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Abstract: Motivated by applications in personalized web services and
clinical research, we consider a multi-armed bandit problem in a setting
where the mean reward of each arm is associated with some covariates. A
multi-stage randomized allocation with arm elimination algorithm is pro-
posed to combine the flexibility in reward function modeling and a the-
oretical guarantee of a cumulative regret minimax rate. When the func-
tion smoothness parameter is unknown, the algorithm is equipped with a
histogram estimation based smoothness parameter selector using Lepski’s
method, and is shown to maintain the regret minimax rate up to a loga-
rithmic factor under a “self-similarity” condition.
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1. Introduction

The multi-armed bandit problem is an optimization game with promising appli-
cations in, e.g., web services and clinical research. Under a prototypical frame-
work, a bandit problem consists of several gambling machines, and the under-
lying reward distribution of each machine is unknown to the game player. Each
time, the player can pull only one of the machine arms to receive reward. Given
a finite number of times to play the machines, the goal is to devise a sequential
arm allocation algorithm to maximize the cumulative reward, and equivalently,
to minimize the cumulative regret (the shortfall of the reward of the algorithm
compared to an oracle). A balance between exploration and exploitation is usu-
ally required for a bandit problem algorithm.

242

http://projecteuclid.org/ejs
http://dx.doi.org/10.1214/15-EJS1104
mailto:wxqsma@rit.edu
mailto:yyang@stat.umn.edu


Bandit problem with covariates 243

The standard setting of a bandit problem assumes that the reward response
of each arm is “homogeneous” with no available covariates. Since the seminal
work of Robbins (1954), the standard bandit problem is studied extensively,
the representative early work of which includes Lai and Robbins (1985), Berry
and Fristedt (1985), Gittins (1989) and Auer, Cesa-Bianchi and Fischer (2002).
See also Cesa-Bianchi and Lugosi (2006) and Bubeck and Cesa-Bianchi (2012)
for recent reviews of its various extensions. The “homogeneity” assumption of
the standard setting, however, can be too restrictive in real applications. An
increasingly popular but a much less studied setting is to assume that the mean
reward is associated with some covariates, that is, the game player is given a
d-dimensional covariate x ∈ Rd as additional information before deciding which
arm to pull, and the expected reward of a bandit arm given covariate x takes
a functional form f(x). Such variant of bandit problem is called multi-armed
bandit problem with covariates, or MABC for its abbreviation.

The MABC problem first appears under a parametric framework inWoodroofe
(1979). Attracted by promising applications in personalized web and medical
services, more and more attentions are directed to the MABC problem in re-
cent years. For example, with settings more flexible than that of Woodroofe
(1979), a linear response bandit problem is recently studied under a minimax
framework with margin conditions (Goldenshluger and Zeevi, 2009; Goldensh-
luger and Zeevi, 2013 and references therein). The well-known upper confidence
bound (UCB) type algorithms are also extended to linear parametric settings,
and are studied empirically in, e.g., Li et al. (2010).

The MABC problem from a nonparametric perspective is initiated by Yang
and Zhu (2002). They propose a randomized allocation algorithm with his-
togram and K-nearest neighbor methods, the cumulative reward of which is
shown to be asymptotically equivalent to that of an oracle. Although it is a
very flexible and often effective algorithm, a finite-time regret analysis by Qian
and Yang (2016) suggests that it may converge sub-optimally in terms of the
minimax rate of the regret established by Rigollet and Zeevi (2010) due to its
over-exploration in the randomization process. Perchet and Rigollet (2013) pro-
pose algorithms with an important step of arm elimination that originally ap-
peared in a standard bandit problem setting (Even-Dar, Mannor and Mansour,
2006). They provide more rigorous and fine-tuned arguments for the standard
setting, and further obtain performance bounds for their arm elimination al-
gorithms devised to deal with the MABC problem. In particular, by a dyadic
binning process, their adaptively binned successive elimination (ABSE) algo-
rithm achieves the regret minimax rate, and is adaptive to a margin condition.
The aforementioned nonparametric MABC algorithms, however, all assume a
known Hölder smoothness condition on the mean reward functions. It is of inter-
est to find algorithms that are adaptive to both the smoothness and the margin
conditions.

Other settings of MABC problems have been studied in, e.g., Langford and
Zhang (2007) and Dudik et al. (2011), where algorithms are designed to target
the performance of the best arm-pulling policy among a class of finitely many
candidate policies. May et al. (2012) study MABC from a Bayesian perspective.
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In addition, differently from the MABC problem, a related setting considers
the arm space (with possibly infinitely many arms) instead of the covariate
space (see, e.g., Dani, Hayes and Kakade, 2008; Rusmevichientong and Tsitsiklis,
2010; Auer, Ortner and Szepesvári, 2007; Kleinberg, Slivkins and Upfal, 2007).
The bandit problem that considers the joint covariate and arm space is studied
in Lu, Pál and Pál (2010) and Slivkins (2011).

In this article, we follow the line of nonparametric MABC problem. The pri-
mary task is to address the question of whether we can achieve a near minimax
optimal regret upper bound without the prior knowledge of the smoothness
parameter. Our solution to this question is closely related to the adaptive non-
parametric estimation technique pioneered by Lepski (1990). The “Lepski-type”
method is recently studied in Giné and Nickl (2010), Hoffmann and Nickl (2011)
and Bull (2012), and a “self-similarity” condition is used for establishing the
adaptive confidence bands in both density estimation and regression problems.
As the most important contribution of this work, we propose the strategy of
integrating the Lepski’s method with a nonparametric MABC algorithm, and
show that under a “self-similarity” condition, the resulting cumulative regret
can adaptively achieve the minimax rate up to a logarithmic factor. In particu-
lar, the ABSE algorithm (Perchet and Rigollet, 2013) can be used for adaptively
achieving a near minimax rate when equipped with the Lepski-type smoothness
parameter selector (see Remark 5.1).

It is noted that the regret minimization in the MABC problem differs from the
usual purpose of nonparametric function estimation, but shares the difficulties
involved in establishing adaptive confidence bands. A more detailed discussion
regarding the connection of the adaptive nonparametric estimation with the
MABC problem is deferred to section 6.

We present the proposed strategy using a nonparametric MABC algorithm
called randomized allocation with arm elimination (or RAAE for abbreviation).
Motivated by the observation in Qian and Yang (2016) that using randomized al-
location strategy alone may give sub-optimal rate for the cumulative regret, the
RAAE algorithm is proposed to embed the key arm-elimination technique devel-
oped in Perchet and Rigollet (2013) into the randomized allocation and can be
shown to achieve the same minimax rate as the ABSE (with known smoothness).
In our view, the feature of randomized allocation procedure (in addition to arm
elimination) is practically useful because it provides a user with additional flexi-
bility of applying a regression modeling method (e.g., kernel regression) for each
arm to further exploit the response-covariate association. The practical impli-
cations of the randomized allocation step in RAAE are discussed in Remark 3.1
and are numerically illustrated in Appendix B with simulation examples.

The remainder of this article is organized as follows. The MABC problem
setup is introduced in section 2. The RAAE algorithm and the integrated
smoothness parameter selector are described in sections 3 and 4, respectively.
The finite-time regret analysis is done in section 5. A final discussion is given
in section 6. The technical lemmas and proofs are given in Appendix A and a
simulation experiment regarding the randomized allocation in RAAE is shown
in Appendix B.
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2. Problem setup

Consider an l-armed bandit problem (l ≥ 2) and suppose the covariates take
values in the hypercube [0, 1]d. Let fi(x) denote the (conditional) mean reward
function of an arm i (1 ≤ i ≤ l) given a covariate x. We model the observed
reward as fi(x)+ε, where ε is the random error with mean 0. The mean reward
functions and the random error distributions are unknown.

Let {Xn, n ≥ 1} be a sequence of independent covariates with an unknown
probability distribution PX supported in [0, 1]d. Given any time point n (n ≥ 1),
let Yi,n denote the observed reward from pulling arm i (1 ≤ i ≤ l), and let In
denote the arm chosen by a sequential allocation rule η. The MABC problem
works as follows at each time point n. First, the covariate Xn is observed.
Based on Xn and the previous observations (Xj , Ij , YIj ,j), 1 ≤ j ≤ n − 1, the
allocation rule η is subsequently applied to decide which arm to pull. Then,
the game player pulls the chosen arm In and receives the corresponding reward
YIn,n. The received reward is generated by YIn,n = fIn(Xn) + εn, where εn is
the random error, and (Xn, εn) is independent of the previous observations. We
assume the covariate and the random error satisfy the following conditions.

Assumption 2.1. The design distribution of the covariate is dominated by the
Lebesgue measure with a continuous density p(x) uniformly bounded above and
away from 0 on [0, 1]d; that is, p(x) satisfies c ≤ p(x) ≤ c for some positive
constants c ≤ c.

Assumption 2.2. The errors satisfy a (conditional) moment condition that
there exist positive constants v and c such that for all integers k ≥ 2 and n ≥ 1,

E(|εn|k|Xn) ≤
k!

2
v2ck−2

almost surely.

Assumption 2.1 is used by the smoothness parameter selector to ensure that
the histogram estimation is close to the true reward function uniformly. As-
sumption 2.2 is a (conditional) moment assumption known as refined Bernstein
condition (e.g., Birgé and Massart, 1998). Note that under Assumption 2.2, the
random error can be dependent on the covariate, and is not necessarily bounded.
When the response is bounded (e.g., binary), Assumption 2.2 trivially holds. In
general, it is satisfied if the error has a finite exponential moment, and thus
allows error distributions with tails heavier than normal distribution.

Define, at given x, i∗(x) = argmax1≤i≤l fi(x) to be the best arm, f∗(x) =
fi∗(x)(x) to be the best mean reward, and let w = sup1≤i≤l supx∈[0,1]d(f

∗(x) −
fi(x)). We measure the performance of an allocation rule η using cumulative
regret Rn(η), per-round regret rn(η) and inferior sampling rate qn(η), which are
defined by

Rn(η) =

n∑
j=1

(
f∗(Xj)− fIj (Xj)

)
,
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rn(η) =
1

n

n∑
j=1

(
f∗(Xj)− fIj (Xj)

)

and

qn(η) =
1

n

n∑
j=1

I
(
Ij �= i∗(Xj)

)
,

respectively.

Next, we introduce a Hölder smoothness condition and a margin condition,
both of which have been studied in the context of nonparametric estimation
(Audibert and Tsybakov, 2005; Audibert and Tsybakov, 2007) and classification
(Mammen and Tsybakov, 1999; Tsybakov, 2004). Let ‖·‖ be the sup-norm on
a d-dimensional vector. Suppose κ∗ and κ∗ are two known constants satisfying
0 < κ∗ < κ∗ ≤ 1. Given κ ∈ [κ∗, κ

∗] and ρ > 0, define Σ(κ, ρ) to be the
class of functions that satisfies the following Hölder smoothness condition: for
f ∈ Σ(κ, ρ),

|f(x1)− f(x2)| ≤ ρ‖x1 − x2‖κ,

for every x1, x2 ∈ [0, 1]d. As mentioned in the introduction, to our knowledge,
existing nonparametric MABC algorithms all require the knowledge of κ for
optimal properties. However, such information is typically not available to the
game player. Efforts are made to provide a proper estimate for κ in section 4.

The margin condition has also been used in the MABC problem to control the
game complexity (Goldenshluger and Zeevi, 2009; Perchet and Rigollet, 2013).
Given x ∈ [0, 1]d, define f �(x) to be

f �(x) =

{
max1≤i≤l{fi(x) : fi(x) < f∗(x)} if min1≤i≤l fi(x) < f∗(x),

f∗(x) otherwise.

Assumption 2.3. There exist α ∈ (0, d/κ], t0 ∈ (0, 1) and c0 > 0 such that

PX

(
0 < f∗(X)− f �(X) ≤ t

)
≤ c0t

α

for all t ∈ [0, t0].

Larger α in Assumption 2.3 indicates an easier MABC game in the sense that
except on a subset of the domain with a small PX -probability, it happens that
either all the mean rewards are the same for all arms, or the optimal mean reward
is well-separated from the sub-optimal ones. In particular, when α > d/κ, one
arm dominates over the entire domain (Perchet and Rigollet, 2013, Proposition
3.1) and the standard bandit problem algorithms will suffice in this case. Since
this simple situation is not the interest of this article, we assume that α ≤ d/κ.

Next, we want to devise an algorithm that does not rely on the knowledge of
either κ or α, but still achieves the (nearly) optimal regret cumulative rate as
if we knew them in advance.
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3. Algorithm

The algorithm consists of a forced sampling step followed by a randomized
allocation with arm elimination mechanism. SupposeN is the total time horizon.
The algorithm starts with a forced sampling step, in which every arm is pulled
n0 times (1 ≤ n0 � N). The random sample of each arm thus obtained feeds
into a smoothness parameter selector, which can be subsequently used to choose
related parameters of the remaining steps. After the forced sampling step, the
remaining time horizon is divided into T + 1 stages. Let Ñ1 < Ñ2 < · · · < ÑT

be the end time points of the first T stages, and define Ñ0 = n0l. The number of
time points in stage t (1 ≤ t ≤ T ) is denoted by Nt = Ñt − Ñt−1. Let {ht, 1 ≤
t ≤ T} be a sequence of bin width that satisfies h1 = 1 and hk+1 = hk/2,
1 ≤ k ≤ T − 1. At the end of stage t (1 ≤ t ≤ T ), for arm elimination, we
partition the domain [0, 1]d into 1/hd

t bins with bin width ht. Let Bt denote the
set of these bins, and let Bt(x) denote the bin in Bt that contains the covariate
x ∈ [0, 1]d. For notational convenience, define h0 = 1 and bin X = [0, 1]d. Also
define B0 = {X} and B0(x) = X for every x ∈ [0, 1]d. By the choice of bin width
sequence, we can see that for each bin B ∈ Bt (1 ≤ t ≤ T ) and each stage s
(0 ≤ s < t), there is a unique (larger) bin B′ ∈ Bs that contains B. We denote
B′ by ps(B) and call it the “parent” bin of B at stage s. Let {πn, 1 ≤ n ≤ N}
be a sequence of positive numbers satisfying (l− 1)πn < 1 for every 1 ≤ n ≤ N .
The algorithm for MABC works as follows.

Step 0. Initialize the game with the forced sampling step.

Step 0.1. Obtain a random sample of each arm by pulling each arm n0

times.

Step 0.2. If the smoothness parameter κ is unknown, for every given arm
i (1 ≤ i ≤ l), estimate κ by the smoothness parameter selector de-
scribed in section 4. The resulting estimate for arm i is denoted by
κ̂(i). Define κ̂∗ = min1≤i≤l κ̂

(i), which is used to determine parame-
ters of the following steps. If κ is known, simply set κ̂∗ = κ.

Step 1. Define the initial set of active arms in bin X to be SX = {1, 2, · · · , l}.
Start stage t = 1 of the game. For n = Ñt−1+1, Ñt−1+2, · · · , Ñt, perform
the following substeps.

Step 1.1. Observe covariate Xn and locate the bin with bin width ht−1

that contains Xn by B = Bt−1(Xn). Find SB , the set of active arms
in bin B. Denote the number of arms in SB by lB .

Step 1.2. For each arm i ∈ SB , based on the previously obtained sample
of covariates and rewards, estimate the mean reward fi(Xn) by some
user-specified regression modeling method (e.g., kernel regression).

The estimator is denoted by f̂i,n(Xn).

Step 1.3. Estimate the best arm, select and pull. Define în = argmaxi∈SB

f̂i,n(Xn) (If there is a tie, any tie-breaking rule may apply). Choose

an arm, with probability 1−(lB−1)πn for arm în (the currently most
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promising choice) and with probability πn for each of the remaining
arms in SB . That is,

In =

{
în, with probability 1− (lB − 1)πn,

i, with probability πn, i �= în, i ∈ SB .

Then pull the arm In to receive the reward YIn,n.

Step 2. At the end of stage t, perform arm elimination for the bins in Bt (with
bin width ht). For each bin B ∈ Bt, do the following substeps.

Step 2.1. Identify the parent bin B′ = pt−1(B) and the set of active arms
SB′ for bin B′.

Step 2.2. For each arm i ∈ SB′ , letHB,i = {n : Ñt−1+1 ≤ n ≤ Ñt, Xn ∈
B, In = i} be the set of time points during stage t at which the
covariate falls in bin B and arm i is pulled. Let NB,i be the size of
HB,i. Find the arms in SB′ with NB,i �= 0 and define

S(0)
B = {i ∈ SB′ : NB,i �= 0}.

Calculate the sample average of each arm i ∈ S(0)
B during stage t

inside bin B by ȲB,i =
∑

n∈HB,i
Yi,n/NB,i. Calculate the maximum

sample average by Ȳ ∗
B = max

i∈S(0)
B

ȲB,i.

Step 2.3. Identify the set of “bad” arms to be eliminated by

AB = {i ∈ S(0)
B : Ȳ ∗

B − ȲB,i > αt},

where αt is a stage-dependent parameter. Obtain the set of active
arms in bin B for the next stage by eliminating “bad” arms in AB

from SB′ : SB = SB′ \ AB .

Step 3. Repeat Step 1 and Step 2 for stage t = 2, 3, · · · , T .
Step 4. Repeat Step 1 for n = ÑT + 1, ÑT + 2, · · · , N (it is stage T + 1).

The forced sampling step obtains a random sample of each arm for the
smoothness parameter selector. After the forced sampling step, T + 1 stages
of randomized allocation with arm elimination follow. For a given stage t (1 ≤
t ≤ T+1), Step 1 performs the randomized arm allocation. Specifically, Step 1.1
retrieves the set of active arms inherited from the previous stage. In particular,
for stage t = 1, the set of active arms includes all the candidate arms. In Step
1.2, we have the flexibility to choose proper regression methods to estimate the
mean reward functions of the active arms. Both parametric and nonparametric
methods may apply. Step 1.3 is the randomized allocation that favors the arm
with highest estimated reward and selects this arm with a high probability. At
the end of a given stage t (1 ≤ t ≤ T ), Step 2 follows to identify and eliminate
the obvious bad-performing arms so that they do not get pulled in the next
stage. For this purpose, the covariate domain is divided into 1/hd

t bins with bin
width ht. For each of these bins, Step 2.2 calculates the reward sample average
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of each active arm during stage t. Subsequently, Step 2.3 eliminates the arms
with low sample average compared to the highest. The remaining arms of each
bin after elimination serve as the new active arms, and the next stage follows.
Heuristically speaking, Step 2 assists the randomized allocation mechanism of
Step 1 to decrease the number of times the bad-performing arms get selected.
The choice of algorithm parameters including n0, T , Ñt and αt depends on κ̂∗,
and is described in section 5. Note also that the algorithm above implicitly as-
sume that N > ÑT . If ÑT is chosen such that N < ÑT , we simply stop the
algorithm at n = N .

Remark 3.1. Here, we provide some detailed discussion regarding the prac-
tical relevance of the randomized allocation procedure shown in Steps 1.2–1.3.
From the perspectives of minimax optimality, under our settings and with the
current technical tools available, if πn’s are uniformly lower bounded by a posi-
tive constant (and upper bounded by 1/lB due to the natural requirement from
randomized allocation), the RAAE algorithm can achieve the minimax regret
rate of Rigollet and Zeevi (2010), irrespective of the regression modeling method
chosen by the user. In particular, if we choose πn = 1/lB (that is, each active
arm has equal chance to be pulled), then the information from Step 1.2 is effec-
tively ignored and the RAAE algorithm essentially becomes analogous to ABSE
in the sense that both algorithms tend to pull each active arm an equal number
of times. Practically, we advocate the use of smaller πn to take advantage of the
additional information gained from Step 1.2. For example, we may use kernel
regression in Step 1.2 to estimate the reward function of each active arm. Then,
in Step 1.3, if we choose πn = 0.05 ∧ 1

lB
, the arm with the highest estimated

reward from Step 1.2 is pulled with larger probability than that of other active
arms in the randomized allocation (assuming lB < 20). Our empirical experi-
ence favors the latter choice of πn. Simulation examples are given in Appendix B
for comparison of the two different scenarios of πn, with kernel regressions as
the user-specified regression modeling method.

4. Smoothness parameter selector

Suppose f(x) is the mean reward function of a given arm, and a random sample
{(Xi, Yi), i = 1, · · · , n} of this arm is observed during the forced sampling step.
Recall that κ∗ and κ∗ (0 < κ∗ < κ∗ ≤ 1) are the known lower and upper bound
of κ, respective.

First, we make the following definitions. Define two integers

τ∗ = max
{
τ + 1 : 2τ ≤ n

1
2κ∗+d

}
and

τ∗ = max
{
τ : 2τ ≤ n

1
2κ∗+d

}
.

For any τ ∈ N, define uτ = 2−τ , and let κτ be the real number that satisfies

uτ = n− 1
2κτ+d . Then, it is not hard to see that there exists a constant Δ > 0
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such that κτ − κτ+1 ≤ Δ
logn for any τ ∈ [τ∗, τ

∗]. Given τ , we evenly partition

the domain into 1/ud
τ bins with bin width uτ , and let Dτ (x) denote the bin that

contains x ∈ [0, 1]d.
Next, with any given x ∈ [0, 1]d and τ ∈ N, we can define a histogram

estimator of f(x) by

θ̂τ (x) =

∑
i∈Hτ (x)

Yi

Mτ (x)
,

where Hτ (x) = {i : Xi ∈ Dτ (x), 1 ≤ i ≤ n}, and Mτ (x) is the size of Hτ (x).
Define τ̂ to be

min{τ ∈ [τ∗, τ
∗] : ‖θ̂τ − θ̂τ2‖∞ ≤ b1u

κτ2
τ2 γn for every τ2 satisfying τ < τ2 ≤ τ∗},

(4.1)
where ‖·‖∞ is the sup-norm, b1 is a constant satisfying b1 > 4ρ, and γn = logn.
Then the selected smoothness parameter for f(x) is κ̂ = min{κτ̂− b2 log logn

logn , κ∗},
where b2 is a constant satisfying b2 > (2κ∗+d)2

2κ .
The smoothness parameter selector described above is essentially searching

the largest possible uτ such that its corresponding estimator for f does not
differ too much from that of all smaller uτ ’s under sup norm. The resulting κτ̂

after minor adjustment is used to approximate the smoothness parameter of the
mean reward function.

To understand how well the method above performs when the knowledge of
κ is absent, consider a sub-class Σ0(κ, ρ) of Σ(κ, ρ) as follows. Given τ ∈ N and
x ∈ [0, 1]d, define

Kτf(x) =: E[f(X)|X ∈ Dτ (x)] =

∫
Dτ (x)

f(t)dPX(t)∫
Dτ (x)

dPX(t)
.

Then

Σ0(κ, ρ) =:
{
f ∈ Σ(κ, ρ) : there exists 0 < ρ1 < ρ and τ0 > 0 such that

‖Kτf − f‖∞ > ρ1u
κ
τ for every τ ≥ τ0

}
.

It is not hard to see that for any f ∈ Σ0(κ, ρ), we have that f /∈ Σ(κ̃, ρ)
for every κ̃ > κ. It is worth emphasizing that Σ0(κ, ρ) is not an unnatural
class of functions. Indeed, Σ0(κ, ρ) can be viewed as a class of functions that
satisfies a “self-similarity” condition (Condition 3 in Giné and Nickl, 2010; see
also Hoffmann and Nickl, 2011 and Bull, 2012). We defer the discussion of this
condition to section 6.

Assumption 4.1. The mean reward functions of all candidate arms are in
Σ(κ, ρ), and at least one reward function is in Σ0(κ, ρ).

Proposition 4.1. Suppose Assumptions 2.1, 2.2 and 4.1 hold. Then for κ̂∗

obtained in Step 0 of the RAAE algorithm, there exist a constant C̃H and an
integer nH such that

P
(
κ− Δ

logn
− b2 log logn

logn
< κ̂∗ ≤ κ

)
≥ 1− C̃H l(logn)2n−1/c∗
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for every n > nH , where c∗ = κ∗
2κ∗+d .

Proposition 4.1 indicates that with high probability, the estimated smooth-
ness parameter is no more than O(log logn/ logn) smaller than κ, the largest
possible smoothness parameter of the arm in Σ0(κ, ρ).

5. Finite-time regret analysis

The regret analysis of the RAAE algorithm relies on the appropriate choice of
the corresponding parameters. Set the parameters as follows. Let n0 = 	N c∗

and h1 = 1. Let stage number T be

T = min
{
t ∈ N :

h1

2t−1
≤ 6

( l log l
N

) 1
2κ̂∗+d}

. (5.1)

Given any stage t (1 ≤ t ≤ T ), define π̃t = min{πn : Ñt−1 + 1 ≤ n ≤ Ñt}.
Take the threshold αt in Step 2.3 to be αt = 4ρhκ̂∗

t (Alternatively, we may

choose αt =

√
c(1∨log(Nh2κ̂∗+d

t ))
N∗

B∧NB,i
, where N∗

B is the number of times the arm with

the maximum sample average is pulled in bin B during stage t, and c is some
constant. For brevity, we only show the proof under the former choice of αt). Set

Nt = γ̃th
−(2κ̂∗+d)
t (1 ∨ log(Nh2κ̂∗+d

t )), where γ̃t is a stage-dependent parameter
chosen to make Nt a positive integer. In particular, it suffices to assume

max
{8(v2 + cρ/2)

cρ2π̃t
,

56

3cπ̃t

}
≤ γ̃t ≤ γ < ∞, (5.2)

where γ is a positive constant. Note that such γ exists if {π̃t, t ≥ 1} is uni-
formly lower bounded by a positive constant. For the proof of Theorem 5.1, we
specifically set πn = 0.05 ∧ 1

lB
in Step 1.3.

Theorem 5.1. Under Assumptions 2.1, 2.2, 2.3 and 4.1, the mean cumulative
regret of the proposed algorithm satisfies

ERN (η) ≤ C̃N
( l log l

N

)κ(1+α)
2κ+d

(logN)c
∗
,

where C̃ is a positive constant (not depending on N or l) and c∗= d(1+α)(2κ∗+d)2

κκ∗(2κ+d) .

The cumulative regret rate in Theorem 5.1 matches the minimax rate ob-
tained by Perchet and Rigollet (2013) up to a logarithmic factor. The addi-
tional logarithmic term is the price we pay for not knowing κ. If the value
of κ is available, we simply set κ̂∗ = κ and the exact minimax rate can be
achieved.

It is noted that the sample size n0 used for the smoothness parameter selector
in Step 0 of the RAAE algorithm has to be carefully chosen with the consid-
eration of the subsequent steps. The sample size n0 should be large enough so
that the estimation of κ becomes accurate enough with a high probability before
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its subsequent use. On the other hand, n0 should be small enough so that the
regret from Step 0 can be controlled within the desired range. It is also worth
mentioning that although the proposed algorithm appears to assume a known
value for ρ, it suffices to know the upper and lower bound of ρ to obtain the
same rate.

Remark 5.1. As is pointed out in section 1, the ABSE algorithm (Perchet and
Rigollet, 2013) can also be used for adaptively achieving a near minimax rate
when equipped with the Lepski-type smoothness parameter selector. Indeed, in
the proof of Theorem 5.1, we can see that Step 0 essentially serves as a plugged-
in estimator of the smoothness parameter κ, and, because of Proposition 4.1, the
analysis can go through almost like we knew the true κ by using its estimator
κ̂∗ (in place of κ).

6. Discussion

In the nonparametric MABC problem, as far as we know, no algorithms before
this work have been shown to be minimax-rate optimal adaptively with re-
spect to the unknown smoothness parameter κ. The Lepski’s method is known
to have successful applications in the context of adaptive nonparametric esti-
mations. In the following, we discuss the connection of our proposed MABC
algorithm with adaptive nonparametric estimation when the Lepski’s method
is applied.

In the context of the RAAE algorithm, heuristically speaking, under-estima-
tion of κ results in overly small bin width so that the smoothness of the reward
functions is not fully utilized. Over-estimation of κ leads to possible pre-mature
elimination of good-performing arms, the probability of which cannot be prop-
erly bounded. Interestingly, in nonparametric estimation, the Lepski’s approach
also has to consider separately the events that its built-in selector generates
too small or too large smoothness parameter estimates. The former event (i.e.,
under-estimation of κ) is usually considered the technically “complicated” case
of the two in nonparametric estimation. Its counterpart in the MABC problem
(see Lemma A.3) turns out to be straightforward because the event probability
can be bounded tightly by using the moment condition (Assumption 2.2) and
a Bernstein-type inequality. The observation that the former event has a tight
probability is shared in, e.g., Lepski (1990) and Lepski, Mammen and Spokoiny
(1997) under a Gaussian white noise model. On the other hand, the latter event
(i.e., over-estimation of κ) is usually considered the technically “easy” case of
the two in nonparametric estimation because of the straightforward use of the
built-in selector’s definition. But such “easy” results do not apply to the MABC
problem since the over-estimation of κ will have adverse effects on subsequent
procedures.

Indeed, the difficulty caused by the over-estimation of κ is shared in the
adaptive confidence bound problems. If we only consider the Hölder condition
without further assumptions, it is known that the adaptive confidence bound
generally does not exist (Low, 1997). As one solution to overcome such difficulty,
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Giné and Nickl (2010) propose a “self-similarity” condition, and show that the
functions that do not satisfy this condition can be a negligible subset of Hölder
class (see Condition 3 and Proposition 4 in Giné and Nickl, 2010). It turns out
that the function class Σ0(κ, ρ) defined in section 4 takes the form of their “self-
similarity” condition. To see such connection, we consider the special case in the
rest of the discussion that the covariate is univariate and has the distribution
PX ∼ Uniform[0, 1].

Consider the wavelet kernel as follows (Härdle et al., 1998). Let φ and ψ be
the father Harr wavelet and mother Harr wavelet, that is, φ(x) = I(x ∈ (0, 1])
and ψ(x) = I(x ∈ [0, 1

2 ]) − I(x ∈ ( 12 , 1]). Let φτk(x) = 2τ/2φ(2τx − k). Define
the wavelet kernel

K(x, x′) =
∑
k

φ(x− k)φ(x′ − k),

and define Kτ (x, x
′) = 2τK(2τx, 2τx′). Then the projection of function f ∈

Σ(κ, ρ) to the linear subspace with basis Vτ = {φτk : k ∈ Z} is

K̃τf(x) =:

∫
[0,1]

Kτ (x, z)f(z)dz.

Note that if x ∈ ( k0

2τ ,
k0+1
2τ ] for some k0 ∈ {0, 1, · · · , 2τ − 1}, then

K̃τf(x) =
1

2−τ

∑
k

∫
[0,1]

φ(2τx− k)φ(2τz − k)f(z)dz

=
1

2−τ

∫
[0,1]

φ(2τz − k0)f(z)dz

=

∫
(
k0
2τ ,

k0+1
2τ ]

f(z)dz

2−τ

= Kτf(x).

With the above, it is clear that if we only consider f ∈ Σ(κ, ρ), then Condition
3 of Giné and Nickl (2010) (that is, there exist positive constants ρ2 ≤ ρ and a
positive integer τ0 such that for every integer τ ≥ τ0, ρ22

−τκ ≤ ‖K̃τf − f‖∞ ≤
ρ2−τκ) becomes largely equivalent to the definition of Σ0(κ, ρ). Inspired by such
connection, it is conjectured that Σ0(κ, ρ) can be a “rich” sub-class in Σ(κ, ρ).
In fact, it is not hard to show that for any function f ∈ Σ(κ, ρ), if for some
x0 ∈ [0, 1] and some constants U1, U2 �= 0,

lim
v→0+

f(x0 + v)− f(x0)

|v|κ = U1 or lim
v→0−

f(x0 + v)− f(x0)

|v|κ = U2, (6.1)

then f ∈ Σ0(κ, ρ). Interestingly, since the functions constructed in Theorem 4.1
of Rigollet and Zeevi (2010) satisfy (6.1) and consequently belong to Σ0(κ, ρ),
the rate obtained in Theorem 5.1 remains to be the near minimax rate for
Σ0(κ, ρ) under Assumption 4.1.
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Appendix A: Lemmas and proofs

The proofs of Proposition 4.1 and Theorem 5.1 are given in the sections A.1
and A.2, respectively. To keep this paper self-contained, we list the following
two lemmas for convenience, and their proofs can be found in Qian and Yang
(2016).

Lemma A.1. Suppose {Fj , j = 1, 2, · · · } is an increasing filtration of σ-fields.
For each j ≥ 1, let εj be an Fj+1-measurable random variable that satisfies
E(εj |Fj) = 0, and let Tj be an Fj-measurable random variable that is upper
bounded by a constant C > 0 in absolute value almost surely. If there exist
positive constants v and c such that for all k ≥ 2 and j ≥ 1, E(|εj |k|Fj) ≤
k!v2ck−2/2, then for every ε > 0 and every integer n ≥ 1,

P
( n∑
j=1

Tjεj ≥ nε
)
≤ exp

(
− nε2

2C2(v2 + cε/C)

)
.

Lemma A.2. Suppose {Fj , j = 1, 2, · · · } is an increasing filtration of σ-fields.
For each j ≥ 1, let Wj be an Fj-measurable Bernoulli random variable whose
conditional success probability satisfies

P (Wj = 1|Fj−1) ≥ βj

for some 0 ≤ βj ≤ 1. Then given n ≥ 1,

P
( n∑
j=1

Wj ≤
( n∑
j=1

βj

)
/2

)
≤ exp

(
−
3
∑n

j=1 βj

28

)
.

A.1. Proof of Proposition 4.1

Proposition 4.1 is a straightforward result of the following two lemmas.

Lemma A.3. Suppose f(·) ∈ Σ(κ, ρ) and Assumptions 2.1 and 2.2 hold. Then
for κ̂ obtained by procedures in section 4, there exists an integer n∗ and a con-
stant CH such that

P
(
κ̂ ≤ κ− Δ

logn
− b2 log logn

logn

)
≤ CH(logn)2

n1/c∗

for every n > n∗

Proof of Lemma A.3. Define

τ̃ = max
{
τ + 1 : 2τ̃ ≤ n

1
2κ+d

}
.

Let κ̃ = κτ̃ and κ̌ = κτ̂ . Then by the definition in (4.1),
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{κ̌ ≤ κ̃}

⇒
τ∗⋃
τ̃=1

{τ̂ = τ}

⇒
τ∗−1⋃
τ=τ̃−1

τ∗⋃
τ2=τ+1

{‖θ̂τ − θ̂τ2‖∞ > b1u
κτ2
τ2 γn}

⇒
τ∗−1⋃
τ=τ̃−1

τ∗⋃
τ2=τ+1

{
{‖θ̂τ − f‖∞ >

b1u
κτ2
τ2 γn
2

} ∪ {‖θ̂τ2 − f‖∞ >
b1u

κτ2
τ2 γn
2

}
}
.

(A.1)

Given τ ∈ N, let Mτ be the set of bins with bin width uτ that partition the
domain. Clearly, |Mτ | = 1/ud

τ .

Then, given any τ2 and τ such that τ̃ − 1 ≤ τ ≤ τ2 ≤ τ∗, we have

P
(
‖θ̂τ − f‖∞ >

b1u
κτ2
τ2 γn
2

)
≤

∑
B∈Mτ

P
(
sup
x∈B

|θ̂τ (x)− f(x)| > b1u
κτ2
τ2 γn
2

)
. (A.2)

To derive the upper bound for the inequality above, note that if Mτ (x) > 0,

θ̂τ (x)−f(x) =

∑
i∈Hτ (x)

(
Yi − f(x)

)
Mτ (x)

=

∑
i∈Hτ (x)

εi

Mτ (x)
+

∑
i∈Hτ (x)

(
f(Xi)− f(x)

)
Mτ (x)

.

Let x∗
B be a fix point in bin B ∈ Mτ , then the previous display implies that

sup
x∈B

|θ̂τ (x)− f(x)| ≤

∣∣∣∑i∈Hτ (x∗
B) εi

∣∣∣
Mτ (x∗

B)
+ ρuκ

τ . (A.3)

Define

Aτ,B =
{
Mτ (x

∗
B) >

ncud
τ

2

}
and

Jτ,B =
{
sup
x∈B

|θ̂τ (x)− f(x)| > b1u
κτ2
τ2 γn
2

}
.

Then,

P (Jτ,B) ≤ P (Ac
τ,B) + P (Jτ,B , Aτ,B)

≤ P (Ac
τ,B) + P

(∣∣∣∑i∈Hτ (x∗
B) εi

∣∣∣
Mτ (x∗

B)
>

b1u
κτ2
τ2 γn
2

− ρuκ
τ , Aτ,B

)

≤ P (Ac
τ,B) + P

(∣∣∣∑i∈Hτ (x∗
B) εi

∣∣∣
Mτ (x∗

B)
>

b1u
κτ2
τ2 γn
4

, Aτ,B

)
, (A.4)
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where the second inequality follows by (A.3) and the last inequality follows by
the fact that ρhκ

τ < b1u
κτ2
τ2 γn/4 for large enough n. Note that by Lemma A.1,

PXn

(∣∣∣∑i∈Hτ (x∗
B) εi

∣∣∣
Mτ (x∗

B)
> ε

)
≤ exp

(
−Mτ (x

∗
B)ε

2

2(v2 + cε)

)
.

As a result,

P
(∣∣∣∑i∈Hτ (x∗

B) εi

∣∣∣
Mτ (x∗

B)
>

b1u
κτ2
τ2 γn
4

, Aτ,B

)

≤ exp
(
− ncud

τ b
2
1u

2κτ2
τ2 γ2

n

64(v2 + cb1u
κτ2
τ2 γn/4)

)

≤ exp
(
− cb21γ

2
n

128v2

)
≤n− d

2κ∗+d−
1
c∗ , (A.5)

where the last two inequalities follow by the observation that nud
τu

2κτ2
τ2 ≥ 1,

cb1γn

4nc∗ ≤ v2 and
cb21 log n
128v2 > d

2κ∗+d + 1
c∗

for large enough n. Also, since P (I(Xi ∈
B)) ≥ cud

τ for any B ∈ Dτ , by Lemma A.2,

P (Ac
τ,B) ≤ exp

(
−3cnud

τ

28

)
. (A.6)

Thus, by (A.2), (A.4), (A.5), (A.6), and the fact that u−d
τ ≤ CH1n

d
2κ∗+d for

some constant CH1 > 0, we have

P
(
‖θ̂τ − f‖∞ >

b1u
κτ2
τ2 γn
2

)
≤u−d

τ exp
(
−3cnud

τ

28

)
+ u−d

τ n− d
2κ∗+d− 1

c∗

≤2CH1

n1/c∗
.

In together with (A.1) and κ̃ > κ− Δ
logn , we know that there exists n∗ and some

constant CH such that

P
(
κ̌ ≤ κ− Δ

log n

)
≤ P

(
κ̌ ≤ κ̃

)
≤ CH(log n)2

n1/c∗

for any n > n∗. This completes the proof of Lemma A.3.

Lemma A.4. Suppose f(·) ∈ Σ0(κ, ρ) and Assumptions 2.1 and 2.2 hold. Then
for κ̂ obtained by procedures in section 4, there exists an integer n∗ and a con-
stant C∗

H > 0 such that

P (κ̂ > κ) ≤ C∗
H

n1/c∗

for every n > n∗.
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Proof of Lemma A.4. Let τ̃ , κ̃ and κ̌ be defined as in the proof of Lemma A.3.
Let κ′ = κ+ b2 log logn

logn . Define the integer

τ ′ = max{τ : 2τ ≤ n
1

2κ′+d }

Then by definition in (4.1) and the fact that τ ′ < τ̃ ,

{κ̌ > κ′}
⇒{τ̂ ≤ τ ′}
⇒{‖θ̂τ ′ − θ̂τ̃‖∞ ≤ b1u

κ̃
τ̃ }

⇒{‖θ̂τ ′ − f‖∞ ≤ 3

2
b1u

κ̃
τ̃γn} ∪ {‖θ̂τ̃ − f‖∞ >

1

2
b1u

κ̃
τ̃γn}. (A.7)

Recall from the proof of Lemma A.3 that there is a constant CH1 such that

P
(
‖θ̂τ̃ − f‖∞ >

1

2
b1u

κ̃
τ̃γn

)
≤ 2CH1

n1/c∗
. (A.8)

It remains to find the upper bound for P (‖θ̂τ ′ − f‖∞ ≤ 3
2b1u

κ̃
τ̃γn). Note that by

triangle inequalities,

|θ̂τ ′(x)− f(x)|

=
∣∣∣
∑

i∈Hτ′ (x) f(Xi)

Mτ ′(x)
−Kτ ′f(x) +Kτ ′f(x)− f(x) +

∑
i∈Hτ′ (x) εi

Mτ ′(x)

∣∣∣
≥|Kτ ′f(x)− f(x)| −

∣∣∣
∑

i∈Hτ′ (x) f(Xi)

Mτ ′(x)
−Kτ ′f(x)

∣∣∣− ∣∣∣
∑

i∈Hτ′ (x) εi

Mτ ′(x)

∣∣∣.
The previous inequality implies that for large enough n,

‖θ̂τ ′ − f‖∞

≥‖Kτ ′f − f‖∞ − sup
x

∣∣∣
∑

i∈Hτ′ (x) f(Xi)

Mτ ′(x)
−Kτ ′f(x)

∣∣∣− sup
x

∣∣∣
∑

i∈Hτ′ (x) εi

Mτ ′(x)

∣∣∣
=: ‖Kτ ′f − f‖∞ − Γ1 − Γ2

>ρ1u
κ
τ ′ − Γ1 − Γ2

≥ 2b1u
κ̃
τ̃γn − Γ1 − Γ2 (A.9)

where the second to last inequality follows by that f ∈ Σ0(κ, ρ), and the last
inequality follows because

uκ
τ ′

uκ̃
τ̃

≥ n− κ
2κ′+d

n−κ+Δ/ log n
2κ+d

= e
Δ

2κ+dn
2κ(κ′−κ)

(2κ+d)(2κ′+d) ≥ e
Δ

2κ+d (logn)
2κb2

(2κ∗+d)2 >
2b1γn
ρ1

.

Also, by derivations similar to that of (A.5) and (A.6),
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P
(
Γ2 ≥ 1

4
b1u

κ̃
τ̃γn

)
≤u−d

τ ′

(
exp

(
−3cnud

τ ′

28

)
+ exp

(
− cb21γ

2
n

256v2

))
≤ 2CH1

n1/c∗
, (A.10)

for all large enough n. Similarly, we can apply Azuma’s inequality to obtain
that

P
(
Γ1 ≥ 1

4
b1u

κ̃
τ̃γn

)
≤u−d

τ ′

(
exp

(
−3cnud

τ ′

28

)
+ exp

(
− (cnud

τ ′/2)b21u
2κ̃
τ̃ γ2

n

64‖f‖∞

))

≤ 2CH1

n1/c∗
, (A.11)

for all large enough n. Then, by (A.9), (A.10) and (A.11),

P
(
‖θ̂τ ′ − f‖∞ ≤ 3

2
b1u

κ̃
τ̃γn

)
≤P

(
2b1u

κ̃
τ̃γn − Γ1 − Γ2 ≤ 3

2
b1u

κ̃
τ̃γn

)
≤P

(
Γ1 ≥ 1

4
b1u

κ̃
τ̃γn

)
+ P

(
Γ2 ≥ 1

4
b1u

κ̃
τ̃γn

)
≤ 4CH1

n1/c∗
.

Together with (A.7) and (A.8),

P (κ̌ > κ′) ≤ 6CH1

n1/c∗
,

which completes the proof of Lemma A.4.

Proof of Proposition 4.1. By Lemma A.3 and Assumption 4.1,

P
(
κ̂∗ ≤ κ− Δ

log n
− b2 log log n

logn

)
≤

l∑
i=1

P
(
κ̂(∗) ≤ κ− Δ

logn
− b2 log logn

log n

)
≤ CH l(logn)2n−1/c∗ .

Together with Lemma A.4 and the fact that there exists fi ∈ Σ0(κ, ρ), the proof
of Proposition 4.1 is complete.

A.2. Proof of Theorem 5.1

Proof of Theorem 5.1. Let V0 = {κ − Δ
logn − b2 log logn

logn < κ̂∗ ≤ κ}. Inspired by
the technique employed in the proof of Theorem 5.1 in Perchet and Rigollet
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(2013), we define some sets and events as follows. For every bin B ∈ BT (at
stage T ), recall that pt(B) is the parent bin of set B at stage t, and Spt(B) is the
set of arms in pt(B) that survive the stage t arm elimination. Then, for every
bin B ∈ BT and every t (1 ≤ t ≤ T ), define the sets of arms

St,B,1 = {1 ≤ i ≤ l : there exists some x ∈ pt(B) such that f∗(x) = fi(x)},
St,B,2 = {1 ≤ i ≤ l : for every x ∈ pt(B), f∗(x)− fi(x) ≤ 8ρhκ̂∗

t },

and define the events

Gt,B,1 = {St,B,1 ⊆ Spt(B)},
Gt,B,2 = {Spt(B) ⊆ St,B,2}.

Here, we consider Gt,B,1 and Gt,B,2 as “good” events because Gt,B,1 means
that all possible best arms in bin pt(B) survive the stage t arm elimination, and
Gt,B,2 means that all survived arms in Spt(B) have regret no larger than 8ρhκ̂∗

t .
Further define the sets

At,B = Gt,B,1 ∩Gt,B,2, (A.12)

Ft,B = ∩1≤k≤tAk,B . (A.13)

The set At,B means that the “good” events happen at stage t, and Ft,B means
that such “good” events happen during all of the first t stages. Note that

RN (η) = RN (η)I(V c
0 ) +RN (η)I(V0) (A.14)

and

RN (η)I(V0) ≤ wln0 +

N∑
n=Ñ0+1

(
f∗(Xn)− fIn(Xn)

)
I(V0)

≤ wln0 +
∑

B∈BT

N∑
n=Ñ0+1

(
f∗(Xn)− fIn(Xn)

)
I(V0)I(Xn ∈ B)

=: wln0 +
∑

B∈BT

RB . (A.15)

Let R
(0)
N =

∑
B∈BT

RB . Then, by the tree diagram,

R
(0)
N =

∑
B∈BT

RBI(A
c
1,B) +

∑
B∈BT

RBI(F1,B ∩Ac
2,B) + · · ·

+
∑

B∈BT

RBI(FT−1,B ∩Ac
T,B) +

∑
B∈BT

RBI(FT,B)

=: R1 +R2 + · · ·+RT +RT+1. (A.16)

Next, we provide upper bounds for R1, R2, · · · , RT+1. By definition,

R1 =

N∑
n=Ñ0+1

∑
B∈BT

(
f∗(Xn)− fIn(Xn)

)
I(Xn ∈ B)I(V0 ∩Ac

1,B)
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≤
Ñ1∑

n=Ñ0+1

∑
B∈BT

wI(Xn ∈ B)I(V0 ∩Ac
1,B)

+

N∑
n=Ñ1+1

∑
B∈BT

wI(Xn ∈ B)I(V0 ∩Ac
1,B).

Let E(0)(·) and P (0)(·) denote the conditional expectation and conditional prob-
ability given κ̂∗ = κ0 (κ − Δ

logn − b2 log log n
logn < κ0 ≤ κ), respectively. Then, by

independence of the event {Xn ∈ B} with Ac
1,B (Ñ1+1 ≤ n ≤ N) given κ̂∗ = κ0,

E(0)(R1) ≤ E(0)
( Ñ1∑
n=Ñ0+1

∑
B∈BT

wI(Xn ∈ B)I(Ac
1,B)

)

+

N∑
n=Ñ1+1

∑
B∈BT

wP (Xn ∈ B)P (0)(Ac
1,B)

≤ E(0)
( Ñ1∑
n=Ñ0+1

∑
B∈BT

wI(Xn ∈ B)I(Ac
1,B)

)

+
N∑

n=Ñ1+1

w max
B∈BT

P (0)(Ac
1,B)

≤ E(0)
( Ñ1∑
n=Ñ0+1

∑
B∈BT

wI(Xn ∈ B)I(Ac
1,B)

)
+ 4wlh

−(2κ0+d)
1 , (A.17)

where the last inequality follows by Lemma A.5. Similarly, by definition, for
2 ≤ t ≤ T ,

Rt =

N∑
n=Ñ0+1

∑
B∈BT

(
f∗(Xn)− fIn(Xn)

)
I(Xn ∈ B)I(V0 ∩ Ft−1,B ∩Ac

t,B)

≤
Ñ1∑

n=Ñ0+1

∑
B∈BT

wI(Xn ∈ B)I(V0 ∩ Ft−1,B ∩Ac
t,B)

+

t−1∑
k=1

( Ñk+1∑
n=Ñk+1

∑
B∈BT

(
f∗(Xn)− fIn(Xn)

)
×

I(Xn ∈ B, 0 < f∗(Xn)− f �(Xn) ≤ 8ρhκ̂∗

t−1)I(V0 ∩ Ft−1,B ∩Ac
t,B)

)

+
N∑

n=Ñt+1

∑
B∈BT

(
f∗(Xn)− fIn(Xn)

)
×

I(Xn ∈ B, 0 < f∗(Xn)− f �(Xn) ≤ 8ρhκ̂∗

t−1)I(V0 ∩ Ft−1,B ∩Ac
t,B)
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≤
Ñ1∑

n=Ñ0+1

∑
B∈BT

wI(Xn ∈ B)I(V0 ∩ Ft−1,B ∩Ac
t,B)

+

t−1∑
k=1

( Ñk+1∑
n=Ñk+1

8ρhκ̂∗

k I(0 < f∗(Xn)− f �(Xn) ≤ 8ρhκ̂∗

t−1)
)

+

N∑
n=Ñt+1

∑
B∈BT

8ρhκ̂∗

t−1I(Xn ∈ B, 0 < f∗(Xn)− f �(Xn) ≤ 8ρhκ̂∗

t−1)×

I(V0 ∩ Ft−1,B ∩Ac
t,B)

where the second to last inequality follows by the definition of event Ft−1,B .
Then, by conditional independence of the event {Xn ∈ B, 0 < f∗(Xn) −
f �(Xn) ≤ 8ρhκ̂∗

t−1} with Ft−1,B ∩Ac
t,B (Ñt + 1 ≤ n ≤ N), given κ̂∗ = κ0,

E(0)(Rt)

≤ E(0)
( Ñ1∑
n=Ñ0+1

∑
B∈BT

wI(Xn ∈ B)I(Ft−1,B ∩Ac
t,B)

)

+

t−1∑
k=1

c0(8ρh
κ0

k )1+αNk+1

+

N∑
n=Ñt+1

∑
B∈BT

8ρhκ0
t−1P (Xn ∈ B, 0 < f∗(Xn)− f �(Xn) ≤ 8ρhκ0

t−1)

× P (0)(Ft−1,B ∩Ac
t,B)

≤ E(0)
( Ñ1∑
n=Ñ0+1

∑
B∈BT

wI(Xn ∈ B)I(Ft−1,B ∩Ac
t,B)

)

+

t−1∑
k=1

c0(8ρh
κ0

k )1+αγh
−(2κ0+d)
k+1 log(Nh2κ0+d

k+1 ) + 4lc0(8ρh
κ0
t−1)

1+αh
−(2κ0+d)
t ,

(A.18)

where the first inequality follows by Assumption 2.3, and the second inequality
follows by Assumption 2.3, Lemma A.5 and the choice of {Nk, 1 ≤ k ≤ t}.
Similarly, by definition,

RT+1 =

N∑
n=Ñ0+1

∑
B∈BT

(
f∗(Xn)− fIn(Xn)

)
I(Xn ∈ B)I(V0 ∩ FT,B)

≤
Ñ1∑

n=Ñ0+1

∑
B∈BT

wI(Xn ∈ B)I(V0 ∩ FT,B)
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+

T−1∑
k=1

( Ñk+1∑
n=Ñk+1

∑
B∈BT

(
f∗(Xn)− fIn(Xn)

)
×

I(Xn ∈ B, 0 < f∗(Xn)− f �(Xn) ≤ 8ρhκ̂∗

k )I(V0 ∩ FT,B)
)

+

N∑
n=ÑT+1

∑
B∈BT

(
f∗(Xn)− fIn(Xn)

)
×

I(Xn ∈ B, 0 < f∗(Xn)− f �(Xn) ≤ 8ρhκ̂∗

T )I(V0 ∩ FT,B)

≤
Ñ1∑

n=Ñ0+1

∑
B∈BT

wI(Xn ∈ B)I(V0 ∩ FT,B)

+
T−1∑
k=1

( Ñk+1∑
n=Ñk+1

8ρhκ̂∗

k I(0 < f∗(Xn)− f �(Xn) ≤ 8ρhκ̂∗

k )
)

+

N∑
n=ÑT+1

8ρhκ̂∗

T I(0 < f∗(Xn)− f �(Xn) ≤ 8ρhκ̂∗

T ).

Then, given κ̂∗ = κ0,

E(0)(RT+1) ≤ E(0)
( Ñ1∑
n=Ñ0+1

∑
B∈BT

wI(Xn ∈ B)I(FT,B)
)

(A.19)

+

T−1∑
k=1

c0(8ρh
κ0

k )1+αγh
−(2κ0+d)
k+1 log(Nh2κ0+d

k+1 ) +N(8ρhκ0

T )1+α.

Combining (A.16)–(A.19), we have

E(0)(R
(0)
N ) ≤ wγh

−(2κ0+d)
1 log(Nh2κ0+d

1 ) + 4wlh
−(2κ0+d)
1

+

T∑
t=2

t−1∑
k=1

c0(8ρh
κ0

k )1+αγh
−(2κ0+d)
k+1 log(Nh2κ0+d

k+1 )

+

T∑
t=2

4lc0(8ρh
κ0
t−1)

1+αh
−(2κ0+d)
t

+

T−1∑
k=1

c0(8ρh
κ0

k )1+αγh
−(2κ0+d)
k+1 log(Nh2κ0+d

k+1 ) +N(8ρhκ0

T )1+α

≤ wγ logN + 4wl + C1lh
−(κ0−κ0α+d)
T (1 + log(Nh2κ0+d

T ))

+ C2Nhκ0+κ0α
T

≤ C3N
κ0−κ0α+d

2κ0+d (l log l)
κ0(1+α)
2κ0+d

≤ C4N
( l log l

N

)κ(1+α)
2κ+d

(logN)c
∗
, (A.20)
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where C1, · · · , C4 are some positive constants, and the last inequality follows by
κ − Δ

logn − b2 log logn
logn < κ0 ≤ κ. Then, by (A.14), (A.15), (A.20) and Proposi-

tion 4.1, there exists some constant C̃ > 0 such that

ERN (η) ≤ wNP (V c
0 ) + wln0 + ER

(0)
N ≤ C̃N

( l log l
N

)κ(1+α)
2κ+d

(logN)c
∗
.

This completes the proof of Theorem 5.1.

The proof of Theorem 5.1 above needs the following lemma.

Lemma A.5. Suppose the conditions of Theorem 5.1 are satisfied. If the events
At,B and Ft,B (1 ≤ t ≤ T ) are defined as in (A.12) and (A.13), respectively,

then given any κ0 satisfying κ− Δ
log n − b2 log logn

logn < κ0 ≤ κ,

P (0)(Ac
1,B) ≤

4l

Nh2κ0+d
1

and P (0)(Ft−1,B ∩Ac
t,B) ≤

4l

Nh2κ0+d
t

, 2 ≤ t ≤ T,

where P (0)(·) is the conditional probability given κ̂∗ = κ0.

Proof of Lemma A.5. Given 2 ≤ t ≤ T − 1 and B ∈ BT , to find P (0)(Ft−1,B ∩
Ac

t,B), note that by definition, Ac
t,B = Gc

t,B,1 ∪ (Gt,B,1 ∩ Gc
t,B,2). As a result,

under Ft−1,B ∩Ac
t,B , either Ft−1,B ∩Gc

t,B,1 or Ft−1,B ∩Gt,B,1 ∩Gc
t,B,2 happens.

First, we assume the event Ft−1,B ∩Gc
t,B,1 happens. Since Gc

t,B,1 = {St,B,1 ⊆
Spt(B)}c, the event Ft−1,B ∩Gc

t,B,1 implies that there exists an arm i1 ∈ St,B,1

such that arm i1 is eliminated at the end of stage t (within bin pt(B)). For
notation brevity, denote pt(B) by B̃. Recall that if NB̃,i �= 0, we have ȲB̃,i =∑

n∈HB̃,i
Yi,n/NB̃,i. Then, by the arm elimination mechanism, there exists an

arm i2 ∈ SB̃ such that

ȲB̃,i2
− ȲB̃,i1

> αt = 4ρhκ0
t . (A.21)

For every arm 1 ≤ i ≤ l, define f̄B̃,i =
∑

n∈HB̃,i
fi(Xn)/NB̃,i if NB̃,i �= 0. Then,

since NB̃,i1
�= 0 and NB̃,i2

�= 0,

f̄B̃,i2
− f̄B̃,i1

=

∑
n∈HB̃,i2

fi2(Xn)

NB̃,i2

−
∑

n∈HB̃,i1

fi1(Xn)

NB̃,i1

≤ max
x∈B̃

f∗(x)−
∑

n∈HB̃,i1

fi1(Xn)

NB̃,i1

=

∑
n∈HB̃,i1

(
maxx∈B̃ f∗(x)− fi1(Xn)

)
NB̃,i1

. (A.22)

Since i1 ∈ St,B,1, by Assumption 4.1, for every x′ ∈ B̃, maxx∈B̃ f∗(x)−fi1(x
′) ≤

2ρhκ
t . Therefore, we have by (A.22) that

f̄B̃,i2
− f̄B̃,i1

≤ 2ρhκ
t . (A.23)
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By (A.21), (A.23) and the fact that both arms i1 and i2 are in Spt−1(B), we
conclude that under Ft−1,B ∩Gc

t,B,1, there exists an arm i ∈ Spt−1(B) such that
NB̃,i �= 0 and

|ȲB̃,i − f̄B̃,i| =
∣∣∣
∑

n∈HB̃,i
εn

NB̃,i

∣∣∣ > ρhκ0
t . (A.24)

Next, we assume that the event Ft−1,B ∩ Gt,B,1 ∩ Gc
t,B,2 happens. Since

Gc
t,B,2 = {SB̃ ⊆ St,B,2}c, there exists an arm i3 ∈ SB̃ and some x̃ ∈ B̃ such that

f∗(x̃)− fi3(x̃) > 8ρhκ0
t . Also, by event Gt,B,1, there exists an arm i4 ∈ SB̃ such

that f∗(x̃) = fi4(x̃). Therefore,

fi4(x̃)− fi3(x̃) > 8ρhκ0
t . (A.25)

Then, by Assumption 4.1, if NB̃,i3
�= 0 and NB̃,i4

�= 0,

f̄B̃,i4
− f̄B̃,i3

=

∑
n∈HB̃,i4

fi4(Xn)

NB̃,i4

−
∑

n∈HB̃,i3

fi3(Xn)

NB̃,i3

≥
∑

n∈HB̃,i4

(
fi4(x̃)− ρhκ

t

)
NB̃,i4

−
∑

n∈HB̃,i3

(
fi3(x̃) + ρhκ

t

)
NB̃,i3

= fi4(x̃)− fi3(x̃)− 2ρhκ
t

> 6ρhκ0
t , (A.26)

where the last inequality follows by (A.25). Also, since i3, i4 ∈ SB̃ implies that

arms i3 and i4 are not eliminated at the end of stage t in bin B̃, if NB̃,i3
�= 0

and NB̃,i3
�= 0,

|ȲB̃,i4
− ȲB̃,i3

| ≤ αt = 4ρhκ0
t . (A.27)

By (A.26) and (A.27), we conclude that under Ft−1,B∩Gt,B,1∩Gc
t,B,2, ifNB̃,i �= 0

for all i ∈ Spt−1(B), there exists an arm i ∈ SB̃ such that

|ȲB̃,i − f̄B̃,i| =

∣∣∑
n∈HB̃,i

εn
∣∣

NB̃,i

> ρhκ0
t . (A.28)

Combining (A.24) and (A.28), we know that under event Ft−1,B ∩ Ac
t,B , if

NB̃,i �= 0 for all i ∈ Spt−1(B), there exists an arm i ∈ Spt−1(B) such that

∣∣∑
n∈HB̃,i

εn
∣∣

NB̃,i

> ρhκ0
t .

Also, in the rest of this proof, we let P (·) = P (0)(·). Consequently,

P (Ft−1,B ∩Ac
t,B)

≤P (∃ arm i ∈ Spt−1(B) such that NB̃,i = 0)
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+ P
(
∃ arm i ∈ Spt−1(B) such that NB̃,i �= 0 and

∣∣∑
n∈HB̃,i

εn
∣∣

NB̃,i

> ρhκ0
t

)

≤ l max
1≤i≤l

P
(
NB̃,i = 0

∣∣∣ arm i ∈ Spt−1(B)

)
(A.29)

+ l max
1≤i≤l

P
(
NB̃,i �= 0,

∣∣∑
n∈HB̃,i

εn
∣∣

NB̃,i

> ρhκ0
t

∣∣∣ arm i ∈ Spt−1(B)

)
.

Given 1 ≤ i ≤ l, for notation brevity, define C
(i)
t−1 = {arm i ∈ Spt−1(B)}. For the

upper bound of the first term in (A.29), note that

P
(
NB̃,i = 0

∣∣∣C(i)
t−1

)
≤ P

(NB̃,i

Nt
≤ chd

t π̃t

2

∣∣∣C(i)
t−1

)
≤ exp

(
−3cNth

d
t π̃t

28

)
, (A.30)

where the last inequality follows by Lemma A.2 and the fact that P (Xn ∈
B̃, In = i |C(i)

t−1) ≥ chd
t π̃t for all Ñt−1+1 ≤ n ≤ Ñt. To provide the upper bound

for the second term in (A.29), define HB̃ = {n : Ñt−1 + 1 ≤ n ≤ Ñt, Xn ∈ B̃}
to be the set of time points during stage t at which the covariates fall into bin
B̃. Let NB̃ be the size of HB̃ . Then,

P
(
NB̃,i �= 0,

∣∣∑
n∈HB̃,i

εn
∣∣

NB̃,i

> ρhκ0
t

∣∣∣C(i)
t−1

)

≤P
(NB̃

Nt
≤ chd

t

2

)
+ P

(
NB̃,i �= 0,

∣∣∑
n∈HB̃,i

εn
∣∣

NB̃,i

> ρhκ0
t ,

NB̃

Nt
>

chd
t

2

∣∣∣C(i)
t−1

)

≤P
(NB̃

Nt
≤ chd

t

2

)
+ EcPXt

(
NB̃,i �= 0,

∣∣∑
n∈HB̃,i

εn
∣∣

NB̃,i

> ρhκ0
t ,

NB̃

Nt
>

chd
t

2

)
,

(A.31)

where PXt(·) denotes the conditional probability given (XNt−1 + 1, XNt−1 +

2, · · · , XNt), C
(i)
t−1 and {κ̂∗ = κ0}, and Ec(·) denotes the conditional expectation

given C
(i)
t−1 and {κ̂∗ = κ0}. Since P (Xn ∈ B̃) ≥ chd

t , by Lemma A.2,

P
(NB̃

Nt
≤ chd

t

2

)
≤ exp

(
−3cNth

d
t

28

)
. (A.32)

Note that under the event {NB̃/Nt > chd
t /2}, we have

PXt

(
NB̃,i �= 0,

∣∣∑
n∈HB̃,i

εn
∣∣

NB̃,i

> ρhκ0
t

)

≤PXt

(NB̃,i

NB̃

≤ π̃t

2

)
+ PXt

(∣∣∑
n∈HB̃,i

εn
∣∣

NB̃,i

> ρhκ0
t ,

NB̃,i

NB̃

>
π̃t

2

)

≤ exp
(
−3NB̃π̃t

28

)
+ exp

(
− NB̃π̃tρ

2h2κ0
t

4(v2 + cρhκ0
t )

)
, (A.33)
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where the last inequality follows by Lemma A.1, Lemma A.2 and the fact that
P (In = i |Xn ∈ B̃) ≥ π̃t for all Ñt−1 + 1 ≤ n ≤ Ñt. Thus, by (A.33),

PXt

(
NB̃,i �= 0,

∣∣∑
n∈HB̃,i

εn
∣∣

NB̃,i

> ρhκ
t ,

NB̃

Nt
>

chd
t

2

)

≤

⎧⎨
⎩0 if

NB̃

Nt
≤ chd

t

2 ,

exp
(
−3NB̃ π̃t

28

)
+ exp

(
−NB̃ π̃tρ

2h
2κ0
t

4(v2+cρh
κ0
t )

)
if

NB̃

Nt
>

chd
t

2 .
(A.34)

Combining (A.29)–(A.32) and (A.34), we have

P (Ft−1,B ∩Ac
t,B)

≤ l
{
exp

(
−3cNth

d
t π̃t

28

)
+ exp

(
−3cNth

d
t

28

)
+ exp

(
−3cNth

d
t π̃t

56

)

+ exp
(
− cρ2π̃2

tNth
2κ0+d
t

16(v2 + cρπ̃th
κ0
t /2)

)}

≤ l
{
3 exp

(
−3cπ̃tγ̃th

−2κ0
t log(Nh2κ0+d

t )

56

)
+ exp

(
−cρ2π̃tγ̃t log(Nh2κ0+d

t )

8(v2 + cρ)

)}
.

It follows immediately by (5.2) that P (Ft−1,B ∩Ac
t,B) ≤ 4l/Nh2κ0+d

t .

Lastly, noting that P (Ac
1,B) ≤ 4l/Nh2κ0+d

1 can be derived by the same ar-

gument as that of P (Ft−1,B ∩ Ac
t,B) ≤ 4l/Nh2κ0+d

t , we complete the proof of
Lemma A.5.

Appendix B: Simulations

As is discussed in the Introduction and Remark 3.1, the RAAE algorithm in-
cludes a randomized allocation procedure to allow users to further explore the
response-covariate association using a user-specified regression method. In the
following, we use numerical examples to illustrate the impact of randomized
allocation on the algorithm performance. Specifically, we compare two different
choices for πn. One choice is πn = 1/lB, under which RAAE becomes analogous
to ABSE since it tends to select each active arm an equal number of times.
Alternatively, we can choose πn = 0.05 ∧ 1

lB
, which implies that Step 1.2 takes

effect and the arm with the highest reward estimate is more likely to be pulled
than other active arms. Consider the following two cases.

Case 1. Suppose a three-armed bandit with d = 1 generates 0-1 binary re-
sponses using the following (conditional) mean reward functions with κ = 1:

f1(x) = 0.7 exp(−30(x− 0.2)2) + 0.7 exp(−30(x− 0.8)2),

f2(x) = 0.45− 0.3x,

f3(x) = 0.1 + 2(x− 0.5)2.

The covariates Xn’s are i.i.d uniform(0,1) and the time horizon N is 40,000.
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Table 1

Simulation results to compare the two different choices of πn for RAAE (values shown in
parenthesis are standard errors)

πn = 1/lB πn = 0.05
ρ r̄n q̄n r̄n q̄n

Case 1 0.5 0.0402 (0.0005) 0.273 (0.003) 0.0215 (0.0013) 0.186 (0.005)
1.0 0.0939 (0.0006) 0.489 (0.002) 0.0239 (0.0020) 0.197 (0.002)

Case 2 0.5 0.0553 (0.0005) 0.198 (0.002) 0.0069 (0.0002) 0.025 (0.001)
(m = 4) 1.0 0.1827 (0.0004) 0.489 (0.001) 0.0217 (0.0001) 0.060 (0.001)
Case 2 0.5 0.0786 (0.0005) 0.361 (0.002) 0.0134 (0.0003) 0.072 (0.002)
(m = 10) 1.0 0.1673 (0.0003) 0.602 (0.001) 0.0233 (0.0002) 0.095 (0.001)
Case 2 0.5 0.0840 (0.0003) 0.477 (0.002) 0.0258 (0.0006) 0.162 (0.004)
(m = 20) 1.0 0.1378 (0.0002) 0.644 (0.001) 0.0259 (0.0002) 0.142 (0.001)
Case 2 0.5 0.0786 (0.0003) 0.562 (0.001) 0.0383 (0.0007) 0.292 (0.006)
(m = 40) 1.0 0.1031 (0.0001) 0.660 (0.001) 0.0327 (0.0004) 0.241 (0.003)

Case 2. Suppose a three-armed bandit with d = 1 generates 0-1 binary re-
sponses using the following (conditional) mean reward functions with κ = 0.5:

f1(x) =

{
(−1)k

(
x− 2k

m

)0.5
+ 0.5, if 2k

m ≤ x ≤ 2k+1
m , k = 0, 1, · · · , m

2 − 1,

(−1)k
(
2k+2
m − x

)0.5
+ 0.5, if 2k+1

m ≤ x ≤ 2k+2
m , k = 0, 1, · · · , m

2 − 1,

f2(x) = −f1(x) and f3(x) = 0.5, where m = 4, 10, 20, or 40. All the other
settings of Case 2 remain the same as that of Case 1.

In this focused illustration with RAAE, κ is known to the user and set n0 =
20, γ̃t = 1, ρ = 0.5 or 1. The Nadaraya-Watson regression with Gaussian kernel
is applied as the user-specified regression modeling method for each active arm

in Step 1.2, and at each time point n, the bandwidth is N
−1/(2κ+d)
i,n , where Ni,n

is the total number of times arm i is pulled before the time point n. To compare
the performance of using πn = 1/lB versus πn = 0.05, we run the algorithm 100
times for each choice of πn. The averaged per-round regret r̄N and the averaged
inferior sampling rate q̄N are computed over the 100 runs. All the numerical
work was implemented in C++ and the code is available upon request.

Based on the results summarized in Table 1, we can see that in both cases,
the choice of πn = 0.05 (which uses the information obtained in Step 1.2 with
Nadaraya-Watson regression) outperforms the choice of πn = 1/lB (which ig-
nores Step 1.2 and pulls each active arm with equal probability). Here, the
RAAE algorithm shows its practical potential to improve algorithm performance
by effectively employing user-specified regression modeling methods such as the
Nadaraya-Watson regression to differentiate the active arms.
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