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The Ubiquitous Ewens Sampling Formula1

Harry Crane

Abstract. Ewens’s sampling formula exemplifies the harmony of mathe-
matical theory, statistical application, and scientific discovery. The formula
not only contributes to the foundations of evolutionary molecular genetics,
the neutral theory of biodiversity, Bayesian nonparametrics, combinatorial
stochastic processes, and inductive inference but also emerges from funda-
mental concepts in probability theory, algebra, and number theory. With an
emphasis on its far-reaching influence throughout statistics and probability,
we highlight these and many other consequences of Ewens’s seminal discov-
ery.
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1. INTRODUCTION

In 1972, Warren Ewens [36] derived a remarkable
formula for the sampling distribution of allele fre-
quencies in a population undergoing neutral selection.
An allele is a type of gene, for example, the alle-
les A, B, and O in the ABO blood group, so that
each gene has a particular allelic type and a sample
of n = 1,2, . . . genes can be summarized by its allelic
partition (m1, . . . ,mn), where m1 is the number of al-
leles appearing exactly once, m2 is the number of al-
leles appearing exactly twice, and in general mj is the
number of alleles appearing exactly j times, for each
j = 1,2, . . . , n. Ewens’s sampling formula (ESF) with
parameter θ > 0 assigns probability

p(m1, . . . ,mn; θ)
(1)

= n!
θ(θ + 1) · · · (θ + n − 1)

n∏
j=1

θmj

jmj mj !
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to each allelic partition (m1, . . . ,mn) for which∑n
j=1 j · mj = n.
Derived under the assumption of selective neutrality,

equation (1) is the null hypothesis distribution needed
to test the controversial neutral theory of evolution. Of
the formula and its consequences, Ewens begins his
abstract matter-of-factly, “In this paper a beginning is
made on the sampling theory of neutral alleles” [36],
page 87. Though obviously aware of its significance to
the statistical theory of neutral sampling, Ewens could
not have foreseen far-reaching contributions to the uni-
fied neutral theory of biodiversity [50], nonparamet-
ric Bayesian inference [2, 39], combinatorial stochastic
processes [60, 73], and the philosophy of inductive in-
ference [93], not to mention fundamental connections
to the determinant function [19], Macdonald polyno-
mials [27], and prime factorization [10, 29] in algebra
and number theory. In the coming pages, we present
Ewens’s sampling formula in all its glory, highlighting
each of these connections in further detail.

1.1 Outline

We retrace the development of Ewens’s sampling
formula, from neutral allele sampling and Kingman’s
mathematical theory of genetic diversity [60–62], to
modern nonparametric Bayesian [2, 39] and frequentist
[21] statistical methods, and backward in time to the
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roots of probabilistic reasoning and inductive inference
[8, 24, 54]. In between, Pitman’s [73, 76] investigation
of exchangeable random partitions and combinatorial
stochastic processes unveils many more surprising con-
nections between Ewens’s sampling formula and clas-
sical stochastic process theory, while other curious ap-
pearances in algebra [19, 27] and number theory [10,
29] only add to its mystique.

1.2 Historical Context

Elements of Ewens’s sampling formula appeared in
Yule’s prior work [91] on the evolution of species,
which Champernowne [16] and Simon [79] later recast
in the context of income distribution in large popula-
tions and word frequencies in large pieces of text, re-
spectively. Shortly after Ewens, Antoniak [2] indepen-
dently rediscovered (1) while studying Dirichlet pro-
cess priors in Bayesian statistics. We recount various
other historical aspects of Ewens’s sampling formula
in the coming pages.

1.3 Relation to Prior Work

Ewens and Tavaré [35, 82] have previously reviewed
various structural properties of and statistical appli-
cations involving the Ewens sampling formula. The
present survey provides updated and more detailed
coverage of a wider range of topics, which we hope
will serve as a handy reference for experts and an eye-
opening introduction for beginners.

2. NEUTRAL ALLELE SAMPLING AND SYNOPSIS
OF EWENS’S 1972 PAPER

2.1 The Neutral Wright–Fisher Evolutionary Model

Population genetics theory studies the evolution of a
population through changes in allele frequencies. Be-
cause many random events contribute to these changes,
the theory relies on stochastic models. The simplest of
these is the Wright–Fisher model, following its inde-
pendent introduction by Fisher [40] and Wright [90].

The Wright–Fisher model concerns a diploid popu-
lation, that is, a bi-parental population in which every
individual has two genes, one derived from each par-
ent, at any gene locus. The population is assumed to be
of fixed size N , so that there are 2N genes at each gene
locus in any generation. The generic Wright–Fisher
model assumes that the 2N genes in any offspring gen-
eration are obtained by sampling uniformly with re-
placement from the 2N genes in the parental genera-
tion.

A gene comprises a sequence of � DNA nucleotides,
where � is typically on the order of several thousand,
and thus each gene has exactly one of the possible 4�

allelic types. The large number of allelic types moti-
vates the infinitely many alleles assumption, by which
each transmitted gene is of the same type as its parental
gene with probability 1 −u and mutates independently
with probability u to a new allelic type “not currently
existing (nor previously existing) in the population”
[36], page 88.

Under these assumptions, Ewens [36] derives equa-
tion (1) by a partly heuristic argument made precise by
Karlin and McGregor [55]. The parameter θ in Ewens’s
sampling formula is equal to 4Nu and, therefore, ad-
mits an interpretation in terms of the mutation rate. In
more general applications, θ is best regarded as an ar-
bitrary parameter.

Ewens goes on to discuss both deductive and induc-
tive questions about the sample and population and, in
the latter half of [36], addresses issues surrounding sta-
tistical inference and hypothesis testing in population
genetics. Among all these contributions, Ewens’s dis-
cussion in the opening pages about the mean number
of alleles and the distribution of allele frequencies has
had the most lasting impact.

2.2 The Mean Number of Alleles

Equation (1) leads directly to the probability distri-
bution of the number of different alleles K in the sam-
ple as

P{K = k} = ∣∣Sk
n

∣∣ θk

θ(θ + 1) · · · (θ + n − 1)
,

where Sk
n is the (n, k)-Stirling number of the first kind

[80]:A008275. Together with equation (1), the above
expression implies that K is a sufficient statistic for θ ,
a point discussed later, and also leads to the expression

θ

θ
+ θ

θ + 1
+ · · · + θ

θ + n − 1
∼ θ log(n)

for the mean of K , where a ∼ b indicates that a/b → 1
as n → ∞. Contrasting this with the mean number of
distinct alleles in a population of size N ,

θ

θ
+ θ

θ + 1
+ · · · + θ

θ + 2N − 1
∼ θ log(2N).

Ewens approximates the mean number of different al-
leles in the population that do not appear in the sample
by θ log(2N/n).
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2.3 Predictive Probabilities

Invoking “a variant of the ‘coupon collector’s prob-
lem’ (or the ‘law of succession’)” [36], page 94, Ewens
calculates the probability that “the (j + 1)th gene
drawn is of an allelic type not observed on the first j

draws” as θ/(θ + j). Conversely, the probability that
the (j + 1)st gene is of a previously observed allelic
type is j/(θ + j). These predictive probabilities pre-
cede Dubins and Pitman’s Chinese restaurant seating
rule (Section 4) and posterior probabilities based on
Ferguson’s Dirichlet process prior (Section 6) and are
also closely associated with De Morgan’s rule of suc-
cession for inductive questions (Section 7).

2.4 The Coalescent

More than describing the allelic configuration of
genes at any given time, the neutral Wright–Fisher
model describes the evolution of a population of size
N with nonoverlapping generations. Under this evo-
lution, equation (1) acts as the stationary distribution
for a sample of n genes from a large population. In an
effort to better understand how (1) arises from these
dynamics, Griffiths [45] and Kingman [63] considered
the behavior of allelic frequencies under the infinite
population diffusion approximation. Perhaps the most
major advance in evolutionary population genetics in
the last three decades, Kingman’s coalescent has re-
sulted in the widely adopted coalescent theory within
population genetics [87] as well as the mathematical
study of partition-valued and more general combinato-
rial stochastic processes [9, 76].

Under the dynamics of Section 2.1, each of the 2N

genes in the current generation has a parent gene in the
previous generation. Tracing these parental relation-
ships backward in time produces the ancestral lineages
of the current 2N genes. Thus, the number of children
genes X of a typical gene is a Binomial random vari-
able with success probability 1/(2N), that is,

P{X = k} =
(

2N

k

)
(2N)−k(1 − (2N)−1)N−k

,

(2)
k = 0,1, . . . ,2N,

and so the probability that two genes in the current
generation have the same parent is 1/(2N). More gen-
erally, the number of generations Y for which the
ancestral lines of two genes have been distinct fol-
lows the Geometric distribution with success probabil-
ity 1/(2N), that is,

P{Y ≥ k} = (
1 − (2N)−1)k

, k = 0,1, . . . .(3)

From (2) and (3), the probability that the ancestral lines
of � genes have been distinct for k generations is(
1 − 1/(2N)

)k(1 − 2/(2N)
)k · · · (1 − (� − 1)/(2N)

)k
.

The coalescent process arises as a natural infinite
population diffusion approximation to the Wright–
Fisher model by taking N → ∞ and putting k =
�2Nt� for t ≥ 0. Under this regime, we obtain the lim-
iting probability that the lineages of � genes remain
distinct for t ≥ 0 time units as

lim
N→∞,k/(2N)→t

�−1∏
j=1

(
1 − j/(2N)

)k
= exp

{−t�(� − 1)/2
}
.

Realizing that this equals the distribution of the mini-
mum of

(�
2

)
independent standard Exponential random

variables, Kingman [63] arrived at his description of
the coalescent, according to which distinct lineages
merge independently at the times of standard Exponen-
tial random variables.

Although we have focused mainly on its original
derivation in the context of the Wright–Fisher model,
Ewens’s sampling formula applies for a wide range
of neutral models [59]. In their treatment of Macdon-
ald polynomials (Section 8.3), Diaconis and Ram [27]
attribute these “myriad practical appearances [to] its
connection with Kingman’s coalescent process [. . . ].”
Ethier and Griffiths’s [31] formula for the transition
function of the Fleming–Viot process [42] provides
yet another link between the coalescent, Dirichlet pro-
cesses, the Poisson–Dirichlet distribution, and Ewens’s
sampling formula.

2.5 Legacy in Theoretical Population Genetics

The sufficiency of K for θ led Ewens [36] and
Watterson [89, 88] to objective tests of the contro-
versial neutral theory of evolution [58]. Plainly, suf-
ficiency implies that the conditional distribution of
(m1, . . . ,mn) given K is independent of θ , so that
the unknown parameter θ need not be estimated and
is not involved in any test based on the conditional dis-
tribution of (m1, . . . ,mn) given K . Beyond the realm
of Ewens’s seminal work on testing, Christiansen [17]
states that Ewens [36] “laid the foundations for mod-
ern molecular population genetics.” Nevertheless, in
the early 1980s Ewens shifted his focus to mapping
genes associated to human diseases. He is partly re-
sponsible for the transmission-disequilibrium test [81],
which has been used to locate at least fifty such
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genes. The paper [81] that introduced the transmission-
disequilibrium test was chosen as one of the top ten
classic papers in the American Journal of Human Ge-
netics, 1949–2014.

In general biology, Ewens’s paper marks a semi-
nal contribution to Hubbell’s neutral theory of biodi-
versity [50], and the foundations it laid have been re-
fined by novel sampling formulas [32, 34] and statis-
tical tests for neutrality [33] in ecology. For the rest
of the paper, we focus on applications of equation (1)
in other areas, mentioning other biological applications
only briefly.

3. CHARACTERISTIC PROPERTIES OF EWENS’S
SAMPLING FORMULA

3.1 Partition Structures

From an allelic partition (m1, . . . ,mn) of n ≥ 1, we
obtain an allelic partition (m′

1, . . . ,m
′
n−1) of n − 1 by

choosing J randomly with probability

P
{
J = j |(m1, . . . ,mn)

} = j · mj/n,
(4)

j = 1, . . . , n,

and putting

m′
j =

⎧⎪⎨
⎪⎩

mj − 1, J = j,

mj + 1, J = j + 1,

mj , otherwise.
(5)

Alternatively, (5) is the allelic partition obtained by
choosing a gene uniformly at random and removing it
from the sample.

THEOREM 3.1 (Kingman [60, 61]). Let (m1, . . . ,

mn) be a random allelic partition from Ewens’s sam-
pling formula (1) with parameter θ > 0. Then (m′

1, . . . ,

m′
n−1) obtained as in (5) is also distributed according

to Ewens’s sampling formula with parameter θ > 0.

We call a family of distributions (pn)n≥1 a parti-
tion structure if (m1, . . . ,mn) ∼ pn implies (m′

1, . . . ,

m′
n−1) ∼ pn−1 for all n ≥ 2. This definition implies

that (pn)n≥1 is consistent under uniform deletion of
any number of genes and, thus, agrees with Kingman’s
original definition [60], which generalizes the outcome
in Theorem 3.1.

Kingman’s study of partition structures anticipates
his paintbox process correspondence, by which he
proves a de Finetti-type representation for all infinite
exchangeable random set partitions. Kingman’s corre-
spondence establishes a link between Ewens’s sam-
pling formula and the Poisson–Dirichlet distribution,
which in turn broadens the scope of equation (1); see
Section 4.1 below.

3.2 Random Set Partitions

In many respects, partition structures are more natu-
rally developed as distributions on partitions of the set
[n] = {1, . . . , n}. Instead of summarizing the sample of
genes by the allelic partition (m1, . . . ,mn), we can la-
bel genes distinctly 1, . . . , n and assign each an allelic
type. At each generation, the genes segregate into sub-
sets B1, . . . ,Bk , called blocks, such that i and j in the
same block indicates that genes i and j have the same
allelic type. The resulting collection π = {B1, . . . ,Bk}
of nonempty, disjoint subsets with B1 ∪ · · · ∪ Bk = [n]
is a (set) partition of [n].

The ordering of B1, . . . ,Bk in π is inconsequential,
so we follow convention and list blocks in ascending
order of their smallest element. For example, there are
five partitions of the set {1,2,3},{{1,2,3}}, {{1}, {2,3}}, {{1,2}, {3}},{{1,3}, {2}}, {{1}, {2}, {3}},
but only three allelic partitions of size 3,

(3,0,0), (1,1,0), (0,0,1).

Each set partition π = {B1, . . . ,Bk} corresponds
uniquely to an allelic partition n(π) = (m1, . . . ,mn),
where mj counts the number of blocks of size j in π ,
for example,

n
({{1,2,3}}) = (0,0,1),

n
({{1,2}, {3}}) = n

({{1}, {2,3}})
= n

({{1,3}, {2}}) = (1,1,0) and

n
({{1}, {2}, {3}}) = (3,0,0).

Conversely, every allelic partition (m1, . . . ,mn) corre-
sponds to the set of all partitions π for which n(π) =
(m1, . . . ,mn).

Because every individual draws its parent genes
independently and uniformly in the Wright–Fisher
model, set partitions corresponding to the same al-
lelic partition occur with the same probability. Con-
sequently, we can generate a random set partition
�n by first drawing an allelic partition (m1, . . . ,mn)

from Ewens’s sampling formula (1) and then select-
ing uniformly among partitions π for which n(π) =
(m1, . . . ,mn). The resulting random set partition �n

follows the so-called Ewens distribution with parame-
ter θ > 0,

P
{
�n = {B1, . . . ,Bk}}

(6)

= θk

θ(θ + 1) · · · (θ + n − 1)

k∏
j=1

(#Bj − 1)!,
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where #Bj is the cardinality of block Bj for each j =
1, . . . , k.

Simple enumeration and the law of total probabil-
ity connects (1) and (6). As an exercise, the reader can
verify that each allelic partition (m1, . . . ,mn) corre-
sponds to n!/∏n

j=1 j !mj mj ! set partitions through n
and, therefore, the conditional distribution of a parti-
tion drawn uniformly among all π whose block sizes
form allelic partition (m1, . . . ,mn) is

P
{
�n = π |n(�n) = (m1, . . . ,mn)

}
= 1

n!
n∏

j=1

j !mj mj !,

n(π) = (m1, . . . ,mn).

3.3 Exchangeability

The distribution in (6) depends only on the allelic
partition induced by the block sizes of �n. Therefore,
for any permutation σ : [n] → [n], the relabeling �σ

n

obtained by first taking �n distributed as in (6) and
then putting σ(i) and σ(j) in the same block of �σ

n

if and only if i and j are in the same block of �n is
also distributed as in (6). As is natural in the genetics
setting, the labels 1, . . . , n distinguish between genes
but otherwise can be assigned arbitrarily.

More generally, a random partition �n is exchange-
able if its distribution is invariant under relabeling by
any permutation σ : [n] → [n], that is,

P{�n = π} = P
{
�n = πσ }

for all permutations σ : [n] → [n].
Pitman’s exchangeable partition probability function
(EPPF) [73] captures the notion of exchangeability
through a function Pn(m1, . . . ,mn) on allelic parti-
tions. In particular, �n is exchangeable if and only if
there exists an EPPF Pn such that

P{�n = π} = Pn

(
n(π)

)
for all partitions of [n].

Exchangeability of the Ewens distribution is clear from
the closed-form expression in (6), which depends on
�n only through its block sizes. In general, every prob-
ability distribution pn(·) on allelic partitions of n deter-
mines an EPPF Pn by

Pn

(
n(π)

) = pn(m1, . . . ,mn) × 1

n!
n∏

j=1

j !mj mj !,
(7)

n(π) = (m1, . . . ,mn).

3.4 Consistency Under Subsampling

Above all, Kingman’s definition of a partition struc-
ture emphasizes the “need for consistency between dif-
ferent sample sizes” [61], page 374. By subsampling
[m] ⊂ [n], a partition π = {B1, . . . ,Bk} of [n] restricts
to a partition of [m] by

π|[m] = {
B1 ∩ [m], . . . ,Bk ∩ [m]} \ {∅}.

For example, the restrictions of π = {{1,4,7,8},
{2,3,5}, {6}} to samples of size m = 7,6,5, respec-
tively, are

π|[7] = {{1,4,7}, {2,3,5}, {6}},
π|[6] = {{1,4}, {2,3,5}, {6}},
π|[5] = {{1,4}, {2,3,5}}.

To satisfy the partition structure requirement, the
sampling distribution of �m must coincide with the
marginal distribution of �n|[m], the partition induced
by subsampling m genes from a sample of size n ≥ m.
A family of random set partitions (�n)n≥1 is consistent
under subsampling, or sampling consistent, if �n|[m]
is distributed the same as �m for all n ≥ m ≥ 1. Sim-
ilarly, a family of distributions is sampling consistent
if it governs a consistent family of random partitions.
Any partition structure (pn)n≥1 determines a family of
exchangeable, consistent EPPFs through (7). In partic-
ular, Ewens’s sampling formula (1) determines a par-
tition structure and the Ewens distribution in (6) is de-
rived from (1) via (7); thus, the family of Ewens distri-
butions is consistent under subsampling.

Sampling consistency elicits an interpretation of the
distributions of (�n)n≥1 as the sampling distributions
induced by a data-generating process for the whole
population. Inductively, the sampling distributions of
(�n)n≥1 permit a sequential construction: given �n =
π , we generate �n+1 from the conditional distribution
among all partitions of [n + 1] that restrict to π under
subsampling, that is,

P
{
�n+1 = π ′|�n = π

}
=

{
P

{
�n+1 = π ′}/P{�n = π}, π ′|[n] = π,

0, otherwise.

Thus, a consistent family of partitions implies the ex-
istence of conditional distributions for predictive infer-
ence and the sequence (�n)n≥1 determines a unique
infinite random partition �∞ of the positive integers
N = {1,2, . . .}. In the special case of Ewens distribu-
tion, these predictive probabilities determine the Chi-
nese restaurant process (Section 4.5).
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3.5 Self-Similarity

In the Wright–Fisher model, subpopulations exhibit
the same behavior as the population at large and dif-
ferent genes do not interfere with each other. To-
gether, these comprise the statistical property of self-
similarity.

Formally, set partitions are partially ordered by the
refinement relation: we write π ≤ π ′ if every block
of π is a subset of some block of π ′. For example,
π = {{1,2}, {3,4}, {5}} refines π ′ = {{1,2,5}, {3,4}}
but not π ′′ = {{1,3}, {2,4,5}}, because {1,2} is not a
subset of {1,3} or {2,4,5}. Let P(·) be an EPPF for
an infinite exchangeable random partition, so that P

determines an exchangeable probability distribution on
partitions of any finite size by P{�n = π} = P(n(π)).
The family of random set partitions (�n)n≥1 is self-
similar if for all n = 1,2, . . . and all set partitions π

of [n],
P

{
�n = π |�n ≤ π ′} = ∏

b∈π ′
P

(
n(π|b)

)
,

(8)
π ≤ π ′.

In other words, given that �n is a refinement of π ,
the further breakdown of elements within each block
of π occurs independently of other blocks and with the
same distribution determined by P . The reader can ver-
ify that (6) satisfies condition (8).

3.6 Noninterference

A longstanding question in ecology concerns inter-
actions between different species. In this context, we
regard the elements 1,2, . . . as labels for different spec-
imens, instead of genes, so that the allelic partition
(m1, . . . ,mn) counts the number of species that appear
once, twice, and so on in a sample. Given an arbitrary
partition structure (pn)n≥1 and (m1, . . . ,mn) ∼ pn, we
choose an index J = r as in (4) and, instead of reduc-
ing to an allelic partition of n − 1 as in (5), we define
m∗ = (m∗

1, . . . ,m
∗
n−r ) by

m∗
j =

{
mj − 1, J = j,

mj , otherwise,

to obtain an allelic partition of n − r . In effect, we
remove all specimens with the same species as one
chosen uniformly at random among 1, . . . , n. If for
every n = 1,2, . . . the conditional distribution of m∗
given J = r is distributed according to pn−r , the fam-
ily (pn)n≥1 satisfies noninterference. Kingman [60]
showed that Ewens’s sampling formula (1) is the only
partition structure with the noninterference property.

3.7 Exponential Families, Gibbs Partitions, and
Product Partition Models

The family of Ewens distributions on set partitions
can be expressed as an exponential family with a nat-
ural parameter log(θ) and canonical sufficient statistic
for the number of blocks of �n:

P{�n = π}

= exp

{
#π log θ −

n−1∑
j=0

log(θ + j)

}
(9)

× ∏
b∈π

(#b − 1)!,

where #π denotes the number of blocks of π . Within
statistical physics, (9) can be rewritten in canonical
Gibbs form as

P{�n = π} = Z−1
n

∏
b∈π

ψ(#b),(10)

for nonnegative constants ψ(k) = θ · (k − 1)! and
normalizing constant Zn = θ(θ + 1) · · · (θ + n − 1).
The following theorem distinguishes the Ewens fam-
ily among this class of Gibbs distributions.

THEOREM 3.2 (Kerov [56]). A family (Pn)n≥1 of
Gibbs distributions (10) with common weight sequence
{ψ(k)}k≥1 is exchangeable and consistent under sub-
sampling if and only if there exists θ > 0 such that
ψ(k) = θ · (k − 1)! for all k ≥ 1.

Without regard for statistical or physical properties
of (10), Hartigan [46] proposed the class of product
partition models for certain statistical clustering appli-
cations. For a collection of cohesion functions c(b),
b ⊆ [n], the product partition model assigns probability

P{�n = π} ∝ ∏
b∈π

c(b)

to each partition π of [n]. Clearly, the product parti-
tion model is exchangeable only if c(b) depends only
on the cardinality of b ⊆ [n]. Kerov’s work (Theo-
rem 3.2) establishes that the only nondegenerate, ex-
changeable, consistent product partition model is the
family of Ewens distributions in (6).

3.8 Logarithmic Combinatorial Structures

For θ > 0, let Y1, Y2, . . . be independent random
variables for which Yj has the Poisson distribution with
parameter θ/j for each j = 1,2, . . . . Given

∑n
j=1 j ·
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Yj = n, (Y1, . . . , Yn) determines a random allelic parti-
tion of n with distribution

P

{
(Y1, . . . , Yn) = (m1, . . . ,mn)

∣∣∣∣
n∑

j=1

j · Yj = n

}

∝
n∏

j=1

θmj

jmj mj !e
−θ/j(11)

∝
n∏

j=1

θmj

jmj mj ! ,

that is, Ewens’s sampling formula with parameter
θ > 0.

From the above description, the collection (�n)n≥1
of Ewens partitions is a special case of a logarith-
mic combinatorial structure, which Arratia, Barbour
and Tavaré [4] define for set partitions as follows.
Let (�n)n≥1 be a collection of random set partitions
and, for each n ≥ 1, let (Nn,1, . . . ,Nn,n) be the ran-
dom allelic partition determined by the block sizes
of �n. Then (�n)n≥1 is a logarithmic combinatorial
structure if for every n = 1,2, . . . the allelic partition
(Nn,1, . . . ,Nn,n) satisfies the conditioning relation

P{Nn,1 = m1, . . . ,Nn,n = mn}

= P

{
Y1 = m1, . . . , Yn = mn

∣∣∣∣
n∑

j=1

j · Yj = n

}

for some sequence Y1, Y2, . . . of independent random
variables on {0,1, . . .} that satisfies the logarithmic
condition

lim
n→∞nP{Yn = 1} = lim

n→∞nEYn > 0.

Both conditions are plainly satisfied by the indepen-
dent Poisson sequence above.

Arratia, Barbour and Tavaré [3] further established
the following stronger result according to which block
sizes of a random Ewens partition can be well approxi-
mated by independent Poisson random variables as the
sample size grows.

THEOREM 3.3 (Arratia, Barbour and Tavaré [3]).
For n ≥ 1, let Nn,j be the number of blocks of size
j in a Ewens(θ ) partition of [n]. Then (Nn,j )j≥1 →D
(Y1, Y2, . . .) as n → ∞, where Y1, Y2, . . . are indepen-
dent Poisson random variables with E(Yj ) = θ/j and
→D denotes convergence in distribution.

In the above theorem, Nn,j counts the number of
blocks of size j in a random partition of {1, . . . , n}.

More generally, Nn,j may count the number of com-
ponents of size j in an arbitrary structure of size n, for
example, the components of size j in a random graph
or a random mapping. Arratia, Barbour and Tavaré’s
monograph [5] relates the component sizes of vari-
ous structures to Ewens’s sampling formula, for ex-
ample, 2-regular graphs (with θ = 1/2) and proper-
ties of monic polynomials (with θ = 1). Aldous [1],
Lemma 11.23, previously showed that the component
sizes of the directed graph induced by a uniform ran-
dom mapping [n] → [n] converge in distribution to the
component sizes from Ewens’s sampling formula with
θ = 1/2.

4. SEQUENTIAL CONSTRUCTIONS AND URN
SCHEMES

4.1 Poisson–Dirichlet Distribution

Let

S↓ =
{
(s1, s2, . . .) : s1 ≥ s2 ≥ · · · ≥ 0,

∑
k≥1

sk ≤ 1
}

be the ranked-simplex and, for s ∈ S↓, write �∞ ∼ 	s

to signify an infinite random partition generated as fol-
lows. Let X1,X2, . . . be independent random variables
with distributions

P{Xi = j |s} =
⎧⎨
⎩

sj , j ≥ 1,

1 − ∑
k≥1 sk, j = −i,

0, otherwise.
(12)

From (X1,X2, . . .), we define the s-paintbox �∞ ∼ 	s

by putting

i and j in the same block of �∞ if and only if
(13)

Xi = Xj .

Notice that s0 = 1 − ∑
k≥1 sk is the probability that

Xi = −i for each i = 1,2, . . . and, therefore, corre-
sponds to the probability that element i appears as a
singleton in �∞. By the law of large numbers and
Kingman’s correspondence, each block of an infinite
exchangeable partition is either a singleton or is infi-
nite; there can be no blocks of size two, three, etc., or
with zero limiting frequency.

THEOREM 4.1 (Kingman’s correspondence [61]).
Let �∞ be an infinite exchangeable partition. Then
there exists a unique probability measure ν on S↓ such
that �∞ ∼ 	ν , where

	ν(·) =
∫
S↓

	s(·)ν(ds)(14)

is the mixture of s-paintbox measures with respect to ν.
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By Kingman’s correspondence, every exchangeable
random partition of N can be constructed by first sam-
pling S ∼ ν and then “painting” elements 1,2, . . . ac-
cording to (12). In the special case of Ewens’s sam-
pling formula, the mixing measure ν is called the
Poisson–Dirichlet distribution with parameter θ > 0.

Kingman further showed that if a sequence of popu-
lations of growing size is such that for each population
the allelic partition from a sample of n genes obeys
Ewens’s sampling formula, then the limiting distribu-
tion of allele frequencies is the Poisson–Dirichlet dis-
tribution with parameter θ . In genetics, the Poisson–
Dirichlet distribution can be viewed as an infinite
population result for selectively neutral alleles in the
infinitely many alleles setting. Within statistics, the
Poisson–Dirichlet distribution is the prior distribution
over the set of all paintboxes whose colors occur ac-
cording to the proportions of s ∈ S↓. Below, we lay
bare several instances of the Poisson–Dirichlet dis-
tribution throughout mathematics. The limit of the
Dirichlet-Multinomial process offers perhaps the most
tangible interpretation of the Poisson–Dirichlet distri-
bution.

4.2 Dirichlet-Multinomial Process

For α1, . . . , αk > 0, the (k − 1)-dimensional Dirich-
let distribution with parameter (α1, . . . , αk) has den-
sity

f (s1, . . . , sk;α1, . . . , αk)

= �(α1 + · · · + αk)∏k
i=1 �(αi)

s
α1−1
1 · · · sαk−1

k ,(15)

s1 + · · · + sk = 1, s1, . . . , sk ≥ 0,

where �(s) = ∫ ∞
0 xs−1e−x dx is the gamma function.

Given S = (S1, . . . , Sk) from the above density, we
draw X1,X2, . . . conditionally independently from

P
{
X1 = j |S = (s1, . . . , sk)

} = sj , j = 1, . . . , k,

and define a random partition �∞ as in (13). With α <

0, α1 = · · · = αk = −α, and nj = ∑n
i=1 1{Xi = j}, the

count vector (n1, . . . , nk) for a sample of size n has
unconditional probability∫

[0,1]k
�(−kα)

�(−α)k
s
−α+n1−1
1 · · · s−α+nk−1

k ds1 · · · dsk

= 1

(−kα)↑n

k∏
j=1

(−α)↑nj ,

where α↑j = α(α+1) · · · (α+j −1) is the rising facto-
rial function. Here we specify α to be negative in order

to comply with the parameterization of the forthcom-
ing Ewens–Pitman distribution (Section 5.1).

In determining a random partition �n based on
X1, . . . ,Xn, we disregard the specific values of X1, . . . ,

Xn and only retain the equivalence classes. If j dis-
tinct values appear among X1, . . . ,Xn, there are k↓j =
k(k − 1) · · · (k − j + 1) possible assignments that in-
duce the same partition of [n]; hence,

P{�n = π} = k↓#π

(−kα)↑n

∏
b∈π

(−α)↑#b

(16)

= (−kα/α)↑#π

(−kα)↑n

∏
b∈π

−(−α)↑#b.

The Poisson–Dirichlet(θ) distribution corresponds
to Ewens’s one-parameter family (6) and can be viewed
as a limiting case of the above Dirichlet-Multinomial
construction in the following sense. Let θ > 0 and,
for each m = 1,2, . . . , let �n,m have the Dirichlet-
Multinomial distribution in (16) with parameters α =
−θ/m and k = m. The distributions of �n,m satisfy

P{�n,m = π} = m↓#π

θ↑n

∏
b∈π

(θ/m)↑#b

and, therefore, �n,m converges in distribution to a
Ewens(θ) partition of [n] as m → ∞.

In Kingman’s paintbox process, �n,m is the mix-
ture with respect to the distribution of decreasing or-
der statistics of the (m − 1)-dimensional Dirichlet
distribution with parameter (θ/m, . . . , θ/m), whereas
a Ewens(θ ) partition is the mixture with respect to
the Poisson–Dirichlet(θ) distribution. By the bounded
convergence theorem, Poisson–Dirichlet(θ) is the lim-
iting distribution of the decreasing order statistics of
(m − 1)-dimensional Dirichlet(θ/m, . . . , θ/m) distri-
butions as m → ∞. This connection between Ewens’s
sampling formula and the Dirichlet-Multinomial con-
struction partially explains the utility of the Chinese
restaurant process in Bayesian inference (Section 6.1).
Consult Feng [38] for more details on the Poisson–
Dirichlet distribution and its connections to diffusion
processes.

4.3 Hoppe’s Urn

In the paintbox process, we construct a random par-
tition by sampling X1,X2, . . . conditionally indepen-
dently and defining its blocks as in (13). Alternatively,
Hoppe [48] devised a Pólya-type urn scheme by which
(6) arises by sampling with reinforcement from an urn.

Initiate an urn with a single black ball with la-
bel 0 and weight θ > 0. Sequentially for each n =
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1,2, . . . , choose a ball with probability proportional to
its weight and replace it along with a new ball labeled
n, weighted 1, and colored as follows:

• the same as the chosen ball, if not black, or
• differently from all other balls in the urn, if the cho-

sen ball is black.

The above scheme determines a partition of {1,2, . . .}
for which i and j are in the same block if and only
if the balls labeled i and j have the same color. Hoppe
showed that the color composition (m1, . . . ,mn) is dis-
tributed as in equation (1), where mj is the number of
colors represented by exactly j of the first n nonblack
balls.

From this point on, we leave behind the interpreta-
tion of 1,2, . . . as labels for genes, as in Ewens’s origi-
nal context, in favor of a more generic setting in which
1,2, . . . are themselves abstract items or elements, for
examples, labels of balls in Hoppe’s urn.

4.4 De Morgan’s Process

Some 150 years before Hoppe, De Morgan [24]
posited a similar sequential scheme for explaining how
to update conditional probabilities for events that have
not yet occurred and are not even known to exist:

“When it is known beforehand that either A
or B must happen, and out of m+n times A
has happened m times, and B n times, then
[. . . ] it is m + 1 to n + 1 that A will hap-
pen the next time. But suppose we have no
reason, except that we gather from the ob-
served event, to know that A or B must hap-
pen; that is, suppose C or D, or E, etc. might
have happened: then the next event may be
either A or B, or a new species, of which it
can be found that the respective probabili-
ties are proportional to m + 1, n + 1, and 1
[. . . ].” (De Morgan, [24], page 66)

Thus, De Morgan considers situations for which we do
not even know all the possible outcomes in advance, as
opposed to binary outcomes such as whether the sun
will rise or not or whether a coin will land on heads or
tails. On the (n + 1)st trial, De Morgan assigns proba-
bility 1/(n + t + 1) to the event that a new type is ob-
served and nj/(n + t + 1) to the event that a type with
nj prior occurrences is observed. With θ = 1 and t = 0,
De Morgan’s and Hoppe’s update probabilities coin-
cide. This framework is sometimes called the species
sampling problem—before encountering an animal of

a new species we are not aware that the species exists—
and requires the use of exchangeable random partitions
instead of exchangeable random variables [93].

In deriving (1), Ewens invokes “a variant of the
‘coupon collector’s problem’ (or the ‘law of succes-
sion’)” [36], page 94, and must have been aware of
the sequential construction of (1) via Hoppe’s urn or,
equivalently, the Chinese restaurant process from the
coming section. In fact, the update probabilities of
Ewens’s sampling formula are distinguished within the
broader context of rules of succession: if the condi-
tional probability that item n + 1 is of a new type de-
pends only on n, then it must have the form θ/(θ + n)

for some θ > 0 [28]; moreover, if the conditional prob-
ability that the (n + 1)st item is of a type seen m times
previously depends only on m and n, then the under-
lying sampling distribution must be Ewens’s sampling
formula. If, in addition to depending on m, the condi-
tional probability at stage n + 1 also depends on the
number of species observed so far, then the underlying
distribution has the two-parameter Ewens–Pitman dis-
tribution, which we discuss throughout Section 5. This
latter point relies on Johnson’s [54] sufficientness pos-
tulate, which we discuss further in Section 7.

4.5 Chinese Restaurant Process

Dubins and Pitman (see, e.g., [1], Section 11.19),
proposed the Chinese restaurant process, a sampling
scheme equivalent to Hoppe’s urn above. Imagine a
restaurant in which customers are labeled according to
the order in which they arrive: the first customer is la-
beled 1, the second is labeled 2, and so on. If the first
n customers are seated at m ≥ 1 different tables, the
(n + 1)st customer sits

• at a table occupied by t ≥ 1 customers with proba-
bility t/(θ + n) or

• at an unoccupied table with probability θ/(θ + n),

where θ > 0. By regarding the balls in Hoppe’s urn
as customers in a restaurant, it is clear that the Chi-
nese restaurant process and Hoppe’s urn scheme are
identical and, thus, the allelic partition (m1, . . . ,mn),
for which mj counts the number of tables with j cus-
tomers, is distributed according to equation (1).

5. THE TWO-PARAMETER EWENS–PITMAN
DISTRIBUTION

5.1 Ewens–Pitman Two-Parameter Family

In some precise sense, the distribution in (16) can
be viewed as a specialization of (6) to the case of a
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partition with a bounded number of blocks. Both (6)
and (16) are special cases of Pitman’s two-parameter
extension to Ewens’s sampling formula; see [76] for
an extensive list of references.

With (α, θ) satisfying either

• α < 0 and θ = −kα, for some k = 1,2, . . . , or
• 0 ≤ α ≤ 1 and θ > −α,

the Ewens–Pitman distribution with parameter (α, θ)

assigns probability

P{�n = π} = (θ/α)↑#π

θ↑n

∏
b∈π

−(−α)↑#b.(17)

When α = 0, (17) coincides with equation (6); and
when α < 0 and θ = −kα, (17) simplifies to (16). In
terms of the paintbox process (14), the mixing mea-
sure of an infinite partition drawn from (17) is the
(two-parameter) Poisson–Dirichlet distribution with
parameter (α, θ) [72, 77]. The one-parameter Poisson–
Dirichlet(θ) distribution mentioned previously is the
specialization of the two-parameter case with α = 0
and may also be called the Poisson–Dirichlet(0, θ) dis-
tribution.

5.2 Role of Parameters

A more general Chinese restaurant-type construc-
tion, as in Section 4.5, elucidates the meaning of pa-
rameters α and θ in (17). If the first n customers are
seated at m ≥ 1 different tables, the (n+ 1)st customer
sits

• at a table occupied by t ≥ 1 customers with proba-
bility (t − α)/(n + θ) or

• at an unoccupied table with probability (mα +
θ)/(n + θ).

From Ewens’s original derivation, θ is related to the
mutation rate in the Wright–Fisher model and is there-
fore tied to the prior probability of observing a new
species, or sitting at an unoccupied table, at the next
stage. On the other hand, α reinforces the probability of
observing new species in the future, given that we have
observed a certain number of species so far. Thus, α af-
fects the probability of observing new species and the
probability of observing a specific species in opposite
ways: when α < 0, the number of blocks is bounded,
so observing a new species decreases the number of
unseen species and the future probability of observ-
ing new species but increases the probability of see-
ing the newly observed species again in the future;
when α > 0, the opposite is true; and when α = 0,
we are in the neutral sampling scheme considered by

Ewens. Gnedin [43] has recently studied a different
two-parameter model which allows for the possibility
of a finite, but random, number of blocks.

5.3 Asymptotic Properties

The extended parameter range of the two-parameter
model leads to different asymptotic regimes for vari-
ous critical statistics of Ewens–Pitman partitions. For
(α, θ) in the parameter space of (17), let (�n)n≥1 be a
collection of random partitions generated by the above
two-parameter Chinese restaurant process. For each
n ≥ 1, let Kn denote the number of blocks of �n. When
α < 0 or α = 0, the asymptotic behavior of Kn is clear
from prior discussion: the α < 0 case corresponds to
Dirichlet-Multinomial sampling (Section 4.2), so that
Kn → −θ/α a.s. as n → ∞, while the α = 0 case
corresponds to Ewens’s sampling formula, whose de-
scription as a logarithmic combinatorial structure (Sec-
tion 3.8) immediately gives Kn ∼ θ log(n) a.s. as n →
∞. When α > 0, Pitman [76] obtains the following
limit law.

THEOREM 5.1 (Pitman [76]). For 0 < α < 1 and
θ > −α, n−αKn → Sα a.s., where Sα is a strictly pos-
itive random variable with continuous density

P{Sα ∈ dx} = �(θ + 1)

�(θ/α + 1)
xθ/αgα(x) dx, x > 0

and

gα(x) = 1

πα

∞∑
k=0

(−1)k+1

k! �(αk + 1) sin(παk)xk−1,

x > 0,

is the Mittag–Leffler density.

The random variable Sα in Theorem 5.1 is called
the α-diversity of (�n)n≥1. Pitman goes on to char-
acterize random partitions with a certain α-diversity in
terms of the power-law behavior of their relative block
sizes [76], Lemma 3.11. Of the many fascinating prop-
erties of the Ewens–Pitman family, the next description
in terms of the jumps of subordinators provides some
of the deepest connections to classical stochastic pro-
cess theory.

5.4 Gamma and Stable Subordinators

For 0 ≤ α ≤ 1 and θ > 0, the theory of Poisson–
Kingman partitions [75] brings forth a remarkable
connection between Ewens’s sampling formula, the
Poisson–Dirichlet distribution, and the jumps of sub-
ordinators. A subordinator (τ (s))s≥0 is an increasing
stochastic process with stationary, independent incre-
ments whose distribution is determined by a Lévy mea-
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sure  such that for each s ≥ 0

E
(
exp

{−λτ(s)
})

= exp
(
−s

∫ ∞
0

(
1 − exp(−λx)

)
(dx)

)
.

From a random variable T > 0 and the closure Z of the
range of (τ (s))s≥0, we define

V1(T ) ≥ V2(T ) ≥ · · · ≥ 0

as the ranked lengths of the subintervals within [0, T ] \
Z. Thus, the ranked, normalized vector(

V1(T )

T
,
V2(T )

T
, . . .

)
(18)

is a random element of S↓ and its distribution must
determine the law of an infinite exchangeable partition
by Kingman’s correspondence (Theorem 4.1).

Pitman and Yor [77] found several deep and ex-
plicit connections between the Poisson–Dirichlet dis-
tribution and the ranked vector in (18). For θ > 0 and
b > 0, let (τ (s))s≥0 be a gamma subordinator with
Lévy measure

(dx) = θx−1e−bx dx, x > 0.

Then for all θ > 0, the vector (18) with T = τ(θ) has
the Poisson–Dirichlet(0, θ) distribution. On the other
hand, if (τ (s))s≥0 is an α-stable subordinator for 0 <

α < 1, that is, for some C > 0 the Lévy measure satis-
fies

E
(
exp

{−λτ(s)
}) = exp

{−sC�(1 − α)λα}
,

then, for all s > 0, (18) with T = τ(s) has the Poisson–
Dirichlet(α,0) distribution. Other interesting special
cases include the Poisson–Dirichlet(α,α) distribu-
tion, which arises as the ranked excursion lengths
of semistable Markov bridges derived from α-stable
surbordinators. In particular, the excursion lengths
of Brownian motion on [0,1] give rise to Poisson–
Dirichlet(1/2,0) and the excursion lengths of Brow-
nian bridge on [0,1] lead to Poisson–Dirichlet(1/2,

1/2). The Poisson–Dirichlet(α,0) distribution also
arises in the low-temperature asymptotics of Derrida’s
random energy model; see [25, 26] for further details.

In complete generality, Pitman and Yor [77], Propo-
sition 21, derive the family of Poisson–Dirichlet mea-
sures for 0 < α < 1 and θ > 0 by taking (τ (s))s≥0
to be a subordinator with Lévy measure (dx) =
αCx−α−1e−x dx and (γ (t))t≥0 to be a gamma subor-
dinator independent of (τ (s))s≥0. For θ > 0, Sα,θ =
C−1γ (θ/α)/�(1 − α), and T = τ(Sα,θ ), (18) has the

Poisson–Dirichlet distribution with parameter (α, θ).
A deep result within the theory of Lévy processes
and exchangeable random partitions, Proposition 21
has also spurred recent progress in the applied field of
Bayesian nonparametrics [53].

5.5 Size-Biased Sampling and the Random
Allocation Model

When studying mass partitions (S1, S2, . . .) ∈ S↓, it
is sometimes more convenient to work with a size-
biased reordering, denoted S̃ = (S̃1, S̃2, . . .), in the in-
finite simplex

S =
{
(s1, s2, . . .) : si ≥ 0,

∑
k≥1

sk ≤ 1
}
.

Assuming S ∈ S↓ satisfies
∑

k≥1 Sk = 1, we obtain
S̃ from S = (S1, S2, . . .) by putting S̃j = SIj

, where
I1, I2, . . . are drawn randomly with distribution

P{I1 = i|S} = Si and

P{Ij = i|S, S̃1, . . . , S̃j−1}
= Si

1 − S̃1 − · · · − S̃j−1
1{S̃1 �= i, . . . , S̃j−1 �= i},

as long as
∑j−1

k=1 S̃k < 1. If
∑j−1

k=1 S̃k = 1, we put S̃k = 0
for all k ≥ j . In words, we sample I1, I2, . . . without re-
placement from an urn with balls labeled 1,2, . . . and
weighted S1, S2, . . . , respectively. The distribution of a
size-biased reordering of S ∼ Poisson–Dirichlet(α, θ)

is called the Griffiths–Engen–McCloskey distribution
with parameter (α, θ).

By size-biasing the frequencies of a Poisson–
Dirichlet sequence, we arrive at yet another nifty con-
struction in terms of the random allocation model, or
stick-breaking process. For example, let U1,U2, . . . be
independent, identically distributed Uniform random
variables on [0,1] and define V1,V2, . . . in S by

V1 = U1,

V2 = U2(1 − U1) and

Vk = Uk(1 − Uk−1) · · · (1 − U1).

Then V = (V1,V2, . . .) has the Griffiths–Engen–
McCloskey distribution with parameter (0,1), that is,
V is distributed as a size-biased reordering of the block
frequencies of a Ewens set partition with parameter
θ = 1. We can visualize the above procedure as a recur-
sive breaking of a stick with unit length: we first break
the stick U1 units from the bottom, we then break the
remaining piece U2(1−U1) units from the bottom, and
so on.
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THEOREM 5.2 (Pitman [74]). Let V = (V1,V2,

. . .) be a size-biased reordering of components from the
Poisson–Dirichlet distribution with parameter (α, θ).
Then V =D V ∗ = (V ∗

1 ,V ∗
2 , . . .), where

V ∗
1 = W1,

V ∗
2 = W2(1 − W1) and

V ∗
k = Wk(1 − Wk−1) · · · (1 − W1),

for W1,W2, . . . independent and Wj ∼ Beta(1−α, θ +
jα) for each j = 1,2, . . . .

Note that W1,W2, . . . are identically distributed only
if α = 0, and so the stick-breaking description further
explains the self-similarity property of Ewens distribu-
tion (Section 3.5). In particular, let V = (V1,V2, . . .)

be distributed as a size-biased sample from a Poisson–
Dirichlet mass partition with parameter (0, θ). With
V \ {V1} = (V2,V3, . . .), Theorem 5.2 implies that(

V1,
1

1 − V1
V \ {V1}

)
=D (W,V ),(19)

where W,V1,V2, . . . are independent Beta(1, θ ) ran-
dom variables.

6. BAYESIAN NONPARAMETRICS AND
CLUSTERING METHODS

6.1 Dirichlet Process and Stick-Breaking Priors

Because of its many nice properties and convenient
descriptions in terms of stick breaking, subordinators,
etc., the Ewens–Pitman distribution (17) is widely ap-
plicable throughout statistical practice, particularly in
the fast-developing field of Bayesian nonparametrics.
In nonparametric problems, the parameter space is the
collection of all probability distributions. As a practi-
cal matter, Bayesians often neglect subjective prior be-
liefs in exchange for a prior distribution whose “pos-
terior distributions [. . . are] manageable analytically”
[39], page 209. Conjugacy between the prior and poste-
rior distributions in the Dirichlet-Multinomial process
(Section 4.2) hints at a similar relationship in Fergu-
son’s Dirichlet process prior [39] for nonparametric
Bayesian problems. The construction of the Dirichlet
process and Poisson–Dirichlet(0, θ) distributions from
a gamma subordinator (Section 5.4) nails down the
connection to Ewens’s sampling formula.

A Dirichlet process with finite, non-null concentra-
tion measure β on X is a stochastic process S for
which the random vector (S(A1), . . . , S(Ak)) has the
(k − 1)-dimensional Dirichlet distribution with param-
eter (β(A1), . . . , β(Ak)) for every measurable partition

A1, . . . ,Ak of X . Thus, a Dirichlet process S deter-
mines a random probability measure on X for which
the conditional distribution of S, given X1, . . . ,Xn, is
again a Dirichlet process with concentration measure
β + ∑n

i=1 δXi
, where δXi

is a point mass at Xi . In par-
ticular, for a measurable partition A1, . . . ,Ak , let Nj

denote the number of points among X1, . . . ,Xn that
fall in Aj for each j = 1, . . . , k. Then the conditional
distribution of (S(A1), . . . , S(Ak)) given (N1, . . . ,Nk)

is Dirichlet with parameter (β(A1) + N1, . . . , β(Ak) +
Nk), just as in Section 4.2.

From a realization X1, . . . ,Xn of the Dirichlet pro-
cess, we can construct a partition �n as in (13). The
posterior concentration measure β + ∑n

i=1 δXi
and ba-

sic properties of the Dirichlet distribution yield the up-
date rule

P{Xn+1 ∈ ·|X1, . . . ,Xn}

= β(·)
n + β(X )

+
n∑

i=1

δXi
(·)

n + β(X )
,

from which the relationship to the Chinese restaurant
rule with θ = β(X ) < ∞ and Blackwell and Mac-
Queen’s [11] urn scheme is apparent.

More recently, the Ewens–Pitman distribution has
been applied to sampling applications in fish trawl-
ing [78], analysis of rare variants [15], species rich-
ness in multiple populations [6], and Bayesian clus-
tering methods [22]. In fact, ever since Ishwaran and
James [51, 52] brought stick-breaking priors and the
Chinese restaurant process to the forefront of Bayesian
methodology, the field of Bayesian nonparametrics has
become one of the most active areas of statistical re-
search. Others [37, 65] have further contributed to the
foundations of Bayesian nonparametrics laid down by
Ishawaran and James. This overwhelming activity for-
bids any possibility of a satisfactory survey of the topic
and promises to quickly outdate the contents of the
present section. For a more thorough accounting of this
rich area, we recommend other related work by the
cited authors.

6.2 Clustering and Classification

In classical and modern problems alike, statistical
units often segregate into nonoverlapping classes B =
{B1,B2, . . .}. These classes may represent the group-
ing of animals according to species, as in Fisher, Cor-
bet and Williams’s [41] and Good and Toulmin’s [44]
consideration of the number of unseen species in a fi-
nite sample, or the grouping of literary works accord-
ing to author, as in Efron and Thisted’s [30, 83] tex-
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tual analysis of an unattributed poem from the Shake-
spearean era. While these past analyses employ para-
metric empirical Bayes [41] and nonparametric [44]
models, modern approaches to machine learning and
classification problems often involve partition models
and Dirichlet process priors, for example, [12, 69]. In
many cases, the Ewens–Pitman family is a natural prior
distribution for the true clustering B = {B1,B2, . . .}.

For clustering based on categorical data sequences,
for example, DNA sequences, roll call data, and item
response data, Crane [21] enlarges the parameter space
of the Ewens–Pitman family to include an underly-
ing clustering B . Given α1, . . . , αk > 0, each block in
B partitions independently according to the Dirichlet-
Multinomial process with parameter (α1, . . . , αk). By
ignoring the class labels as in (13), we obtain a new
partition by aggregating across the blocks of B . By
first splitting within blocks and then aggregating across
blocks the above procedure warrants the description
as a cut-and-paste process [18, 20]. When α1 = · · · =
αk = α > 0, the cut-and-paste distribution amounts to

P{�n = π} = k↓#π
∏
b∈B

∏
b′∈π α↑#(b∩b′)

(kα)↑#b
,(20)

with the convention that α↑0 = 1.
When B = {{1, . . . , n}}, (20) coincides with the

Dirichlet-Multinomial distribution in (16), equiva-
lently the Ewens–Pitman(−α, kα) distribution in (17);
and when B = {{1}, . . . , {n}}, every individual chooses
its block independently with probability 1/k. In both
cases, �n is exchangeable, but otherwise the distribu-
tion in (20) is only invariant under relabeling by per-
mutations that fix B , a statistical property called rela-
tive exchangeability. In general, B is a partition of the
population N, but the marginal distribution of �n de-
pends on B only through its restriction to [n]. Thus,
the family is also sampling consistent and it enjoys the
noninterference property (Section 3.6).

In the three-parameter model (20), the Ewens–
Pitman prior for B exhibits nice properties and pro-
duces reasonable inferences [22]. For continuous re-
sponse data, McCullagh and Yang [68] employ the
Gauss–Ewens cluster process, whereby B obeys the
Ewens distribution with parameter θ > 0 and, given
B , (Y1, Y2, . . .) is a sequence of multivariate normal
random vectors with mean and covariance depending
on B . Nice properties of the Gaussian and Ewens dis-
tributions combine to permit tractable calculation of
posterior predictive probabilities and other quantities
of interest for classification and machine learning ap-
plications.

7. INDUCTIVE INFERENCE

7.1 Rules of Succession and the Sufficientness
Postulate

Unbeknownst to Ewens, Ferguson, or Antoniak, the
circle of ideas surrounding Ewens’s sampling formula
and the Dirichlet process prior lies at the heart of fun-
damental questions in inductive inference. Two cen-
turies before Ewens’s discovery, Bayes, Laplace, and
De Morgan pondered epistemological questions about
how past information can be used to update beliefs
about the future [92]. For example, what is the prob-
ability the sun will rise tomorrow given that it has risen
each of the previous N days? Laplace’s famed rule of
succession, which attributes probability (N + 1)/(N +
2) to this event, follows from Bayes’s [8] paradigm for
“[events] concerning the probability of which we ab-
solutely know nothing antecedently to any trials made
concerning it.” Under these circumstances, Bayes ar-
gued that he has “no reason” to assume anything other
than a uniform prior on the possible outcomes, that is,
the number of successes Sn in n trials satisfies P{Sn =
k} = 1/(n + 1) for each k = 0,1, . . . , n. A straightfor-
ward mathematical argument [92] reveals that Bayes’s
principle of indifference implies a uniform prior distri-
bution on the success probability of each outcome.

Johnson [54] later expanded upon Bayes’s analysis
by allowing for an event with possibly k ≥ 2 different
outcomes. In this case, the result of n trials is sum-
marized by a vector (n1, . . . , nk), with ni counting the
number of outcomes of type i = 1, . . . , k. Under John-
son’s sufficientness postulate, by which the conditional
probability that the (n + 1)st observation is type i de-
pends only on ni and n, either all outcomes are inde-
pendent or the conditional probabilities have the form
of the Ewens–Pitman family with α < 0 and θ = −kα;
see Section 5.1 above. Just as Bayes’s postulate im-
plies the uniform prior, Johnson’s sufficientness postu-
late implies the (k −1)-dimensional symmetric Dirich-
let prior (15). Thus, Johnson, whose work predates Fer-
guson and Antoniak by forty years, provides a logical
justification for the Dirichlet–Multinomial and Dirich-
let process priors in Bayesian analysis.

At its core, Ewens’s sampling formula is concerned
with rules of succession or, more cavalierly, predicting
the unpredictable [93]: Given an observed allelic parti-
tion (m1,m2, . . .), what is the probability that the next
sampled individual is of a previously observed type or
of a new type entirely? De Morgan [24] pondered this
question more than a century before Ewens and arrived
at a similar answer, but without any formal justifica-
tion; see Section 4.4 above.
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7.2 Zabell’s Universal Continuum

A primary consideration of induction surrounds uni-
versal generalizations, for example, what is the proba-
bility that the sun will rise tomorrow and every day in
the future given that it has risen today and every day
in the past? More generically, given that we have so
far observed a partition �n = 1n = {{1, . . . , n}} with
all elements in the same block, what is the probability
that we are actually sampling from the universal one-
block partition 1∞ = {{1,2, . . .}}? The Chinese restau-
rant process update probabilities implicitly entail the
Poisson–Dirichlet process prior, which is absolutely
continuous and assigns zero prior mass to the universal
partition 1∞. Simply put, no amount of data is enough
to nudge the posterior probability of 1∞ above zero.

Following the path of least resistance, Zabell [94] re-
fines the Ewens–Pitman two-parameter family by tak-
ing ν in the paintbox process (14) to be the two-point
mixture

να,θ,ε = (1 − ε)να,θ + εδ1∞,

where 0 ≤ ε ≤ 1 is the prior probability assigned to the
point mass δ1∞ at the universal partition and να,θ is
the Poisson–Dirichlet measure with parameter (α, θ).
Thus, ε = 0 corresponds to the usual two-parameter
family, and the conditional distribution of �n+1, given
�n, coincides with the Chinese restaurant probabili-
ties (Section 5.2) on the event �n �= 1n. On the event
�n = 1n, the above formulation assigns posterior prob-
ability

(1 − εn)

(
n − α

n + θ

)
+ εn

to the event that the (n + 1)st observed species is the
same type as all prior species and

(1 − εn)

(
α + θ

n + θ

)

to the event that the next species is new, where

εn = ε

ε + (1 − ε)
∏n−1

j=1 (j − α)/(j + θ)

is the posterior probability of the event �∞ = 1∞
given �n = 1n. Zabell’s original derivation expresses
these probabilities in terms of (α, θ, γ ), with α and θ

as before and γ = (α + θ)ε.

8. COMBINATORICS, ALGEBRA, AND NUMBER
THEORY

As if all the above instances were not enough,
Ewens’s sampling formula is also linked to two of
the most fundamental ideas in mathematics, the de-
terminant function in algebra and prime factorization
in number theory.

8.1 The Determinant and α-Permanent

The determinant of an n × n matrix M =
(Mi,j )1≤i,j≤n is defined as

det(M)
(21)

= ∑
σ :[n]→[n]

sign(σ )M1,σ (1)M2,σ (2) · · ·Mn,σ(n),

where the sum is over all n! permutations of {1, . . . , n}
and sign(σ ) is the parity of σ , which equals +1 if σ is
a product of an even number of cycles and equals −1
otherwise.

In the early 1800s, Cauchy [14] initiated the study of
“fonctions symétriques permanentes,” that is, perma-
nent symmetric functions, which ignore the parity of σ

in (21). Cauchy’s permanent

per(M) = ∑
σ :[n]→[n]

M1,σ (1)M2,σ (2) · · ·Mn,σ(n)(22)

resembles the determinant in appearance but little else:
the determinant is easy to compute (e.g., as a product
of eigenvalues), but the permanent is #P-complete [84];
the determinant has a geometric interpretation in terms
of volume, whereas the permanent’s best interpretation
is graph-theoretic.

Though determinant and permanent appear to oc-
cupy different mathematical territory, they come to-
gether in Vere-Jones’s α-permanent [85]. For a
complex-valued parameter α, the α-permanent of M

is

per
α

(M)

(23)
= ∑

σ :[n]→[n]
αcyc(σ )M1,σ (1)M2,σ (2) · · ·Mn,σ(n),

where cyc(σ ) is the number of cycles of σ . Heuristi-
cally, (23) interpolates between (21) and (22), Cauchy’s
permanent (22) is the α-permanent with α = 1, and the
determinant (21) equals (−1)n per−1(M), but its role
is most prominent in modeling bosons and fermions
in statistical physics [49, 66]. Amazingly, the α-
permanent also incorporates Ewens distribution in two
different ways. [Note that the parameter α in (23)
does not correspond directly to the parameter α in the
Ewens–Pitman distribution (17).]
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8.1.1 Random permutations. As long as α > 0 and
Mi,j > 0 for all i, j = 1, . . . , n, the α-permanent is the
normalizing constant for the cyclic product distribution
on permutations of [n]:

P{�n = σ } = αcyc(σ ) M1,σ (1) · · ·Mn,σ(n)

perα(M)
.(24)

Computational complexity of the α-permanent makes
(24) intractable in general; however, when Mi,j = 1 for
all i, j , we recover an exponential family of distribu-
tions on permutations,

P{�n = σ }

= αcyc(σ )

α(α + 1) · · · (α + n − 1)
(25)

= exp

{
cyc(σ ) log(α) −

n−1∑
j=0

log(α + j)

}
,

with natural parameter log(α) and canonical sufficient
statistic cyc(σ ). In the context of Section 4.5, (25) re-
sults by refining the Dubins–Pitman Chinese restaurant
construction: the (n + 1)st customer

• sits to the left of customer j = 1, . . . , n with proba-
bility 1/(α + n) and

• sits alone at a table with probability α/(α + n).

Occupied tables correspond to cycles in a random per-
mutation and the left-to-right ordering of customers at
each table determines the order of elements within each
cycle. Just as in the Chinese restaurant construction in
Section 4.5, we recover Ewens distribution (6) from
(25) by ignoring the order in which individuals are
seated at each table. In particular, �n induces a random
partition �n whose distribution is the sum of (25) over
all permutations with unordered cycles corresponding
to the blocks of a specific partition of [n].

Developed in this way, Ewens distribution is a sub-
family of the cyclic product distribution on partitions
of [n]. For any subset b ⊆ [n], the sum of cyclic prod-
ucts

cyp(M)[b] = ∑
σ :b→b s.t. cyc(σ )=1

∏
i∈b

Mi,σ(i)

is the sum over all permutations of b with a single cy-
cle, and so the α-permanent decomposes into a sum
over partitions of [n] by

per
α

(M) = ∑
π

α#π
∏
b∈π

cyp(M)[b].

The (α,M)-cyclic product distribution has the form of
a product partition model,

P{�n = π} = α#π

∏
b∈π cyp(M)[b]

perα(M)

∝ ∏
b∈π

α · cyp(M)[b];

see Section 3.7.

8.1.2 The two-parameter model. The permanental
decomposition theorem [19] expresses the α-
permanent as a sum over partitions of [n] of perma-
nents of related matrices. In particular, for real con-
stants α and β ,

per
αβ

(M) = ∑
π

β↓#π
∏
b∈π

per
α

(
M[b]),(26)

where M[b] = (Mi,j )i,j∈b is the submatrix of M

whose rows and columns are indexed by b ⊆ [n] and
the sum is over all partitions of [n]. As long as every
term in (26) is nonnegative, we obtain the permanental
partition model

P{�n = π} = β↓#π

∏
b∈π perα(M[b])

perαβ(M)
,(27)

where Mi,j is a measure of similarity between ele-
ments i and j and β↓n = β(β − 1) · · · (β − n+ 1). In a
homogeneous environment, that is, Mi,j ≡ 1, (27) be-
comes

P{�n = π} = β↓#π

∏
b∈π α↑#b

(αβ)↑n
,

which equals the Ewens–Pitman distribution (17) un-
der the substitution α �→ −α and β �→ θ/α. In this
way, the permanental partition model (27) extends
the Ewens–Pitman two-parameter family to a three-
parameter distribution, but (27) is neither exchangeable
nor consistent in general.

8.2 Random Numbers and Large Prime Factors

For n = 1,2, . . . , let Nn be uniformly distributed in
{1, . . . , n}, that is,

P{Nn = i} = 1/n, i = 1, . . . , n.

By the fundamental theorem of arithmetic, Nn can be
factored uniquely into a product of prime numbers, that
is, there exists a unique sequence Pn,1 ≥ · · · ≥ Pn,k ≥ 2
of primes such that

Nn = Pn,1 × · · · × Pn,k.
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Since Nn is random, so is P
↓
n = (Pn,1, . . . ,Pn,k).

Moreover, we can express

log(Nn) = log(Pn,1) + · · · + log(Pn,k)

so that the normalized vector

S↓
n =

(
log(Pn,1)

log(n)
, . . . ,

log(Pn,k)

log(n)
,0,0, . . .

)
(28)

is a random element of the ranked-simplex S↓.
Billingsley [10] first studied the distribution of the

ranked, normalized prime factors S
↓
n . Donnelly and

Grimmett [29] followed twenty years later with a sim-
pler proof based on the size-biased reordering S̃n of
S

↓
n . In light of all previous discussion, their conclusion

is astonishing: the relative sizes of the prime factors of
a uniform random integer converge in distribution to
the asymptotic block sizes of a Ewens partition with
θ = 1.

THEOREM 8.1 (Billingsley [10]; Donnelly and
Grimmett [29]). For each n = 1,2, . . . , let P

↓
n =

(Pn,1, . . . ,Pn,k)
↓ be the prime factorization of a uni-

form random integer in {1, . . . , n}, let S
↓
n be the nor-

malized, ranked vector in (28), and let S̃n be its size-
biased reordering. Then

S↓
n −→D Poisson–Dirichlet(0,1)(29)

or, equivalently,

S̃n −→D Griffiths–Engen–McCloskey(0,1).(30)

Knuth and Trabb Pardo [64] and Vershik [86] show
the same distributional convergence for Nn drawn uni-
formly in {n,n + 1, . . . ,2n} and Nn drawn from the
Riemann zeta distribution,

P{Nn = x} = x−sn/ζ(sn), x = 1,2, . . . ,

where ζ(s) = ∑∞
x=1 x−s and sn = 1 + 1/ log(n).

8.3 Macdonald Polynomials

Recent work at the interface of representation the-
ory, algebraic combinatorics, and probability has led to
interesting connections between symmetric polynomi-
als and fundamental notions in combinatorial stochas-
tic process theory, particularly Kingman’s theorem [57,
71]. Macdonald processes [13] are a particularly inter-
esting family of probability distributions on sequences
of integer partitions that arise in certain models for in-
teracting particle systems and directed random poly-
mers in statistical physics. The Macdonald process
is named after its description in terms of Macdonald

polynomials [67], a family of orthogonal polynomi-
als with two parameters (q, t). Macdonald polynomials
generalize various other families of symmetric polyno-
mials, for example, Hall–Littlewood and Jack polyno-
mials, and thus arise throughout representation theory
and algebraic combinatorics. Within probability the-
ory, Diaconis and Ram [27] have recently provided an
interpretation in terms of the stationary distribution of
a special Markov chain on spaces of integer partitions.
Ewens’s sampling formula (1) arises as the limit of this
stationary distribution under the regime q = t1/θ and
t → 1, for θ > 0. See [13] and [27], Section 2.4.2, for
further details.

9. CONCLUDING REMARKS

A confluence of mathematical, statistical, and scien-
tific facts contributes to the ubiquity of Ewens’s sam-
pling formula: Ewens’s initial assumptions of neutral
mutation and independence between individuals suited
a need for a tractable mathematical theory of allele
sampling; Laplace’s rule of succession, De Morgan’s
urn scheme, and Johnson’s sufficientness postulate all
arise from principles of indifference at the heart of
Bayesian epistemology [23]; Ferguson [39] and An-
toniak [2] stumbled upon Ewens’s sampling formula
without regard for the above logical properties or prin-
ciples of inductive inference; and the same mathemati-
cal properties that drive Ferguson’s and Antoniak’s ap-
proach underlie the deep connections between Ewens’s
sampling formula and classical stochastic process the-
ory via the Poisson–Dirichlet distribution [38, 76,
77]. These discoveries along with the occurrence of
Ewens’s sampling formula in the realm of matrix per-
manents [19] and prime divisors [10, 29] hint at deep
roots in the foundations of mathematics. Still new uses
of the sampling formula in clustering problems [21,
22, 68, 69] manifest its utility in modern applications.
Altogether, Ewens’s sampling formula envelops a rich
history of important contributions within classical and
modern scientific, mathematical, and statistical study.

As much as space permits, the foregoing survey pro-
vides a comprehensive modern overview of Ewens’s
sampling formula. Less prominent but equally intrigu-
ing connections to rumor spreading [7], physics [47],
computation [70], and many other areas are scattered
throughout the literature. If recent trends in Bayesian
statistics and stochastic process theory are any indi-
cation, a book length monograph will soon be neces-
sary to adequately summarize the varied occurrences
of Ewens’s sampling formula.
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