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Abstract: Linear mixed-effect models with two variance components are
often used when variability comes from two sources. In genetics applica-
tions, variation in observed traits can be attributed to biological and envi-
ronmental effects, and the heritability coefficient is a fundamental quantity
that measures the proportion of total variability due to the biological effect.
We propose a new inferential model approach which yields exact prior-free
probabilistic inference on the heritability coefficient. In particular we con-
struct exact confidence intervals and demonstrate numerically our method’s
efficiency compared to that of existing methods.
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1. Introduction

Normal linear mixed effects models are useful in a variety of biological, physical,
and social scientific applications with variability coming from multiple sources;
see Khuri and Sahai (1985) and Searle, Casella and McCulloch (1992). In this
paper, we focus on the case of two variance components, and the general model
can be written as

Y=X8+Za+e, (1)

where Y is a m-vector of response variables, X and Z are design matrices for
the fixed and random effects of dimension n X p and n X a, respectively, 5 is a
p-vector of unknown parameters, « is a normal random a-vector with mean 0
and covariance matrix o2 A, and ¢ is a normal random n-vector with mean 0 and
covariance matrix o2 1,,. Here, 0% = (02,02) is the pair of variance components.
Assume A is known and X is of (full) rank p < n. The unknown parameters in
this model are the p fixed-effect coeflicients 8 and the two variance components
o2, so the parameter space is (p + 2)-dimensional.

In biological applications, the quantities & and ¢ in (1) denote the genetic
and environmental effects, respectively. Given that “a central question in biol-
ogy is whether observed variation in a particular trait is due to environmental or
biological factors” (Visscher, Hill and Wray, 2008), the heritability coefficient,
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p = 02 /(02 + 02), which represents the proportion of phenotypic variance at-
tributed to variation in genotypic values, is a fundamentally important quantity.
Indeed, mixed-effect models and inference on the heritability coefficient has been
applied recently in genome-wide association studies (Golan and Rosset, 2011;
Yang et al., 2010); see Section 5 for more on these applications.

Given the importance of the heritability coefficient, there are a number of
methods available to construct confidence intervals for p or, equivalently, for
the variance ratio ¢ = o2 /02. When the design is balanced, Graybill (1976)
and Searle, Casella and McCulloch (1992) give a confidence intervals for ¢ and
other quantities. When the design is possibly unbalanced, as we assume here,
the problem is more challenging; in particular, exact ANOVA-based confidence
intervals generally are not available. Wald (1940) gave intervals for ¢ in the un-
balanced case, and subsequent contributions include Harville and Fenech (1985),
Fenech and Harville (1991), Lee and Seely (1996), and Burch and Iyer (1997).
Bayesian (Gelman, 2006; Gelman et al., 2004; Wolfinger and Kass, 2000) and
fiducial methods (Cisewski and Hannig, 2012; E, Hannig and Iyer, 2008; Fisher,
1935) are also available.

The focus in this paper is exact prior-free probabilistic inference on the heri-
tability coefficient based on the recently proposed inferential model (IM) frame-
work. Martin and Liu (2013, 2015a,b) give a detailed account of the general
framework, along with comparisons to other related approaches, including fidu-
cial inference (Hannig, 2009, 2013), Dempster—Shafer inference (Dempster, 2008;
Shafer, 1976), structural inference (Fraser, 1968), and confidence distributions
(Xie and Singh, 2013). The IM approach is driven by the specification of an
association between unobservable auxiliary variables, the observable data, and
the unknown parameters. This association is followed up by using properly cal-
ibrated random sets to predict these auxiliary variables. Liu and Martin (2015)
explain that it is this prediction of the auxiliary variables that distinguishes
the IM approach. The IM output is a plausibility function that can be used for
inference on the parameter of interest. In particular, the plausibility function
yields confidence intervals with exact coverage. A brief overview of the general
IM framework is given in Section 2.1. A key feature of the IM approach, and
the motivation for this work, is that, besides being exact, its careful handling
of uncertainty often leads to more efficient inference.

A key to the construction of an efficient IM is to reduce the dimension of
the auxiliary variable as much as possible and, for the heritability coefficient,
there are several dimension reduction steps. A first dimension reduction step
eliminates the nuisance parameter 3. These well-known calculations are reviewed
in Section 2.2. The main technical contribution here is in Section 3.1, where
we employ a differential equation-driven technique in the second dimension-
reduction step, leading to a conditional IM for the heritability coefficient. In
particular, this step allows us to reduce the dimension beyond that allowed
by sufficiency. A predictive random set is introduced in Section 3.2, and in
Section 3.3 we show that the corresponding plausibility function is properly
calibrated and, therefore, the plausibility function-based confidence intervals are
provably exact. Sections 4.2 and 4.3 illustrate the proposed method in simulated
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and real data examples. The general message is that our proposed confidence
intervals for the heritability coefficient are exact and tend to be more efficient
compared to existing methods.

2. Preliminaries
2.1. Overview of inferential models

The goal of the IM framework is to get valid prior-free probabilistic inference.
This is facilitated by first associating the observable data and unknown param-
eters to a set of unobservable auxiliary variables. For example, the marginal
distribution of Y from (1) is

Y ~ N, (XB,021, + 02 ZAZ"), (2)
which can be written in association form:
Y = XB+4 (021, + 62 ZAZ )2 U, U ~N,(0,1,). (3)

That is, observable data Y and unknown parameters (3, 0?) are associated with
unobservable auxiliary variables U, in this case, a n-vector of independent stan-
dard normal random variables. Given this association, the basic IM approach
is to introduce a predictive random set for U and combine with the observed
value of Y to get a plausibility function. Roughly, this plausibility function as-
signs, to assertions about the parameter of interest, values in [0, 1] measuring
the plausibility that the assertion is true. This plausibility function can be used
to design exact frequentist tests or confidence regions.

Martin and Liu (2013) give a general description of this three-step IM con-
struction and its properties; in Section 3.1 below we will flesh out these three
steps, including choice of a predictive random set for the variance components
problem at hand. The construction of exact plausibility intervals for the heri-
tability coeflicient is presented in Section 3.3, along with a theoretical justifica-
tion of the claimed exactness.

Notice, in the association (3), that the auxiliary variable U is, in general,
of higher dimension than that of the parameter (3,0?). There are two reasons
for trying to reduce the auxiliary variable dimension. First, it is much easier to
specify good predictive random sets when the auxiliary variable is of low dimen-
sion. Second, inference is more efficient when only a relatively small number of
auxiliary variables require prediction. This dimension reduction is obtained via
a conditioning operation, and Martin and Liu (2015a) give a general explana-
tion of the gains as well as a novel technique for carrying out this reduction. We
employ these techniques in Section 3.1 to get a dimension-reduced association
for the heritability coefficient in the linear mixed model.

Another important challenge is when nuisance parameters are present. OQur
interest is in the heritability coefficient, a function of the full parameter (3, 02),
so we need to marginalize over the nuisance parameters. The next section
marginalizes over [ using standard techniques; further marginalization will be
carried out in Section 3.1.
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2.2. Marginalizing out the fized effect

Start with the linear mixed model (1). Following the setup in E, Hannig and
Tyer (2008), let K be a n x (n—p) matrix such that KK " = I, — X (X T X)71X T
and K"K =1I,,_,. Next, let B=(X"X)"'XT. Then y — (K "y, By) is a one-
to-one mapping. Moreover, the distribution of K'Y depends on (02,02) only,
and the distribution of BY depends on (3,02), with 8 a location parameter. In

particular, from (2), we get
K'Y ~ N, (0,021, , +02G) and BY ~N,(3,C,),

where G = KTZAZTK and C, is a p X p covariance matrix of a known form
that depends on 02 = (02,02); its precise form is not important. From this
point, the general theory in Martin and Liu (2015b) allows us to marginalize
over 3 by simply deleting the BY component. Therefore, a marginal association

for (02,02) is

K'Y = (6%, + 02G) /2 Us, Uy ~ N, (0,1, ).

This marginalization reduces the auxiliary variable dimension from n to n — p.

In the marginal association for (02, 02) above, there are n — p auxiliary vari-
ables but only two parameters. Classical results on sufficient statistics in mixed
effects model that will facilitate further dimension reduction. For the matrix
G defined above, let Ay > -+ > A, > 0 denote the (distinct) ordered eigen-
values with multiplicities r1,...,rp, respectively. Let P = [Py,...,PL] be a
(n — p) x (n — p) orthogonal matrix such that PTG P is diagonal with eigen-
values {\¢ : £ = 1,..., L}, in their multiplicities, on the diagonal. For Py, a
(n — p) X r¢ matrix, define

Se=Y'"KPP'K'Y, ¢=1,... L.

Olsen, Seely and Birkes (1976) showed that (Si,...,Sr) is a minimal sufficient
statistic for (02,02). Moreover, the distribution of (Si,...,Sr) is determined

by
Sy = (M\eo2 +03)Vy, Vi~ ChiSq(ry), independent, ¢=1,...,L. (4)
This reduces the auxiliary variable dimension from n — p to L. We take (4) as
our “baseline association.”
Even in this reduced baseline association, there are L auxiliary variables but
only two parameters, which means there is room for even further dimension

reduction. The next section shows how to reduce to a scalar auxiliary variable
when the parameter of interest is the scalar heritability coefficient.

3. Inferential model for heritability
3.1. Association

For the moment, it will be convenient to work with the variance ratio, ¢ =
02 /o2. Since ¢ = p/(1 — p) is a one-to-one function of p, the two parametriza-
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tions are equivalent. Rewrite the baseline association (4) as
Sy = o2\ +1)Vy, Vi ~ ChiSq(r), independent, ¢=1,...,L. (5)
If we make the following transformations,

XKZ(SZ/TZ)/(SL/T‘L), £:17"'7L_17 XL:SL7
UgZ(W/Tg)/(VL/TL), le,...,L—l, ULZVL.

then the association (5) becomes

. Ay + 1

= Norilr =1,...,L -1, X =2\ + 1)Uy,

‘
Since for every (X, U, ), there exists a o2 that solves the right-most equation,
it follows from the general theory in Martin and Liu (2015b) that a marginal
association for 1 is obtained by deleting the component above involving 2. In
particular, a marginal association for 1 is

A+ 1
:7(], 621,,L—1
D VRN
If we write ) 0\ 3
+p(Ae —
= {=1,...,L—1,

then we get a marginal association for p of the form
X = filp)Upy, €=1,...,L—1. (6)

Marginalization reduces the auxiliary variable dimension by 1. Further dimen-
sion reduction will be considered next. Note that the new auxiliary variable U
is a multivariate F-distributed random vector (e.g., Amos and Bulgren, 1972).

Here we construct a local conditional IM for p as described in Martin and Liu
(2015a). Select a fixed value po; more on this choice in Section 3.3. To reduce the
dimension of the auxiliary variable U, in (6), from L — 1 to 1, we construct two
pairs of functions—one pair, (T, Hp), on the sample space, and the other pair,
(1,m0), on the auxiliary variable space. We insist that = — (T(x), Ho(z)) and
u > (7(u), no(u)) are both one-to-one, and Hy = H,, and 1y = 7, are allowed
to depend on the selected pg. The goal is to find 7y which is, in a certain sense,
not sensitive to changes in the auxiliary variable.

Write the association (6) so that u is a function of z and p, i.e.,

ue(x, p) = xe/ fe(p), €=1,...,L—1.

We want to choose the function 7y such that the partial derivative of ng(u(z, p))
with respect to p vanishes at p = pg. By the chain rule, we have

Om(u(x. p)) _ dmo(w) Du(r, p)

8p ou u=u(z,p) 8[)

)
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so our goal is to find 79 to solve the following partial differential equation:

Ino(u) du(z, p)
- ——= =0 t p = po;
ou u=u(z,p) 8p AP Po;

here du/0p is a (L — 1) x 1 vector and dng/0u is a (L —2) x (L — 1) matrix of
rank L — 2. Toward solving this partial differential equation, first we get that
the partial derivative of us(x, p) with respect to p satisfies

Que(x,p) _ filp)

= Lo = —g\p)welx,p),
dp fe(p)? (o) el £)
where g(p) = {8@ log f1(p), .., 8% log fr—1(p)}". This simplifies the relevant
partial differentiaf equation to the following:
ono(u .
oW dingu(e. )b g(p) =0, at p=po, @
ou u=u(z,p)

where diag(a) is a diagonal matrix constructed from a vector a. The method of
characteristics (e.g., Polyanin, Zaitsev and Moussiaux, 2002) for solving partial
differential equations identifies a logarithmic function of the form

170(u)—r = (loguy, ... ,loguL_l)MJ, (8)

where Mo = M, is a (L—2)x (L—1) matrix with rows orthogonal to g(p) at p =
po- For example, since the matrix that projects to the orthogonal complement of
the column space of g(po) has rank L — 2, we can take My to be a matrix whose
L — 2 rows form a basis for that space. For Mj defined in this way, it is easy to
check that ng in (8) is indeed a solution to the partial differential equation (7).

We have completed specification of the 7y function; it remains to specify 7
and (T, Hy). The easiest to specify next is Ho(z), the value of n(u(z, po)), as a
function of x:

Hy(z)" = (1og o log L)MJ
filpo)” 77 fr—1(po)

As we describe below, the goal is to condition on the observed value of Hy(X).

Next, we define T" and 7 to supplement Hy and 7, respectively. In particular,
take a (L — 1)-vector w(p) which is not orthogonal to g(p) at p = pg. It is easy
to check that the entries in g(p) are strictly positive for all p. Therefore, we can
take w(p) independent of p; for example, w(p) = 11,1 is not orthogonal to g(p).
Now set

log uy

G- ()
L—1

This is a log-linear transformation, and the linear part is non-singular, so this
is a one-to-one mapping. Finally, we take T as

Since (T'(z), Ho(x)) is log-linear, just like (7(u),no(u)), it is also one-to-one.
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We can now write the conditional association for p. For the given pg, the
mapping x — (T(x), Hy(z)) describes a split of our previous association (6)
into two pieces:

L—1 L—1 L—1
> log Xy =Y log fe(p)+ > logU; and Ho(X)=mno(U).
=1 (=1 =1

The first piece carries direct information about p. The second piece plays a
conditioning role, correcting for the fact that some information was lost in re-
ducing the (L — 1)-dimensional X to a one-dimensional T'(X). To complete the
specification of the conditional association, write ¢(p) = Ef;ll log fe(p) and
V= ZEL:_ll log Uy. Then we have

T(X) - <P(P) + Va Ve~ PV|h0,poa (10)

where Py, ,, is the conditional distribution of 7(U), given that 7o(U) equals
to the observed value hg of Ho(X). To summarize, (10) completes the asso-
ciation step that describes the connection between observable data, unknown
parameter of interest, and unobservable auxiliary variables. Of particular inter-
est is that this association involves only a one-dimensional auxiliary variable
compared to the association (5) obtained from the minimal sufficient statistics
that involves an L-dimensional auxiliary variable. This dimension reduction will
come in handy for the choice of predictive random set in the following section.
The price we paid for this dimension reduction was the choice of a particular
localization point pg. In Section 3.3 we employ a trick to side-step this issue
when the goal is, as in this paper, to construct confidence intervals.

3.2. Predictive random sets

Having reduced the auxiliary variable to a scalar in (10), the choice of an efficient
predictive random set is now relatively simple. Though there is an available
theory of optimal predictive random sets (Martin and Liu, 2013), here we opt
for simplicity; in particular, we propose a default predictive random set that is
theoretically sound and computational and intuitively simple.

Consider the following version of what Martin and Liu (2013) call the “de-
fault” predictive random set:

S={v:|v—pol <|V—pol}, V~Pyng,p- (11)

This §, with distribution Pgyp, ,,, is a random interval, centered at the mean
po of the conditional distribution Py, ,,- One key feature of this predictive
random set is that it is nested, i.e., for any two distinct realizations of S, one
is a subset of the other. The second key feature is a calibration of the predic-
tive random set distribution with the underlying distribution of the auxiliary
variable. Following Martin (2014), define the contour function

WS(U) = PSlhoﬁpo (S > U)?
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which represents the probability that the predictive random set contains the
value v of the auxiliary variable. We shall require that

PVihopotrs(V) > 1—a} <a, Yae(0,1). (12)
For the default predictive random set in (11), it is easy to check that

V5(0) = Pving.po {1V = pol = v = pol} =1 = Fig o ([0 = p10l),

where F,, o, is the distribution function of [V — ug| for V'~ Pyp, o, From
the construction above, it is clear that it is a continuous distribution. Then,
|V — upl is a continuous random variable, so vs(V') is uniformly distributed on
(0,1). Therefore, (12) holds for the default predictive random set S. Results on
optimal predictive random sets are available (Martin and Liu, 2013), but here,
again, our focus is on simplicity. See Section 5.

3.3. Plausibility intervals

Here we combine the association in Section 3.1 with the predictive random set
described above to produce a plausibility function for inference about p. In
general, a plausibility function is a data-dependent mapping that assigns, to
each assertion about the parameter, a value in [0, 1], with the interpretation
that small values suggest the assertion is not likely to be true, given the data;
see Martin and Liu (2013). For simplicity, we focus only on the collection of
singleton assertions, i.e., {p = r} for r € [0,1]. These are also the relevant
assertions for constructing interval estimates based on the IM output.

Let X = x be the observations in (6). The association step in Section 3.1
yields a data-dependent collection of sets indexed by the auxiliary variable. In
particular, write R,(v) = {p : T(z) = ¢(p) + v}, a set-valued function of v.
These sets are combined with the predictive random set in Section 3.2 to get an
enlarged z-dependent random set:

Ry(S) = | Ru(v). (13)
veS

Now, for a given assertion {p = r}, we compute the plausibility function,

plm'ho,po (T) = Ps‘hf)vp(){Rw(S) > T‘}’

the probability that the random set R,(S) contains the asserted value 7 of p.
A simple calculation shows that, in this case with singleton assertions, we have

Plajhg 0 (1) = 15 (T(@) = @(r)) =1 = Fhg o (IT(2) = @(r) — prol),

where F},, ,, is defined in Section 3.2. The above display shows that the plau-
sibility function can be expressed directly in terms of the distribution of the
predictive random set, without needing to go through the construction of R, (S)
as in (13).
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We pause here to answer a question that was left open from Section 3.1,
namely, how to choose the localization point pg. Following Martin and Liu
(2015a), we propose here to choose py to match the value of p specified by
the singleton assertion. That is, we propose to let the localization point depend
on the assertion. All the elements in the plausibility function above with a 0
subscript, denoting dependence on pg, are changed in an obvious way to get a
new plausibility function

Plajn, o(P) =1 = Fi, o (IT(2) = 9(p) = o) (14)

We treat this as a function of p to be used for inference. In particular, we can
construct a 100(1 — a)% plausibility interval for p as follows:

Mo (z) = {p: Pljn, 0 (p) > . (15)

The plausibility function, and the corresponding plausibility region, are easy
to compute, as we describe in Section 4.1. Moreover, the calibration (12) of
the predictive random set leads to exact plausibility function-based confidence
intervals, as we now show.

We need some notation for the sampling distribution of X, given all the rele-

vant parameters. Recall that the distribution of X actually depends on (2, 02)

or, equivalently, (p,c2). The error variance o2 is a nuisance parameter, but o2
still appears in the sampling model for X. We write this sampling distribution

as PX\p,a?-

Theorem 1. Take the association (10) and the default predictive random set
S in (11). Then for any p, any value h, of H,, and any o2, the plausibility
function satisfies

Px(poz{Plxin,p(0) S @ | Hy(X) =hy} =, Yae(01) (16)

Proof. For given (02, p), if h, is the value of H,(X), then it follows from the
conditional distribution construction that the plausibility function in (14), as
a function of T'(X) with X ~ Px/, 2, is Unif(0,1). Then the equality in (16)
follows immediately. O

Averaging the left-hand side of (16) over h,, with respect to the distribu-
tion of H,(X), and using iterated expectation gives the following unconditional
version of Theorem 1.

Corollary 1. Under the conditions of Theorem 1, for any (p,c?),

PX\p,a?{p|X|HP(X),p(p) < a} =, Vae (07 1)

Since we have proper calibration of the plausibility function, both condition-
ally and unconditionally, coverage probability results for the plausibility interval
(15) are also available. This justifies our choice to call I1,, (z) a 100(1—a)% plau-
sibility interval, i.e., the frequentist coverage probability of II, is exactly 1 — a.

Corollary 2. The coverage probability of I1,(X) in (15) is exactly 1 — a.
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4. Numerical results
4.1. Implementation

Evaluation of the plausibility function in (14) requires the distribution function
Fy,, p of [V — p,| corresponding to the conditional distribution Pvin,,of V.=
7(U), given 1,(U) = H,(X). This conditional distribution is not of a convenient
form, so numerical methods are needed. For p fixed, since the transformation (9)
from U to (7(U), n,(U)) is of a log-linear form, and the density function of U can
be written in closed-form, we can evaluate the joint density for (7(U),n,(U))
and, hence, the conditional density of V' = 7(U). Numerical integration is used
to evaluate the normalizing constant, the mean 1, and the distribution function
Fp, »- R code is available at www.math.uic.edu/~rgmartin.

4.2. Simulation results

In this section, we consider a standard one-way random effects model, i.e.,
Yij = B+ o + €45, i=1,...,a, j:l,...,ni,

where a1, ..., q, are independent with common distribution N(0,02), and the
gijs are independent with common distribution N(0,c2); the ;s and e;;s are
also mutually independent. Our goal is to compare the proposed IM-based plau-
sibility intervals for p with the confidence intervals based on several competing
methods. Of course, the properties of the various intervals depend on the de-
sign, in this case, the within-group sample sizes ni,...,n,, and the values of
(02,02). Our focus here is on cases with small sample sizes, namely, where the
total sample size n = ny + --- + n, is fixed at 15. The three design patterns
(n1,...,nq) considered are: (1,1,1,1,1,10), (2,4,4,5), and (2,3,10). The nine
(02, 02) pairs considered are: (0.05, 10), (0.1, 10), (0.5,10), (1, 10), (0.5,2), (1,1),
(2,0.5), (5,0.2), and (10,0.1). Without loss of generality, we set u = 0.

For each design pattern and pair of (62, 02), 1000 independent data sets were
generated and 95% two-sided interval estimates for p were computed based on
the exact method of Burch and Iyer (1997), the fiducial method of E, Hannig
and Iyer (2008), and the proposed IM method. Empirical coverage probabilities
and average length of the confidence interval under each setting were compared
to investigate the performance of each method. Besides these three methods, we
also implemented Bayesian and profile likelihood approaches. The three afore-
mentioned methods all gave better intervals than the Bayesian method, and
the profile likelihood method was very unstable with small sample sizes, often
having very high coverage with very wide intervals or very low coverage with
very narrow intervals. So, these results are not reported.

A summary of the simulation results is displayed in Figure 1. Panel (a) dis-
plays the coverage probabilities, and Panel (b) displays the relative length dif-
ference, which is defined as the length of the particular interval minus the length
of the IM interval, scaled by the length of the IM interval. As we expect from
Corollary 2, the IM plausibility intervals have coverage at the nominal 95%
level. We also see that the IM intervals tend to be shorter than the fiducial and
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Fic 1. Simulation results from Section 4.2. BI corresponds to the exact method of Burch and
Iyer (1997), and FI corresponds to the fiducial method of E, Hannig and Iyer (2008).

Burch-Iyer confidence intervals. The fiducial intervals have coverage probability
exceeding the nominal 95% level, but this comes at the expense of longer in-
tervals on average. Overall, the proposed IM-based method performs quite well
compared to these existing methods. We also replicated the simulation study
in E, Hannig and Iyer (2008), which involves larger sample sizes and a broader
range of imbalance, and the relative comparisons between these three methods
are the same as here.

4.3. Real-data analysis

Example 1. Equal numbers of subjects are tested under each standard and test
preparations and a blank dose under a (2K + 1)-point symmetrical slope-ratio
assay. The response, on logarithmic scale, is assumed to depend linearly on the
dose level. A modified balanced incomplete block design with 2K' + 1 (K’ <
K) block size is introduced by Das and Kulkarni (1966). The ith dose levels
for standard and test preparations are represented by s; and t;, i = 1,..., K.
Under this design, the dose will be equally spaced and listed in ascending order.
A balanced incomplete block design with K doses of the standard preparation
inside K’ blocks is constructed and used as the basic design. Then a modified
design is constructed by adding a blank dose and K’ doses of the test preparation
into every block, under the rule that dose ¢; should accompany s; in every blocks.
The model developed by Das and Kulkarni can be written as

yl]m:u—i_ﬁjxl]—’—am—i_‘gl]mu ie{s,t,C}, j:17"'7k7 mzlu"'ab

where Ygjm, Ytjm, Yejm represent observation response in mth block for jth dose
of standard preparation, test preparation and blank dose; z; and x¢; represent
jth dose level for standard and test preparation; z.; is zero by default, o,
denotes mth block effect; and €;;, denotes independent random errors with
common distribution N(0,02). We consider random block effects and assume
that a, are independent with common distribution N(0,¢2). Independence of
Qy, and g4y, is also assumed.
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F1G 2. Plausibility functions for p in the two examples.

TABLE 1
Upper bounds on the interval estimates for p (lower bounds are all zero) based on the three
methods in the two real-data examples

Example 1 Example 2

Method 90% 95% 90% 95%
Burch-Iyer 0.913  0.956 0.567  0.615
Fiducial 0.916  0.957 0.466  0.530
IM 0.881 0.924 0.554  0.597

We analyze data coming from a nine-point slope-ratio assay on riboflavin
content of yeast, with two replications in each dose; see Table 2 in E, Hannig
and Iyer (2008) for the design and data. For this design, we have L = 3 distinct
eigenvalues, namely, 4.55, 1, and 0, with multiplicities 1, 1, and 10, respectively.
A plot of the plausibility function for p is shown in Figure 2(a). The function
exceeds 0.2 at p = 0, which implies that 90% and 95% plausibility intervals
include zero. The left panel of Table 1 shows the 90% and 95% interval estimates
for p based on the Burch-Iyer, fiducial, and IM methods. In this case, the IM
intervals are provably exact and shorter.

Example 2. Harville and Fenech (1985) analyzed data on birth weights of
lambs. These data consist of the weights information at the birth of 62 single-
birth male lambs, and were collected from three selection lines and two control
lines. Each lamb was the offspring of one of the 23 rams and each lamb had
a distinct dam. Age of the dam was also recorded and separated into three
categories, numbered 1 (1-2 years), 2 (2-3 years), and 3 (over 3 years). A linear
mixed model for these data is

Yijkt = pt+ Bi + T + 0k + €qjiki

where y;;; represents the weight of the /th offspring of the kth sire in the jth
population lines and of a dam in the ith age category; [3; represents ith level
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age effect; m; represents the jth line effects; oy denotes random sire effects
and are assumed to be independently distributed as N(0,02); and random er-
rors denoted by &, is supposed to be independently distributed as N(0, c2).
Furthermore, the ajis and €;55 are assumed to be independent. In this case,
L =18, \; =5.09, A\ =0 and r;, = 37; all non-zero eigenvalues have multiplic-
ity 1 except A\g = 2 with multiplicity 2. A plot of the plausibility function for p
is shown in Figure 2(b). As in the previous example, the plausibility function is
positive at p = 0, which means that plausibility intervals with any reasonable
level will contain p = 0. We also used each of the three methods considered
above to compute 90% and 95% interval estimates for p. The results are shown
in the right panel of Table 1. In this case, IM gives a shorter interval compared
to Burch—Iyer. The fiducial interval, however, is shorter than both exact inter-
vals. We expect the IM interval to be most efficient, so we explore the relative
performance a bit further by simulating 1000 independent data sets from the
fitted model in this case, i.e., with 62 = 0.767 and 62 = 2.763 as the true val-
ues. In these simulations, the fiducial and IM coverage probabilities were 0.944
and 0.954, respectively, both within an acceptable range of the nominal level,
but the average lengths of the intervals are 0.488 and 0.456. That is, the IM
intervals tend to be shorter than the fiducial intervals in problems similar to
this example, as we would expect.

5. Concluding remarks

The IM method proposed here gives exact confidence intervals for the heritabil-
ity coefficient p, as well as the variance ratio ¢, and numerical results suggest
increased efficiency compared to existing methods. In fact, we found here that
our IM approach was more efficient than fiducial for inference on p, and a key
reason for this is that the IM can be carefully tailored for efficient marginal
inference on p, while the fiducial approach applies to the full parameter (o2, 02)
and the marginalization to p via integration is out of the statistician’s hands.
A question is if these same techniques can be employed for exact prior-free
probabilistic inference on other quantities related to the variance components
(02,02). It is well-known that, for the unbalanced design case, exact marginal-
ization is challenging. In the IM context, this means that the association is
not “regular” in the sense of Martin and Liu (2015b). Therefore, some more
sophisticated tools are needed for exact inference on, say, the individual vari-
ance components o2 and o2. This application provides clear motivation for our
ongoing investigations into more general IM-based marginalization strategies.

Another important question is if the techniques presented herein can be ap-
plied in more complex and high-dimensional mixed-effect models. In genome-
wide association studies, for example, the dimensions of the problem are ex-
tremely large. We expect that, conceptually, the techniques described here will
carry over to the more complex scenario. However, there will be computational
challenges to overcome, as with all approaches (Kang et al., 2010; Zhou and
Stephens, 2014). This, along with the incorporation of optimal predictive ran-
dom sets (e.g. Martin and Liu, 2013) is a focus of ongoing research.
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