} where κ ≥ 4,
and all the values from {0,1,2, . . . , κ −1} have the same probability. A realization
of ξ = {ξz}z∈Zd thus is a (random) coloring of Zd . We call this random field ξ a
d-dimensional scenery.

Now assume that a branching random walk (BRW) on Z
d observes the d-

dimensional scenery ξ , that is, each particle of the BRW observes the color at
its current position.

Formally a branching random walk in Z
d is described as follows. The process

starts with one particle at the origin, then at each step, any particle is substituted by
two particles with probability b and is left intact with probability 1 − b, for some
fixed b ∈ (0,1). We denote by Nn the total number of particles at time n. Clearly,
(Nn,n = 0,1,2, . . .) is a Galton–Watson process with the branching probabilities
p̃1 = 1 − b, p̃2 = b. This process is supercritical, so it is clear that Nn → ∞
a.s. Furthermore, each particle follows the path of a simple random walk, that is,
each particle jumps to one of its nearest neighbors chosen with equal probabilities,
independently of everything else.

To give the formal definition of the observed process, we first introduce some
notation. Let ηt (z) be the number of particles at site z ∈ Z

d at time t ≥ 0, with
η0(z) = 1{z = 0}. We denote by ηt = (ηt (z))z∈Zd the configuration at time t of the
branching random walk on Z

d , starting at the origin with branching probability b.
Let G be the genealogical tree of the Galton–Watson process, where Gt =

{vt
1, . . . , v

t
Nt

} are the particles of t th generation. Let S(vt
j) be the position of vt

j

in Z
d , that is, S(vt

j) = z if the j th particle at time t is located on the site z. Recall
that we do not know the position of the particles, only the color record made by
the particles at every time, as well as the number of particles at each time.

According to our notation, {z ∈ Z
d : ηt (z) ≥ 1} = {∃j ;S(vt

j) = z, j = 1, . . . ,

Nt }. The observations χ , to which we also refer as observed process, is a coloring
of the random tree G. Hence, the observations χ constitute a random map:

χ : Gt → {0,1,2, . . . , κ − 1},
vt
i �→ χ

(
vt
i

) = ξ
(
S
(
vt
i

))
, i = {1, . . . ,Nt }.

In other words, the coloring χ of the random tree G yields the color the particle i

at time t sees in the scenery from where it is located at time t .
Denote by �1 = {(ηt)t∈N} the space of all possible “evolutions” of the branch-

ing random walk, by �2 = {0,1,2, . . . , κ −1}Zd
the space of all possible sceneries

ξ and by �3 = {(χt)t∈N} the space of all possible realizations of the observed pro-
cess. We assume that (ηt)t∈N and ξ are independent and distributed with the laws
P1 and P2, respectively.

Two sceneries ξ and ξ ′ are said to be equivalent (in this case we write ξ ∼ ξ ′),
if there exists an isometry ϕ : Zd �→ Z

d such that ξ(ϕx) = ξ ′(x) for all x.

654 H. MATZINGER, A. PACHON AND S. POPOV

Now we formulate the main result of this paper. The measure P designates the
product measure P1 ⊗ P2.

THEOREM 2.1. For any b ∈ (0,1) and κ ≥ 2d + 1, there exists a measurable
function � : �3 → �2 such that P(�(χ)∼ ξ) = 1.

The function � represents an “algorithm,” the observations χ being its input
and the reconstructed scenery ξ (up to equivalence) being its output. The main
idea used to prove Theorem 2.1 is to show how to reconstruct a finite piece of the
scenery (close to the origin).

2.1. Main ideas. We start by defining a reconstruction algorithm with param-
eter n denoted by �n, which works with all the observations up to time n2 to re-
construct a portion of the scenery ξ close to the origin. The portion reconstructed
should be the restriction of ξ to a box with center close to the origin. This means
closer than

√
n, which is a lesser order than the size of the piece reconstructed.

We will show that the algorithm �n works with high probability (w.h.p. for short,
meaning with probability tending to one as n → ∞).

Let us denote by Kx(s) the box of size s centered at x in Z
d , that is, x+[−s, s]d ,

and by K(s) the box of size s centered at the origin of Zd . For a subset A of Zd ,
we designate by ξA the restriction of ξ to A, so ξKx(s) denotes the restriction of ξ

to Kx(s).
In what follows, we will say that w is a word of size k of ξA, if it can be read in

a straight manner in ξA. This means that w is a word of ξA if there exist an x ∈ Z
d

and a canonical vector �e (it defined to be one that has only one nonzero entry equal
to +1 or −1), so that x + i�e ∈ A, for all i = 0,1,2, . . . , k − 1, and

w = ξxξx+�eξx+2�e · · · ξx+(k−1)�e.

Let A and B be two subsets of Zd . Then we say that ξA and ξB are equivalent
to each other and write ξA ∼ ξB , if there exists an isometry ϕ : A �→ B such that,
ξA ◦ ϕ = ξB .

2.2. The algorithm Λn for reconstructing a finite piece of scenery close to the
origin. The four phases of this algorithm are described in the following way:

1. First phase: Construction of short words of size (lnn)2. The first phase aims
at reconstructing words of size (lnn)2 of ξK(n2). The set of words constructed in
this phase is denoted by SHORTWORDSn. It should hopefully contain all words
of size (lnn)2 in ξK(4n), and be contained in the set of all words of size (lnn)2

in ξK(n2). The accurate definition of SHORTWORDSn is as follows: A word w2

of size (lnn)2 is going to be selected to be in SHORTWORDSn if there exist two
strings w1 and w3 both of size (lnn)2 and such that:

(a) w1w2w3 appears in the observations before time n2, and

RECONSTRUCTION OF A MULTIDIMENSIONAL SCENERY 655

(b) the only word w of size (lnn)2 such that w1ww3 appears in the observa-
tions up to time n4 is w2.

Formally, let W(ξK(4n)) and W(ξK(n2)) be the sets of all words of size (lnn)2 in
ξK(4n) and ξK(n2), respectively, then

W(ξK(4n)) ⊆ SHORTWORDSn ⊆ W(ξK(n2)).(2.1)

We prove that (2.1) holds w.h.p. in Section 3.1.
2. Second phase: Construction of long words of size 4n. The second phase

assembles the words of SHORTWORDSn into longer words to construct an-
other set of words denoted by LONGWORDSn. The rule is that the words of
SHORTWORDSn to get assembled must coincide on (lnn)2 − 1 consecutive let-
ters, and it is done until getting strings of total size exactly equal to 4n + 1. In this
phase, let W4n(ξK(4n)) and W4n(ξK(n2)) be the set of all words of size 4n in ξK(4n)

and ξK(n2), respectively, then

W4n(ξK(4n)) ⊆ LONGWORDSn ⊆ W4n(ξK(n2)).(2.2)

We achieve that (2.2) holds w.h.p. in Section 3.2.
3. Third phase: Selecting a seed word close to the origin. The third phase selects

from the previous long words one which is close to the origin. For that, Λn applies
the previous two phases, but with the parameter being equal to n0.25 instead of n.
In other words, Λn chooses one (any) word w0 of LONGWORDSn0.25

, and then
chooses the word wL in LONGWORDSn which contains w0 in such a way that the
relative position of w0 inside wL is centered. (The middle letters of w0 and wL

must coincide.) Λn places the word wL so that the middle letter of w0 is at the
origin. See Section 3.3.

4. Fourth phase: Determining which long words are neighbors of each other.
The fourth phase place words from LONGWORDSn in the correct relative position
to each other, thus assembling the scenery in a box near the origin. For this, Λn

starts with the first long-word which was placed close to the origin in the previous
phase. Then words from the set LONGWORDSn are placed parallel to each other
until a piece of scenery on a box of size 4n is completed.

Let us briefly explain how Λn chooses which words of LONGWORDSn are
neighbors of each other in the scenery ξK(n2), (i.e., they are parallel and at dis-
tance 1). Λn estimates that the words v and w which appear in ξK(n2) are neighbors
of each other iff the three following conditions are all satisfied:

(a) First, there exist 4 words va , vb, vc and wb having all size (lnn)2 except
for vb which has size (lnn)2 − 2, and such that the concatenation vavbvc

is contained in v, whilst up to time n4 it is observed at least once vawbvc.
(b) Second, the word wb is contained in w.
(c) Finally, the relative position of vb in v should be the same as the relative

position of wb in w. By this, we mean that the middle letter of vb has the
same position in v as the middle letter of wb in w has.

656 H. MATZINGER, A. PACHON AND S. POPOV

See the precise definition in Section 3.4.

Let B be the set of all finite binary trees, and let χt designates all the observations
made by the branching random walk up to time t . That χt is the restriction of the
coloring χ to the subtree

⋃
i≤t Gi .

The next result means that the algorithm �n works w.h.p.

THEOREM 2.2. Assume that the number of colors κ satisfies the condition
that κ ≥ 2d + 1. Then, for every n ∈ N large enough, the map

�n : {0,1, . . . , κ − 1}B → {0,1, . . . , κ − 1}K(4n),

defined above as our algorithm satisfies

(2.3) P
[∃x ∈ K(

√
n) so that �n(χn4) ∼ ξKx(4n)

] ≥ 1 − exp
(−C(lnn)2)

,

where C > 0 is a constant independent of n.

In words, the algorithm �n manages to reconstruct w.h.p. a piece of the scenery
ξ restricted to a box of size 4n close to the origin. The center of the box has every
coordinate not further than

√
n from the origin. The reconstruction algorithm uses

only observations up to time n4.
We will give the exact proof of the above theorem in the next section, but, before

we present the main ideas in a less formal way in the remainder of this section. We
first want to note that the algorithm �n reconstructs a piece of the scenery ξ in a
box of size 4n, but the exact position of that piece within ξ will in general not be
known after the reconstruction. Instead, the above theorem insures that w.h.p. the
center of the box is not further than an order

√
n from the origin.

For what follows, we will need a few definitions: Let [0, k − 1] designate the
sequence {0,1,2,3 . . . , k − 1} and R be a map R : [0, k − 1] → Z

d such that the
distance between R(i) and R(i + 1) is 1 for every i = 0,1,2, . . . , k − 2. We call
such a map a nearest neighbor path of length k − 1. Let x and y be two points in
Z

d . If R(0) = x and R(k − 1) = y, we say that R goes from x to y. We also say
that R starts in x and ends in y. Let w be a string of colors of size k, such that

w = ξ
(
R(0)

)
ξ
(
R(1)

) · · · ξ (
R(k − 1)

)
.

In that case, we say that R generates w on the scenery ξ .

2.2.1. The DNA-sequencing trick. We use the same trick as is used in modern
methods for DNA-sequencing where instead of reconstructing the whole DNA-
sequence at once, one tries to reconstruct smaller pieces simultaneously. Then to
obtain the entire piece one puzzles the smaller pieces together. In this paper, the
scenery is multidimensional unlike DNA-sequences. Nonetheless, we first present
the reconstruction method for DNA-sequencing in this subsection, because it is
easiest to understand. The trick goes as follows. Assume that you have a genetic

RECONSTRUCTION OF A MULTIDIMENSIONAL SCENERY 657

sequence D = D1D2 · · ·Dnα , where α > 0 is a constant independent of n, and D

is written in an alphabet with κ > 0 equiprobable letters. For instance in DNA-
sequences, this alphabet is {A,C,T ,G}. To determine the physical order of these
letters in a sequence of DNA, modern methods use the idea of do not go for the
whole sequence at once, but first determine small pieces (subsequences) of order at
least C ln(n) and then assemble them to obtain the whole sequence. (Here, C > 0
is a constant independent of n, but dependent of α.) Let us give an example.

EXAMPLE 2.1. Let the sequence be equal to

D = TATCAGT,

and suppose a biologist in his laboratory is able to find all subsequences of size 5.
Typically, the direction in which these subsequences appear in D is not known.
The set of all subsequences of size 5 which appear in D is

TATCA,ATCAG,TCAGT,

as well as their reverses

ACTAT,GACTA,TGACT.

Which one are to be read forward and which one backward is not known to the
biologist. He is only given all these subsequences in one bag without extra infor-
mation. If he was given all the subsequences of size 5 appearing in D, he could
reconstruct D by assembling these subsequences using the assembly rule that they
must coincide on a piece of size 4. Why? Consider the set of all subsequences of
size 4:

TATC,ATCA,TCAG,CAGT

and their reverses

CTAT,ACTA,GACT,TGAC.

Note that each of these appears only once. Hence, four consecutive letters deter-
mine uniquely the relative position of the subsequences of size 5 with respect to
each other, and given the bag of subsequences of size 5 is possible to assemble
theme one after the other. How? Start by picking any subsequence. Then put down
the next subsequence from the bag which coincides with the previous one on at
least 4 letters. For example, take GACTA and put it down on the integers in any
position, for instance,

G A C T A

0 1 2 3 4
.

Then take another subsequence from the bag which coincides with the previously
chosen one, on at least 4 contiguous letters. For example, TGACT satisfies this

658 H. MATZINGER, A. PACHON AND S. POPOV

condition. Now superpose the new subsequence onto the previous one so that on 4
letters they coincide:

T G A C T

G A C T A

−1 0 1 2 3 4
. This leads to:

T G A C T A

−1 0 1 2 3 4
.

Next, observe that the subsequence ACTAT coincides on at least 4 consecutive
letters, with what has been reconstructed so far. So, put ACTAT down in a matching
position:

A C T A T

T G A C T A

−1 0 1 2 3 4 5
. This leads to:

T G A C T A T

−1 0 1 2 3 4 5
.

The final result is the sequence TGACTAT which is D read in reverse order.

But how do we know that this method works? In the example, we saw the se-
quence D before hand, and could hence verify that each subsequence of size 4
appears in at most one position in D. However, the biologist can not verify this
condition. He only gets the bag of subsequences as only information. So, the idea is
that if we know the stochastic model which generates the sequence, we can calcu-
late that w.h.p. each subsequence of size C ln(n) appears only once in D, provided
the constant C > 0 is taken large enough. Take for example the i.i.d. model with
κ > 1 equiprobability letters. Then the probability that two subsequences located
in different and nonintersecting parts of D be identical is given by

(2.4) P
(
En+

i,j

) =
(

1

κ

)C lnn

= n−C ln(κ),

where En+
i,j is the event that

(2.5) Di+1 · · ·Di+C lnn = Dj+1 · · ·Dj+C lnn.

Similarly, let En−
i,j be the event that

(2.6) Di+1 · · ·Di+C lnn = Dj−1 · · ·Dj−C lnn.

Note that even if the subsequences given on both sides of (2.5) or (2.6) intersect,
as long as they are not exactly in the same position, we get that (2.4) still holds.
To see this, take for example the subsequence w = Di+1Di+2 · · ·Di+C(lnn) and
the subsequence v = Di+2Di+3 · · ·Di+C(lnn)+1. These two subsequences are not
at all independent of each other since up to two letters they are identical to each
other. However, we still have that P(w = v) is equal to

(2.7) P(Di+1Di+2 · · ·Di+C(lnn) = Di+2Di+3 · · ·Di+C(lnn)+1) =
(

1

κ

)C lnn

.

RECONSTRUCTION OF A MULTIDIMENSIONAL SCENERY 659

To see why this holds, simply note that Di+2 is independent of Di+1, so w and v

agree on the first letter with probability 1/κ . Then Di+3 is independent of Di+2
and Di+1, so the second letter of v has a probability of 1/κ to be identical to the
second letter of w, and so on. Thus, to get that w.h.p. no identical subsequence
appears in any two different positions in D, we need to get a suitable upper bound
of the right-hand side of (2.4). If we take i and j both in nα , we find that the
probability to have at least one subsequence appearing in two different positions
in D, can be bounded in the following way:

(2.8) P

(⋃
i �=j

En+
i,j

)
≤ ∑

i �=j

P
(
En+

i,j

) ≤ n2α · n−C ln(κ).

The same type of bound also holds for P(En−
i,j) using (2.6). We take C strictly

larger than 2α/ lnκ in order to get the right-hand side of (2.8) be negatively poly-
nomially small in n.

For our algorithm �n, we will take subsequences (the short words) to have size
(lnn)2 instead of being linear in lnn. Thus, we do not have to think about the
constant in front of lnn. Then the bound we get for the probability becomes even
better than negative polynomial in n. It becomes of the type n−βn where β > 0 is
a constant independent of n.

2.2.2. Applying the DNA-sequencing method to a multidimensional scenery.
In our algorithm �n, we do not have the task to reconstruct a sequence, instead
we have to reconstruct a multidimensional scenery restricted to a box. We use the
same idea as the DNA-sequencing method except that we will reconstruct sev-
eral long words instead of reconstructing just one long word (one sequence). This
corresponds to the second phase of �n where with a bag of short words, it con-
structs a collection of long words. These words will be the different restrictions of
the scenery ξ to straight lines-segments parallel to some direction of coordinates.
These long words, of course, do not yet tell us exactly how the scenery looks; we
will still need to position these long words correctly with respect to each other.
(This is done in the fourth phase of �n.) Let us explain that with another example.

EXAMPLE 2.2. Let us assume d = 2 and the scenery ξ restricted to the box
[0,4] × [0,4] be given by

(2.9) ξ[0,4]×[0,4] =

1 9 4 3 7
5 0 7 6 1
4 3 9 1 2
6 1 4 0 4
2 7 8 0 3

.

Here, we assume that the alphabet has size κ = 10 and that we would be given a
bag of all short words of size 4 appearing in (2.9). That is words which can be read

660 H. MATZINGER, A. PACHON AND S. POPOV

horizontally or vertically in either direction: from up to down, down to up, left to
right, right to left and of size 4. This bag of short-words is

{1943,5076,4391,6140,27803,9437,0761,3912,1404,7803,
(2.10)

1546,9031,4794,3610,7124,5462,0317,7948,6100,1243},
and their reverses. As assemble rule we use that words must coincide on at least 3
consecutive letters. We can, for example, assemble 1943 with 9437 to get 19437.
Similarly, we assemble 1546 with 5462 and obtain 15462. So, we apply the DNA-
puzzling trick, but instead of reconstruct only one long word, we will reconstruct
several long words. In this example, we reconstruct the set of 10 long words and
their reverses:

{19437,50761,43912,61404,27803,
(2.11)

15462,90317,47948,36100,71243},
where again each of the above long words could be its own reverse.

Thus, the previous example shows how the second phase of the algorithm
works: From a set of shorter words SHORTWORDSn, we obtain a set of longer
words LONGWORDSn in the same manner how we obtained the set (2.11) from
the bag of words (2.10). Note that the long words are successfully reconstructed in
this example, because in the restriction of the scenery in (2.9), any word of size 3
appears at most in one place.

The differences in the numeric example presented above and how the second
phase of �n works are the following: the short words in �n have length (lnn)2

and the long words have length 4n, instead of 4 and 5. Moreover, �n will need to
assemble in the second phase many short words to get one long word, despite in
this example where we just used two short words to get each long word. On the
other side, in the previous example is given to us a bag of all words of size 4 of
the restriction of ξ to the box [0,4] × [0,4]. However, the second phase of �n has
the bag of short words SHORTWORDSn, which is not exactly equal to all words
of size (lnn)2 of ξ restricted to a box. Instead, it is the bag of words that contains
all words of size (lnn)2 of ξ , restricted to the box K(4n), but augmented by some
other words of the bigger box K(n2).

The bag of short words SHORTWORDSn is obtained in the first phase of �n.
The reason why the first phase is not able to identify which words are in the box
K(4n) and which are in K(n2) is as follows: the observations in the first phase of
�n are taken up to time n2. Since we assume that the first particle starts at time
0 at the origin, by time n2 all particles must be contained in the box K(n2), and
the probability for one given particle at time n2 to be close to the border of K(n2)

is exponentially small. Since we have many particles, a few will be close to the
border of K(n2) by time n2, and these will be enough particles to provide some

RECONSTRUCTION OF A MULTIDIMENSIONAL SCENERY 661

few words close to the border of K(n2) by time n2, and selected in the first phase
of the algorithm.

There is an important consequence to this in the second phase of the algorithm,
since some reconstructed long words in LONGWORDSn might also be “far out in
the box K(n2)” and not in K(4n).

2.2.3. The diamond trick to reconstruct all the words of ξK(4n). In the previous
subsection, we showed how to assemble shorter words to get longer ones, but we
have not yet explained the main idea of how we manage to obtain short words in
the first phase of �n, being given only the observations. The basic idea is to use
the diamonds associated with a word appearing in the scenery. Let us look at an
example.

EXAMPLE 2.3. Take the following piece of a two-dimensional scenery which
would be the restriction of ξ to the [0,6] × [0,4]:

(2.12) ξ[0,6]×[0,4] =

2 1 9 4 3 7 4
7 5 0 7 6 1 1
7 4 3 9 1 2 1
8 6 4 4 0 4 3
2 2 7 8 0 3 9

.

Consider the word

w = 43912 = ξ(1,2)ξ(2,2)ξ(3,2)ξ(4,2)ξ5,2

which appears in the above piece of scenery in green. That word “appears between
the points x = (1,2) and y = (5,2).” We only consider here words which are
written in the scenery “along the direction of a coordinate.” In blue, we highlighted
the diamond associated with the word 43912. More precisely, the diamond consists
of all positions which in the above figure are green or blue.

The formal definition is that if x and y are two points in Z
d so that x̄y

is parallel to a canonical vector �e, then the diamond associated with the word
w = ξxξx+�eξx+2�e · · · ξy−�eξy consists of all points in Z

d which can be reached with
at most (|x − y|/2) − 1 steps from the point (y − x)/2. We assume here that the
Euclidean distance |x − y| is an odd number.

The useful thing will be that w.h.p. for a given nonrandom point z outside the
diamond associated with w, there is no nearest neighbor walk path starting at z

and generating as observations w. So, w.h.p. a word w in the scenery can only
be generated as observations by a nearest neighbor walk path starting (and also
ending) in the diamond associated with w. (At least if we restrict the scenery to
a box of polynomial size in the length of w.) To see this, take for instance the
following path R: (

(0,0), (1,0), (1,1), (1,2), (2,2)
)
.

662 H. MATZINGER, A. PACHON AND S. POPOV

In the previous example, a random walker which would follow this little path
would observe the sequence of colors given by

(2.13) ξ ◦ R = (2,2,6,4,3).

Note that the path R and the straight path from x to y intersect. So, (2.13) and
the green word w = 43912 are not independent of each other. However, because
the path R starts outside the diamond, we get the probability of the event that (2.13)
and the word w are identical, has the same probability as if they would be inde-
pendent. That is assuming that R is a (nonrandom) nearest neighbor path starting
(or ending) at a given point z outside the diamond associated with a word w,

P(ξ ◦ R = ξxξx+�eξx+2�e · · · ξy−�eξy) =
(

1

κ

)m

,

where m designates the size of the word. In fact looking at our example, R starts
at (0,0) which is outside the diamond. So, the starting point of R is different from
x = (1,2), and hence by independence

P
(
ξ
(
R(0)

) = ξx

) = 1

κ
.

Then the second letter in w, that is ξx+�e independent of the first two letters of
the observations along the path, ξ(R0)ξ(R1), since both points R(0) = (0,0) and
R(1) = (1,0) are different from x + �e = (2,2). Thus, we get the probability that
the first two letters of w coincide with the first two observations made by R is
equal to

(2.14) P
(
ξ
(
R(0)

)
ξ
(
R(1)

) = ξxξx+�e
) =

(
1

κ

)2
.

The proof goes on by induction: the kth letter in the word wx+k�e is independent
of the first k observations made by R. The reason is that the first k positions
R(0)R(1) · · ·R(k − 1) visited by R do never contain the point x + k�e, since “the
walker following the path R never catches up with the walker going straight from
x to y.” On the other hand, observe that in our example, we see a path starting
inside the diamond and producing as observation the same green word w. Take the
path

(2,1), (2,2), (3,2), (4,2), (5,2).

Thus, this “counterexample” illustrates how “easy” it is for a path starting “inside”
the diamond associated with a word w, to generate the same word. This a second
path different to the straight path “going from x to y.”

Now, using (2.14) we can calculate an upper bound for the probability that for a
given nonrandom point z outside the diamond, there exists at least one nonrandom
path R starting at z and producing as observation w. Observe that in d-dimensional
scenery, for a given starting point z ∈ Z

d , there are (2d)k−1 nearest neighbor walk

RECONSTRUCTION OF A MULTIDIMENSIONAL SCENERY 663

paths of length k. So, we find that the probability that there exists a nearest neigh-
bor path R starting at z, with z outside the diamond associated with a word w, and
R generating w, has a probability bounded from above as follows:

(2.15) P(∃ a nearest neighbor path R starting at z with ξ ◦ R = w) ≤
(

2d

κ

)k−1
.

Note that the bound above is negatively exponentially small in k as soon as
2d < κ . The inequality 2d < κ is precisely the inequality given in Theorem 2.2
which makes our reconstruction algorithm work.

Thus, in the next section we will define the event Bn
3 as follows: Let w be a word

of size (lnn)2 in ξK(n2), and R a nearest neighbor path, R : [0, k − 1] → K(n4), so
that ξ ◦ R = w, and R begins and ends in the diamond associated with w.

Note then that P(Bnc
3) is bounded from above by (2.15) times the number of

points in the box ξK(n2). But expression (2.15) is negatively exponentially small in
the size of the word (lnn)2, and hence dominates the polynomial number of points
in the box, that is, it goes to zero as n goes to infinity. Thus, Bn

3 holds w.h.p. (To
see the exact proof, go to Lemma 3.3.)

Now, we know that with high probability the words can only be generated by a
nearest neighbor walk path starting (and ending) in the diamond associated with w

(at least when we restrict ourselves to a box of polynomial size in the length of w).
But, how can we use this to reconstruct words? The best is to consider an example.

EXAMPLE 2.4. For this, let the restriction of the scenery ξ to [0,16] × [0,4]
be equal to

(2.16) ξ[0,16]×[0,4] =

2 1 9 4 3 7 4 1 2 5 2 2 7 8 0 6 9
7 5 0 7 6 1 1 8 2 5 8 6 7 4 0 4 2
7 4 3 9 1 2 1 7 8 4 7 6 1 7 7 7 4
8 6 4 4 0 4 3 5 3 6 7 5 1 9 9 9 1
2 2 7 8 0 3 9 4 3 7 2 1 9 4 5 7 0

.

Let the word which appears in green be denoted by w1 so that

w1 = 43912.

Let the word written in brown be denoted by w3 so that

w3 = 61777.

Finally, let the word which is written when we go straight from the green word to
the brown word be denoted by w2 so that

w2 = 17847.

In the current example, the diamond D1 associated with the green word w1 is given
in blue and the diamond D3 associated with the brown word w3 is highlighted in

664 H. MATZINGER, A. PACHON AND S. POPOV

red. Note that there is only one shortest nearest neighbor path to go from D1 to
D3, walking straight from the point (5,2) to the point (11,2) in exactly six steps.
There is not other way to go in six steps from D1 to D3. When doing so a walker
will see the word w2. Now assume that the size of our short words is 5 [i.e., the
size which in the algorithm is given by the formula (lnn)2]. Assume also that the
rectangle [0,16] × [0,4] is contained in K(n2).

Remember that if Bn
3 holds, we have that within the box K(n2) a nearest neigh-

bor walk can only generate a short word of ξK(n2) if it starts and ends in the dia-
mond associated with that word. Using this to the words w1 and w3, we see in the
observations the following pattern:

w1 ∗ ∗ ∗ ∗ ∗ w3,

where ∗ is a wild card which stands for exactly one letter, then w.h.p. the walker
between w1 and w3 was walking in a straight manner from D1 to D3. Hence, the
wild card sequence ∗ ∗ ∗ ∗ ∗ must then be the word w2. Of course, we need at
least one particle to follow that path in order to observe w1w2w3 up to time n2.
This will be taken care in �n by the event Bn

2 which stipulates that any nearest
neighbor path of length 3(lnn) contained in K(4n), will be followed by at least
one particle up before time n2. In other words, we have proven that if Bn

2 and Bn
3

both hold, then w2 gets selected by the first phase of the algorithm as a short word
of SHORTWORDSn. The argument of course works for any short word of ξK(4n),
and hence we have that

Bn
2 ∩ Bn

3 =⇒ W(ξK(4n)) ⊂ SHORTWORDSn.

Thus, the previous example shows how the first phase of the algorithm manages
to reconstruct all short words in ξK(4n).

2.2.4. How to eliminate junk observation-strings which are not words of ξK(n2).
In the previous subsection, we have shown how to reconstruct enough words. But
now the next question is “how do we manage to not reconstruct too many words?”
By this we mean, how do we make sure that observations which do not correspond
to words of ξK(n2) do not get selected by the first phase of our algorithm? This
means that we have to be able to eliminate observations which do not correspond
to a word of ξK(n2). The best is again to see an example.

EXAMPLE 2.5. Take for this

(2.17) ξ[0,16]×[0,4] =

2 1 9 4 3 7 4 1 2 5 2 2 7 8 0 6 9
7 5 0 7 6 1 1 8 2 5 8 6 7 4 0 4 2
7 4 3 9 1 2 1 7 8 4 7 6 1 7 7 7 4
8 6 4 4 0 4 3 5 3 6 7 5 1 9 9 9 1
2 2 7 8 0 3 9 4 3 7 2 1 9 4 5 7 0

.

RECONSTRUCTION OF A MULTIDIMENSIONAL SCENERY 665

Observe this is the same piece of scenery as was shown in (2.16), but the brown
word was moved two units to the left. So, let again w1 denote the green word

w1 = 43912

and let this time w3 be the “new” brown word:

w3 = 47617.

Now a particle in between following the green word and then the brown word
could for example do the following little dance step:

right,up, right,down, right, right,

and then produce the observation string w2 given by

w2 = 11878.

How can we make sure the observation string w2 which is not a word (it does not
follow a straight path) of our piece of scenery, does not get selected by the first
phase of our algorithm as a short word? To see how w2 gets eliminated in the first
phase of our algorithm, consider the following dancing step:

right,down, right,up, right, right.

When doing this nearest neighbor path, a particle would produce the observations
w̄2 where

w̄2 = 13578.

Let Bn
5 be the event that up to time n4 every nearest neighbor path of length

3(lnn)2 in K(n2) gets followed at least once. Then, assuming our piece of scenery
(2.17) is contained in K(n2), we would have that: Up to time n4, we will observe
both strings

w1w2w3 and w1w̄2w3,

at least once. Since w2 �= w̄,2 the second short-word-selection criteria of the first
phase assures that the words w2 and w̄2 do not get selected in the first phase of �n.
The crucial thing here was that from the point (5,2) to (8,2) there were two dif-
ferent 6 step nearest neighbor paths generating different observations, w2 and w̄2.
In Section 3.1, we will show that w.h.p. in the box K(n2) for any pair of points x

and y so that a nearest neighbor walk goes in (lnn)2 − 1 steps from x to y, either
one of the two following things hold:

1. The segment x̄y is parallel to a direction of a coordinate and the distance
|x − y| = (lnn)2 − 1, or

2. there exist two different nearest neighbor walk paths going from x to y in
(lnn)2 − 1 steps and generating to different observation-strings.

So, this implies that w.h.p., the first phase of our algorithm can eliminate all the
strings as it does in the example with w2 and w̄2 which are not words of ξK(n2).

666 H. MATZINGER, A. PACHON AND S. POPOV

2.2.5. Why we need a seed. The second phase produces a bag of long words
which w.h.p. contains all long words of ξK(4n). Unfortunately, this bag is likely to
contain also some long words of ξK(n2) which are “not close to the origin.”

Note that the size of the long words is 4n, so if such a long word appears close
to the border of K(n2), then it would not serve to our reconstruction purpose. The
reason is that the algorithm Λn aims to reconstruct the scenery in a box close to
the origin. That is why in the third phase of Λn we apply the first two phases but
with the parameter n being replaced by n0.25. We then take any long word w0 from
the bag of words produced by the second phase of the algorithm Λn0.25

. That long
word w0 of size 4n0.25 is then w.h.p. contained in ξK((n0.25)2) = ξK(n0.5).

In other words, the long word w0 chosen as seed in the third phase of the algo-
rithm is w.h.p. not further away than

√
n from the origin. Since it is likely that any

word of that size appears only once in K(n2), then we can use this to determine
one long word wL from the bag created by Λn which is not further from the origin
than

√
n. We simply chose wL to be any word from the bag of long words created

by Λn which contains w0. Finally, in the fourth phase of the algorithms we will
then add neighboring long words to that first chosen long word. If the one long
word which gets chosen in the third phase is close to the origin, we can determine
which long words are neighbor on each other, then this will ensure that the other
long words used for the reconstruction in the fourth phase are also close to the
origin.

2.2.6. Finding which long words are neighbors in the 4th phase of the algorithm
�n. The fourth phase of the algorithm is then concerned with finding the relative
position of the longer reconstructed words to each other. More precisely it tries to
determine which long words are neighbors of each other. For the exact definition
of neighboring long words, check out Section 3.4. Let us explain it through another
example.

EXAMPLE 2.6. Consider the piece of scenery ξ[0,16]×[0,4] given in (2.17) and
let us designate by va the green word, by vc the brown word and by vb the word
between va and vc, that is,

va = ξ(1,2)ξ(2,2)ξ(3,2)ξ(4,2)ξ(5,2) = 43912,

vc = ξ(9,2)ξ(10,2)ξ(11,2)ξ(12,2)ξ(13,2) = 47617,

and

vb = ξ(6,2)ξ(7,2)ξ(8,2) = 178.

Finally, let wb designate the word “one line higher” than vb, so

wb := ξ(5,3)ξ(6,3)ξ(7,3)ξ(8,3)ξ(9,3) = 11825.

RECONSTRUCTION OF A MULTIDIMENSIONAL SCENERY 667

Note that wb has two digits more than vb, and the middle letter of wb has the
same x-coordinate than the last letter of vb in (2.17). Furthermore, in the piece of
scenery (2.17), we designate the third line by v so that

v := ξ(0,2)ξ(1,2)ξ(2,2) · · · ξ(16,2) = 74391217847617774,

and by w the long word written one line above, that is,

w := ξ(0,3)ξ(1,3)ξ(2,3) · · · ξ(16,3) = 75076118258674042.

Assume that the two words v and w have already been reconstructed by the two
first phases of our algorithm �n. Consider next the straight path R1:

(1,2), (2,2), (3,2), (4,2), (5,2), (6,2), (7,2),

(8,2), (9,2), (10,2), (11,2), (12,2), (13,2),

so a particle following this straight path generates the observations ξ ◦ R1 =
vavbvc.

Consider now a second path R2 that is similar to R1 but at the end of the word
va , it goes one step up to read wb and then, at the end of wb it goes one step down
to read vc. So, the path R2 is defined as follows:

(1,2), (2,2), (3,2), (4,2), (5,2), (5,3), (6,3), (7,3),

(8,3), (9,3), (9,2), (10,2), (11,2), (12,2), (13,2),

and generates the observations ξ ◦ R2 = vawbvc.
If now up to time n4 there is at least one particle following the path R1 and

another particle following R2, then in the observations before time n4, we will
observe once vavbvc and also vawbvc. So, va , vb, vc and wb pass all the criteria
in the fourth phase of our algorithm together with the long words v and w. So, v

and w are detected (correctly) as being neighboring long words. Again, for this to
happen we only need particles to go on the path R1 and R2.

So, what the previous example tell us is that to recognize correctly which words
in LONGWORDSn are neighbors in the fourth phase of our algorithm, we need first
to guarantee that all nearest neighbor paths of length 3(lnn)2 within the box K(n2),
being followed by at least one particle up to time n4. The event Bn

3 guaranties this
and we prove it holds w.h.p. in the first subsection of the next section.

On the other side, we still need the fourth phase of �n not to classify pairs
of long words as neighbors if they are not in the scenery. This problem of “false
positives” is solved as soon as the previously defined diamond property holds, that
is when the event Bn

3 holds and also short words do not appear in different places
in ξK(n2). The proof of this is a little intricate and is given as proof of Lemma 3.10
in the next section.

668 H. MATZINGER, A. PACHON AND S. POPOV

2.2.7. Placing neighboring long words next to each other in the 4th phase of
our algorithm. Here, we show how the long words are located next to each other
in the fourth phase, in order to reconstruct a piece of the scenery ξ .

EXAMPLE 2.7. Let us assume that the scenery is 2-dimensional and that the
seed word is w0 = 012. To start, we place w0 at the origin, and it would be the first
part of the “reconstruction done by the algorithm �n,” thus w0 is the restriction of
�n(χn4) to the set {(−1,0), (0,0), (1,0)}.

Say then that we find a long word wL which is 60123. This long word contains
the seed word 012 centered in its middle; so, if we superpose wL over w0 so that it
matches we get again 60123, that corresponds to the restriction of �n(χn4) to the
set {(−2,0), (−1,0), (0,0), (1,0), (2,0)}.

Next, we find that the two long words 01111 and 02222 of LONGWORDSn are
neighbors of wL. In that case, we place these two long words in a neighboring
position to get the following piece of scenery:

01111
60123
02222

,

and assume that in our bag LONGWORDSn of long words we find the word 03333
to be a neighbor of 01111 and 04444 to be neighbor of 02222. Then our recon-
struction yields the following piece of scenery:

(2.18)

03333
01111
60123
02222
04444

.

This is then the “end product” produced by the algorithm �n. So, this final output
of the algorithm is a piece of scenery on a box of 5×5 given in (2.18). We assumed
the size of the long words to be 5.

2.2.8. Overview over the events which make the algorithm Λn work. A hand-
ful of events ensure that the algorithm Λn works as already mentioned. These
events will all be defined again in a more exhaustive way in the next section. But,
here let us list them in a somewhat informal way. The first phase works through
the following events:

• The event

Bn
2

guaranties that up to time n2 every nearest neighbor path of length 3(lnn)2 con-
tained in K(4n) gets followed at least once by at least one particle.

RECONSTRUCTION OF A MULTIDIMENSIONAL SCENERY 669

• The event

Bn
3

asserts that up to time n4 for every word w of ξK(n2), any nearest neighbor walk
path R in K(n4) generating w must start and end in the diamond associated with
w. This event is needed to guaranty that all the words of ξK(4n) of length (lnn)2

get selected in the first phase of the algorithm, and put into the bag of words
SHORTWORDSn.

• The event

Bn
4

states that for any two points x and y in K(n2) so that there is a nearest neighbor
path going in (lnn)2 − 1 steps from x to y, either one of the following holds:
– The points x and y are at distance (lnn)2 −1 from each other and the segment

x̄y is parallel to a direction of coordinate. In that case, there can only be
one nearest neighbor walk in (lnn)2 − 1 steps from x to y, and that nearest
neighbor walk goes “straight.”

– There exist two different nearest neighbor walk paths going from x to y in
exactly (lnn)2 − 1 steps and generating different observations.

• The event

Bn
5

guaranties that up to time n4 every nearest neighbor path of length 3(lnn)2 − 1
contained in K(n2) gets followed at least once. Furthermore, together with the
event Bn

4 , these make sure that observations which are not words of ξK(n2) get
eliminated in the first phase of Λn.

In Lemma 3.6, the combinatorics of the first phase is proven. It is shown that
when all the events Bn

2 ,Bn
3 ,Bn

4 ,Bn
5 hold, then the first phase works. In the first

subsection of the next section it is also proven that all these events hold w.h.p.,
which implies that the first phase works w.h.p.

For the second phase of the algorithm, we only need that any word of ξK(n2) of
size (lnn)2 − 1 appears in only one place in K(n2). That is given by the event Cn

1
and needed to assemble short words into longer words.

The third phase of the algorithm is just using the first two phases of the algo-
rithm but with a parameter different from n. Instead the parameter is n0.25. So, we
do not need any other special event to make this phase work. We only need what
we have proven for the first two phases of the algorithm.

Finally, the fourth phase of the algorithm needs the diamond property to hold
for the short words in ξK(n2), that is, the event Bn

3 to hold. Furthermore, the event
Cn

1 which guaranties that short words cannot appear in two different places of
ξK(n2) is also needed. These events are defined already for the first two phases of
the algorithm.

670 H. MATZINGER, A. PACHON AND S. POPOV

The next section gives all the detailed definitions of these events, the proofs for
their high probability and also the rigorous proofs that these events make the dif-
ferent phases of the algorithm work. Although most of the main ideas are already
given in the present section, and it might seem a little redundant, we feel that pre-
senting them once informally but with all the details in a rigorous manner, will be
very useful to understand better the algorithm.

3. Proof of Theorem 2.2. In what follows, we will we say that the Branching
random walk BRW visits z ∈ Z

d at time t if ηt (z) ≥ 1.

3.1. First phase. Here, we will construct the set of SHORTWORDSn. Recall
that a string w2 of size (lnn)2 is in SHORTWORDSn if there exist two sequences
w1 and w3 both of size (lnn)2 and such that:

1. w1w2w3 appears in the observations before time n2.
2. The only string w of size (lnn)2 such that w1ww3 appears in the observations

up to time n4 is w2.

Let W(ξK(4n)) and W(ξK(n2)) be the sets of all words of size (lnn)2 in ξK(4n) and
ξK(n2) respectively, then we are going to show that with high probability the set
SHORTWORDSn satisfies that

W(ξK(4n)) ⊆ SHORTWORDSn ⊆ W(ξK(n2)).

We need the following results.

LEMMA 3.1. Let Bn
1 be the event that up to time n2 all the sites in K(4n) are

visited by the BRW more than exp(cn) times, where c is a constant independent of
n, then there exists C > 0 such that

P
(
Bn

1
) ≥ 1 − e−Cn2

.

PROOF. We only sketch the proof: it is elementary to obtain that by time n2/2
the process will contain at least eδn2

particles (where δ is small enough), with
probability at least 1 − e−Cn2

. Then consider any fixed x ∈ K; for each of those
particles, at least one offspring will visit x with probability at least cn−(d−2), and
this implies the claim of Lemma 3.1. �

LEMMA 3.2. Let Bn
2 be the event that up to time n2 for every nearest neighbor

path of length 3(lnn)2 − 1 contained in K(4n); there is at least one particle which
follows that path. Then, for all n large enough we have

P
(
Bn

2
) ≥ 1 − exp[−c1n],

where c1 > 0 is constant independent of n.

RECONSTRUCTION OF A MULTIDIMENSIONAL SCENERY 671

PROOF. Let Rz
j be the j th nearest neighbor path of length 3(lnn)2 − 1 in

K(4n) starting at z ∈ K(4n), j = 1, . . . , (2d)3(lnn)2−1. By Lemma 3.1, we know
that with high probability up to time n2 all the sites in K(4n) are visited by the
BRW more than exp(cn) times, where c is a constant independent of n. Suppose
we have been observing the BRW up to time n2, then define for any z ∈ K(4n) the
following variables:

Yij =

⎧⎪⎪⎨
⎪⎪⎩

1, if after the ith visit to z,

the corresponding particle follows Rz
j ,

0, otherwise,

(3.1)

where i = 1, . . . , exp(cn) and j = 1, . . . , (2d)3(lnn)2−1. Note that the variables
Yij ’s are independent because all the particles are moving independently between
themselves. We are interested on the event

{
(2d)3(lnn)2−1⋂

j=1

ecn⋃
i=1

{Yij = 1}
}
,(3.2)

that is, for every path of length 3(lnn)2 − 1 starting at z ∈ K(4n), up to time n2,
there is at least one visit to z, such that the corresponding particle on z follows it.

Let Zj = ∑
i Yij , thus Zj counts the number of times Rz

j is followed, and it is
binomially distributed with expectation and variance given by

E[Zj] = exp(cn)

(
1

2d

)3(lnn)2−1
and

V [Zj] = exp(cn)

(
1

2d

)3(lnn)2−1(
1 −

(
1

2d

)3(lnn)2−1)
.

Observe that (3.2) is equivalent to {⋂(2d)3(lnn)2−1

j=1 {Zj ≥ 1}}, then by Chebyshev’s
inequality we have

P(Zj ≤ 0) ≤ V [Zj]
E2[Zj] < exp

[(
3(lnn)2 − 1

)
ln 2d − cn

]
,

and

P

(
(2d)3(lnn)2−1⋃

j=1

{Zj ≤ 0}
)

< exp
[(

6(lnn)2 − 2
)

ln 2d − cn
]
.(3.3)

Since the number of sites in K(4n) is (8n + 1)d , by (3.3) it follows that

(3.4) P
(
Bnc

2
)
< (8n + 1)d exp

[(
6(lnn)2 − 2

)
ln 2d − cn

]
.

672 H. MATZINGER, A. PACHON AND S. POPOV

Now note that for any constant 0 < c1 < c, the right-hand side of (3.4) is less than
exp(−c1n), for n large enough. Thus, P(Bnc

2) → 0 as n → ∞. �

In what follows, we will denote by Tw the diamond associated with a word w

appearing in a certain place in the scenery. For the definition of diamond associated
with a word, see (2.2.3).

LEMMA 3.3. Let Bn
3 be the event that for any word w of size (lnn)2 contained

in ξK(n2), every nearest neighbor walk path R generating w on ξK(n4) must start
and end in the diamond associated to w, that is, R(0) ∈ Tw and R((lnn)2 − 1) ∈
Tw . Then

P
(
Bn

3
) ≥ 1 − 22d+1 exp

(
8d ln(n + 1) + (lnn)2 ln(2d/κ)

)
,

which goes to 1 as n → ∞ because we have assumed κ > 2d .

PROOF. Take without loss of generality a sequence read in a straight way from
left to right, that is,

w = ξ(x)ξ(x + �e1)ξ(x + 2 �e1) · · · ξ (
x + (

(lnn)2 − 1
) �e1

)
,

and let Rz be a nearest neighbor walk (nonrandom) of length (lnn)2 − 1 start-
ing at z with z ∈ K(n4) \ Tw . Since a nearest neighbor path at each unit of
time only make steps of length one, then it follows that wi is independent of
ξ(R(0)), ξ(R(1)), . . . , ξ(R(i − 1)), as well as of w1, . . . ,wi−1. Hence,

(3.5) P
[
w = ξ

(
R(0)

)
ξ
(
R(1)

) · · · ξ (
R

(
(lnn)2 − 1

))] = (1/κ)(lnn)2

(recall that κ is the number of colors).
Let P n

z be the set of all nearest neighbor paths of length (lnn)2 − 1 starting

at z, and note that P n
z contains no more than (2d)(lnn)2−1 elements. For a fix z ∈

K(n4)\Tw , let Bn
3,z be the event that there is no nearest neighbor path Rz of length

(lnn)2 − 1 generating w. By (3.5), it follows that

P
(
Bnc

3,z

) = P
[∃Rz; ξ (

Rz) = w
]

≤ ∑
Rz∈P n

z

P
(
ξ
(
Rz) = w

)

≤ (2d)(lnn)2−1

κ(lnn)2

≤
(

2d

κ

)(lnn)2

.

RECONSTRUCTION OF A MULTIDIMENSIONAL SCENERY 673

Now for any z ∈ K(n4) \ Tw , let Bn
3S be the event that there is no nearest neigh-

bor path Rz of length (lnn)2 − 1 generating w. Hence,

P
(
Bnc

3S

) = P

(⋃
z∈K(n4)\Tw

Bnc
3,z

)
≤ ∑

z∈K(4n)\Tw

P
(
Bnc

3,z

)

≤ (
2n4 + 1

)2d
(

2d

κ

)(lnn)2

.

Now by symmetry P(Bnc
3) ≤ 2P(Bnc

3S), so that

P
(
Bnc

3
) ≤ 2

(
2n4 + 1

)2d
(

2d

κ

)(lnn)2

≤ 2
(
2(n + 1)4)2d

(
2d

κ

)(lnn)2

= (
8d ln(n + 1) + (lnn)2 ln(2d/κ)

)
. �

LEMMA 3.4. Let Bn
4 be the event that for every two points x, y ∈ K(n2) and

such that there is a nearest neighbor path R of length (lnn)2 − 1 going from x to
y, one of the following alternatives holds:

(a) x and y are at distance (lnn)2 − 1 and on the same line, that means, along
the same direction of a coordinate, or

(b) there exist two different nearest neighbor paths R1 and R2 of length
(lnn)2 − 1 both going from x to y but generating different observations, that is,
ξ(R1) �= ξ(R2).

Then we have

P
(
B4

n

) ≥ 1 − exp
[−0.5(lnn)2 lnκ

]
.

PROOF. Let x and y be two points in K(n2) and such that there is a nearest
neighbor path R of length (lnn)2 − 1 going from x to y, so the distance between
x and y, d(x, y) ≤ (lnn)2 − 1.

Suppose that d(x, y) = (lnn)2 −1, which is defined as the length of the shortest
path between x and y. If x and y are not on the same line, then there exist two
paths R1 and R2 of length (lnn)2 − 1 both going from x to y and not intersecting
anywhere, except in x and y. This means that R1(0) = R2(0) = x and R1((lnn)2 −
1) = R2((lnn)2 − 1) = y, but for all j1, j2 strictly between 0 and (lnn)2 − 1, we
find R1(j1) �= R2(j2). Since the scenery ξ is i.i.d., it thus follows that

P
[
ξ
(
R1(0)

) = ξ
(
R2(0)

)
, . . . , ξ

(
R1

(
(lnn)2 − 1

)) = ξ
(
R2

(
(lnn)2 − 1

))]
(3.6)

=
(

1

κ

)(lnn)2−2
.

674 H. MATZINGER, A. PACHON AND S. POPOV

Now suppose that d(x, y) < (lnn)2 − 1. Let R1 be a path which makes a cy-
cle from x to x and then going in shortest time from x to y, and R2 be a path
which follows first a shortest path between x and y − 1, next makes a cycle
from y − 1 to y − 1 and then go to y. If neither the cycle from x to x in-
tersects the shortest path which makes part of R2 nor the cycle from y − 1 to
y − 1 intersects the shortest path which makes part of R1, then we have that for
i = 0, . . . , (lnn)2 − 1, the positions taken by R1 and R2 are different, that is,
R1(1) �= R2(1), . . . ,R1((lnn)2 − 2) �= R2((lnn)2 − 2). Hence, ξ(R1(i)) is inde-
pendent of ξ(R2(i)) for i = 1,2, . . . , (lnn)2 − 2 and (3.6) holds again.

Let Bn
4xy be the event that there exist two nearest neighbor paths S and T going

from x to y with d(x, y) ≤ (lnn)2 − 1, but generating different observations, and
let Bn

4 = ⋂
x,y Bn

4xy , where the intersection is taken over all x, y ∈ K(n2) such that

d(x, y) ≤ (lnn)2 − 1. By (3.6), it follows that

(3.7) P
(
Bnc

4xy

) ≤ exp
[−(

(lnn)2 − 2
)

lnκ
]
,

then

P
(
Bnc

4
) ≤ ∑

x,y

P
(
Bnc

4xy

)

<
[
2(lnn)2 − 3

]d(
2n2 + 1

)d exp
[−(

(lnn)2 − 2
)

lnκ
]

(3.8)

= exp
[
d ln

(
2(lnn)2 − 3

) + d ln
(
2n2 + 1

) − (
(lnn)2 − 2

)
lnκ

]
,

and observe that the right-hand side of (3.8) is for all n large enough less than
exp(−0.5(lnn)2 lnκ). This completes this proof. �

LEMMA 3.5. Let Bn
5 be the event that up to time n4 every path of length

3(lnn)2 − 1 in K(n2) gets followed at least once by a particle. Then

P
(
Bn

5
) ≥ 1 − exp

[−c2n
2]

,

where c2 > 0 is a constant not depending on n.

PROOF. Note that the event Bm
2 from Lemma 3.2, where we take m = n2 gives

that up to time n4, every path in K(4n2) of length 12 lnn − 1 gets followed by at
least one particle. So, this implies that Bn

5 holds, and hence

Bn2

2 ⊂ Bn
5 .

The last inclusion above implies

(3.9) P
(
Bn

5
) ≥ P

(
Bn2

2
)
.

We can now use the bound from Lemma 3.2 for bounding the probability of
P(Bn2

2). Together with (3.9), this yields

(3.10) P
(
Bn

5
) ≥ 1 − exp

[
d ln

(
8n2 + 1

) + (
6
(
lnn2)2 − 2

)
ln 2d − cn2]

.

RECONSTRUCTION OF A MULTIDIMENSIONAL SCENERY 675

Now note that for any constant c2 > 0 for which c > c2, we have that: for all n

large enough we have that the bound on the right-hand side of inequality (3.10) is
less than exp(−c2n

2) which completes this proof. �

LEMMA 3.6 (The first phase works). Let Bn designate the event that every
word of size (lnn)2 in ξK(4n) is contained in the set SHORTWORDSn, and also all
the strings in SHORTWORDSn belong to W(ξK(n2)), then

Bn
1 ∩ Bn

2 ∩ Bn
3 ∩ Bn

4 ∩ Bn
5 ⊂ Bn.

PROOF. We start by proving that every word in W(ξK(4n)) of size (lnn)2, say
w2, is contained in SHORTWORDSn. Then there exist two integer points x, y ∈
K(4n) on the same line, that is, along the same direction of a coordinate, and at a
distance 3(lnn)2 − 1 such that “w2 appears in the middle of the segment x̄y.” By
this we mean that there exists a canonical vector �e (such a vector consists of only
one nonzero entry which is 1 or −1), so that

w1w2w3 = ξxξx+�eξx+2�e · · · ξy,

where w1 and w2 are words of size (lnn)2 and w1w2w3 designates the concatena-
tion of w1, w2 and w3. By the event Bn

2 , up to time n2 there is at least one particle
which will go from x to y in exactly 3(lnn)2 − 1 steps. That is, up to time n2 there
is a particle which follows the “straight path from x to y” given by

x, x + �e, x + 2�e, . . . , y.

When doing so, we will see in the observations the string w1w2w3. Thus, the triple
(w1,w2,w3) satisfies the first criteria of the first phase of �n. It needs also to pass
the second criteria to be selected.

To see that (w1,w2,w3) satisfies second the criteria, let us assume that w is
a word of size (lnn)2 so that the concatenation w1ww2 appears in the observa-
tion before time n4. Then there exists a nearest neighbor walk path R of length
3(lnn)2 −1 generating w1ww2 on ξK(n4). By this, we mean that imR ⊂ K(n4) and
ξ ◦ R = w1ww2. By the event Bn

3 , we have that R((lnn)2 − 1) is in the diamond
Tw1 associated with w1 and R(2(lnn)2) is in the diamond Tw3 associated with w3.
So, when we take the restriction of R to the time interval [(lnn)2 − 1,2(lnn)2] we
get a nearest neighbor walk going in (lnn)2 steps from Tw1 to Tw3 . The only way to
do this is to go in a straight way from the point x +((lnn)2 −1)�e to x +(2(lnn)2)�e.
[The reason being that the distance between Tw1 and Tw3 is (lnn)2 and the only
pairs of points (x′, y′) so that x′ ∈ Tw1 and y′ ∈ Tw3 and located at that distance
(lnn)2 from each other, are x′ = x + ((lnn)2 − 1)�e and y′ = x + (2(lnn)2)�e.]
So, during the time interval [(lnn)2 − 1,2(lnn)2] we have that R is walking in a
straight way on the middle part of the segment x̄y, that is walking in a straight
way from x′ to y′. Hence, during that time R is generating in the observation the

676 H. MATZINGER, A. PACHON AND S. POPOV

word w2. This proves that w = w2. Hence, the triple (w1,w2,w3) also passes the
second criteria of the first phase of our algorithm, which implies that

w2 ∈ SHORTWORDSn,

and hence

W(ξK(4n)) ⊂ SHORTWORDSn.

It remains to show that if the triple (w1,w2,w3) gets selected through the first
phase of our algorithm (hence passes the two selection criteria given there), then
indeed w2 is a word of ξK(n2). Now, to pass the first selection criteria, we have that
the concatenation w1w2w3 must appear before time n2 in the observations. Since
the first particle starts at time 0 in the origin, by time n2 all the particles must be
still contained in the box K(n2). Hence, there must exist a nearest neighbor path R

of length 3(lnn)2 − 1 which generates w1w2w3 on ξK(n2). Hence, imR ⊂ K(n2)

and w1w2w3 = ξ ◦ R.
Assume that the restriction of R to the time interval [(lnn)2 −1,2(lnn)2] would

not be a “straight walk” on a line. Then, by the event Bn
4 there would exist a

modified nearest neighbor walk R′ of length 3(lnn)2 − 1 for which the following
two conditions are satisfied:

1. Restricted to the time interval [(lnn)2 − 1,2(lnn)2], we have that R′ gener-
ates a string w different from w2 on ξ .

2. Outside that time interval, R′ generates the same observations w1 and w3
as R.

Summarizing: the nearest neighbor walk R′ generates w1ww3 on ξK(n2), where
w �= w2. But by the event Bn

5 , every nearest neighbor walk of length 3(lnn)3 − 1
in K(n2) gets followed at least once by a particle up to time n4. Hence, at least
one particle follows the path of R′ before time n4. Doing so it produces the string
w1ww3 with w �= w2 before time n4 in the observations. This implies, however,
that the triple (w1,w2,w3) fails the second selection criteria for phase one of our
algorithm. This is a contradiction, since we assumed that (w1,w2,w3) gets se-
lected through the first phase of �n (and hence passes the two selection criteria
given there). This proves by contradiction that R restricted to the time interval
[(lnn)2 − 1,2(lnn)2] can only be a “straight walk.” Hence, the sequence gener-
ated during that time, that is, w2 can only be a word of the scenery ξ in K(n2).
This proves that w2 is in W(ξK(n2)) and then

SHORTWORDSn ⊂ W(ξK(n2)). �

3.2. Second phase. In this phase, the words of SHORTWORDSn are assem-
bled into longer words to construct the set of LONGWORDSn using the assembling
rule: To puzzle two words together of SHORTWORDSn, the words must coincide
on at least (lnn)2 −1 consecutive letters. To get a correct assembling, we will need
that the short words could be placed together in a unique way.

RECONSTRUCTION OF A MULTIDIMENSIONAL SCENERY 677

LEMMA 3.7. Let Cn
1 be the event that, for all x, y ∈ K(n2), the words

ξxξx+�ei
· · · ξx+((lnn)2−1)�ei

and ξyξy+�ej
· · · ξy+((lnn)2−1)�ej

are identical only in the
case x = y and �ei = �ej . Then

P
(
Cn

1
) ≥ 1 − exp

[
2d ln

(
2n2 + 1

) − (
(lnn)2 − 1

)
lnκ

]
.

PROOF. Let x and y be two points in K(n2) and define the event

Cx,y = {ξxξx+�ei
ξx+2�ei

· · · ξx+((lnn)2−1)�ei
= ξyξy+�ej

ξy+2�ej
· · · ξy+((lnn)2−1)�ej

},
with �ei and �ej two canonical vectors in Z

d . Clearly,

Cn
1 = ⋂

x,y

Cx,y,

where the intersection above is taken over all (x, y) ∈ K(n2), and it leads to

P
(
Cnc

1
) ≤ ∑

x,y

P
(
Cc

x,y

)
.(3.11)

If x = y and �ei �= �ej , observe that the words intersect themselves only at the first

position and since the scenery is i.i.d., then P(Cc
x,y) = (1

κ
)(lnn)2−1. On the other

hand, when x �= y, it is somewhat similar to the previous case, that is, the words
intersect themselves at most by only one position, thus P(Cc

x,y) ≤ (1
κ
)(lnn)2−1.

Hence,

P
(
Cnc

1
) ≤ (

2n2 + 1
)2d

(
1

κ

)(lnn)2−1

(3.12)
< exp

[
2d ln

(
2n2 + 1

) − (
(lnn)2 − 1

)
lnκ

]
. �

LEMMA 3.8 (The second phase works). Let Cn designate the event that every
word of size 4n in ξK(4n) is contained in LONGWORDSn, and all the words in
LONGWORDSn belong to W4n(ξK(n2)), that is,

W4n(ξK(4n)) ⊆ LONGWORDSn ⊆ W4n(ξK(n2)),

where W4n(ξK(4n)) and W4n(ξK(n2)) are the set of all words of size 4n in ξK(4n)

and ξK(n2), respectively, then

Bn ∩ Cn
1 ⊂ Cn.

PROOF. Let W(ξK(4n)) and W(ξK(n2)) be the set of all words of size (lnn)2 in
ξK(4n) and ξK(n2), respectively. Once the first phase has worked, that is, when Bn

occurs we have

W(ξK(4n)) ⊆ SHORTWORDSn ⊆ W(ξK(n2)).

678 H. MATZINGER, A. PACHON AND S. POPOV

If the short words can be placed together in a unique way using some assem-
bling rule, and it is done until getting strings of total exactly equal to 4n, then
every word of size 4n in ξK(4n) is contained in the set of assembled words, that
is, in LONGWORDSn. On the other hand, if the assembled process is made us-
ing all words in SHORTWORDSn, then all the words in LONGWORDSn belong to
W4n(ξK(n2)) because SHORTWORDSn ⊆ W(ξK(n2)).

Under the assembling rule given in Lemma 3.7, we conclude that Bn∩Cn
1 ⊂ Cn.

�

3.3. Third phase. In this phase, we use the previous two phases of Λn but
with the parameter n0.25 instead of n. The idea is to take one long word from
LONGWORDSn0.25

, say v, which will be of size 4n0.25 instead of 4n, then, select
any long word from LONGWORDSn, say w, which contains v in its middle. In this
manner, we should hopefully get a word which has its middle not further than

√
n

from the origin.
In the next lemma, we show that when the first two phases of our algorithm with

parameter n as well as n0.25 both work, then the third phase must work as well.

LEMMA 3.9 (The third phase works). Let Dn be the event that the third phase
of �n works. This means that the long-word of LONGWORDn selected by the third
phase has its center not further than n0.5 from the origin. Thus,

Cn
1 ∩ Cn ∩ Cn0.25 ⊂ Dn.

PROOF. Consider any word from LONGWORDn that contains in its middle a
word from LONGWORDSn0.25

, that is, take

w = ξxξx+ �ei
ξx+2 �ei

· · · ξx+4n−1 �ei

in LONGWORDn such that

v = ξx+2n �ei
, . . . , ξx+(2n+4n0.25−1) �ei

belongs to LONGWORDSn0.25
.

By Cn0.25
, the first two phases of the algorithm with parameter n0.25 work. This

implies that v is a word (of size 4n0.25) contained in ξK(n0.5). It is not difficult to
see that Cn

1 implies that any word of that size which appears in ξK(n2), appears
in a “unique position” therein. By Cn, all the words of LONGWORDn are con-
tained in ξK(n2). Thus, when a word w of LONGWORDn contains a word v of

LONGWORDn0.25
, then the two words must lie [in K(n2)] on top of each other in a

unique way, which implies that the middle of w is also the middle of v. By Cn0.25
,

we have that the middle of v (the way v appears in ξK(n0.5)) is not further from the
origin than n0.5. Hence, the middle of w (in where it appears in ξK(n2)) is also not
further than n0.5 from the origin. This completes our proof. �

RECONSTRUCTION OF A MULTIDIMENSIONAL SCENERY 679

3.4. Fourth phase. For the fourth and last phase to work correctly, we need to
be able to identify which words contained in ξK(n2) are neighbors of each other.
Let us give the definition of neighboring words.

Let I be a box of Zd and w and v be two words (of the same length) contained
in ξI . We say that w and v are neighbors of each other if there exist x ∈ I and
�u, �s ∈ {±�ei, i = 1, . . . , d} such that

w = ξxξx+�uξx+2�u · · · ξk�u
and

v = ξx+�sξx+�u+�sξx+2�u+�s · · · ξx+k�u+�s,
where �s is orthogonal to �u and all the points x + �s + i �u and x + i �u are in I for all
i = 0,1,2, . . . , k.

In other words, two words w and v contained in the restriction ξI are called
neighbors if we can read them in positions which are parallel to each other and at
distance 1.

LEMMA 3.10 (The fourth phase works). Let Fn denote the event that for the
words of LONGWORDSn the three conditions in the fourth phase of �n allows to
correctly identify and chose neighbors. Interestingly, the events Bn

2 , Bn
3 and Cn

1
are enough for Fn to occur. That is,

Bn
2 ∩ Bn

3 ∩ Cn
1 ⊂ Fn.

PROOF. We need to show that when all the events Bn
2 , Bn

3 and Cn
1 occur, then

we identify correctly and chose the long words from LONGWORDSn which are
neighbors of each other.

If two words v and w belonging to LONGWORDSN were selected by the fourth
phase of our algorithm to be put on top of each other, this means that �n “es-
timated” that v and w were neighbors, is because the following three conditions
were satisfied:

1. There exist 4 words va , vb, vc and wb having all size (lnn)2 except for vb

which has size (lnn)2 − 2 and such that, the concatenation vavbvc is contained in
v, whilst up to time n4 we observe at least once vawbvc.

2. The word wb is contained in w.
3. The position of the middle letter of vb in v should be the same as the middle

letter position of wb in w.

Assume that the three previous conditions are satisfied, and let �u be the direction of
the word v, so, we have two points x and y in Z

d such that y = x + ((lnn)2 − 1)�u
and:

• to the left (with respect to the direction of �u) from x we read va :

va = ξx−�u((lnn)2+1)ξx−�u((lnn)2+2)ξx−�u((lnn)2+3) · · · ξx,

680 H. MATZINGER, A. PACHON AND S. POPOV

• between x and y we read vb:

vb = ξx+�uξx+2�u · · · ξy−�u, and

• to the right of y we read vc:

vc = ξyξy+�uξy+2�u · · · ξy+((lnn)2−1)�u.

By the first condition, we know that up to time n4 we observe at least once the
concatenated word vawbvc. Hence, there exists a nearest neighbor walk R on the
time interval [1,3(lnn)2] which generated vawbvc on ξK(n4), so that

ξ ◦ R = vawbvc.

Note that after time 2(lnn)2 R generates vc, then by Bn
3 we have that R(2(lnn)2 +

1) must be in the diamond Tc associated with vc. Similarly, we get that R((lnn)2)

must be in the diamond Ta associated with va .
Now observe that to go in (lnn)2 + 1 steps with a nearest neighbor walk from

the diamond Ta to the diamond Tc, there are only 3 possibilities [remember that x

and y are at distance (lnn)2 − 1 from each other]:

(I) Going from x to y always making steps with respect to �u (in 2 dimensions,
say to the right), and once making one step with respect to −�u (one step to the left).
No steps in the directions orthogonal to �u.

(II) Starting at x, make one step in some direction orthogonal to �u, say with
respect to �s (in 2 dimensions, say one step up) then all steps with respect to �u (to
the right), and once making one step with respect to −�s (one step down) in order
to reach y.

(III) Starting at x + �s − �u instead of x and arriving in y + �s + �u instead of y.

Since the nearest neighbor walk R between time (lnn)2 and 2(lnn)2 + 1 must
be walking from the diamond Ta to the diamond Tc in (lnn)2 + 1 steps, then it
must satisfy during that time one of the three conditions above.

If condition II holds, then wb is the word which is “written” in the scenery ξ

between x + �s and y + �s, that is,

wb = ξx+�sξx+�s+�uξx+�s+2�u · · · ξy+�s .

That shows that the line between the two points x + �s and y + �s is where the
word wb is written in the scenery. Now observe that w appears in ξK(n2) because
w is in LONGWORDSN , and by the second condition w must contain the word
wb, so w must contain the points x + �s and y + �s. By the event Cn

1 , any word of
size (lnn)2 appears only in one place in ξK(n2), then as wb has size (lnn)2, the
place where the word w is written in ξK(n2) is a line parallel to the line x̄y and at
distance 1. This means that the word w is a neighbor of the word v in ξK(n2).

When condition (III) holds, a very similar argument leads to the same conclu-
sion that w and v are neighbors in ξK(n2).

RECONSTRUCTION OF A MULTIDIMENSIONAL SCENERY 681

Finally, when condition (I) holds, then we would have that vawbvc appears in
ξK(n2), but we have also that vavbvc appears in ξK(n2) (since we take the words
w and v from the set LONGWORDSn and since by the event Cn

1 these are words
from the scenery ξK(n2)). However, the word wb is longer than vb. This implies
that either va or vc (or both together) must appear in two different places in ξK(n2).
But this would contradict the event Cn

1 . Hence, we can exclude this case.
Thus, we have proven that if the events Bn

3 and Cn
1 all hold, then the words

selected to be put next to each other in phase 4 of the algorithm are really neighbors
in the way they appear in the restricted scenery ξK(n2). So, when we use the criteria
of the 4th phase of the algorithm to determine the words which should be neighbors
in the scenery we make no mistake, by identifying as neighbors whilst they are not.

The next question is whether for all the neighboring words v and w in ξK(4n)

we recognize them as neighbors, when we apply the fourth phase of our algorithm.
This is indeed true, due to the event Bn

2 . Let us explain this in more detail. Let v

and w be to neighboring words in ξK(4n). We also assume that both v and w have
length 4n, are written in the direction of �u, and w is parallel and at distance 1
(in the direction �s perpendicular to �u) of v. Now, take anywhere approximately
in the middle of v, three consecutive strings va , vb and vc. Take them so that va

and vc have size (lnn)2, but vb has size (lnn)2 − 2. Hence, we assume that the
concatenation vavbvc appears somewhere in the middle of v. Let x ∈ Z

d designate
the point where va ends and let y be the point where vc starts. Hence,

vc = ξyξy+�uξy+2�u · · · ξy+((lnn)2−1)�u.

Also, the points x and y are at distance (lnn)2 − 1 from each other and on the line
directed along �u. Finally,

va = ξx−((lnn)2+1)�u · · · ξx−2�uξx−�uξx.

So, the word v is written on the line passing through x and y. Note that the word
w is written on the line which passes through the points x + �s and y + �s. Now,
because of the event Bn

2 , for every nearest neighbor walk path of length 3(lnn)2 −1
contained in the region K(4n) there is at least one particle following that path up
to time n2.

Take the nearest neighbor walk path R on the time interval [1,3(lnn)2] which
starts in x − ((lnn)2 − 1)�u and then goes in the direction of �u (lnn)2 steps. Next,
goes one step in the direction of �s (and hence reaches the line where w is written),
and then R takes (lnn)2 steps in the direction of �u and reads part of the word w.
That part we designate by wb. From there one step in the direction (−�s), to reach
the point y and then all remaining (lnn)2 steps are taken in the direction �u. Dur-
ing those remaining steps, the walk generates the color record vc. Such a nearest
neighbor walk generates thus the color record vawbvc:

ξ ◦ R = vawbvc.

682 H. MATZINGER, A. PACHON AND S. POPOV

Hence, by Bn
2 at least one particle up to time n2 follows R and generates the

color record vawbvc. Similarly, we can choose a neighbor path that generates
vavbvc. Since wb and vb are contained in w and v, respectively, then w and v

get selected as neighbors by the fourth step of our algorithm. �

LEMMA 3.11 (The algorithm �n works). Let An be the event that �n works.
This means that the outcome after the fourth phase of �n is “correct.” Thus,

Bn ∩ Cn ∩ Dn ∩ Fn ⊂ An.

PROOF. Recall we said our algorithm works as a whole correctly, if there ex-
ists a box I with size 4n with center closer than n0.5 from the origin and such
that the restriction ξI is equivalent to our reconstructed piece of scenery. If the last
phase of the algorithm works correctly, then we would like to see that outcome.
The event that the outcome after the fourth phase is “correct,” is denoted by An (as
already mentioned). Now, assume that we have the correct short and long words
constructed in phase one and two, that is, assume that the events Bn and Cn oc-
cur. Assume also that the third phase of our algorithm works correctly and we get
the one long word picked at the end of phase 3 to be close enough to the origin,
hence the event Dn occurs. When these three events occur (phase 1, 2 and 3 work)
for the final phase of the algorithm to work, we then only need to identify which
words of LONGWORDSn are neighbors of each other (remember that the words
in LONGWORDSn are words of ξK(n2)), so, what we really need after is finding
a way to determine which words of ξK(n2) are neighbors of each other, and that
holds by Fn.

Already at this point we observe that, if we have a collection of objects to be
placed in a box of Zd (in a way that all the sites of this box become occupied by
exactly one object), and we know which objects should be placed in neighboring
sites, then there is a unique (up to translations/reflections) way to do it. This will
assure that the reconstruction works correctly once we identified the neighboring
words. �

PROOF OF THEOREM 2.2. The last lemma above, Lemma 3.11, tells us that
for the algorithm �n to work correctly, we just need the events

Bn
1 ,Bn

2 ,Bn
3 ,Bn

4 ,Bn
5 ,Cn

1 ,Cn0.25

to all hold simultaneously. Thus, Theorem 2.2 follows from Lemmas 3.1, 3.2, 3.3,
3.4, 3.5, 3.7 and 3.8. �

4. The infinite scenery: Proof of Theorem 2.1. How do we now reconstruct
the infinite scenery ξ? So far, we have seen only methods to reconstruct a piece of
ξ on a box of size 4n close to the origin. The algorithm was denoted by �n, and the
event that it works correctly is designated by the event An. By working correctly,

RECONSTRUCTION OF A MULTIDIMENSIONAL SCENERY 683

we mean that the piece reconstructed in reality is centered not further than
√

n

from the origin. In general, it is not possible to be sure about the exact location.
So, instead we are only able to figure out the location up to a translation of order√

n. Also, the piece is reconstructed only up to equivalence, which means that we
do not know in which direction it is rotated in the scenery or if it was reflected.
Now, the probability that the reconstruction algorithm �n at level n does not work
is small in the sense that it is finitely summable over n:∑

n

P
(
Anc) < ∞.

So, by the Borel–Cantelli lemma, when we apply all the reconstruction algorithms
�1,�2, . . . , we are almost sure that only finite many of them will not work. We
use this to assemble the sceneries and get the whole scenery a.s. Let us call ξn the
piece reconstructed by �n. Hence,

ξn := �n(χ0χ1 · · ·χn4),

where ξn is a piece of scenery on a box K(4n). The next task is to put the re-
constructed pieces ξn together so that their relative position to each other is the
same in the scenery ξ . For this, we will use the following rule. We proceed in an
inductive way in n:

1. Let ξ̄ n designate the piece ξn which has been moved so as to fit the previ-
ously placed pieces. Hence, ξ̄ n is equivalent to ξn.

2. We place ξn by making it coincide with the previously placed ξn−1 on a
box of side length at least

√
n. In other words, ξ̄ n is defined to be any piece of

the scenery equivalent to ξn, and such that on a restriction to a box of size
√

n

it coincides with ξ̄ n−1. If no such box of size
√

n can be found in ξ̄ n−1 which is
equivalent to a piece of the same size in ξn, then we “forget” about the previously
placed pieces and just put the piece ξn on the box K(4n), that is, we center it
around the origin.

3. The end result after infinite time is our reconstructed scenery denoted by

ξ̄ : Zd → {0,1, . . . , κ}.
We will prove that a.s. ξ̄ is equivalent to ξ . So, ξ̄ represents our reconstructed
ξ (since reconstruction in general is only possible up to equivalence). For ξ̄ we
simply take the point-wise limit of the ξ̄ n:

ξ̄ (�z) := lim
n→∞ ξ̃ n.

For the above definition to be meaningful, take ξ̃ n to be the extension of ξ̄ n to all
Z

d by adding 0’s where ξ̄ n is not defined.

To conclude the proof of Theorem 2.1, it is enough to prove that the above
algorithm defines a scenery ξ̄ which is almost surely equivalent to ξ .

684 H. MATZINGER, A. PACHON AND S. POPOV

THEOREM 4.1. We have that

P(ξ ≈ ξ̄) = 1.

PROOF. Let Gn be the event that in the restriction of ξ to the box K(2n + 2)

any two restrictions to a box of size
√

n are different of each other. By this we
mean, that if V1 and V2 are two boxes of size

√
n contained in K(2n + 1), then

if the restriction ξV1 is equivalent to ξV2 then V1 = V2. Also, for Gn to hold, we
require that for any box V1 ⊂ K(2n + 2) of size

√
n the only reflection and/or

rotation which leaves ξV1 unchanged is the identity.
Now note that when the event Gn occurs, and the piece ξn+1 and ξn are cor-

rectly reconstructed in the sense defined before, then our placing them together
works properly. This means that in that case, the relative position of ξ̄ n+1 and ξ̄ n is
that same as the corresponding pieces in ξ . It is elementary to obtain that the event
Gn has probability at least 1 − c1n

de−c2n
d/2

. This means that
∑

n P (Gnc) < ∞,
and so, by the Borel–Cantelli lemma, all but a finite number of the events Gn oc-
cur. Also, we have seen that the algorithm at level n has high probability to do the
reconstruction correctly, and

∑
n P (Anc) < ∞.

Hence, again by the Borel–Cantelli lemma, all but a finite number of the recon-
structed scenery ξn will be equivalent to a restriction of ξ to a box close to the
origin. We also see that the close to the origin for the box of the nth reconstruction
means not further than

√
n. Thereof, we have that all but a finite number of the

pieces ξ̄ n are positioned correctly with respect to each other. Since we take a limit
for getting ξ , a finite number of ξ̄ n’s alone have no effect on the limit, and so the
algorithm works. �

REFERENCES

[1] BENJAMINI, I. and KESTEN, H. (1996). Distinguishing sceneries by observing the scenery
along a random walk path. J. Anal. Math. 69 97–135. MR1428097

[2] DEN HOLLANDER, F. and STEIF, J. E. (1997). Mixing properties of the generalized T ,T −1-
process. J. Anal. Math. 72 165–202. MR1482994

[3] HOWARD, C. D. (1996). Detecting defects in periodic scenery by random walks on Z. Random
Structures Algorithms 8 59–74. MR1368850

[4] HOWARD, C. D. (1996). Orthogonality of measures induced by random walks with scenery.
Combin. Probab. Comput. 5 247–256. MR1411085

[5] HOWARD, C. D. (1997). Distinguishing certain random sceneries on Z via random walks.
Statist. Probab. Lett. 34 123–132. MR1457504

[6] KALIKOW, S. A. (1982). T , T −1 transformation is not loosely Bernoulli. Ann. of Math. (2)
115 393–409. MR0647812

[7] KESTEN, H. (1996). Detecting a single defect in a scenery by observing the scenery along a ran-
dom walk path. In Itô’s Stochastic Calculus and Probability Theory 171–183. Springer,
Tokyo. MR1439524

[8] KESTEN, H. (1998). Distinguishing and reconstructing sceneries from observations along ran-
dom walk paths. In Microsurveys in Discrete Probability (Princeton, NJ, 1997). DIMACS
Ser. Discrete Math. Theoret. Comput. Sci. 41 75–83. Amer. Math. Soc., Providence, RI.
MR1630410

http://www.ams.org/mathscinet-getitem?mr=1428097
http://www.ams.org/mathscinet-getitem?mr=1482994
http://www.ams.org/mathscinet-getitem?mr=1368850
http://www.ams.org/mathscinet-getitem?mr=1411085
http://www.ams.org/mathscinet-getitem?mr=1457504
http://www.ams.org/mathscinet-getitem?mr=0647812
http://www.ams.org/mathscinet-getitem?mr=1439524
http://www.ams.org/mathscinet-getitem?mr=1630410

RECONSTRUCTION OF A MULTIDIMENSIONAL SCENERY 685

[9] LEMBER, J. and MATZINGER, H. (2008). Information recovery from a randomly mixed up
message-text. Electron. J. Probab. 13 396–466. MR2386738

[10] LINDENSTRAUSS, E. (1999). Indistinguishable sceneries. Random Structures Algorithms 14
71–86. MR1662199

[11] LÖWE, M., MATZINGER, H. and MERKL, F. (2004). Reconstructing a multicolor random
scenery seen along a random walk path with bounded jumps. Electron. J. Probab. 9 436–
507 (electronic). MR2080606

[12] LÖWE, M. and MATZINGER, H. III (2002). Scenery reconstruction in two dimensions with
many colors. Ann. Appl. Probab. 12 1322–1347. MR1936595

[13] MATZINGER, H. (1999). Reconstructing a three-color scenery by observing it along a simple
random walk path. Random Structures Algorithms 15 196–207. MR1704344

[14] MATZINGER, H. (2005). Reconstructing a two-color scenery by observing it along a simple
random walk path. Ann. Appl. Probab. 15 778–819. MR2114990

[15] MATZINGER, H. and PACHON, A. (2011). DNA approach to scenery reconstruction. Stochastic
Process. Appl. 121 2455–2473. MR2832409

[16] MATZINGER, H. and POPOV, S. (2007). Detecting a local perturbation in a continuous scenery.
Electron. J. Probab. 12 637–660. MR2318405

[17] MATZINGER, H. and ROLLES, S. W. W. (2003). Reconstructing a random scenery observed
with random errors along a random walk path. Probab. Theory Related Fields 125 539–
577. MR1974414

[18] MATZINGER, H. and ROLLES, S. W. W. (2003). Reconstructing a piece of scenery with poly-
nomially many observations. Stochastic Process. Appl. 107 289–300. MR1999792

[19] MATZINGER, H. and ROLLES, S. W. W. (2006). Finding blocks and other patterns in a random
coloring of Z. Random Structures Algorithms 28 37–75. MR2187482

[20] ORNSTEIN, D. (1971). A Kolmogorov automorphism that is not a Bernoulli shift. Matematika
15 131–150. (In Russian.)

[21] POPOV, S. and PACHON, A. (2011). Scenery reconstruction with branching random walk.
Stochastics 83 107–116. MR2800083

[22] WEISS, B. (1972). The isomorphism problem in ergodic theory. Bull. Amer. Math. Soc. 78
668–684. MR0304616

H. MATZINGER

SCHOOL OF MATHEMATICS

GEORGIA INSTITUTE OF TECHNOLOGY

686 CHERRY STREET

ATLANTA, GEORGIA 30332-0160
USA
E-MAIL: matzi@math.gatech.edu

A. PACHON

DIPARTIMENTO DI MATEMATICA “GIUSEPPE PEANO”
UNIVERSITY OF TURIN

VIA CARLO ALBERTO 10
10123, TURIN

ITALY

E-MAIL: apachonp@unito.it
angelicayohana.pachonpinzon@unito.it

S. POPOV

DEPARTMENT OF STATISTICS

UNIVERSITY OF CAMPINAS

RUA SÉRGIO BUARQUE DE HOLANDA 651
CIDADE UNIVERSITÁRIA

CEP 13083-859, CAMPINAS SP
BRASIL

E-MAIL: popov@ime.unicamp.br

http://www.ams.org/mathscinet-getitem?mr=2386738
http://www.ams.org/mathscinet-getitem?mr=1662199
http://www.ams.org/mathscinet-getitem?mr=2080606
http://www.ams.org/mathscinet-getitem?mr=1936595
http://www.ams.org/mathscinet-getitem?mr=1704344
http://www.ams.org/mathscinet-getitem?mr=2114990
http://www.ams.org/mathscinet-getitem?mr=2832409
http://www.ams.org/mathscinet-getitem?mr=2318405
http://www.ams.org/mathscinet-getitem?mr=1974414
http://www.ams.org/mathscinet-getitem?mr=1999792
http://www.ams.org/mathscinet-getitem?mr=2187482
http://www.ams.org/mathscinet-getitem?mr=2800083
http://www.ams.org/mathscinet-getitem?mr=0304616
mailto:matzi@math.gatech.edu
mailto:apachonp@unito.it
mailto:angelicayohana.pachonpinzon@unito.it
mailto:popov@ime.unicamp.br

	Introduction
	Model and statement of results
	Main ideas
	The algorithm Lambdan for reconstructing a ﬁnite piece of scenery close to the origin
	The DNA-sequencing trick
	Applying the DNA-sequencing method to a multidimensional scenery
	The diamond trick to reconstruct all the words of xiK(4n)
	How to eliminate junk observation-strings which are not words of xiK(n2)
	Why we need a seed
	Finding which long words are neighbors in the 4th phase of the algorithm Lambdan
	Placing neighboring long words next to each other in the 4th phase of our algorithm
	Overview over the events which make the algorithm Lambdan work

	Proof of Theorem 2.2
	First phase
	Second phase
	Third phase
	Fourth phase

	The inﬁnite scenery: Proof of Theorem 2.1
	References
	Author's Addresses

