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Abstract: In this paper, we focus on the problem of a multivariate density
estimation under an Lp-loss. We provide a data-driven selection rule from
a family of kernel estimators and derive for it Lp-risk oracle inequalities
depending on the value of p ≥ 1. The proposed estimator permits us to
take into account approximation properties of the underlying density and
its independence structure simultaneously. Specifically, we obtain adaptive
upper bounds over a scale of anisotropic Nikolskii classes when the smooth-
ness is also measured with the Lp-norm. It is important to emphasize that
the adaptation to unknown independence structure of the estimated density
allows us to improve significantly the accuracy of estimation (curse of di-
mensionality). The main technical tools used in our derivation are uniform
bounds on the Lp-norms of empirical processes developed in Goldenshluger
and Lepski [13].
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1. Introduction

Let Xi = (Xi,1, . . . , Xi,d), i ∈ N∗, be a sequence of Rd-valued i.i.d. random
vectors defined on a complete probability space (Ω,A,P) and having density f
with respect to the Lebesgue measure. Furthermore, Pf denotes the probability
law of X(n) = (X1, . . . , Xn), n ∈ N∗, and Ef is the mathematical expectation
with respect to Pf .

Our goal is to estimate the density f using observationsX(n) = (X1, . . . , Xn),

n ∈ N∗. By an estimator, we mean any X(n)-measurable mapping f̂ : Rn →
Lp(R

d) and the accuracy of an estimator is measured by its Lp-risk :

R(q)
p

[
f̂ , f

]
:=

(
Ef

∥∥∥f̂ − f
∥∥∥
q

p

) 1
q

, p ∈ [1,+∞), q ≥ 1.

A discussion of traditional methods and a review of the vast literature on
the theory and application of density estimation is given in Devroye and Györfi
[6], Silverman [37] and Scott [38]. We do not pretend here to provide a detailed
overview and mention only the results which are relevant for the problems un-
der consideration. The minimax and adaptive minimax multivariate density
estimation under Lp-losses on particular functional classes was studied in Bre-
tagnolle and Huber [3], Ibragimov and Khasminskii ([19, 20]), Devroye and
Lugosi ([7, 8, 9]), Efroimovich ([10, 11]), Hasminskii and Ibragimov [17], Gol-
ubev [16], Donoho et al. [5], Kerkyacharian, Picard and Tribouley [23], Juditsky
and Lambert-Lacroix [22], Rigollet [34], Massart [30] (chapter 7), Samarov and
Tsybakov [36], Mason [29], Chacón and Duong [4], Goldenshluger and Lepski
[14], and Birgé [2].

Goldenshluger and Lepski [14] developed a data-driven selection rule from a
family of kernel estimators. Moreover, the selected estimator is minimax adap-
tive over a scale of anisotropic Nikolskii classes when the smoothness of the
underlying density and the error of estimation are measured with the same
Lp-norm.

Lepski [27] proposed an estimator which takes into account the independence
between groups of coordinates of the observed vectors, for estimation under the
L∞-loss. Thus, it was shown that the adaptation to unknown independence
structure permits us to reduce the so-called curse of dimensionality. This result
was illustrated by application to adaptive minimax estimation over a scale of
anisotropic Nikolskii classes.

In Rebelles [33], the same problem was studied in the pointwise setting and
some comparisons between the local procedure and the global one in Lepski [27]
have been made.
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In the present paper, we address the same problem under an Lp-loss, 1 ≤
p < ∞. As in Goldenshluger and Lepski [14], we consider the case where the
smoothness of the underlying density is assumed to be also measured in the Lp-
norm. Our main goal is to derive optimal minimax adaptive rates in the context
of global estimation of a density, by taking advantage of the fact that some
coordinates of the observations may be independent from the others. Through-
out our article we compare both the results and methods used with those of
Goldenshluger and Lepski [14] and Lepski [27].

Minimax estimation In the framework of the minimax estimation, it is as-
sumed that f belongs to a certain set of functions Σ, and then the accuracy of
an estimator f̂ is measured by its maximal risk over Σ:

R(q)
p

[
f̂ ,Σ

]
:= sup

f∈Σ

(
Ef

∥∥∥f̂ − f
∥∥∥
q

p

) 1
q

, p ∈ [1,+∞), q ≥ 1.

The objective here is to construct an estimator f̂∗ which achieves the asymptotic
of the minimax risk (minimax rate of convergence):

R(q)
p

[
f̂∗,Σ

]
≍ inf

f̂
R(q)

p

[
f̂ ,Σ

]
:= ϕn,p(Σ).

Here, infimum is taken over all possible estimators.

Smoothness assumption Let Σ be the anisotropic Nikolskii class Np,d(β, L)
of d-dimensional densities (we recall the definition in Section 3.1). Here, β =
(β1, . . . , βd) ∈ (0,+∞)d represents the smoothness of the underlying density.

Then ϕn,p(Np,d(β, L)) = n
−

γpβ

γp+β , where

β :=

[
d∑

i=1

1

βi

]−1

, γp :=

{
1− 1

p , p ∈ (1, 2],

1
2 , p > 2,

(1.1)

see, e.g., Ibragimov and Khasminskii ([19], [20]), and Hasminskii and Ibragi-
mov [17].

It is important to emphasize that minimax rates depend heavily on both the
dimension d and the index p of the Lp-risk. The dependence on p disappears
when we estimate a density belonging to the class Np,d(β, L) on a given bounded
interval of Rd, see, e.g., Donoho et al. [5] for the case d = 1.

To reduce the influence of the dimension on the accuracy of estimation (curse
of dimensionality), many researchers have studied the possibility of taking into
account, not only the smoothness properties of the target function, but also some
structural hypothesis on the statistical model. For instance, see the works on the
composite function structure in Horowitz and Mamen [18], Iouditski et al. [21]
and Baraud and Birgé[1], the works on multi-index structure in Goldenshluger
and Lepski [12] and Lepski and Serdyukova [28], and the works on the multiple
index model in density estimation in Samarov and Tsybakov [36].
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Let us briefly discuss one of the possibilities of facing to this problem in the
density model setting. As explained above, the approach which has been recently
proposed in Lepski [27] is to take into account the independence structure of
the density f , namely its product structure due to the independence structure
of the vector X1.

Structural assumption Denote by Id the set of all subsets of {1, . . . , d},
except the empty set. Let P be a given set of partitions of {1, . . . , d}. For
all I ∈ Id denote also I = {1, . . . , d}\I and |I| =card(I). We will use ∅ for
{1, . . . , d}. Finally, for all x ∈ Rd and I ∈ Id put xI := (xi)i∈I and

fI(xI) :=

∫

R|I|
f(x)dxI .

Assume that f∅ ≡ f , that f∅ ≡ 1 and note that fI is the marginal density of
X1,I . If P ∈ P is such that the vectorsX1,I , I ∈ P , are independent then f(x) =∏

I∈P fI(xI), ∀x ∈ Rd. In the sequel, the possible independence structure of the
density f will be represented by a partition belonging to the following set:

P(f) :=

{
P ∈ P : f(x) =

∏

I∈P

fI(xI), ∀x ∈ Rd

}
. (1.2)

Note that P(f) is not empty if we consider that ∅ ∈ P, or that P = {P} if the
independence structure of f is known. The possibility of choosing P, instead
of considering all partitions of {1, . . . , d}, is introduced for technical purposes.
This is explained in more detail in Lepski [27], section 2.1, paragraph “Extra
parameters”.

In this paper, we focus on the problem of minimax estimation with Lp-
risk over anisotropic Nikolskii classes Np,d(β, L,P , f) (defined by (3.1) in Sec-
tion 3.1). The definition of these classes is a modification of that of classes
Np,d(β, L) to take into account the possible independence structure P of the
target density f . Here, we need f and some of its marginals fI to be uniformly
bounded by a real number f > 0. In particular, we will prove in Section 3.2
that, for fixed β ∈ (0,+∞)d, L ∈ (0,+∞)d, P ∈ P(f) and f > 0,

ϕn,p ( Np,d (β, L,P , f)) = n
−

γpr

γp+r , r := inf
I∈P

[
∑

i∈I

1

βi

]−1

, (1.3)

where γp is given in (1.1).

If P = {∅}, the class Np,d(β, L, ∅, f) coincides with Np,d(β, L) ∩ F[f ], where
F[f ] is the set of functions uniformly bounded by f > 0, and we find again
the rate given in (1.1). Note however that if P 6= ∅ then Np,d(β, L,P , f) (

Np,d(β, L)∩F[f ] and the latter rate can be significantly improved. Indeed, if for
instance β = (β, . . . ,β) and P∗ = {{1}, . . . , {d}}, then r = β = β and

n
−

γpβ

γp+β = ϕn,p ( Np,d(β, L,P∗, f)) ≪ ϕn,p ( Np,d(β, L)) = n
−

γpβ

dγp+β . (1.4)

Moreover, ϕn,p( Np,d(β, L,P∗, f)) does not depend on the dimension d.
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We remark that minimax rates (accuracy of estimation) depend heavily on
the parameter (β,P). Knowledge of this parameter cannot be assumed often in
particular applications. Hence, it becomes necessary to find an estimator whose
construction would be parameter free.

Adaptive minimax estimation In the framework of adaptive minimax es-
timation the underlying density f is supposed to belong to the given scale of
functional classes {Σα, α ∈ A}. For instance, if Σα = Np,d(β, L) then α = (β, L)
and, if Σα = Np,d(β, L,P , f) then α = (β, L,P , f) (here, p is fixed).

The first question arising in this framework is the following: does there exist
an estimator f̂∗ such that

lim sup
n→+∞

{
ϕ−1
n,p(α)R(q)

p

[
f̂∗,Σα

]}
< +∞ ∀α ∈ A, (1.5)

where ϕn,p(α) is the minimax rate of convergence over Σα. If such an estimator
exists, it is called an optimal adaptive estimator (O.A.E.).

As mentioned previously, Goldenshluger and Lepski [14] provide an O.A.E.
for estimation under Lp-risk, 1 < p < ∞, over the scale {Np,d(β, L) ∩ F[f ]}.

In this paper, we construct an O.A.E. for estimation under Lp-risk over the
scale {Np,d(β, L,P , f)}, 1 < p < ∞. Therefore, we improve the adaptive rates
of convergence found in Goldenshluger and Lepski [14] when the target density
has an independence structure P 6= ∅.

Furthermore, if 2 ≤ p < ∞, it is easily seen that, by considering the Lp-loss,
we also outperform the adaptive rates of convergence obtained in Lepski [27] for
estimation under the sup-norm loss over the scale {Np,d(β, L,P , f)}. Indeed,

ϕn,p ( Np,d (β, L,P , f)) ≪ ϕn,∞ ( Np,d (β, L,P , f)) =

(
n

ln(n)

)− r
2r+1

, (1.6)

r = r − 1/p, where ϕn,p( Np,d(β, L,P , f)) and r are given in (1.3). We see that
the gain is twofold. We win a factor “ln(n)” and r > r.

In Rebelles [33], it was shown that there exists no O.A.E. for pointwise es-
timation over any scale {Np,d(β, L,P , f)} containing at least two classes. In
the pointwise setting, there is a “ln-price” to pay for adaptation both to the
smoothness parameter of the target density and to its independence struc-
ture.

Organization of the paper In Section 2, we provide a measurable data-
driven selection rule based on bandwidth selection of kernel estimators and
we derive oracle inequalities for the selected estimator. In Section 3, we define
anisotropic Nikolskii classes of densities for adaptation with respect to their
independence structure and we provide adaptive upper bounds over a scale of
those functional classes. It is also established that the quality of estimation we
obtain is rate optimal for this problem. Proofs of all main results are given in
Section 4. Proofs of technical lemmas are deferred to the Appendix.
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2. Estimator’s construction and Lp-risk oracle inéqualities

2.1. Kernel estimators related to independence structure

Let K : R → R be a fixed symmetric kernel satisfying
∫
K = 1, supp(K) ⊆

[−1/2, 1/2], ‖K‖∞ < ∞,

∃ LK > 0 : |K(x)−K(y)| ≤ LK |x− y| , ∀x, y ∈ R. (2.1)

For all I ∈ Id, h ∈ (0, 1]d and x ∈ Rd put

KI(xI) :=
∏

i∈I

K(xi), VhI
:=
∏

i∈I

hi, KhI
(xI) := V −1

hI

∏

i∈I

K(xi/hi);

f̂hI
(xI) := n−1

n∑

i=1

KhI
(Xi,I − xI) .

Let hmax, hmin and Vmin be fixed numbers satisfying 1/n ≤ hmin ≤ hmax ≤ 1
and hd

max ≥ Vmin > 0. For all I ∈ Id, let HI be a fixed set of multibandwidths
hI such that

HI ⊆
{
hI ∈

[
hmin, hmax

]|I|
: VhI

≥ Vmin

}
.

Then, define the set of parameters

H [ P ] :=
{
(h,P) ∈ (0, 1]d ×P : hI ∈ HI , ∀I ∈ P

}
,

and introduce the family of estimators

F [ P ] :=

{
f̂(h,P)(x) =

∏

I∈P

f̂hI
(xI), (h,P) ∈ H [ P ]

}
. (2.2)

Note first that f̂(h,∅) = f̂h is the Parzen-Rosenblatt estimator (see, e.g.,

Rosenblatt [35], Parzen [32]) with kernel K∅ ≡ K and multibandwidth h.

Next, the introduction of the estimator f̂(h,P) is based on the following simple
observation. If there exists P ∈ P(f), the idea is to estimate separately each
marginal density corresponding to I ∈ P . Since the estimated density possesses
the product structure we seek its estimator in the same form. Moreover, by
scrutinizing the proof of Theorems 1 and 2 below, we see that

R(q)
p

[
f̂(h,P), f

]
≤ C1

(
Ef sup

I∈P

∥∥∥f̂hI
− fI

∥∥∥
q

p,I

) 1
q

+ C2n
−1/2, C1, C2 > 0.

Here and in the sequel ‖.‖s,I denotes the norm ‖.‖Ls(R|I|,dxI), s ∈ [1,+∞],
I ∈ Id.
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Remark 1. As it is discussed above, if P ∈ P(f) is known, the initial problem
is reduced to the estimation of marginals fI , I ∈ P . Therefore, the natural loss
that can be used in the definition of the risk for our problem seems to be

l
(
f̂(h,P), f

)
= sup

I∈P

∥∥∥f̂hI
− fI

∥∥∥
p,I

.

In Section 2.3 we propose a data driven selection from the family F[ P ]. The
possibility of choosing the sets HI is introduced to make our procedure practi-
cally feasible. Indeed, HI can be chosen as an appropriate grid in [hmin, hmax]

|I|.
To define our selection rule, we need to introduce some notation and quantities.

2.2. Auxiliary estimators and quantities

For I ∈ Id and h, η ∈ (0, 1]d introduce auxiliary estimators

f̂hI ,ηI
(xI) := KηI

⋆ f̂hI
(xI),

where “⋆” stands for the convolution product on R|I|. Obviously, f̂hI ,ηI
≡ f̂ηI ,hI

.
We endow the set P with the operation “⋄” introduced in Lepski [27]: for

any P ,P ′ ∈ P

P ⋄ P ′ := {I ∩ I ′ 6= ∅, I ∈ P , I ′ ∈ P ′} ,
that is, in its turn, a partition of {1, . . . , d}.

This allows us to define for h, η ∈ (0, 1]d and P ,P ′ ∈ P

f̂(h,P),(η,P′)(x) :=
∏

I∈P⋄P′

f̂hI ,ηI
(xI). (2.3)

The ideas that led to the introduction of the estimators f̂(h,P),(η,P′), based
on both the operation “⋆” and “⋄”, are explained in Lepski [27], Section 2.1,
paragraph “Estimation construction”. Note that the arguments given in the
latter paper do not depend on the norm used in the definition of the risk and
remain valid for estimation under Lp-loss. Here, we give only the following sim-
ple explanation. Inspired by the methodology proposed by Goldenshluger and
Lepski [14], Section 2.6, we seek auxiliary estimators in the form (2.3) noting
that

f̂(h,P),(η,P′) ≡ f̂(η,P′),(h,P).

Moreover, we remark that f̂ηI′
(xI′) − Ef{f̂ηI′

(xI′)}, I ′ ∈ P ′, xI′ ∈ R|I′|, is the
sum of i.i.d. bounded and centered random variables and, therefore, is “somehow
small”. Thus, we can expect that

f̂(η,P′)(x) =
∏

I′∈P′

f̂ηI′
(xI′) ≈

∏

I′∈P′

Ef

{
f̂ηI′

(xI′)
}
.

For all P ∈ P(f), where P(f) is defined by (1.2), one has

∏

I′∈P′

Ef

{
f̂ηI′

(xI′)
}
=
∏

I′∈P′

∏

I∈P:I∩I′ 6=∅

Ef

{
f̂ηI∩I′

(xI∩I′)
}
=

∏

I∈P⋄P′

KηI
⋆fI(xI).



Lp adaptive estimation of an anisotropic density under independence hypothesis 113

Finally, since f̂hI
is an estimate of fI , we come to the introduction of f̂(h,P),(η,P′)

and we can expect that

f̂(η,P′)(x) ≈ f̂(h,P),(η,P′)(x).

However, we emphasize that the methodology developed by Goldenshluger
and Lepski [14] cannot be applied to the selection of a partition P since it
is not based on the selection from a family of linear estimators. Furthermore,
the estimation under Lp-loss, 1 ≤ p < ∞, instead of sup-norm loss, leads us
to modify the method proposed in Lepski [27] by introducing the following
quantities and some specifical technical arguments to compute our risk bounds;
see the proof of Theorems 1 and 2, Section 4.2.

For I ∈ Id and h ∈ (0, 1]d define

Ûp(hI) :=





128n1/p−1 ‖KhI
‖p,I , p ∈ [1, 2),

25
3 n−1/2 ‖KhI

‖2,I , p = 2,

32
[
ρ̂p (KhI

) ∨ n−1/2 ‖KhI
‖2,I

]
, p > 2,

ρ̂p (KhI
) :=

15p

ln p

{
n− 1

2

[∫

R|I|

(
1

n

n∑

i=1

[
KhI

(
xI −Xi,I

)]2
) p

2

dxI

] 1
p

+ 2n
1
p
−1
∥∥KhI

∥∥
p,I

}
.

For h ∈ (0, 1]d and P ∈ P put Ûp(h,P) := supI∈P Ûp(hI).

We will see in Section 4.1 that the quantities Ûp(h,P) can be viewed as
uniform bounds on the Lp-norm of the stochastic errors related to the estimators
from the family F[P]. Such “majorants” were developed in Goldenshluger and
Lepski [13] and used in Goldenshluger and Lepski [14] for multivariate density

estimation under Lp-loss. Let us remark that Ûp(h,P) is a deterministic quantity
when p ∈ [1, 2], and a random one when p > 2. In both cases, it follows from
the results in Lemmas 1 and 2 below, that

(
Ef

[
Ûp(h,P)

]q) 1
q ≤ C3 sup

I∈P
(nVhI

)
−γp , ∀(h,P) ∈ H [ P ] ,

where C3 > 0 is a constant and γp is given in (1.1).
Define finally Λp := d[ Gp]

d(d−1), where

Gp := 1 ∨
[
‖K‖d1 sup

(h,P)∈ H[ P ]

sup
P′∈ P

(
sup

I∈P⋄P′

∥∥∥f̂hI

∥∥∥
p,I

)
1{P′ 6=∅}∪{P6=∅}

]
.

We remark that if P = {∅} then Gp = 1.
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2.3. Selection rule and oracle inequalities

For h ∈ (0, 1]d and P ∈ P introduce

∆̂p(h,P) := sup
(η,P′)∈ H[ P ]

[∥∥∥f̂(h,P),(η,P′) − f̂(η,P′)

∥∥∥
p
− ΛpÛp(η,P ′)

]

+

. (2.4)

Define finally (ĥ, P̂) satisfying

∆̂p(ĥ, P̂) + ΛpÛp(ĥ, P̂) = inf
(h,P)∈ H[ P ]

[
∆̂p(h,P) + ΛpÛp(h,P)

]
. (2.5)

Our selected estimator is f̂ := f̂(ĥ,P̂).

It is easily checked that (ĥ, P̂) exists, is in H[ P ] and is measurable, see,
e.g., Lepski [27], section 2.1, paragraph “Existence and measurability”, for more
details.

We also emphasize that the construction of the proposed procedure does not
require any condition concerning the density f . However, the following mild
assumption will be used for computing its risk:

f ∈ F [f ,P ] :=

{
f : sup

P,P′∈P

sup
I∈P⋄P′

‖fI‖∞ ≤ f , P(f) 6= ∅
}
, f > 0, (2.6)

where P(f) is given in (1.2). Note that the considered class of densities is de-
termined by P and in particular

F
[
f ,
{
∅
}]

=
{
f : ‖f‖∞ ≤ f

}
, F [f , {P}] =

{
f : sup

I∈P
‖fI‖∞ ≤ f , P(f) = {P}

}
.

Define, for (h,P) ∈ H[ P ] such that P ∈ P(f),

R(q)
p [(h,P), f ] :=

(
Ef sup

P′∈P

sup
I∈P⋄P′

∥∥∥f̂hI
− fI

∥∥∥
q

p,I

) 1
q

, q ≥ 1.

If the possible independence structure P of the target density is known, the
latter quantity can be viewed as an “Lp-risk” of the estimator f̂(h,P), defined
with the loss

l
(
f̂(h,P), f

)
:= sup

P′∈P

sup
I∈P⋄P′

∥∥∥f̂hI
− fI

∥∥∥
p,I

.

In this case, we see that the effective dimension of estimation is not d, but
d(P) := supI∈P |I|. Therefore, the best estimator from the family F[ P ] (the or-

acle) should be f̂(h∗,P∗) such that

R(q)
p [(h∗,P∗), f ] = inf

(h,P)∈H[ P ]:P∈P(f)
R(q)

p [(h,P), f ] .

Let us provide the following oracle inequalities for our selected estimator f̂ .
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Theorem 1. Assume that nVmin ≥ 1. For all 0 < f < +∞ and all q ≥ 1:

(i) if p ∈ [1, 2) and n ≥ 3 ∨ 42p(2−p) then, ∀f ∈ F[f ,P ],

R(q)
p

[
f̂ , f

]
≤ αp,1 inf

(h,P)∈H[ P ]:P∈P(f)

{
R(q)

p [(h,P), f ] + sup
I∈P

(nVhI
)

1
p
−1

}

+ αp,2n
− 1

2 ;

(ii) if p = 2, n ≥ exp{
√
8(f2 + 4)} ∨ [8(f2 + 4)]2 and hmax ≤ [ln(n)]−2 then,

∀f ∈ F[f ,P ],

R(q)
p

[
f̂ , f

]
≤ αp,1 inf

(h,P)∈H[ P ]:P∈P(f)

{
R(q)

p [(h,P), f ] + sup
I∈P

(nVhI
)
− 1

2

}

+ αp,2n
− 1

2 .

The constants αp,i := αp,i(K, d, q, p, f), p ∈ [1, 2], i = 1, 2, are given in the proof
of the theorem.

Theorem 2. Let f > 0, q ≥ 1 and p > 2. Assume that for some constants C3

and C4

n ≥ C3 ∨ 3, nVmin > 1 ∨ C4, n−1/(2d) ≤ hmax ≤
[
ln(n)

]−p
.

Then, ∀f ∈ F[f ,P ],

R(q)
p

[
f̂ , f

]
≤ αp,1 inf

(h,P)∈H[ P ]:P∈P(f)

{
R(q)

p [(h,P), f ] + sup
I∈P

(nVhI
)−

1
2

}

+ αp,2n
− 1

2 .

The constants C3, C4 and αp,i, p > 2, i = 1, 2, are given in the proof of the
theorem and depend on K, d, q, p and f .

Here, we see that the possibility of choosing the set of partitions P is inter-
esting for other reasons than the computational one. Indeed, the latter results
lead us to consider various problem in the framework of density estimation.

First, it is possible to consider that P contains the two elements ∅ and
{{1}, . . . , {d}}, if we suppose that the target density has independent compo-
nents. We may also consider that P = {P} if the independence structure of the
underlying density is known...

Next, for P = {∅} (no independence structure) we automatically obtain
oracle inequalities given in Theorems 1 and 2 in Goldenshluger and Lepski [14],
up to numerical constants. The proof of Theorem 3 in the latter paper indicates
that, for p ∈ [2,∞),

(
Ef

∥∥∥f̂hI
− fI

∥∥∥
q

p,I

) 1
q

≥ C4 (nVhI
)
−1/2

,
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where C4 > 0 is a constant. This lower bound holds under very weak assump-
tions on the density f and, together with the result of our Theorem 2, leads to
an oracle inequality

R(q)
p

[
f̂ , f

]
≤ αp,1 inf

(h,P)∈H[ P ]:P∈P(f)
R(q)

p [(h,P), f ] + αp,2n
−1/2,

for some constants αp,i > 0, i = 1, 2.

If P = {∅}, then R(q)
p [(h, ∅), f ] = R(q)

p [f̂(h,∅), f ] and we obtain a so-called

Lp-risk oracle inequality. Note, however, that for all other cases, R(q)
p [(h,P), f ]

is an upper bound of R(q)
p [f̂(h,P), f ], up to a numerical constant. This seems to

be a price to pay for taking into account the possible independence structure of
the underlying density and, thus, for reducing the influence of the dimension on
the quality of estimation.

Furthermore, comparing our results with those in Goldenshluger and Lepski
[14], we remark that another price to pay for our problem appears through the
constant αp,1; see the computations in the proofs of Theorems 1 and 2. Indeed,
the prime interest is to obtain oracle inequalities with a constant αp,1 close to 1,
and this seems to be more difficult whenever we consider that the target density
has an independence structure P 6= ∅.

However, Theorems 1 and 2 in the present paper lead us to consider various
problems arising in the framework of minimax and minimax adaptive estimation.
This is the subject of Section 3 below.

2.4. A short simulation study

Consider that we estimate a bivariate density (d = 2). Thus, the set of partitions
P contains the two elements P1 = {{1}, {2}} and P2 = {{1, 2}}. Moreover, if we
consider that the smoothness parameter h = (h1, h2) is fixed, we only have to

compare the accuracy of the estimator f̂(h,P1) with that of the classical kernel

one f̂(h,P2) = f̂h. Then, the main question is: does our strategy choose the
partition P1 when the two components of X1 are independent?

Here, we answer to this question in the following case:

f(x1, x2) =
1

2πσ2
e−(x2

1+x2
2)/(2σ

2), σ = 0, 1;

Khi
(xi) =

1

hi
√
2π

e−x2
i/(2h

2
i ), hi = 0, 0313, i = 1, 2.

For simplicity, we estimate f on a grid of 100 × 100 points in the domain
[−1/2, 1/2]2 via Fast Fourier Transform, by using n = 1000 simulated random
vectors. Because f is an isotropic density, the smoothness parameter h = (h1, h2)
is an isotropic vector properly chosen in the dyadic grid {h = (2−k, 2−k) : k ∈ N,
log2(ln

2(n)) ≤ k ≤ log2(n)}, in order to minimize both the L2-risk (average over

1000 samples) of f̂(h,P1) and the one of f̂(h,P2).
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Fig 1. Comparison of L2-losses.
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Fig 2. Comparison of selection criterions.

Figure 1 shows the boxplots of values of the L2-loss of both estimators f̂(h,P1)

(on the left) and f̂(h,P2) (on the right) over 1000 samples. Note that, in this case,

f̂(h,P1) outperforms f̂(h,P2) 991 times and

R(1)
2

[
f̂(h,P1), f

]
= 0, 2884 < 0, 3523 = R(1)

2

[
f̂(h,P2), f

]
,

where, here, R(1)
2 [f̂(h,Pi), f ] denotes the L2-risk of f̂(h,Pi), i = 1, 2, average over

1000 samples.
Figure 2 shows the boxplots of values of both selection criterions ∆̂2(h,P1)+

Λ2Û2(h,P1) (on the left) and ∆̂2(h,P2) + Λ2Û2(h,P2) (on the right) over 1000
samples, with a random quantity Λ2 multiplied by c = 0, 01. Here, our strategy
chooses the partition P1 999 times. We conclude that, for this example, the
selected estimator outperforms the classical kernel estimator in almost all cases.
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3. Lp adaptive estimation

In this section, we discuss adaptive minimax estimation over a certain scale
of anisotropic Nikolskii classes when the smoothness of the underlying density
is assumed to be measured with the same Lp-norm that used to measure the
quality of estimation.

3.1. Anisotropic Nikolskii classes of densities related to

independence structure

We start with the definition of the anisotropic Nikolskii class of densities we
use in the sequel. Let {e1, . . . , es} denote the canonical basis in Rs, s ∈ N∗.

Definition 1. Let p ∈ [1,∞), β = (β1, . . . , βs), βi > 0 and L = (L1, . . . , Ls),
Li > 0. A probability density f : Rs → R belongs to the anisotropic Nikolskii
class Np,s(β, L) if

(i)
∥∥Dk

i f
∥∥
p
≤ Li, ∀k = 0, . . . , ⌊βi⌋ , ∀i = 1, . . . , s;

(ii)
∥∥∥D⌊βi⌋

i f(·+ tei)−D
⌊βi⌋
i f(·)

∥∥∥
p
≤ Li |t|βi−⌊βi⌋ , ∀t ∈ R, ∀i = 1, . . . , s.

Here Dk
i f denotes the kth order partial derivate of f with respect to the variable

ti, and ⌊βi⌋ is the largest integer strictly less than βi.

In order to take into account the smoothness of the underlying density and
its possible independence structure simultaneously, a collection of anisotropic
Nikolskii classes of densities was introduced in Lepski [27], Section 3, Defini-
tion 2. However, since the adaptation is not necessarily considered with respect
to the set of all partitions of {1, . . . , d}, the condition imposed therein can be
weakened. For instance, if P = {∅} (no independence structure), we want to
find again the well known results concerning the adaptive estimation over the
scale of anisotropic Nikolskii classes of densities {Np,d(β, L)}, that is not possi-
ble with the classes introduced in Lepski [27]. For these reasons, the following
collection {Np,d(β, L,P)}P was introduced in Rebelles [33], Section 3.1.

Definition 2. Let (β, p,P) ∈ (0,+∞)d×[1,∞]d×P be fixed. A probability den-
sity f : Rd → R+ belongs to the class Np,d(β, L,P) if f(x) =

∏
I∈P fI(xI), ∀x ∈

Rd, and

fI ∈ NpI ,|I|(βI , LI), ∀I ∈ P ′ ⋄ P ′′, ∀ (P ′, P ′′) ∈ P×P.

Finally, recall that the condition f ∈ F[f ,P ] is required in Theorems 1 and 2,
and define

Np,d (β, L,P , f) := Np,d (β, L,P) ∩ F [f ,P ] , 0 < f < +∞. (3.1)

In the next section, we illustrate the application of Theorems 1 and 2 to adaptive
estimation over anisotropic Nikolskii classes of densities Np,d(β, L,P , f).
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3.2. Adaptive minimax estimation

For p ∈ [1,∞) and (β,P) ∈ (0,+∞)d ×P define ϕn,p(β,P) := n
−

γpr

γp+r , where
γp is given in (1.1) and

r := r(β,P) = inf
I∈P

βI , βI :=

[
∑

i∈I

1

βi

]−1

, I ∈ P . (3.2)

We provide the following minimax lower bound.

Theorem 3. For any f > 0, any (β, L,P) ∈ (0,∞)d × (0,∞)d × P and any
p ∈ (1,∞)

lim inf
n→+∞

{
ϕ−1
n,p(β,P) inf

f̃
R(q)

p

[
f̃ , Np,d (β, L,P , f)

]}
> 0,

where infimum is taken over all possible estimators.

The proof of Theorem 3 coincides with the one of Theorem 3 in Goldenshluger
and Lepski [15], up to minor modifications to take into account the independence
structure of the underlying density. Therefore, it is omitted.

Our goal now is to show that ϕn,p(β,P) is the minimax rate of convergence
on the anisotropic class Np,d(β, L,P , f), and that a minimax estimator can be
selected from the collection F[ P ] given in (2.2).

Assume that ∅ ∈ P, that HI is the dyadic grid in {hI ∈ [hmin, hmax]
|I| :

VhI
≥ Vmin}, I ∈ Id, and consider the estimator f̂ defined by the selection rule

(2.4)–(2.5). We show below that the quality of estimation of f̂ is optimal up
to a numerical constant on each class Np,d(β, L,P , f), whatever the nuisance
parameter (β, L,P , f). We achieve the latter goal with properly chosen kernel
K and numbers hmax, hmin and Vmin.

For a given integer l ≥ 2 and a given symmetric Lipschitz function u : R → R

satisfying supp(u) ⊆ [−1/(2l), 1/(2l)] and
∫
R
u(y)dy = 1 set

ul(z) :=

l∑

i=1

(
l
i

)
(−1)i+1 1

i
u
(z
i

)
, z ∈ R. (3.3)

Furthermore we use K ≡ ul in the definition of the collection of estimators
F[ P ]. The relation of kernel ul to anisotropic Nikolskii classes is discussed in
Kerkyacharian, Lepski and Picard [23]. In particular, it was shown that

∫

R

K(z)dz = 1,

∫

R

zkK(z)dz = 0, ∀k = 1, . . . , l − 1. (3.4)

Choose finally hmax := [ln(n)]−(2∨p), hmin := n−1 and Vmin := (C4 +1)n−1.

Theorem 4. Let p ∈ (1,∞). Then for any f > 0 and any (β, L,P) ∈ (0, l]d ×
(0,∞)d ×P one has

lim sup
n→+∞

{
ϕ−1
n,p(β,P)R(q)

p

[
f̂ , Np,d (β, L,P , f)

]}
< ∞.
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It follows that ϕn,p(β,P) is the minimax rate of convergence on each func-
tional class Np,d(β, L,P , f) and that our estimator, which is fully data-driven,
is an O.A.E. over the scale of functional classes {Np,d(β, L,P , f)}(β,L,P,f). Let
us briefly discuss other consequences of Theorem 4.

First, ifP = {∅}, we obtain automatically the minimax adaptive upper bound
given in Goldenshluger and Lepski [14], Theorem 4.

Next, in view of the latter consideration, Theorem 4 allows us to compare
the influence of the independence structure on the accuracy of estimation. For
example, we see that

ϕn,p

(
β, ∅
)
≫ ϕn,p (β,P) , ∀P 6= ∅.

We conclude that the existence of an independence structure improves signif-
icantly the accuracy of estimation with Lp-risk. The same conclusion was ob-
tained in Lepski [27] for density estimation under the sup-norm loss and in
Rebelles [33] for pointwise density estimation. It is also important to emphasize
that there is no price to pay for adaptation to the independence structure in
the framework of estimation with an Lp-loss, whereas there is a “ln-price” in

the pointwise setting, see Rebelles [33]. Note that, if P = {∅} (no independence
structure), there is still a “ln-price” to pay for adaptation to the smoothness
parameter when we consider the pointwise criterion. This was shown for the first
time in Lepski [26] for the Gaussian white noise model, in the unidimensional
case.

Finally, in view of the embedding theorem for anisotropic Nikolskii classes,
see, e.g., Theorem 6.9 in Nikolskii [31], if

∑d
i=1 1/βi < p, there exists a number

f := f(β, p) > 0 such that Np,d(β, L,P) ⊆ F[f ,P ]. Therefore, we deduce from
Theorems 3 and 4 that our estimator is an O.A.E. over the scale

{
Np,d(β, L,P), (β, L,P) ∈ (0, l]d × (0,+∞)d ×P,

d∑

i=1

1/βi < p

}
.

4. Proofs of main results

The main technical tools used in our derivations are uniform bounds on the
Lp-norm of empirical processes developed in Goldenshluger and Lepski [13]. We
start this section by giving corresponding results established in Goldenshluger
and Lepski [14] for multivariate-density estimation under Lp-loss.

4.1. Uniform bounds on the Lp-norm of kernel empirical processes

Let f ∈ F[f ,P ], f > 0, and I ∈ Id be fixed. Remind that 1
n ≤ hmin ≤ hmax ≤ 1,

that
HI ⊆

{
hI ∈

[
hmin, hmax

]|I|
: VhI

≥ Vmin

}
,

and put

AHI
:= [1 ∨ ln(hmax/hmin)]

|I|
, BHI

:= 1 ∨ [|I| log2(hmax/hmin)] .
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For hI ∈ (0, 1]|I| and xI ∈ R|I|, define ξhI
(xI) := f̂hI

(xI)−Ef{f̂hI
(xI)}, and

ρp (KhI
) :=

15p

ln p

{
n− 1

2

[∫

R|I|

(∫

R|I|

[KhI
(xI − yI)]

2
fI(yI)dyI

) p
2

dxI

] 1
p

+ 2n
1
p
−1 ‖KhI

‖p,I

}
.

Propositions 1 and 2 below follow immediately from Lemmas 1 and 2 estab-
lished in Goldenshluger and Lepski [14], Section 4.1. Indeed, assumptions (K1)
and (K2) required in the latter paper are satisfied for LK = LK := d‖K‖d−1

∞ LK

and k∞ = ‖K‖d∞.

Proposition 1. (i) If p ∈ [1, 2), then for all integer n ≥ 42p/(2−p)

{
Ef sup

hI∈HI

[
‖ξhI

‖p,I − Ûp(hI)
]q
+

} 1
q

≤ C1A
4
q

HI
n

1
p exp

{
−2n

2
p
−1

37q

}
.

(ii) Assume that 8[f2h
|I|
max + 4n−1/2] ≤ 1, then

{
Ef sup

hI∈HI

[
‖ξhI

‖2,I − Û2(hI)
]q
+

} 1
q

≤ C2A
2
q

HI
n

1
2 exp

{
− (16q)−1

f2h
|I|
max + 4n− 1

2

}
.

Here Ci = Ci(LK, k∞, |I|, q), i = 1, 2.

Proposition 2. Let p > 2. Assume that n ≥ C3, nVmin > C4, and h
|I|
max ≥

1/
√
n. Then

(i)

{
Ef sup

hI∈HI

[
‖ξhI

‖p,I − Ûp(hI)
]q
+

} 1
q

≤ C5A
2
q

HI
B

1
q

HI
n

1
2 exp

{
− C6

fh
2
p
max

}
,

(ii) Ef sup
hI∈HI

[
Ûp(hI)

]q

≤ 32

(
1 +

120p

ln p

)q

sup
hI∈HI

[
ρp (KhI

) ∨
(
n− 1

2 ‖KhI
‖2,I

)]q

+ 32C7A
2
HI

BHI
n

q(p−2)
2p exp {−C8bn,p} , ∀HI ⊆ HI ,

where bn,p = n
4
p
−1 if p ∈ (2, 4) and bn,p = {fh

4
p
max}−1 if p ∈ [4,∞). Here

Ci = Ci(LK, k∞, |I|, q, p), i = 4, 5, 6, 7, 8, C3 = C3(LK, k∞, |I|, q, p, f).
The following result is obtained straightforwardly by application of Theo-

rem 2 in Goldenshluger and Lepski [13]. All technical arguments are given in
the latter paper and its proof is omitted.
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Proposition 3. Let p > 2. Assume that n ≥ C3, nVmin > C4, and h
|I|
max ≥

1/
√
n. Then

{
Ef sup

hI∈HI

[
‖ξhI

‖p,I − 9ρp (KhI
)
]q
+

} 1
q

≤ C9A
2
q

HI
exp

{
− C10

h
2
p
max

}
.

Here Ci = Ci(LK, k∞, |I|, q, p, f), i = 9, 10.

All constants appearing in Propositions 1, 2 and 3 can be expressed explicitly,
see corresponding results in Goldenshluger and Lepski [14] and in Goldenshluger
and Lepski [13].

To compute our risk bounds we need the following technical lemmas. Define

ξp := sup
P,P′∈P

sup
I∈P⋄P′

sup
hI∈HI

[
‖ξhI

‖p,I − Ûp(hI)
]
+
,

ζp := sup
P,P′∈P

sup
I∈P⋄P′

sup
hI∈HI

[
‖ξhI

‖p,I − 9ρp (KhI
)
]
+
,

fp := d ‖K‖d1 Λp

(
max

{
Gp, ‖K‖d1 f1−1/p

})d−1

,

and Âp(h,P) := supP′∈P supI∈P⋄P′ Ûp(hI), (h,P) ∈ (0, 1]d ×P.

Lemma 1. Let Vmin be a fixed number such that nVmin ≥ 1.

(i) Assume that p ∈ [1, 2) and n ≥ 3 ∨ 42p/(2−p). Then,

(Ef |ξp|q)
1
q ≤ c1(q)n

− 1
2 ,

(
Ef

∣∣fp
∣∣q
) 1

q ≤ c2(q), ∀f ∈ F [f ,P ] .

(ii) Assume that p = 2, n ≥ exp{
√
8(f2 + 4)}∨[8(f2+4)]2 and hmax ≤ [ln(n)]−2.

Then,

(Ef |ξp|q)
1
q ≤ c3(q)n

− 1
2 ,

(
Ef

∣∣fp
∣∣q
) 1

q ≤ c4(q), ∀f ∈ F [f ,P ] .

(iii) If p ∈ [1, 2], then, ∀f ∈ F[f ,P ],

Âp(h,P) ≤ 128 ‖K‖d∞ sup
I∈P

(nVhI
)
−γp , ∀(h,P) ∈ H

[
P
]
.

Lemma 2. Let p > 2, and assume that for some constants C3 and C4

n ≥ C3, nVmin > 1 ∨ C4, n−1/(2d) ≤ hmax ≤
[
ln(n)

]−p
.

Then, ∀f ∈ F[f ,P ],

(i) (Ef |ξp|q)
1
q ≤ c5(q)

n
1
2

, (Ef |ζp|q)
1
q ≤ c6(q)

n
1
2

,
(
Ef

∣∣fp
∣∣q
) 1

q ≤ c7(q);

(ii)
(
Ef

[
Âp(h,P)

]q) 1
q ≤ c8(q) sup

I∈P
(nVhI

)
− 1

2 +
c9(q)

n
1
2

, ∀(h,P) ∈ H[P].

All constants involved in the latter lemmas are given in their proofs, those
are postponed to the Appendix.
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4.2. Oracle inequalities: Proof of Theorems 1 and 2.

Set f ∈ F[f ,P ], f > 0. We divide this proof into six steps.

1) Let (h,P) ∈ H[ P ], P ∈ P(f), be fixed. Thus, hI ∈ HI , ∀I ∈ P .
In view of the triangle inequality we have

∥∥∥f̂ − f
∥∥∥
p
≤
∥∥∥f̂(ĥ,P̂) − f̂(h,P),(ĥ,P̂)

∥∥∥
p
+
∥∥∥f̂(h,P),(ĥ,P̂) − f̂(h,P)

∥∥∥
p
+
∥∥∥f̂(h,P) − f

∥∥∥
p
,

∥∥∥f̂ − f
∥∥∥
p
≤ ∆̂p(h,P) + ΛpÛp(ĥ, P̂) + ∆̂p(ĥ, P̂) + ΛpÛp(h,P) +

∥∥∥f̂(h,P) − f
∥∥∥
p
.

Here we have used that f̂(h,P),(ĥ,P̂) = f̂(ĥ,P̂),(h,P). By definition of (ĥ, P̂), we

obtain ∥∥∥f̂ − f
∥∥∥
p
≤ 2

[
∆̂p(h,P) + ΛpÛp(h,P)

]
+
∥∥∥f̂(h,P) − f

∥∥∥
p
. (4.1)

2) Suppose that P = {I1, . . . , Im}, m ∈ {1, . . . , d}. Since P ∈ P(f), for any
x ∈ Rd

∣∣∣f̂(h,P)(x)− f(x)
∣∣∣ =

∣∣∣∣∣
∏

I∈P

f̂hI
(xI)−

∏

I∈P

fI(xI)

∣∣∣∣∣

≤
m∑

i=1

∣∣∣f̂hIi
(xIi )− fIi(xIi )

∣∣∣




m∏

j=i+1

∣∣∣f̂hIj
(xIj )

∣∣∣



(

i−1∏

k=1

|fIk(xIk)|
)
.

Here we have used the trivial equality: for m ∈ N∗ and ai, bi ∈ R, i = 1, . . . ,m,

m∏

i=1

ai −
m∏

i=1

bi =

m∑

i=1

(ai − bi)




m∏

j=i+1

aj



(

i−1∏

k=1

bk

)
, (4.2)

where the product over empty set is assumed to be equal to one.
In view of P ∈ P, the triangle inequality and the Fubini-Tonelli theorem we

establish

∥∥∥f̂(h,P) − f
∥∥∥
p
≤

m∑

i=1

∥∥∥f̂hIi
− fIi

∥∥∥
p,Ii




m∏

j=i+1

∥∥∥f̂hIj

∥∥∥
p,Ij



(

i−1∏

k=1

‖fIk‖p,Ik

)

≤ m
(
Gp ∨

{
f1−1/p

})m−1

sup
I∈P

∥∥∥f̂hI
− fI

∥∥∥
p,I

.

Here we have used that ‖K‖1 ≥
∫
K = 1. Since Gp ≥ 1, it follows

∥∥∥f̂(h,P) − f
∥∥∥
p
≤ d

(
Gp ∨

{
f1−1/p

})d−1

sup
I∈P

∥∥∥f̂hI
− fI

∥∥∥
p,I

. (4.3)
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3) For any (η,P ′) ∈ H[ P ] and any x ∈ Rd

∣∣∣f̂(h,P),(η,P′)(x) − f̂(η,P′)(x)
∣∣∣

=

∣∣∣∣∣∣

∏

I′∈P′

∏

I∈P:I∩I′ 6=∅

KηI∩I′
⋆ f̂hI∩I′

(xI∩I′)−
∏

I′∈P′

f̂ηI′
(xI′ )

∣∣∣∣∣∣
.

Therefore, by the same method as the one used in step 2, we establish
∥∥∥f̂(h,P),(η,P′) − f̂(η,P′)

∥∥∥
p

≤ d
[
Gp

]d(d−1)
sup
I′∈P′

∥∥∥∥∥∥

∏

I∈P:I∩I′ 6=∅

f̂hI∩I′ ,ηI∩I′
− f̂ηI′

∥∥∥∥∥∥
p,I′

. (4.4)

Here we have used Young’s inequality, that ‖K‖1 ≥
∫
K = 1 and that Gp ≥ 1.

4) In view of Young’s inequality, for any I ∈ Id and any η ∈ (0, 1]d

∥∥∥Ef

{
f̂ηI

(·)
}∥∥∥

p,I
= ‖KηI

⋆ fI‖p,I ≤ ‖KI‖1,I ‖fI‖p,I ≤ ‖K‖d1 f1−
1
p . (4.5)

Then, by the same method as the one used in step 2 and (4.5), for any
(η,P ′) ∈ H[ P ] and any I ′ ∈ P ′ we get

∥∥∥∥∥∥

∏

I∈P:I∩I′ 6=∅

f̂hI∩I′ ,ηI∩I′
−

∏

I∈P:I∩I′ 6=∅

Ef

{
f̂ηI∩I′

(·)
}
∥∥∥∥∥∥
p,I′

≤ d
(
Gp ∨

{
‖K‖d1 f1−

1
p

})d−1

sup
I∈P:I∩I′ 6=∅

∥∥∥KηI∩I′
⋆
(
f̂hI∩I′

− fI∩I′

)∥∥∥
p,I∩I′

≤ d ‖K‖d1
(
Gp ∨

{
‖K‖d1 f1−

1
p

})d−1

sup
I∈P:I∩I′ 6=∅

∥∥∥f̂hI∩I′
− fI∩I′

∥∥∥
p,I∩I′

. (4.6)

5) For η ∈ (0, 1]d and I ′ ∈ Id, since P ∈ P(f), we have for any x ∈ Rd

Ef

{
f̂ηI′

(xI′)
}

=

∫
KηI′

(yI′ − xI′)
∏

I∈P:I∩I′ 6=∅

fI∩I′(yI∩I′)dyI′

=
∏

I∈P:I∩I′ 6=∅

Ef

{
f̂ηI∩I′

(xI∩I′)
}
.

Here we have used the product structure of the kernelK and the Fubini theorem.
Thus, in view of the triangle inequality and (4.4), for any (η,P ′) ∈ H[ P ],

we get
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‖f̂(h,P),(η,P′) − f̂(η,P′)‖p − ΛpÛp(η,P ′)

≤ Λp sup
I′∈P′

{∥∥∥∥∥
∏

I∈P:I∩I′ 6=∅

f̂hI∩I′ ,ηI∩I′
−

∏

I∈P:I∩I′ 6=∅

Ef

{
f̂ηI∩I′

(·)
}∥∥∥∥∥

p,I′

+
∥∥ξηI′

∥∥
p,I′ − Ûp(η,P ′)

}
.

We deduce, in view of (4.6) and the trivial inequality [supi xi − supi yi]+ ≤
supi[xi − yi]+,

∆̂p(h,P) ≤ fp sup
P′∈P

sup
I∈P⋄P′

∥∥∥f̂hI
− fI

∥∥∥
p,I

+ Λpξp. (4.7)

Finally, since ‖K‖1 ≥ 1 and fp ≥ Λp ≥ 1, it follows from (4.1), (4.3) and (4.7)

∥∥∥f̂ − f
∥∥∥
p
≤ 3fp

{
sup
P′∈P

sup
I∈P⋄P′

∥∥∥f̂hI
− fI

∥∥∥
p,I

+ Ûp(h,P) + ξp

}
. (4.8)

6) Consider the random event Bp := {Gp ≥ Cp}, where Cp is a constant to
be specified.

• For p ∈ [1, 2), put Cp = (1 + 128‖K‖d∞ + ‖K‖d1f1−1/p)‖K‖d1 + 1.

Remind that nVhI
≥ 1, ∀hI ∈ HI , I ∈ Id. In view of Lemma 1 (i)–(iii),

Markov’s inequality, (4.8), and the Cauchy-Schwarz inequality we get Bp ⊆
{ξp ≥ 1}, [Pf (Bp)]

1
4q ≤ c1(4q)n

−1/2, and

(
Ef

∥∥∥f̂ − f
∥∥∥
q

p
1Bc

p

) 1
q

≤ 3d2 ‖K‖d1 [Cp]
d2−1

(
R(q)

p [(h,P), f ] + sup
I∈P

128 ‖K‖d∞
(nVhI

)
γp

+
c1(q)

n
1
2

)
,

(
Ef

∥∥∥f̂ − f
∥∥∥
q

p
1Bp

) 1
q

≤ 3c1(4q)c2(4q)
(
R(2q)

p [(h,P), f ] + 128 ‖K‖d∞ + c1(2q)
)
n− 1

2 ,

R(2q)
p [(h,P), f ] ≤ c1(2q) + 128 ‖K‖d∞ + ‖K‖d1 f1−1/p + f1−1/p.

Thus, we come to the assertion (i) of Theorem 1 with

αp,1 := 384d2 ‖K‖d1 ‖K‖d∞ [Cp]
d2−1,

αp,2 := 3c1(4q)c2(4q)
(
256 ‖K‖d∞ + (1 + ‖K‖d1)f1−1/p + 2c1(2q)

)

+ 3c1(q)d
2 ‖K‖d1 [Cp]

d2−1.
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• Similarly, for the case p = 2, we get the assertion (ii) of Theorem 1 with the
same αp,1 and

αp,2 := 3c3(4q)c4(4q)
(
256 ‖K‖d∞ + (1 + ‖K‖d1)f1−1/p + 2c3(2q)

)

+ 3c3(q)d
2 ‖K‖d1 [Cp]

d2−1.

• For p > 2, put Cp = (1 + 9c + ‖K‖d1f1−1/p)‖K‖d1 + 1, where c is given by
(A.5) in the proof of Lemma 2. In view of Lemma 2, Markov’s inequality, (4.8),

and the Cauchy-Schwarz inequality we establish Bp ⊆ {ζp ≥ 1}, [Pf (Bp)]
1
4q ≤

c6(4q)n
−1/2, and

(
Ef

∥∥∥f̂ − f
∥∥∥
q

p
1Bc

p

) 1
q

≤ 3d2 ‖K‖d1 [Cp]
d2−1

(
R(q)

p [(h,P), f ] + sup
I∈P

c8(q)

(nVhI
)

1
2

+
c9(q) + c5(q)

n
1
2

)
,

(
Ef

∥∥∥f̂ − f
∥∥∥
q

p
1Bp

) 1
q

≤ 3c6(4q)c7(4q)
(
R(2q)

p [(h,P), f ] + c8(2q) + c9(2q) + c5(2q)
)
n− 1

2 ,

R(2q)
p [(h,P), f ] ≤ c5(2q) + c8(2q) + c9(2q) + ‖K‖d1 f1−1/p + f1−1/p.

Thus, we get the assertion of Theorem 2 with

αp,1 := 3[1 ∨ c8(q)]d
2 ‖K‖d1 [Cp]

d2−1,

αp,2 := 3c6(4q)c7(4q)
{
2
[
c5(2q) + c8(2q) + c9(2q)

]
+
(
1 + ‖K‖d1

)
f1−1/p

}

+ 3
[
c9(q) + c5(q)

]
d2 ‖K‖d1 [Cp]

d2−1.

4.3. Upper bounds for adaptive minimax estimation: Proof of

Theorem 4

Let f > 0, (β, L,P) ∈ (0, l]d × (0,∞)d ×P and f ∈ Np,d(β, L,P , f) be fixed.
In view of the triangle inequality, ∀h ∈ (0, 1]d,

sup
P′∈P

sup
I∈P⋄P′

∥∥∥f̂hI
− fI

∥∥∥
p,I

≤ sup
P′∈P

sup
I∈P⋄P′

∥∥∥Ef{f̂hI
(·)} − fI

∥∥∥
p,I

+ sup
P′∈P

sup
I∈P⋄P′

‖ξhI
‖p,I , (4.9)

where Ef{f̂hI
(xI)} = KhI

⋆ fI(xI) and ξhI
(xI) := f̂hI

(xI)− Ef{f̂hI
(xI)}.
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Note first that, by applying Proposition 3 in Kerkyacharian, Lepski and Pi-
card [24], it is easily established that, for any h ∈ (0, 1]d, any P ′ ∈ P and any
I ∈ P ⋄ P ′,

‖KhI
⋆ fI − fI‖p,I ≤

∑

i∈I

cI(K, |I| , p, l, LI)h
βi

i ≤ c sup
I∈P

∑

i∈I

hβi

i , c > 0. (4.10)

Next, by the choice of hmax, we get from Lemma 1 (i)–(iii) and Lemma 2
(i)–(ii) (

Ef sup
P′∈P

sup
I∈P⋄P′

‖ξhI
‖qp,I

) 1
q

≤ O

(
sup
I∈P

(nVhI
)
−γp

)
. (4.11)

Consider now, for all I ∈ P , the system

h
βj

j = hβi

i = (nVhI
)
−γp , i, j ∈ I.

The solution is given by

hi = n
−

γpβI

γp+βI

1
βi , i ∈ I, I ∈ P , (4.12)

where βI is given in (3.2).
For all I ∈ P , hI ∈ [hmin, hmax]

|I| and VhI
≥ Vmin for n large enough and,

remember, HI is the dyadic grid in {hI ∈ [hmin, hmax]
|I| : VhI

≥ Vmin}. Then,
if hI denotes the projection of hI on HI one has (h,P) ∈ H[ P ] for n large
enough. It follows from Theorems 1 and 2, (4.9), (4.10) and (4.11) that

R(q)
p

[
f̂ , f

]
≤ Cαp,1

[
sup
I∈P

∑

i∈I

h
βi

i + sup
I∈P

(
nVhI

)−γp

]
+ αp,2n

−1/2, (4.13)

C > 0, for n large enough. Indeed, the choice of the numbers hmax, hmin and
Vmin implies that the conditions required in both theorems are satisfied. Finally,
in view of the properties of the dyadic grids, it is easily seen that we get the
statement of Theorem 4 from (4.12) and (4.13).

Appendix: Proof of Lemmas 1 and 2

Set f ∈ F[f ,P ], f > 0. We obtain Lemmas 1 and 2 by applying Propositions 1
and 2 with I ∈ P ⋄ P ′, (P ,P ′) ∈ P×P.

A.1. Proof of Lemma 1

We divide this proof into several steps.

1) Note that

ξp ≤
∑

P,P′∈P

∑

I∈P⋄P′

sup
hI∈HI

[
‖ξhI

‖p,I − Ûp(hI)
]
+
.
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In view of Proposition 1 (i), if p ∈ [1, 2) and n ≥ 3 ∨ 42p(2−p),

(Ef |ξp|q)
1
q ≤

∑

P,P′∈P

∑

I∈P⋄P′

C1(LK, k∞, |I| , q)A4/q
HI

n1/p exp

{
−2n2/p−1

37q

}

≤ c1(q)n
−1/2, c1(q) :=




∑

P,P′∈P

∑

I∈P⋄P′

C1(LK, k∞, |I| , q)




× sup
n∈N∗

[
[ln(n)]

4d
q n

1
2+

1
p exp

{
−2n

2
p
−1

37q

}]
,

since AHI
≤ [ln(n)]|I| ≤ [ln(n)]d, ∀I ∈ Id.

Similarly, in view of Proposition 1 (ii), if p = 2, n ≥ exp{
√
8(f2 + 4)} ∨

[8(f2 + 4)]2 and hmax ≤ [ln(n)]−2, (Ef |ξp|q)
1
q ≤ c3(q)n

−1/2, with

c3(q) :=




∑

P,P′∈P

∑

I∈P⋄P′

C2(LK, k∞, |I| , q)




× sup
n∈N∗

[
[ln(n)]

2d
q n exp

{
− [ln(n)

]2 ∧ √
n

16q[f2 + 4]

}]
,

since, furthermore, 0 < h
|I|
max ≤ hmax, ∀I ∈ Id.

2) For any p ≥ 1, Gp ≤ 1 + ‖K‖d1

×


 ∑

P,P′∈P

∑

I∈P⋄P′

sup
hI∈HI

{[
‖ξhI

‖p,I − Ûp(hI)
]
+
+ Ûp(hI) +

∥∥∥Ef

{
f̂hI

}∥∥∥
p,I

}
 ;

Gp ≤ 1 + d |P|2 ‖K‖2d1 f1−
1
p

+ ‖K‖d1
∑

P,P′∈P

∑

I∈P⋄P′

sup
hI∈HI

{[
‖ξhI

‖p,I − Ûp(hI)
]
+
+ Ûp(hI)

}
.

(A.1)

Put f = 1 ∨ f . We get from (A.1)

fp ≤ d2 ‖K‖2d1

(
2d |P|2 ‖K‖d1 f

1− 1
p

+
∑

P,P′∈P

∑

I∈P⋄P′

sup
hI∈HI

{[
‖ξhI

‖p,I − Ûp(hI)
]
+
+ Ûp(hI)

})d2

.
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If p ∈ [1, 2] and nVmin ≥ 1 then

∑

P,P′∈P

∑

I∈P⋄P′

sup
hI∈HI

Ûp(hI) ≤ 128d |P|2 ‖K‖d∞ , (A.2)

since supp(K) ⊆ [−1/2, 1/2] and nVhI
≥ 1, ∀hI ∈ HI .

Below we use the inequality (A.2) and the following trivial equality:

(
Ef

∣∣∣Y d2
∣∣∣
q) 1

q

=

[(
Ef |Y |qd

2
) 1

qd2

]d2

, (A.3)

for any random variable Y .

In view of Proposition 1 (i), if p ∈ [1, 2) and n ≥ 3 ∨ 42p(2−p), (Ef |fp|q)
1
q ≤

c2(q), with

c2 := d2 ‖K‖2d1




ap ∨

∑

P,P′∈P

∑

I∈P⋄P′

C1

(
LK, k∞, |I| , qd2

)

 bp



d2

,

ap := 130d |P|2 ‖K‖d∞ f
1− 1

p ,

bp := 1 + sup
n∈N∗

(
[ln(n)]

4
qd n

1
p exp

{
−2n2/p−1

37qd2

})
.

In view of Proposition 1 (ii), if p = 2, n ≥ exp{
√
8(f2 + 4)}∨ [8(f2+4)]2 and

hmax ≤ [ln(n)]−2, (Ef |fp|q)
1
q ≤ c4(q), with

c4 := d2 ‖K‖2d1




ap ∨

∑

P,P′∈P

∑

I∈P⋄P′

C2

(
LK, k∞, |I| , qd2

)

 bp



d2

,

ap := 130d |P|2 ‖K‖d∞ f
1− 1

p ,

bp := 1 + sup
n∈N∗

(
[ln(n)]

2
qd n

1
2 exp

{
− [ln(n)]2 ∧√

n

16qd2[f2 + 4]

})
.

3) Let (h,P) ∈ H[ P ] be fixed. One has VhI∩I′
≥ VhI

, ∀I ∈ P , ∀I ′ ∈ P ′,
∀P ′ ∈ P. Therefore, ∀p ∈ [1, 2],

Âp(h,P) := sup
P′∈P

sup
I∈P⋄P′

Ûp(hI) ≤ 128 ‖K‖d∞ sup
I∈P

(
1

nVhI

)1− 1
p

.

Thus, we finish the proof of Lemma 1.
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A.2. Proof of Lemma 2

Let p > 2. Assume that n ≥ C3, nVmin > 1 ∨ C4 and n−1/(2d) ≤ hmax ≤
[ln(n)]−p, where

C3 := sup
I∈Id

sup
i=1,2,3,4

[
C3(LK, k∞, |I| , iq, p, f) ∨ C3(LK, k∞, |I| , iqd2, p, f)

]
,

C4 := sup
I∈Id

sup
i=1,2,3,4

[
C4(LK, k∞, |I| , iq, p, f) ∨ C4(LK, k∞, |I| , iqd2, p, f)

]
.

First, similarly to the proof of Lemma 1, step 1, it follows from the asser-

tion (i) of Proposition 2 and Proposition 3 that (Ef |ξp|q)
1
q ≤ c5(q)n

−1/2 and

(Ef |ζp|q)
1
q ≤ c6(q)n

−1/2, with

c5(q) :=


 ∑

P,P′∈P

∑

I∈P⋄P′

C5(LK, k∞, |I| , q, p)




× sup
n∈N∗

(
[ln(n)]

2d
q [log2(n)]

2
2q n exp

{
−c5(q)[ln(n)]

2
})

,

c5(q) := f−1 inf
P,P′∈P

inf
I∈P⋄P′

C6(LK, k∞, |I| , q, p),

c6(q) :=




∑

P,P′∈P

∑

I∈P⋄P′

C9(LK, k∞, |I| , q, p, f)




× sup
n∈N∗

(
[ln(n)]

2d
q n

1
2 exp

{
−c6(q)[ln(n)]

2
})

,

c6(q) := inf
P,P′∈P

inf
I∈P⋄P′

C10(LK, k∞, |I| , q, p, f).

Next, the assertion (i) of Proposition 2 allows us to assert that


Ef

∣∣∣∣∣∣

∑

P,P′∈P

∑

I∈P⋄P′

sup
hI∈HI

[
‖ξhI

‖p,I − Ûp(hI)
]
+

∣∣∣∣∣∣

qd2


1
qd2

≤ c7(q)[log2(n)]
3
qdn

1
2 exp

{
−c8(q)[ln(n)]

2
}
, (A.4)

c7(q) :=
∑

P,P′∈P

∑

I∈P⋄P′

C5(LK, k∞, |I| , qd2, p),

c8(q) := f−1 inf
P,P′∈P

inf
I∈P⋄P′

C6(LK, k∞, |I| , qd2, p).
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Note that, for any P ,P ′ ∈ P, any I ∈ P ⋄ P ′ and any hI ∈ HI , in view of
Young’s inequality,

ρp (KhI
) =

15p

ln p

{
n−1/2

∥∥K2
hI

∗ fI
∥∥1/2
p/2,I

+ 2(nVhI
)1/p−1 ‖KI‖p,I

}

≤ 15p

ln p

{
(nVhI

)−1/2 ‖K‖d∞ f1/2−1/p + 2(nVhI
)1/p−1 ‖K‖d∞

}
;

ρp (KhI
) ≤ c(nVhI

)−1/2, c :=
45p ‖K‖d∞ f

1/2−1/p

ln p
≥ ‖K‖d∞ ≥ 1, (A.5)

since supp(K) ⊆ [−1/2, 1/2], nVhI
≥ 1 and p > 2.

Below we use the trivial inequality (a + b)α ≤ aα + bα for any a, b > 0 and
α ∈ (0, 1). Thus, we deduce from the assertion (ii) of Proposition 2 and (A.5)
that


Ef

∣∣∣∣∣∣

∑

P,P′∈P

∑

I∈P⋄P′

sup
hI∈HI

Ûp(hI)

∣∣∣∣∣∣

qd2


1
qd2

(A.6)

≤
∑

P,P′∈P

∑

I∈P⋄P′

(
Ef

∣∣∣∣ sup
hI∈HI

Ûp(hI)

∣∣∣∣
qd2) 1

qd2

≤ d |P|2 32 1
2d2

[
c

(
1 +

120p

ln p

)
+ c9(q)[log2(n)]

3
qd n

1
2−

1
p exp

{
−c10(q)bn,p

qd2

}]
,

c9(q) := sup
P,P′∈P

sup
I∈P⋄P′

C7(LK, k∞, |I| , qd2, p),

c10(q) := inf
P,P′∈P

inf
I∈P⋄P′

C8(LK, k∞, |I| , qd2, p),

where bn,p = n4/p−1 if p ∈ (2, 4) and bn,p = [ln(n)]4f−1 if p ∈ [4,∞).

It follows from (A.1), (A.3), (A.4) and (A.6) that (Ef |fp|q)
1
q ≤ c7(q),

c7(q) := d2‖K‖2d1

×
[(

2d
∣∣P
∣∣2 ‖K‖d1 f

1− 1
p + d

∣∣P
∣∣2 32

1
2qd2 c(1 +

120p

ln p
)

)
∨ (c7(q) ∨ c9(q))

]d2

×
[
1 + 2 sup

n∈N∗

(
[log2(n)]

3
qd n

1
2 exp

{
−
[
c8(q)[ln(n)]

2
]
∧
[
c10(q) bn,p

qd

]})]d2

.
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Finally, we get the assertion (ii) of Lemma 2 from Proposition 2 (ii) and
(A.5), with

c8(q) := 32
1
q d |P|2 (1 + 120p/ lnp)c

c9(q) :=




∑

P,P′∈P

∑

I∈P⋄P′

C7(LK, k∞, |I| , q, p)




× sup
n∈N∗

(
[log2(n)]

2d+1
q n

1
2 exp

{
−c11(q) bn,p

q

})
,

c11(q) := infP,P′∈P infI∈P⋄P′ C8(LK, k∞, |I|, q, p).
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