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Two Early Contributions to the
Ewens Saga
Peter McCullagh

Abstract. The mixture model devised by Fisher, Corbet and Williams [Jour-
nal of Animal Ecology 12 (1943) 42–58] for species sampling and the sequen-
tial prediction approach pioneered by Good [Biometrika 40 (1953) 237–264]
and Good and Toulmin [Biometrika 43 (1956) 45–63] are both closely related
to the Ewens sampling formula. Fisher’s two-parameter joint distribution for
the species counts includes the Ewens distribution as the conditional distri-
bution given the sample size. The log-series model, as it is known in the
ecological literature, is closely related to a Poisson process model devised by
Arratia, Barbour and Tavaré [Ann. Appl. Probab. 2 (1992) 519–535]. Oddly,
despite its advantages for statistical inference, Fisher does not mention the
conditional distribution. Likewise, athough Good (1953) pioneered the se-
quential prediction approach, neither he nor Toulmin discovered the Ewens
process in a form equivalent to the modern-day Chinese restaurant process.
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Crane is to be commended for his survey of the
diverse areas of scientific work in which the Ewens
sampling formula has arisen. It is an impressive list
stretching from literary studies to population genet-
ics and probabilistic number theory. The fundamental
mathematical object in all of this work is a partition—
originally an integer partition but preferably a set
partition—which splits the population units into dis-
joint subsets called blocks or clusters and does the
same thing to the sample units. Crane makes a strong
case that the Ewens process is to random partitions or
clusterings as the Gaussian process is to a random se-
quence of real numbers, or the Poisson process is to a
random series of events in time or space. I agree. It is
one of a small number of processes that deserves to be
a central part of the statistical curriculum.

Fisher, Corbet and Williams (1943) appears to be one
of the first studies of the statistical relation between the
number of specimens and the number of species in typ-
ical ecological samples. In this setting, the multiplic-
ity vector m with components mr records the number
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of species for which exactly r specimens occur in the
sample, so m· = ∑

r>0 mr is the total species count,
and N = ∑

r rmr is the specimen count.
Although Fisher’s paper is a citation classic in the

ecological literature, and the approach appears to be
simple and well understood, some parts of his argu-
ment are not straightforward and other parts are not
correct. Fisher begins with the assumption that the
specimen counts for a single species are distributed ac-
cording to the Poisson distribution with parameter λ,
and the species-specific λ-values are distributed ac-
cording to a Poisson process with mean measure G

on (0,∞). It follows that the joint intensity-count dis-
tribution is that of a Poisson process Z ∼ PP(μ) with
mean measure

μ(dλ, r) = e−λλr

r! G(dλ)

at (λ, r) in the product space. The projected marginal
process on counts, the frequency of frequencies, mr =
#{λ : (λ, r) ∈ Z} is also Poisson, and if G is propor-
tional to the gamma distribution, the marginal measure
at r ≥ 0 is

μr = E(mr) = θ
�(r + ν)ηr

r! ,(1)
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proportional to the negative binomial series for some
0 < η < 1. In ecological work, the observation is not
the marginal process, but its restriction to r > 0, ex-
cluding m0.

To understand better the interpretation of these pa-
rameters, it is helpful to consider the effect of increas-
ing the sampling effort by the factor t > 0, for exam-
ple, by increasing the number of traps or the observa-
tion time. All things being equal, the effect on each
species intensity is λ �→ tλ, so the transformed mea-
sure is Gt(A) = G(t−1A) for subsets A ⊂ R+. The to-
tal species mass is unaltered. The effect on the marginal
mean measure (1) is to transform η to ηt multiplica-
tively on the odds scale:

ηt

1 − ηt

= t
η

1 − η
,(2)

leaving θ fixed. My guess is that Fisher was aware of
the implication, ηt = t/(t +γ ) for some constant γ > 0
independent of t , but this equation does not appear in
his paper.

On the basis of empirical evidence derived from Cor-
bet’s series on Malayan butterflies, Fisher concluded
that ν must be close to zero; the limit value ν = 0
implies that μ0 = ∞ and μr = θηr/r proportional to
the coefficients in the expansion of − log(1 − η). Con-
veniently enough, Fisher’s limiting log-series model,
mr ∼ Po(μr) with infinitely many independent com-
ponents, is log-linear

logμr = log θ + r logη − log r.

It is a generalized linear model with canonical parame-
ter (log θ, logη), offset − log r , and minimal sufficient
statistic (m·,N) with expected value

E(N) = θη/(1 − η),
(3)

E(m·) = −θ log(1 − η) = θ log
(
1 + E(N)/θ

)
.

Fisher computed the maximum-likelihood estimate by
solving the simultaneous nonlinear equation

N = θ̂ η̂/(1 − η̂), m· = −θ̂ log(1 − η̂).

In the pre-computer era, he also provided tables to as-
sist in its solution.

For each fixed θ , the statistic N is complete and
sufficient for η, so Fisher’s two-parameter model has
a Neyman structure (Lehmann, 1986, Section 4.3).
Given N = n, the multiplicity vector m is a random
partition of the integer n. By sufficiency, the condi-
tional distribution depends on θ alone; it is the Ewens
sampling formula with parameter θ . Given his earlier

writings on 2 × 2 tables in Statistical Methods for Re-
search Workers (1935, Section 4) and his 1934 paper
on location-scale models, it is strange that Fisher does
not mention the conditional distribution. Presumably
it did not occur to him then or subsequently. But one
Fisherian passage is worth quoting: The quantity θ is
independent of the size of sample and is proportional
to the number of species of the group considered, at
any chosen level of abundance, relative to the means
of capture employed. Values of θ from different sam-
ples [. . .] may be compared as a measure of richness
in species. Fisher’s expressions (3) for the moments do
not justify the first part of his statement, so presum-
ably what he had in mind was the argument leading to
(2), undoubtedly obvious to Fisher if not to most read-
ers, that increased sampling effort leaves θ fixed but
increases η in an inverse-linear manner.

Fisher’s paper concludes with a discussion of
maximum-likelihood estimation and the computation
of standard errors, both of which would have been sim-
pler using the conditional likelihood. For Williams’s
Macrolepidoptera series at Harpenden, the counts
N = 15,609,m· = 240 yield θ̂ = 40.248 and η̂ =
0.9974281; the conditional mle of θ based on the
Ewens model is 40.146. The unconditional and con-
ditional standard errors for θ̂ are 2.85 and 2.84 re-
spectively. The observed frequencies are in remark-
ably good agreement with the fitted series, and the fit
is not improved by taking ν 	= 0. The proximity of η̂ to
the upper boundary is consistent with the asymptotic
behavior of the Ewens process (Arratia, Barbour and
Tavaré, 1992), so η = 1 is the only correct value in the
limit.

For Fisher’s two-parameter model, the asymptotic
variance of θ̂ , as given by the eponymous inverse in-
formation matrix, is

θ̂2

m· − N(1 − η̂)
= θ̂2(N + θ̂ )

m·(N + θ̂ ) − Nθ̂
;

the numerical value is 8.105. Using a line of argument
that is flawed in places, Fisher deduced incorrectly that
var(m·) 
 θ log 2 instead of θ log(1 + N/θ). As a re-
sult, the formula given for the variance of θ̂ is incor-
rect, and the reported value (1.1251) is too small by
the approximate factor log(1 + N/θ)/ log(2) = 8.60.

Ten years later, Good looked at the problem of
estimating the population relative frequency qr of a
species having r representatives in the sample, whose
size n is fixed by design. The two authors have very
different styles. Fisher’s four-page contribution is terse
to the point of obscurity; Good’s 25-page tracts are
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discursive to the point of distraction. Fisher embraces
parametric assumptions; Good recognizes the need for
smoothing, but he avoids parametric assumptions—
even when they might be helpful.

Avoiding all assumptions about the behavior of the
expected multiplicities, μn,r = E(mr |N = n), Good
(1953) concluded that the posterior expected frequency
is

E(qr |data) = r + 1

n + 1

μr+1,n+1

μr,n

.(4)

Subsequently, Good and Toulmin (1956) looked at the
problem of sample extension, in an effort to deter-
mine the conditional distribution of the number of new
species that occur in an extended sample. Their ap-
proach puts the emphasis on prediction, where it prop-
erly belongs, rather than on distribution fitting and pa-
rameter estimation. It may be viewed as the first at-
tempt to express an infinitely exchangeable partition
process dynamically using the conditional distribution
given the current configuration. If they had adapted
Fisher’s two-parameter model, they might have suc-
ceeded in developing a Chinese-restaurant description.
As it stands, their analysis is unavoidably complicated
because of the deliberate avoidance of parametric as-
sumptions.

For a point-process model in which n is not fixed,
Good’s predictive ratio is replaced by the Papangelou
conditional intensity ratio with μr ∝ ηr/r , which
yields

E(qr |data) ∝
{

rη, r ≥ 1;
θη, r = 0,

for Fisher’s model. The value for r = 0 is the com-
bined intensity for all unrepresented species. Had Good
or Good and Toulmin taken a more positive view of
parametric models, they could easily have arrived at
the simpler expression

E(qr |data) = r

n + θ
,

leading to q0 = θ/(n + θ), which is exact for Fisher’s
model. But their determination to develop the story
without the benefit of parametric smoothing led them
elsewhere. Recognizing that the posterior expected
value of qr is the same as the conditional probability
that the next specimen belongs to that block, we can
speculate on how the subject might have developed dif-
ferently.

It is fair to say that Fisher almost discovered the
Ewens sampling formula. He had it in his grasp. Af-
ter all, he had only to compute the conditional distribu-
tion given the sample size, a task that was both statis-
tically natural and, for him, mathematically trivial. But

he did not. And even had he done so, the conditional
distribution would not necessarily have led quickly to
the Ewens process as we know it today. It is also fair
to say that Good should have discovered the process.
He also had it in his grasp, in the sense that he was
aware of Fisher’s work, he was asking the right ques-
tions, and his analysis was correct. But his refusal to
consider Fisherian parametric smoothing was a critical
blinker. In the end, Fisher did not discover the sampling
formula, and Good discovered neither the formula nor
the process.

In closing, it is of some interest to examine
Williams’s Macrolepidoptera data for the years 1933–
36 from the perspective of the Ewens process. For the
year 1933, 178 species were observed in a sample of
3540 specimens, yielding θ̂1 = 39.355 with standard
error 3.34. The data given by Williams in Table 4 is
not sufficient to determine the additional species num-
bers for each of the following three years, but, for the
three years combined, a further set of 62 species was
recorded among 12,069 specimens. In the Ewens pro-
cess, this additional species count is a sum of indepen-
dent Bernoulli variables with mean 58.06 and variance
57.73, so the observed value is only 0.52 standard de-
viations above what is predicted under the model of
temporal homogeneity using the fitted 1933 value θ̂1.

Given the observed data for the year 1933, the Ewens
conditional likelihood yields an estimated richness pa-
rameter θ̂2 = 42.042 with standard error 5.36 for the
period 1934–36. Since these estimators are statistically
independent, at least asymptotically, we may compute
a standardized difference in the usual way, giving the
value T = 2.687/6.314 = 0.425 as a test for tempo-
ral homogeneity. The overall maximum likelihood es-
timate, assuming temporal homogeneity for the com-
bined sample, is θ̂ = 40.146, and the likelihood ra-
tio statistic is 0.184, in good agreement with the Wald
statistic T 2 = 0.181. Although the specimen count for
1935 was more than twice the count in any other year,
there is no evidence for a change in the relative com-
position of the Macrolepidoptera population at Harp-
enden over these four years.

REFERENCES

ARRATIA, R., BARBOUR, A. D. and TAVARÉ, S. (1992). Poisson
process approximations for the Ewens sampling formula. Ann.
Appl. Probab. 2 519–535. MR1177897

FISHER, R. A. (1934). Two new properties of maximum likeli-
hood. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 144 285–
307.

http://www.ams.org/mathscinet-getitem?mr=1177897


26 P. MCCULLAGH

FISHER, R. A. (1935). Statistical Methods for Research Workers.
Oliver & Boyd, Edinburgh.

FISHER, R. A., CORBET, A. S. and WILLIAMS, C. B. (1943). The
relation between the number of species and the number of indi-
viduals in a random sample of an animal population. Journal of
Animal Ecology 12 42–58.

GOOD, I. J. (1953). The population frequencies of species and the
estimation of population parameters. Biometrika 40 237–264.
MR0061330

GOOD, I. J. and TOULMIN, G. H. (1956). The number of new
species, and the increase in population coverage, when a sample
is increased. Biometrika 43 45–63. MR0077039

LEHMANN, E. L. (1986). Testing Statistical Hypotheses, 2nd ed.
Wiley, New York. MR0852406

http://www.ams.org/mathscinet-getitem?mr=0061330
http://www.ams.org/mathscinet-getitem?mr=0077039
http://www.ams.org/mathscinet-getitem?mr=0852406

	References

