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Abstract: Transformation models, like the Box-Cox transformation, are
widely used in regression to reduce non-additivity, non-normality, and het-
eroscedasticity. The question of whether one may or may not treat the es-
timated transformation parameter as fixed in inference about other model
parameters has a long and controversial history (Bickel and Doksum, 1981,
Hinkley and Runger, 1984). While the frequentist wisdom is that uncer-
tainty regarding the true value of the transformation parameter cannot
be ignored, in practice, difficulties in interpretation arise if the transfor-
mation is regarded as random and not fixed. In this paper, we suggest a
golden mean methodology which attempts to reconcile these philosophies.
Penalized estimation yields oracle estimates of transformations that enable
treating the transformation parameter as known when the data indicate
one of a prespecified set of transformations of scientific interest. When
the true transformation is outside this set, rigorous frequentist inference
is still achieved. The methodology permits multiple candidate values for
the transformation, as is common in applications, as well as simultaneously
accommodating variable selection in regression model. Theoretical issues,
such as selection consistency and the oracle property, are rigorously estab-
lished. Numerical studies, including extensive simulation studies and real
data examples, illustrate the practical utility of the proposed methods.
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1. Introduction

In regression analysis, it is sometimes worthwhile to transform the response
variable Y , the explanatory vector X, or both, in order to reveal some basic
properties of the data (Tukey, 1977, page 93). Using such transformations, one
hopes to achieve the following three goals. Firstly, one may obtain a linear model
in which the mean response is a known function of a linear transformation of
the explanatory variables. Secondly, one may remove heteroscedasticity from
the residual error. Thirdly, one may isolate a normal or nearly normal error
distribution.

Parametric transformation models were pioneered in the early work of
Box and Cox (1964) on the power transformation of the response in the lin-
ear model, where

Z ≡ h(Y, λ0) = XTβ0 + ε , (1)

for some λ0 and regression parameter β0, the covariate X includes the constant
1, and

h(Y, λ) =

{
Y λ−1

λ λ �= 0 , Y > 0
log Y λ = 0 , Y > 0

(2)

is a power transformation indexed by λ. The distribution of the residual ε is
often assumed to be a mean zero normal random variable with variance σ2

independent of X. Parameter estimation with a sample of independent and
identically distributed data, denoted by (Yi, Xi), i = 1, . . . , n, has been well

studied. In practice, since λ0 is unknown, it is estimated by λ̂, the maximizer
of the profile likelihood. After λ0 is estimated, the parameters β0 and σ0 may
be estimated via least squares with the transformed responses h(Yi, λ̂).

Inference for the regression coefficient vector β0 in the transformed model
is challenging. As pointed out by Bickel and Doksum (1981), the estimation of
β0 depends on the estimation of λ0. The problem is that the transformation
parameter is not generally orthogonal to other model parameters. There is sub-
stantial empirical evidence demonstrating the potential for rather large variance
inflation associated with the estimation of λ0. Hence, inference for β0 needs to
take into account the uncertainty regarding the true value of the parameter λ0.
More formally, the construction of confidence intervals for β0 requires use of the
adjusted information matrix which reflects the decrease in information due to
estimation of λ0.

In practice, the uncertainty regarding λ0 is rarely taken into account. It is
common to treat λ̂ as fixed (Hinkley and Runger, 1984, Carroll and Ruppert,
1988), or to restrict λ0 to some finite set. For example, it has been recom-
mended that λ0 ∈ {0,±1/2,±1,±2} (see Carroll, 1982, for analysis of estima-
tors restricted to a finite set). This may be justified as in Hinkley and Runger
(1984), who explain that the regression parameters have meaning only with
reference to particular scales or at least give a partial explanation on general
scales (Brillinger, 1982, Stoker, 1986). For the Box-Cox transformation model,
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estimating λ0 is akin to determining the right scale for the data. As argued by
Hinkley and Runger (1984), “This leads to the conclusion that when inference
about parameters refers to specified scales of measurement (as must usually be
the case), no allowance need be made for selecting those scales with the aid of
the data”. These principles lead Hinkley and Runger (1984) to a rejection of
Bickel and Doksum (1981) regarding the need to account for the uncertainty
regarding λ0.

In this paper, we attempt to reconcile these conflicting philosophies. A golden
mean methodology is presented which provides a theoretically justified frame-
work in which λ̂ can be regarded as fixed when the data indicate that λ0 belongs
to some finite candidate set, but otherwise takes into account the uncertainty
regarding λ̂. We propose a regularization procedure that maximizes a penalized
version of the log likelihood with respect to β, λ and σ. The penalization con-
sists of a weighted sum of the �1 distance of λ from a prespecified set of values,
with the weights calculated from the data. The procedure is shown to correctly
shrink λ̂ to the true value when the value is in the set, with the resulting in-
ferences for the other model parameters adaptive to whether or not the true λ0

is contained in the candidate set. When λ0 is in the set, the limit distribution
is equivalent to that for an oracle estimator where λ0 is known a priori. This
theoretical finding supports treating λ̂ as fixed, as advocated by Hinkley and
Runger (1984). When λ0 is not in the set, the joint estimator of λ0 and the
other model parameters is asymptotically equivalent to the unpenalized estima-
tor, with inferences corresponding to those of Bickel and Doksum (1981) which

account for uncertainty in λ̂.
The approach we take here is sensible in practice since typically one has

a small set of candidate transformations of interest, where the transformations
are inherently meaningful and yield straightforward model interpretation. If one
uses standard model selection criterion, like AIC, restricting transformations to
this set, then one is implicitly finding the best fitting model amongst those
models. This best fitting model may of course be misspecified, if the true model
is not contained in that set. Our approach is conceptually different in that it will
not select a model in the finite set unless it is the true model. Thus, our approach
might be viewed as providing a goodness-of-fit assessment for procedures which
restrict models to the finite set.

The issues discussed above for the Box-Cox response transformation model
occur quite generally in regression models involving transformations of either
the response Y or the covariates X. A comprehensive overview is given in the
definitive text of Carroll and Ruppert (1988). In Section 2, we formulate a
unifying model for the mean of the response in which there may potentially ex-
ist multiple transformation parameters influencing the response, the covariates,
and the relationship of the mean of the response to the covariates. This includes
model (1) as a special case, as well as permitting generalized linear models for
categorical outcomes where the link function is specified up to an unknown pa-
rameter λ0. A broadly applicable shrinkage approach is discussed, in which each
transformation parameter is shrunk towards values in a candidate set, with the
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level of shrinkage determined by a weight calculated from the data. The ap-
proach further allows shrinkage of regression parameters, enabling simultaneous
variable and transformation selection. The theoretical results described above
for the Box-Cox model are demonstrated to be valid in the unifying model. If
the true parameter lies in the candidate set, then with probability that con-
verges to one, the estimated parameter will equal this value in finite samples
and when it does, the corresponding inferences may regard the estimated value
as fixed. On the other hand, if the true value does not lie in the set, then the
usual asymptotic results for joint estimation of all parameters applies. We refer
to this adaptation as the oracle properties of the estimator.

The oracle properties discussed above are valid for fixed values of the param-
eters. The construction of confidence regions for parameters typically demand
stronger results such as uniform convergence. As in previous theoretical work
on variable selection with oracle properties, the convergence is not uniform over
the parameter space (Pötscher and Leeb, 2009, Pötscher and Schneider, 2010).
While uniform convergence does not hold, we prove that uniform convergence
over arbitrarily large subsets of the parameter space does hold. Here, arbitrarily
large means that the subset for which uniform convergence does not hold can be
chosen to have arbitrarily small Lebesgue measure. For Box-Cox transformation
models, the subsets for which uniform convergence does not hold consist only of
points that are very close to candidate transformations, and thus by the Hinkley
and Runger (1984) paradigm, no allowance is needed for selecting those scales.
In this work, we construct confidence regions which asymptotically achieve the
nominal coverage level over arbitrary large subsets of the parameter space. Fur-
thermore, we show that for any continuous and bounded prior on the parameter
space these confidence regions asymptotically attain the desired coverage level.

One may view the proposed penalization methods in the spirit of earlier work
on variable selection, inspired by the seminal lasso paper (Tibshirani, 1996).
With a suitable choice of tuning parameter, one may consistently select impor-
tant covariates by shrinking the coefficients of unimportant covariates to zero,
with the coefficient estimates for the important covariates having asymptotic
distribution which is equivalent to an oracle estimator with the unimportant
covariates known a priori. Penalty functions yielding such estimators include
the adaptive lasso (Zou, 2006), SCAD, the smoothly clipped absolute deviation
(Fan and Li, 2001), the minimum convex penalty (Zhang, 2010), the smooth
integration of counting and absolute deviation (Lv and Fan, 2009) and the
log penalty (Friedman, 2012). Our penalization strategy adapts that in Zou
(2006), with unpenalized estimates of the unifying model providing the neces-
sary weights for penalized estimation. A major technical innovation is that we
permit simultaneous shrinkage to multiple values of interest, as needed with
transformation models. In addition, we present results which allow the size of
the value-of-interest set to converge to infinity as the size of the sample grows. As
in the variable selection setting, in our approach, if one constructs the weights
to be large when the transformation is close to the candidate values, then the
penalty enforces shrinkage to those candidate values, with the tuning parameter
providing the necessary counterbalance.
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In Section 2, we present our unifying model and penalization method, along
with the associated theoretical results. Section 3 presents their specialization
to the Box-Cox model (1). Simulations studies are discussed in Section 4, with
real data examples used to illustrate the methods in Section 5. Some remarks
conclude in Section 6. Detailed proofs and simulation results may be found in
the Appendix. The R code for algorithm can be found in Goldberg et al. (2016).

2. Penalized likelihood estimation with multiple candidate values

2.1. Data and model

Let V1, . . . , Vn be independent d-dimensional random vectors with distributed
function G(v). The observations Vi can be pairs (Xi, Yi) of explanatory and
response variables but are not limited to this setting. Let the parameter space Θ
be a compact subset of a R

p. Let {F (v;θ),θ ∈ Θ} be a family of distributions.
Denote the density of F (v;θ), with respect to some dominating measure ν,
as f(v;θ). Define the log-likelihood of the data with respect to the family of
distributions F = {F (v;θ),θ ∈ Θ} as

Ln(V1, . . . , Vn;θ) =
n∑

i=1

�(Vi;θ) ,

where �(v;θ) = log f(v;θ). Let θ̃n denote the maximizer of Ln. Define �̇(v;θ) =
∂�(v;θ)/∂θ, �̈(v;θ) = ∂2�(v;θ)/(∂θ∂θT ). Denote Γ(θ) = E(�̈(v;θ)), Δ(θ) =
E(�̇(v;θ)�̇(v;θ)T ), and Λ(θ) = Γ(θ)−1Δ(θ)Γ(θ)−1. This setting allows for model
misspecification, such that the true distribution G needs not to be in F (see
White, 1982, for discussion).

We assume the following conditions.

(A1) G has a density g with respect to the dominating measure ν.
(A2) θ0 is an inner point of Θ and is the unique maximizer of E{f(V,θ)}.
(A3) �(v;θ) is twice continuously differentiable with respect to θ for all θ ∈ Θ

and v, and the components of |�(v;θ)|, |�̇(v;θ)�̇(v;θ)T |, and |�̈(v;θ)| are
dominated by integrable functions.

(A4) E{�̇(V ;θ)} = 0 for all θ, Γ(θ0) is a negative definite matrix, and Δ(θ0) is
invertible.

The conditions above ensure consistency of θ̃n for θ0 and that
√
n(θ̃n −θ0) →d

N(0,Λ(θ0)) (White, 1982, Theorem 3.1). When G(v) is in the family of distribu-
tions F , then we return to the usual setting of maximum likelihood estimation.
We then have that G(v) ≡ F (v;θ0) and Λ(θ0) = I(θ0)

−1 where I(θ) is the
information matrix at θ. However, the above conditions do not require that
the assumed model is correctly specified, permitting model misspecification,
similarly to Lu et al. (2012), who studied likelihood based variable selection
under misspecification. For some misspecified models, the parameter θ0 being
estimated may still be meaningful. This generality is important for the trans-
formation model, as discussed in Section 3.
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2.2. Penalized estimators

Let θ = (θ1, . . . , θp)
T be the vector of parameters. For each component of θ,

one can select a set of values of interest. We refer to the sets of values of interest
as candidate sets. In the variable selection problem (see, for example, Fan and
Li, 2001), for each component, the value of interest is zero, and thus the candi-
date set is of size one. In power transformations of the response or of both-sides
(Carroll and Ruppert, 1988), typical values of interest for the power parameter
λ0 are 0,±1/2,±1,±2. Thus the candidate set for λ0 is {0,±1/2,±1,±2}. In
power transformation models, there may not be interest in shrinking the esti-
mator of the regression parameter β0, in which case the size of the component
of β0 is 0. Of course, the candidate set may be different for each parameter,
as would occur, for example, when performing variable selection together with
power transformation (see discussion on this model in Yeo, 2005). In this case,
one can simultaneously penalize the power transformation parameter in the
Box-Cox response model to a finite set of values and perform variable selection
in which each regression parameter is shrunk to zero.

Let {θ1j , . . . , θ
kj

j } be the candidate set for the jth component of the parameter
vector, kj ∈ {0, 1, 2, . . .}. Here we let kj be equal to 0 to allow no values of
interest for some of the components.

We define the penalized log-likelihood function

Φn(θ) ≡ Ln(V1, . . . , Vn;θ)−
p∑

j=1

anj

kj∑
k=1

ŵk
j |θj − θkj |, (3)

where ŵk
j = |θ̃nj − θkj |−γ for some γ > 0 are weights, and an = (an1, . . . , anp)

T

is a vector of tuning parameters with positive components. Let θ̂n denote the
maximizer of Φn(θ). In the next subsection, we demonstrate that these penal-
ized estimators are selection consistent in the sense that with probability that
converges to one, a particular parameter estimator will equal a candidate value
for finite n if that candidate value is the true value. This generalizes earlier
work on variable selection (Fan and Li, 2001, Zou, 2006, Lv and Fan, 2009,
Zou and Zhang, 2009, Friedman, 2012), where with probability that converges
to one, a particular regression parameter estimator will equal 0 for finite n if
the corresponding covariate is unimportant. Moreover, the resulting estimators
are oracle, having a limiting normal distribution whose variance equals that of
an unpenalized estimator in which it is known a priori which of the candidate
values are the true parameter values.

2.3. Theoretical properties

Let A and AC be sets of indices defined as

A =
{
j : θ0j �= θkj , (k = 1, . . . , kj) or kj = 0

}
,

AC =
{
j : θ0j = θkj for some k ∈ {1, . . . , kj}

}
.
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Without loss of generality, we assume that A = {1, . . . , p1}, AC = {p1 +
1, . . . , p}, and that for all j ∈ AC , θ1j = θ0j . Write θ0 = (θ0

T
1 ,θ0

T
2 )

T , where
θ01 is a p1-dimensional vector of parameters, corresponding to the indices in A,
and θ02 is a p2 = (p − p1)-dimensional vector, corresponding to the indices in

AC . Accordingly, we write θ̂n = (θ̂T
n1, θ̂

T
n2)

T .
In the following we present the main theoretical results of the paper. We first

show that asymptotically, one can estimate θ0 as if the components of θ02 were
known. In other words, with probability that tends toward 1, θ̂n2 = θ02, and
the asymptotic variance matrix of θ̂n1 achieves the information bound of the
estimation problem in which θ02 is known. We then use this result to derive
pointwise asymptotically-consistent confidence regions for θ0.

Theorem 1. Assume that conditions (A1)–(A4) hold, that anjn
−1/2 → 0 and

that anjn
(γ−1)/2 → ∞ as n → ∞. Then, for each fixed θ0

θ̂nj →P θ0j .

For all j ∈ A and for all k = 1, . . . , kj such that kj ≥ 1

P (θ̂nj �= θkj ) → 1 .

If AC is not empty, then for all j ∈ AC

P (θ̂nj = θ0j) → 1 .

Moreover,

n1/2(θ̂n1 − θ01) →d N
(
0,Λ11(θ0)

−1
)
,

where Λ11(θ0) is the upper-left p1 × p1 submatrix of Λ(θ0).

The proof of the theorem appears in Appendix A.1. Such results do not
require that the model is correctly specified, with the limiting variance Λ11

being robust to model misspecification. In addition, as noted previously, these
asymptotic results are pointwise and may not hold for contiguous sequences
converging to parameter values which include candidate shrinkage points. The
implications of this fact for the theoretical properties of the resulting confidence
intervals and regions are discussed in the next subsection.

In general one can have a different regularization constant for each parameter
that has a non-empty candidate set. For the transformation model in Section 3,
there is only one candidate set; therefore only one an is used, with tuning param-
eter selection using standard methods. In the more general case with multiple
parameters being shrunk, as in variable selection, typically one uses the same
regularization constant for all candidate sets (see Zou, 2006, for adaptive lasso,
as well as other key papers in penalization). This is in part because the use
of multiple tuning parameters tends to complicate the analysis, owing to the
need to simultaneously select the multiple tuning parameters, and in part be-
cause there is little evidence in the literature to suggest that this yields marked
improvements in the empirical performance of the penalization methods.
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2.4. Inference

We now derive general pointwise asymptotically valid confidence intervals and
confidence regions for the components of θ0. First, we need some definitions.
Define the sets

An =
{
j : θ̂nj �= θkj for all k ∈ {1, . . . , kj} or kj = 0

}
,

AC
n =

{
j : θ̂nj = θkj for some k ∈ {1, . . . , kj}

}
.

(4)

Let J = {j1, . . . , jr} be a set of indices, J ⊂ {1, . . . , p} for some 1 ≤ r ≤ p.
For any p× 1 vector v, define v(J) to be the rth length vector with components
(vj1 , . . . , vjr )

T . Similarly, for a p by p matrix A, define A(J) to be the r by r

matrix with entries A
(J)
st = Ajsjt , (s, t = 1, . . . , r). Finally, for a set C, define

C(J) = {φ(J) : φ ∈ C}. Let J1 = {j1,1, . . . , j1,r1} and J2 = {j2,1, . . . , j2,r2}, such
that J2 ⊂ J1. With some abuse of notation, for any p× 1 vector v, we define(

v(J1)
)(J2)

≡
(
vj2,1 , . . . , vj2,r2

)T
,

and similarly for matrices and sets. In the following we discuss confidence regions
for a subset of parameters in which one treats parameters having been shrunk
to a candidate value as fixed. The confidence regions may then be constructed
using standard methods for maximum likelihood estimators.

Theorem 2. Let J = {j1, . . . , jr} be a set of indices. Define Jn1 = J ∩An and
Jn2 = J ∩AC

n . Let Λn be a consistent estimator of Λ(θ0). For each s = 1, . . . , r
choose a set Ds such that P (Zs ∈ Ds) = 1−α, where Zs is a Gaussian random
vector with mean 0 and identity variance matrix of dimension s. For fixed θ0
with parameter subset θ0

(J), define the set Cn as{
θ(J) : θ ∈ Θ ,θ(Jn1) ∈

{((
nΛ(An)

n

)−1/2
)(Jn1)

Ds + θ̂(Jn1)
n

}
,θ(Jn2) = θ̂(Jn2)

n

}
,

(5)

where s is the cardinality of Jn1. Then

lim inf
n→∞

P
(
θ0

(J) ∈ Cn

)
≥ 1− α .

See proof in Appendix A.2.
The above theorem can be simplified when there is only one component of

the vector θ0 for which there are values of interest. This result is useful in the
Box-Cox model (1), when the regression parameters have no candidate values.

Corollary 1. For fixed θ0, let kj = 0 for j = 1, . . . , p− 1 and kp > 0; where kj
is the number of values of interest for the jth component of θ0.
For every j = 1, . . . , p− 1, define

Cnj =

⎧⎪⎪⎨⎪⎪⎩
[
θ̂nj − z1−α/2

n1/2 (Σjj)
1/2

, θ̂nj +
z1−α/2

n1/2 (Σjj)
1/2

]
θ̂np ∈ {θ1p, . . . , θ

kp
p } ,

[
θ̂nj − z1−α/2

n1/2 (Λ
−1/2
n )jj , θ̂nj +

z1−α/2

n1/2 (Λ
−1/2
n )jj

]
θ̂np /∈ {θ1p, . . . , θ

kp
p } ,
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where Σ is the inverse of the (p− 1)× (p− 1) upper-left submatrix of Λn, i.e.,

Σ = (Λ
({1,...,p−1})
n )−1. Then, for every j = 1, . . . , p− 1

lim inf
n→∞

P (θ0j ∈ Cnj) ≥ 1− α ,

The above result provide guarantees regarding the coverage probabilities of
confidence intervals and regions for fixed θ0. These guarantees are not uniform
in θ0, owing to the lack of uniform (in θ) convergence of the limit distribu-
tions of estimators based on penalization procedures. The difficulties occur for
points in the parameter space which are arbitrarily close to shrinkage values.
Hence, assuming our model is correctly specified, the conventional definition of
a confidence region, that is,

lim inf
n→∞

inf
θ∈Θ

Pθ

(
θ(J) ∈ Cn

)
≥ 1− α . (6)

cannot be satisfied. This raises fundamental questions concerning the practical
utility of the pointwise confidence regions in Theorem 2. In particular, one may
not know a priori whether the true parameter value is sufficiently separated
from shrinkage points to yield valid inferences.

To address this issue, we now investigate the extent to which poor perfor-
mance of the confidence regions may occur under weak a priori assumptions on
the true parameter values with a correctly specified model. We say that a se-
quence of (potentially random) sets Cn is an asymptotically almost-everywhere
confidence set for θ0 in Θ if there is a sequence of parameter subspaces Θn ⊂ Θ
such that the Lebesgue measure of the sets Θ/Θn converges to zero as n → ∞
and

lim inf
n→∞

inf
θ∈Θn

Pθ

(
θ(J) ∈ Cn

)
≥ 1− α . (7)

We have the following result.

Theorem 3. Let J = {j1, . . . , jr} be a set of indices. Let Cn be defined as
in (5). Assume (A3) and that (A4) holds for all inner points of Θ. Then the
sequence Cn is asymptotically almost-everywhere confidence sets in Θ.

See proof in Appendix A.3. The above result shows that the confidence re-
gions defined in Theorem 2 guarantee asymptotic coverage probabilities of 1−α
uniformly on a large subset of Θ. Here, a large subset means that the Lebesgue
measure of difference set of Θ and the subset can be arbitrary small. Moreover,
the following corollary shows that for any continuous and bounded prior on Θ,
the probability of θ being in the confidence region achieves asymptotically the
nominal coverage rate 1− α.

Corollary 2. Let Cn be defined as in (5). Assume (A3) and that (A4) holds for
all inner points of Θ. Assume that θ is a random vector with bounded density
πθ(ϑ), ϑ ∈ Θ. Then

lim inf
n→∞

P (θ ∈ Cn) ≥ 1− α.

The proof appears in Appendix A.4.
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2.5. Generalization to growing number of shrinkage points

We now consider the case that the number of shrinkage points for each compo-
nent of θ may grow with the sample size. This permits scenarios with infinite
shrinkage points, a set-up which to our knowledge has not been considered pre-

viously in the penalization literature. Let Θ
(n)
j = {θ(n)j,1 , . . . , θ

(n)
j,knj

} be the can-

didate set for the jth component of the parameter vector, knj ∈ {0, 1, 2, . . .}.
The size of Θ

(n)
j can change with the sample size n. We assume that for all n,

Θ
(n)
j ⊆ Θ

(n+1)
j .

We define the penalized log-likelihood function

Φ(n)
n (θ) ≡ Ln(V1, . . . , Vn;θ)−

p∑
j=1

anj

knj∑
k=1

ŵk
j |θj − θ

(n)
j,k |, (8)

where ŵ1, . . . , ŵp and an are defined as before. Let θ̂n denote the maximizer of

Φ
(n)
n (θ).
Let B and BC be sets of indices defined as

B =
{
j : θ0j /∈ Θ

(n)
j for all n = 1, 2, ...

}
,

BC =
{
j : there is N0,j such that θ0j ∈ Θ

(n)
j for all n ≥ N0,j

}
.

Without loss of generality, we assume that B = {1, . . . , p1}, BC = {p1+1, . . . , p},
and that for all j ∈ BC , θ

(n)
j,1 = θ0j for all n ≥ N0 ≡ maxj∈BC N0,j . Write θ0 =

(θ0
T
1 ,θ0

T
2 )

T , where θ01 is a p1-dimensional vector of parameters, corresponding
to the indices in B, and θ02 is a p2 = (p−p1)-dimensional vector, corresponding

to the indices in BC . Accordingly, we write θ̂n = (θ̂T
n1, θ̂

T
n2)

T .
We need the following definitions regarding the size and denseness of the sets

Θ
(n)
j . Define

δn = min
j∈{1,...,p}

min
k:θ0j �=θ

(n)
j,k

|θ0j − θ
(n)
j,k | ,

if there exists a pair (j, k) such that θ0j �= θ
(n)
j,k , and δn = 1 otherwise. Let

ηn =
∑p

j=1 knj .

Theorem 4. Assume that conditions (A1)–(A4) hold, that n−1/2anjηnδ
−γ
n =

o(1), δ−1
n = oP (n

1/2), and anjn
(γ−1)/2 → ∞ as n → ∞. Then, for all j ∈ B

P
(
θ̂nj /∈ Θ

(n)
j

)
→ 1 .

For all j ∈ BC

P (θ̂nj = θj0) → 1 .
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Moreover

n1/2(θ̂n1 − θ01) →d N
(
0,Λ11(θ0)

−1
)
,

where Λ11(θ0) is the upper-left p1 × p1 submatrix of Λ(θ0).

The proof appears in Appendix A.5.
Theorem 4 shows that one can obtain an asymptotically oracle estimator of

θ0, even when the candidate set size tends to infinity, or when the limit of the
candidate set is a dense in Θ, or both. Specifically, the candidate set size can
grow to infinity at a rate of up to n1/2−ε for an arbitrary small ε > 0. The
candidate set can also converge to a dense set such that in the limit, for each
given j, there are points arbitrarily close to θ0j . The distance between θ0j and its
neighboring points can decrease at a rate not less than n−1/2+ε for an arbitrary
small ε > 0. For the case that both size and denseness enlarge with n, the results
of Theorem 4 hold when choosing γ = 1, anj � nα1 for some α1 > 0, ηn � nα2 ,

for some α2 > 0 such that α1+α2 < 1
2 , and δnj � n

1
2−α3 for α1+α2 < α3 < 1

2 .

3. Application to transformation models

In this section, we discuss application of the general results in Section 2 to the
Box-Cox transformation model. Let (X1, Y1), . . . , (Xn, Yn) be n independent
and identically distributed observations, where Xi are random vectors and Yi

are positive random variables.
Assuming the usual Box-Cox transformation model defined (1)–(2), one can

write the log likelihood for this model by

�(X,Y ;θ) = −ε2

2
− log σ + (λ− 1) log(Y ) + C ,

where θ = (βT , σ, λ)T and ε = (h(Y, λ) − βTX)/σ. Following Hernandez and
Johnson (1980), we note that this model may not be correctly specified but
that conditions (A1)–(A4) may be satisfied (see also Bickel and Doksum, 1981,
Yeo and Johnson, 2000). The parameter being estimated corresponds to the
maximizer of the expectation of the likelihood function � with respect to the true
underlying distribution of (X,Y ). Such parameter may still have a meaningful
interpretation in the regression context.

Let θ̃n be the solution the estimation equation
∑n

i=1 �̇(Xi, Yi;θ) = 0 where

the score function �̇ is

�̇(X,Y ;θ) =

{
εXT

σ
,
ε2 − 1

σ
, log Y − ε

σ

∂h(Y, λ)

∂λ

}T

, (9)

where

∂h(y, λ)

∂λ
=

yλ log y − h(y, λ)

λ
.
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Write

�̈(X,Y ;θ) =
1

σ2

⎧⎪⎪⎨⎪⎪⎩
−XXT , −2ε

σ XT −∂h(Y,λ)
∂λ XT

1− 3ε2 2ε∂h(Y,λ)
∂λ

−
(

∂h(Y,λ)
∂λ

)2

− σε∂2h(Y,λ)
∂λ2

⎫⎪⎪⎬⎪⎪⎭ (10)

The matrix Λ(θ) = Γ(θ)−1Δ(θ)Γ(θ)−1 can be consistently estimated by
Λ̂n = (Γ̂n)

−1Δ̂n(Γ̂n)
−1, where

Γ̂n =
1

n

n∑
i=1

�̈(Xi, Yi; θ̃n)

Δ̂n =
1

n

n∑
i=1

�̇(Xi, Yi; θ̃n)�̇(Xi, Yi; θ̃n)
T .

The goal is estimation of the regression parameters which is adaptive to
the unknown power transformation. Denote the candidate set for lambda by
{λ1, . . . , λk} and define the penalized log-likelihood function

Φn(θ) ≡
n∑

i=1

�(Xi, Yi;θ)− an

k∑
j=1

ŵj
n|λ− λj |, (11)

where θ = (βT , σ, λ)T ∈ R
p, an is a regularization constant, and ŵj

n = |λ̃n −
λj |−γ where λ̃n is the maximum likelihood estimator of λ0 without adaptive

selection. Let θ̂n = (β̂T
n , σ̂n, λ̂n)

T be the maximizer of (11).

Lemma 1. Assume conditions (A1)–(A4), that an/n
1/2 → 0 and that

ann
(γ−1)/2 → ∞ as n → ∞. Assume also that E{h(Y, λ0) | X} = β0

TX
and var{h(Y, λ0) | X} = σ2

0. Then

n1/2(β̂n − β0) →d

{
N

(
0, σ0

2{E(XXT )}−1
)

λ0 ∈ {λ1, . . . , λk}
N

(
0,Λ(θ0)

({1,...,p−2})) otherwise
.

Moreover, the following holds
(i) When λ0 ∈ {λ1, . . . , λk}, with probability that tends to 1, λ̂n = λ0.

(ii) When λ0 /∈ {λ1, . . . , λk}, with probability that tends to 1, λ̂n /∈ {λ1, . . . , λk}.

This lemma follows from Theorem 1, and direct computation of Λ(θ0) using
(9)–(10).

To obtain confidence intervals for the model parameters, we apply Corol-
lary 1. When λ̂n is in the candidate set, i.e., λ ∈ {λ1, . . . , λk}, an asymptotically
almost-everywhere confidence interval for β0j , j = 1, . . . , p− 2, with confidence
level of 100(1− α)%, is

β0j ∈
[
β̂nj −

z1−α/2

n1/2
(Cjj)

1/2
, β̂nj +

z1−α/2

n1/2
(Cjj)

1/2
]
.
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Here, the matrix C = σ̂2
n(
∑n

i=1 XiX
T
i )

−1 and zα is the α-quantile of the stan-

dard normal distribution. When λ̂n is not in the candidate set, an asymptotically
almost-everywhere confidence interval for β0j j = 1, . . . , p − 2, with confidence
level of 100(1− α)%, is

β0j ∈
[
β̂nj −

z1−α/2

n1/2
{(Λn)jj}1/2 , β̂nj +

z1−α/2

n1/2
{(Λn)jj}1/2

]
;

and an asymptotically almost-everywhere confidence interval for λ0 is

λ0 ∈
[
λ̂n −

z1−α/2

n1/2
{(Λn)pp}1/2 , λ̂n +

z1−α/2

n1/2
{(Λn)pp}1/2

]
.

4. Simulation study

We conducted simulations to evaluate the performance of the penalized esti-
mators of the power transformation model. The data were generated from the
Box-Cox model (1), under transformation (2). We considered a one-dimensional
covariate vector that was generated from the standard normal distribution. The
error terms were generated from the standard normal distribution. We consid-
ered five values for the true transformation parameter: λ0 = 0, 1/2,−1/2, 1,−1.
The candidate set Aλ equals {0, 1/2,−1/2, 2,−2} for the transformation pa-
rameter. Note that Aλ does not include 1,−1.

For our method, we first computed the maximum likelihood estimators for
λ0 and β0 without penalization, denoted by λ̃n and β̃n, respectively. Then we
obtained our proposed estimators as defined in (11). The tuning parameter an
was selected using the 5-fold cross-validation. The weights’ parameter γ was set
to 1. For comparison, we computed results for the unpenalized estimator and
the oracle estimator, in which the maximum likelihood estimator is calculated
with the true value of the transformation parameter.

For each method, we computed the bias and the median absolute deviation
of the estimates divided by 0.6745. The reason we computed the median ab-
solute deviation instead of the sample standard deviation of the estimates is
that the maximum likelihood estimator and penalized estimators may have a
few outliers due to the instability of the estimation. In addition, for the maxi-
mum likelihood estimator and penalized estimators, we computed the median of
estimated standard errors and the empirical coverage probability of Wald-type
95% confidence intervals. The standard error of the maximum likelihood esti-
mator was estimated using the standard likelihood theory. The standard error
of the adaptive estimator was estimated based on the asymptotic results es-
tablished in Lemma 1. The empirical coverage probabilities for 95% confidence
intervals based on the model-based standard errors is provided for the maximum
likelihood estimator and adaptive estimators. For the maximum likelihood esti-
mator, we also computed the coverage probabilities when λ̂ is treated as fixed.
Finally, for the adaptive estimator, we include the selection frequency of the true
power transformation parameter when it is contained in the candidate set and
the selection frequency of the values in the candidate set when the true power
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transformation parameter is not contained in the candidate set. We report these
results in Appendix B, Tables 3–5.

Based on the simulation results, we make the following observations: (i) The
oracle estimators for the regression parameters generally have much smaller
median absolute deviation compared to the maximum likelihood estimator.
(ii) When the true power transformation parameter is contained in the can-
didate set, the adaptive and oracle estimators show very comparable perfor-
mance in terms of both bias and median absolute deviation. In addition, the
median of estimated standard errors are all close to the median absolute de-
viation with the empirical coverage probability close to the nominal level. The
adaptive method selects the true power transformation parameter with a high
frequency and the selection performance improves as the sample size increases.
(iii) When the true power transformation parameter is not contained in the
candidate set, the adaptive and the maximum likelihood estimator estimators
show comparable performance, and the estimation performance improves as the
sample size increases, as expected. In addition, for the adaptive method, the
selection frequency of the values in the candidate set is low and decreases to
0 as the sample size increases. (iv) When using maximum likelihood estimator

and treating λ̂ as fixed, the confidence intervals may severely undercover. The
findings (i)–(iv) support the theoretical results in Sections 2 and 3.

Next, we conducted simulations to evaluate the performance of the proposed
adaptive estimator when varying the signal-to-noise ratio. In particular, we
study the inflation in the standard error estimates of the maximum likelihood
estimator compared with the adaptive estimator and the power of Wald test
for testing β02 = 0 based on the adaptive estimator, as the signal-to-noise ratio
varies. We consider the same simulation settings with λ0 = 0, 1/2, and −1/2,
and set β02 = 0.05, 0.1, 0.25, 0.5, 0.75 and 1.0. For each setting, we conducted
500 runs with sample size n = 100. The true value λ0 is contained in the candi-
date set. Therefore, the standard error estimates of the adaptive estimator are
obtained as if λ0 was known as long as the corresponding estimator is shrunk to
a value in the candidate set. The mean standard error ratios of the maximum
likelihood estimator over the adaptive estimator for β02 are plotted in the upper-
left panel of Figure 1, while the power of Wald test for testing β02 = 0 based
on the adaptive estimator is plotted in other panels of Figure 1. We observe
that comparing with the adaptive estimator, the maximum likelihood estimator
shows larger standard error inflation as the signal-to-noise ratio increases, and
when the signal-to-noise ratio is close to 0, there is almost no inflation. These
agree with the findings in Bickel and Doksum (1981) and Doksum and Wong
(1983). Furthermore, the power of Wald test increases as the signal-to-noise ra-
tio increases as expected, and the adaptive estimator has significantly improved
power compared with the maximum likelihood estimator for most β02 values
under all scenarios.

Finally, we conducted simulations to evaluate the performance of the pro-
posed adaptive estimator in terms of prediction interval and compare it with
the maximum likelihood estimator. Here the prediction interval is constructed
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Fig 1. Upper-left panel: ratio between the mean standard error of the maximum likelihood
estimator (MLE) and the adaptive estimator (Adaptive) for λ = 0, 0.5, and −0.5. Other
panels: the power function of the Wald test for testing β02 = 0, for λ = 0, 0.5, and −0.5.

following the method of Cho et al. (2001). The coverage probabilities of cor-
responding 95% prediction intervals and their standard errors are reported in
Table 6 in the Appendix. Based on simulation results, we observe that the pre-
diction intervals constructed by both estimates give reasonable coverage prob-
abilities. In addition, the coverage probabilities of the adaptive method tend to
have smaller standard deviations compared with the maximum likelihood esti-
mator method when λ0 = 0, 1/2, and −1/2, i.e. λ0 is contained in the candidate
set, while they are comparable when λ0 = 1,−1, i.e., λ0 is not contained in the
candidate set.

5. Data examples

In this section, we apply the proposed adaptive selection method to two datasets
studied in Box and Cox (1964) and Hinkley and Runger (1984). The R code for
algorithm can be found in Goldberg et al. (2016).

For the textile example, the response is cycles to failure. There are three
explanatory variables, v1, v2, v3, denoting the factor levels. A linear regression
model was considered for the Box-Cox transformation of the response. The sam-
ple size is n = 27. The analysis results for the maximum likelihood estimator
and the proposed adaptive estimation method are given in Table 1. The max-
imum likelihood estimator gives λ̂ = −0.06 and the results of the maximum
likelihood estimator are the same as those reported in Table 5 of Hinkley and
Runger (1984). For the proposed adaptive estimation method, we considered the
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Table 1

Analysis results for the textile example

method λ σ intercept v1 v2 v3
Est. Est. Est. SE Est. SE Est. SE Est. SE

MLE -0.06 0.12 5.25 1.51 0.57 0.35 -0.43 0.27 -0.27 0.17
adaptive 0.00 0.17 6.33 0.03 0.83 0.04 -0.63 0.04 -0.39 0.04

λ, the power transformation parameter; σ, the standard deviation of the normal
error; intercept, v1, v2, and v3 are regression parameters; Est., the estimates; SE, the
estimated standard errors of the estimates.

Table 2

Analysis results for the biology example

λ σ v0 v1 v2 v3 v4 v5
-0.82 0.36 -1.35 -0.64 -1.84 1.19 0.98 -0.45

v6 v7 v8 v9 v10 v11
0.55 -0.19 -1.44 0.70 0.70 -0.51

λ, the power transformation parameter; σ, the standard devia-
tion of the normal error; Est., the estimates; v0, the intercept;
v1-v11, the 11 dummy variables. The estimated standard error
of the estimates v0-v11 is between 0.27 and 0.98.

candidate set Aλ = {0, 1/2,−1/2, 1,−1} as suggested in Hinkley and Runger
(1984). Moreover, we used 3-fold cross-validation for choosing the tuning pa-

rameter. The adaptive oracle estimator is λ̂ = 0. It is noted that the estimated
standard errors of the adaptive estimates for regression parameters are much
smaller than those of the maximum likelihood estimator estimates. This agrees
with our simulation findings, since when λ̂ is in the candidate set, it is taken
as known when making inference for the estimates of the regression coefficient
vector.

Next, we consider the biological example from Hinkley and Runger (1984).
The data consists of survival times from animals in a 3×4 factorial experiment.
In this experiment, one unit of time equals ten hours. The two factors are treat-
ment with four levels (A–D), and poison with three levels (I,II,III). There are 48
subjects, with four subjects in each one of the twelve treatment/poison combi-
nations. As in Hinkley and Runger (1984), we consider a saturated model with
11 dummy variables indicating the 11 combinations. The baseline was taken as
the combination of treatment A and poison I. The maximum likelihood esti-
mator gives λ̂ = −0.82, which agrees with the results in Hinkley and Runger
(1984). The results of the maximum likelihood estimator estimates are given
in Table 2. For the proposed adaptive estimation method, we used the same
candidate set as in the textile example with 4-fold cross-validation for choosing
the tuning parameter. The penalization method also gives λ̂ = −0.82. That is,
λ̂ is not in the candidate set. Interestingly, in this example, the penalized and
unpenalized estimates of the parameters are the same, indicating that there
was no shrinkage of the transformation parameter. Therefore, the other esti-
mates from our method are all the same as the maximum likelihood estimator
estimates.
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These two examples show the adaptivity of the proposed method for es-
timating the power transformation parameter given a candidate set, and then
estimating the regression parameters and making the inference accordingly. The
textile example provides rigorous treatment for scenarios where the estimated
transformation is shrunk to a candidate value and may be treated as fixed, while
the biological example evidences correct inferences in scenarios where the uncer-
tainty in transformation estimation must be addressed via standard likelihood
inference.

6. Concluding remarks

We have assumed throughout that the number of parameters in the model is
finite, although we allowed the size of the candidate set for each of these pa-
rameters to grow to infinity as a function of the sample size. It is interesting
to consider the asymptotic behavior and oracle properties of the proposed esti-
mators for a model in which one allows the number of parameters to grow as a
function of the number of observations. Similar research questions were investi-
gated by Fan and Li (2001), Zou and Zhang (2009), and others, in the context
of variable selection. It seems that for finite candidate values greater than one
such proofs might be adapted, with this being a topic for future research.

The proposed penalized estimators are nonregular estimators. The irregular-
ity arises because the estimators behave differently for parameters that are in
the candidate set and close-by points. The irregularity poses challenges when
constructing confidence regions to the parameters of interest. Discussion can
be found in Pötscher and Leeb (2009), Pötscher and Schneider (2010), among
others, for the variable-selection setting where each parameter has at most a
single candidate point. In this work, we proposed a definition for an asymptot-
ically almost everywhere confidence region and showed that our penalization
based procedure yields inferences satisfying this definition. That is, the confi-
dence region holds except on a set of parameter values close to the shrinkage
points having asymptotically measure zero. Additional investigation is needed
for understanding the properties of these nonregular estimators under general
parametric models involving transformation, regression, and scale parameters
when multiple candidate values are considered.

The proposed approach seems to simplify the predictions on the original
untransformed scale. Typically, when fitting transformation models, one gener-
ally needs to account for estimation of both the regression parameter and the
transformation parameter when making inference on the original scale. Such
backtransformation procedures are greatly complicated by estimation of the
transformation parameter. With our approach, one may ignore estimation of
the transformation parameter when it is shrunk to one of the candidate values;
otherwise, one must account for the estimation, similarly to other methods. The
study of prediction on the original scale is thus an interesting topic for future
research.
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Appendix A: Proofs

A.1. Proof of Theorem 1

Define

Ψn(u) ≡Φn

(
θ0 +

u√
n

)
− Φn(θ0)

=Ln

(
V1, . . . , Vn;θ0 +

u√
n

)
− Ln (V1, . . . , Vn;θ0)

−
p∑

j=1

anj

kj∑
k=1

ŵk
j

(∣∣∣∣θ0j + uj√
n
− θkj

∣∣∣∣− ∣∣∣∣θ0j + uj√
n
− θkj

∣∣∣∣)

=
uT

√
n

n∑
i=1

�̇ (Vi;θ0) +
1

2

uT

√
n

n∑
i=1

�̈
(
Vi; θ̌

) u√
n

−
p∑

j=1

anj

kj∑
k=1

ŵk
j

(∣∣∣∣θ0j + uj√
n
− θkj

∣∣∣∣− ∣∣∣∣θ0j + uj√
n
− θkj

∣∣∣∣)
≡ T

(n)
1 (u) + T

(n)
2 (u)− T

(n)
3 (u) ,

(12)

where θ̌ is between θ0 and θ0 + u/
√
n.

By the central limit theorem, T
(n)
1 (u) →d uTN(0,Δ(θ0)). By the law of large

numbers, Assumptions (A3) and (A4), and the continuous mapping theorem,

T
(n)
2 (u) →d −uTΓ(θ0)u. Consider now the limiting behaviour of T

(n)
3 . Recall

that θ̃nj is consistent for θ0j for every j ∈ {1, . . . , p} (see Section 2.1). Hence,
for every k = 1, . . . , kj , for j ∈ A, and k = 2, . . . , kj , for j ∈ AC ,

ŵk
j ≡ |θ̃nj − θkj |−γ →P |θ0j − θkj |−γ > 0 .

Also,

√
n

(∣∣∣∣θ0j + uj√
n
− θkj

∣∣∣∣− ∣∣θ0j − θkj
∣∣) → uj · sign(θ0j − θkj ) .

Since
anj√

n
→ 0, we conclude that

anj√
n
ŵk

j

√
n

(∣∣∣∣θ0j + uj√
n
− θkj

∣∣∣∣− ∣∣θ0j − θkj
∣∣) →P 0 . (13)

Recall that for j ∈ AC , θ1j = θ0j . Hence

√
n

(∣∣∣∣θ0j + uj√
n
− θ1j

∣∣∣∣− ∣∣θ0j − θ1j
∣∣) = |uj | ,
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and n−1/2anjŵ
1
j = anjn

(γ−1)/2|n1/2(θ̃nj−θ0j)|−γ where n1/2(θ̃nj−θ0j) = OP (1)
(see Section 2.1). Thus, we obtain

anjŵ
k
j

(∣∣∣∣θ0j + uj√
n
− θkj

∣∣∣∣− ∣∣θ0j − θkj
∣∣) P→

⎧⎪⎪⎨⎪⎪⎩
0 if j ∈ A,
0 if j ∈ AC and k ≥ 2
0 if j ∈ AC , k = 1, and uj = 0
∞ if j ∈ AC , k = 1, and uj �= 0

(14)

We conclude that Ψn(u) →d Ψ(u), where

Ψ(u) =

{
uT
1 W − 1

2u
T
1 Γ11(θ0)u1 if uj = 0, j ∈ AC ,

−∞ otherwise
(15)

where W ∼ N(0,Δ11(θ0)). Simple algebra shows that the maximizer of Ψ(u)
is û = (û1,0), where û1 = Γ11(θ0)

−1W .

Let θ̂n = argmaxΦ(θ). Define ûn = argmaxu Ψn(u); then ûn = n1/2(θ̂n −
θ0). We would like to show that ûn →d û. Note that Ψn(u) for all n ≥ 1, and
Ψ(u) are stochastic processes indexed by R

p. The sample paths of Ψ are upper
semicontinuous and posses a unique maximum at û. Note that the inverse of
Γ11(θ0) is well defined by Assumption (A4). We would like to show that {ûn}n =
OP (1). To see that, we will show that in a probability that tends towards one,

there is a local maximizer û of Φn(u) such that n−1/2ûn = θ̂−θ0 = OP (n
−1/2).

More specifically, we show that or any given ε > 0, there exists a constant C
such that

P

(
sup

‖u‖=C

Φn(θ0 + n−1/2u) < Φn(θ0)

)
≥ 1− ε . (16)

By the Taylor expansion of (12), we obtain

Φn(θ0 + n−1/2u)− Φn(θ0) = T
(n)
1 (u) + T

(n)
2 (u)− T

(n)
3 (u) .

Note that T
(n)
1 (u) = OP (1), T

(n)
2 (u) = −uTΓ(θ0)u(1 + oP (1)),

T
(n)
3 (u) ≥

p1∑
j=1

anj
n1/2

kj∑
k=1

ŵk
j

√
n

(∣∣∣∣θ0j + uj√
n
− θkj

∣∣∣∣− ∣∣θ0j − θkj
∣∣)

+

p∑
j=p1+1

anj
n1/2

kj∑
k=2

ŵk
j

√
n

(∣∣∣∣θ0j + uj√
n
− θkj

∣∣∣∣− ∣∣θ0j − θkj
∣∣)

which is oP (1) by (13). Since by Assumption (A4), Γ(θ0) is negative definite,

taking C large enough, T
(n)
2 (u) dominates the other two terms, and thus (16)

holds and {ûn}n is uniformly tight. Hence, all the conditions of the Argmax
Theorem (Kosorok, 2008, Theorem 14.1) hold, and consequently we proved that
ûn →d û. Summarizing, we have

ûn1 →d Γ11(θ0)
−1W, ûn2 →d 0 .
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In other words, n1/2(θ̂n1 − θ01) →d N(0,Λ11(θ0)) and the normality part is
proven.

We now move to prove the sparsity property. For all j ∈ A, the asymptotically
normality indicates that P (θ̂nj �= θ0j , j = 1, . . . , kj) → 1. Thus, it suffice to

show that for every j ∈ AC , P (θ̂nj = θ0j) → 1. It is sufficient to show that for
any sequence of θn, satisfying ‖θn1 − θ01‖ = OP (n

−1/2), and for any constant
C > 0,

Φn(θn1,θ02) = max
{θ2:‖θ2−θ02‖≤Cn−1/2}

Φn(θn1,θ2) . (17)

For all j ∈ AC , ∂Φn(θ)/∂θj exists for all θ, such that θj �= θkj for some k ∈
{1, . . . , kj}. Hence, for any fixed constant C, and all n large enough, ∂Φn(θ)/∂θj
exists for all θ such that ‖θ2 − θ02‖ ≤ Cn−1/2 for which θj �= θ0j . Thus, in
order to show (17), it is enough to show that with probability tending towards
1, ∂Φn(θn)/∂θj is positive for θnj < θ0j and negative for θnj > θ0j when

|θnj − θ0j | < Cn−1/2 for all j ∈ AC .
By (3), the derivative

n− 1
2
∂Φn(θn1,θ2)

∂θj
=n− 1

2

n∑
i=1

∂�(Vi;θn)

∂θj
− anj√

n

kj∑
k=1

ŵk
j sign(θnj − θkj ) (18)

By Assumption (A3),

n− 1
2

n∑
i=1

∂�(Vi;θn)

∂θj
= n− 1

2

n∑
i=1

∂�(Vi;θ0)

∂θj
+

√
n((θn1,θ2)− θ0)

n

n∑
i=1

∂�(Vi; θ̌)

∂θj

which equals OP (1), where θ̌ is between (θn1,θ2) and θ0, and the last assertion
follows since

√
n((θn1,θ2) − θ0) = OP (1) for all θ2 such that ‖θ2 − θ02‖ ≤

Cn−1/2. As for the second expression in (18)

anj√
n

kj∑
k=1

ŵk
j sign(θj − θkj ) =anjn

(γ−1)/2|n1/2(θ̃nj − θ0j)|−γsign(θnj − θ0j)

+
anj√
n

kj∑
k=2

(
|θ0j − θkj |−γ + oP (1)

)
sign(θnj − θkj )

→P sign(θnj − θ0j) · ∞ ,

since anjn
(γ−1)/2 → ∞, |n1/2(θ̃nj − θ0j)| = OP (1), and n−1/2anj → 0. Summa-

rizing,

n− 1
2
∂Φn(θn1,θ2)

∂θj
→ −sign(θnj − θ0j)∞ ,

which proves that for all n large enough, ∂Φn(θn)
∂θj

is positive for θnj < θ0j and

negative for θnj > θ0j .
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A.2. Proof of Theorem 2

We need to prove that lim inf P (θ0
(J) ∈ Cn) ≥ 1−α. First, in order to θ0

(J) ∈ Cn

we need Jn2 = J2 where J2 = J ∩ AC . Hence, we can write

lim infP (θ0
(J) ∈ Cn)

= lim inf P (θ0
(J1) ∈ C(J1)

n , Jn2 = J2)

≥ lim inf P (θ0
(J1) ∈ C(J1)

n | {Jn2 = J2}) lim inf P (Jn2 = J2)

≥ lim inf P (θ0
(J1) ∈ C(J1)

n | {An = A}) lim inf P (AC
n = AC)

= lim inf P (θ0
(J1) ∈ C(J1)

n | {An = A}) ,

(19)

where the one before last inequality holds since when An = A, we also have
Jn2 = J2; and where the last inequality follows from Theorem 1, since
lim inf P ({AC

n = AC) = 1. When An = A we have

θ0
(J1) ∈ C(J1)

n

⇔
(
(nΛ(A)

n )1/2
)(J1)

(θ0
(J1) − θ̂(J1)

n ) ∈
{(

(nΛ(A)
n )1/2

)(J1)
(C(J1)

n − θ̂(J1)
n )

}
⇔

(
(nΛ(A)

n )1/2
)(J1)

(θ0
(J1) − θ̂(J1)

n ) ∈ Ds .

Recall that by Theorem 1,
(
(nΛ

(A)
n )1/2

)(J1)
(θ0

(J1) − θ̂
(J1)
n ) weakly converges to

is a Gaussian random vector Z with mean 0 and identity variance matrix of
dimension equals to the cardinality of J1. It thus follows from the Portmanteau
Lemma (van der Vaart, 2000, Lemma 2.2) that

lim inf P
(
θ0

(J1) ∈ C(J1)
n | {An = A}

)
= lim inf P

(
(θ0

(J1) − θ̂(J1)
n ) ∈ {C(J1)

n − θ̂(J1)
n } | {An = A}

)
= lim inf P

((
(nΛ(A)

n )1/2
)(J1)

(θ0
(J1) − θ̂(J1)

n ) ∈ Ds | {An = A}
)
≥ 1− α ,

(20)

since P (Z ∈ Ds) = 1− α. Substituting (20) in (19) and the result follows.

A.3. Proof of Theorem 3

We define the sets Θn as follows. For each pair (j, k), j ∈ 1, . . . , p and k ∈
1, . . . , kj and ε > 0, define the sets Gε

j,k ≡ {θ ∈ Θ : θkj − ε < θj < θkj + ε}.
Define the sets Hε ≡ {θ ∈ Θ : d(θ, boundary(Θ)) < ε} where d is the Euclidean
distance function. Define

Θn ≡ Θ/
{(

∪Gn−1/2+δ

j,k

)
∪Hn−1/2+δ

}
. (21)

for some fixed 0 < δ < 1
2 . Clearly, the Lebesgue measure of the sets Θ/Θn

converges to zero as n → ∞. We now need to show that (7) holds.
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It is enough to show that for every sequence θn ∈ Θn that converges to some
θ0 ∈ Θ, we have that

lim inf
n→∞

Pθn (Cn ∈ θn) ≥ 1− α . (22)

Indeed, if (7) does not hold, then there is a sequence {θn}, θn ∈ Θn, such that

lim inf
n→∞

Pθn (θn ∈ Cn) = 1− α− ε , (23)

for some ε > 0. By the compactness of Θ, this subsequence has a subsequence
θnk

that converges to some limit θ0 for which (23) holds, and therefore (22) will
not hold. Fix a sequence θn ∈ Θn that converges to some θ0 ∈ Θ. Note that

Ln

(
V1, . . . , Vn;θn +

u√
n

)
− Ln (V1, . . . , Vn;θn)

=
uT

√
n

n∑
i=1

�̇ (Vi;θn) +
1

2

uT

√
n

n∑
i=1

�̈
(
Vi; θ̌

) u√
n
≡ T

(n)
1 (u) + T

(n)
2 (u) ,

(24)

where θ̌ is between θn and θn + u/
√
n.

By the Lindeberg-Feller central limit theorem,

Δ−1/2(θn)T
(n)
1 (u) →

Pθn

d u
TN(0,Δ(θ0)) .

By the law of large numbers, Assumptions (A3) and (A4), and the continuous

mapping theorem, T
(n)
2 (u) →Pθn

−uTΓ(θ0)u. Hence, since θn → θ0, there exists
a constant C such that for all n large enough

Pθn

(
sup

‖u‖=C

Ln(θn + n−1/2u) < Ln(θn)

)
≥ 1− ε .

Since θ̃n is consistent to θn, we obtain that

Pθn

(∣∣∣√n(θ̃n − θn)
∣∣∣ < C

)
≥ 1− ε . (25)

Define

Ψn(u) ≡Φn

(
θn +

u√
n

)
− Φn(θn) ≡ T

(n)
1 (u) + T

(n)
2 (u)− T

(n)
3 (u) ,

where θ̌ is between θn and θn + u/
√
n and

T
(n)
3 =

p∑
j=1

anj

kj∑
k=1

ŵk
j

(∣∣∣∣θnj + uj√
n
− θkj

∣∣∣∣− ∣∣∣∣θnj + uj√
n
− θkj

∣∣∣∣)
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The limiting distribution of T
(n)
1 and T

(n)
2 was discussed above. Consider the

limiting behavior of T
(n)
3 . Recall that ŵk

j ≡ |θ̃nj − θkj |−γ . By (25), for all n large
enough, and for every k = 1, . . . , kj , and j ∈ 1, . . . , p,

2|θ0j − θkj |−γ >

(
|θnj − θkj | −

C√
n

)−γ

> ŵk
j >

(
|θnj − θkj |+

C√
n

)−γ

> 0 .

where the left inequality follows since by the definition of Θn, (1− 2−1/γ)|θnj −
θkj | > C√

n
for all n large enough.

Also, for all n large enough, the sign of
∣∣∣θnj + uj√

n
− θkj

∣∣∣ is constant and hence

√
n

(∣∣∣∣θnj + uj√
n
− θkj

∣∣∣∣− ∣∣θnj − θkj
∣∣) → uj · sign(θ0j − θkj ) .

Since
anj√

n
→ 0, we conclude that

anj√
n
ŵk

j

√
n

(∣∣∣∣θ0j + uj√
n
− θkj

∣∣∣∣− ∣∣θ0j − θkj
∣∣) →

Pθn

d 0 .

We conclude that

Ψn(u) →
Pθn

d Ψ(u) ≡ uTW − 1

2
uTΓ(θ0)u ,

where W ∼ N(0,Δ(θ0)). Simple algebra shows that the maximizer of Ψ(u)
is û = Γ(θ0)

−1W . Using the same arguments as in the proof of Theorem 1,
we can show that all the conditions of the Argmax Theorem (Kosorok, 2008,
Theorem 14.1) hold, and thus

n1/2(θ̂n − θn) →
Pθn

d N(0,Λ(θ0)
−1) .

Similarly to the proof of Theorem 2, we can now show that that

lim inf Pθn

(
θ0

(J) ∈ C(J)
n | {An = {1, . . . , p}}

)
= lim inf Pθn

(
(θ0

(J) − θ̂(J)
n ) ∈ {C(J)

n − θ̂(J)
n } | {An = {1, . . . , p}}

)
= lim inf Pθn

((
(nΛn)

1/2
)(J)

(θ0
(J) − θ̂(J)

n ) ∈ Dp | {An = {1, . . . , p}}
)

≥ 1− α ,

by the Portmanteau Lemma (van der Vaart, 2000, Lemma 2.2), where by con-
struction P (Z ∈ Dp) = 1− α.

A.4. Proof of Corollary 2

Proof. Write

P (θ ∈ Cn) =

∫
Θ

P (θ ∈ Cn | θ = ϑ) dϑ



Oracle estimation for transformations 113

=

∫
Θn

P (ϑ ∈ Cn | θ = ϑ)π(ϑ)dϑ+

∫
Θ/Θn

P (ϑ ∈ Cn | θ = ϑ)πθ(ϑ)dϑ

≥ inf
ϑ∈Θn

P (ϑ ∈ Cn | θ = ϑ)

∫
Θn

πθ(ϑ)dϑ+

∫
Θ/Θn

P (ϑ ∈ Cn | θ = ϑ)πθ(ϑ)dϑ .

By Theorem 3 and the definition of Θn in (7),

lim inf
n→∞

inf
ϑ∈Θn

P (ϑ ∈ Cn | θ = ϑ)

∫
Θn

πθ(ϑ)dϑ ≥ 1− α .

Since πθ(ϑ) is bounded and the Lebesgue measure of Θn converges to zero, we
have that ∫

Θ/Θn

P (ϑ ∈ Cn | θ = ϑ)πθ(ϑ)dϑ → 0

and the result follows.

A.5. Proof of Theorem 4

Define

Ψ(n)
n (u) ≡ Φn

(
θ0 +

u√
n

)
− Φn(θ0) = T

(n)
1 (u) + T

(n)
2 (u)− T

(n)
3,n (u) (26)

where T
(n)
1 and T

(n)
2 are defined in (12) and where

T
(n)
3,n (u) ≡

p∑
j=1

anj

knj∑
k=1

ŵk
j

(∣∣∣∣θ0j + uj√
n
− θ

(n)
j,k

∣∣∣∣− ∣∣∣∣θ0j + uj√
n
− θkj

∣∣∣∣)

where θ̌ is between θ0 and θ0 + u/
√
n.

The only difference between Ψ
(n)
n and Ψn defined in (12), is in the that the

term T
(n)
3,n replaces T

(n)
3 .

Consider the limiting behavior of T
(n)
3,n . Recall that θ̃nj is consistent for θ0j

for every j ∈ {1, . . . , p}. First, by the inverse triangle inequality for every k =
1, . . . , knj , and for every j ∈ B, and k = 2, . . . , knj , for j ∈ BC ,

ŵk
j ≡ |θ̃nj − θ

(n)
j,k |−γ = |θ̃nj − θ0j + θ0j − θ

(n)
j,k |−γ

≤
(∣∣∣|θ0j − θ

(n)
j,k | − |θ̃nj − θ0j |

∣∣∣)−γ

Since |θ0j − θ
(n)
j,k | ≥ δn, where δ−1

n = oP (n
1/2), and θ̃nj − θ0j = OP (n

−1/2),

max
k∈{1,...,knj}

ŵk
j ≤ δ−γ

n + oP (1) .
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Also, for fixed uj , there exists N0,j such that for all n ≥ N0,j , |uj/
√
n| ≤

|θ0j − θ
(n)
j,k | for every k = 1, . . . , knj , and for every j ∈ B, and k = 2, . . . , knj , for

j ∈ BC . Hence, for all n ≥ N0,j ,

max
k∈{1,...,knj}

√
n

∣∣∣∣θ0j + uj√
n
− θ

(n)
j,k

∣∣∣∣− ∣∣∣θ0j − θ
(n)
j,k

∣∣∣ = uj · sign(θ0j − θ
(n)
j,k ) .

Thus we conclude that for all n ≥ N0,j∣∣∣∣∣anj ∑
k:θ0j �=θ

(n)
j,k

ŵk
j

(∣∣∣∣θ0j + uj√
n
− θ

(n)
j,k

∣∣∣∣− ∣∣∣∣θ0j + uj√
n
− θkj

∣∣∣∣)
∣∣∣∣∣

≤ n−1/2anjηn|uj |max ŵk
j = n−1/2anjηn|uj |(δ−γ

n + oP (1)) →P 0 .

(27)

Recall that for j ∈ BC , θ1j = θ0j . Hence

√
n

(∣∣∣∣θ0j + uj√
n
− θ1j

∣∣∣∣− ∣∣θ0j − θ1j
∣∣) = |uj | ,

and
anj

n1/2 ŵ
1
j = anjn

(γ−1)/2|n1/2(θ̃nj − θ0j)|−γ where n1/2(θ̃nj − θ0j) = OP (1)
(see Section 2.1). Thus, we obtain

anj

knj∑
k=1

ŵk
j

(∣∣∣∣θ0j + uj√
n
− θ

(n)
j,k

∣∣∣∣− ∣∣∣∣θ0j + uj√
n
− θkj

∣∣∣∣) P→

⎧⎨⎩
0 j ∈ B,
0 j ∈ BC , uj = 0
∞ j ∈ BC , uj �= 0

(28)

We conclude that Ψ
(n)
n (u) →d Ψ(u), where Ψ(u) is defined in (15). The fact

that T3,n(u) ≥ oP (1) follows from (27). Thus, using similar arguments to those
in the proof of Theorem 1, one can show that all the conditions of the Argmax
Theorem (Kosorok, 2008, Theorem 14.1) hold, and consequently ûn →d û where

ûn = argmaxu Ψ
(n)
n (u) =

√
n(θ̂n − θ0). In other words, n1/2(θ̂n1 − θ01) →d

N(0,Λ11(θ0)) which proves the normality part.
The sparsity property can be proved similarly to the proof of Theorem 1.

The main difference in the proof is that the expression for derivative of Φ
(n)
n is

n− 1
2
∂Φn

n(θn1,θ2)

∂θj
=n− 1

2

n∑
i=1

∂�(Vi;θn)

∂θj
− anj√

n

knj∑
k=1

ŵk
j sign(θnj − θ

(n)
j,k ) , (29)

Using (27), one can show that

n− 1
2
∂Φ

(n)
n (θn1,θ2)

∂θj
→ −sign(θnj − θ0j)∞ ,

which proves that for all n large enough,
∂Φ(n)

n (θn)
∂θj

is positive for θnj < θ0j and

negative for θnj > θ0j when |θnj − θ0j | < Cn−1/2 for all j ∈ BC .
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Table 3

Simulation results for λ0 = 0

method β01 β02 λ0

Bias MAD ESE CP Bias MAD ESE CP Bias Freq.
λ0 = 0, n = 100

MLE 0.10 0.66 0.89 0.97 0.03 0.26 0.35 0.96 0.00
Fixed (0.10) (0.22) (0.10) (0.56)

adaptive 0.03 0.15 0.10 0.96 0.00 0.12 0.11 0.94 0.00 0.71
oracle -0.00 0.10 -0.01 0.10

λ0 = 0, n = 400
MLE -0.02 0.33 0.37 0.96 -0.01 0.13 0.14 0.94 -0.00
Fixed (0.05) (0.22) (0.05) (0.55)

adaptive 0.00 0.06 0.05 0.95 0.00 0.06 0.05 0.93 0.00 0.89
oracle -0.00 0.05 -0.00 0.05

λ0 = 0, n = 800
MLE -0.00 0.22 0.25 0.94 0.00 0.09 0.10 0.94 -0.00
Fixed (0.04) (0.23) (0.04) (0.56)

adaptive -0.00 0.04 0.04 0.95 -0.00 0.04 0.04 0.93 0.00 0.93
oracle 0.00 0.04 0.00 0.04

λ0 = 0, n = 1600
MLE -0.00 0.19 0.18 0.96 0.00 0.07 0.07 0.96 0.00
Fixed (0.03) (0.28) (0.03) (0.52)

adaptive -0.00 0.03 0.03 0.92 -0.00 0.03 0.03 0.93 0.00 0.94
oracle -0.00 0.03 0.00 0.02

MAD, the median absolute deviation of the estimates divided by 0.6745; ESE, the median of
the estimated standard errors; CP, the empirical coverage probabilities of the Wald-type 95%
confidence interval; Freq., the selection frequency of the true power transformation parameter
over 500 runs.

Appendix B: Simulation results

As described in Section 4, we conducted the following simulations. First, we
considered five values for the true transformation parameter: λ0 = 0, 1/2,−1/2,
1,−1. The regression parameters were set as β0 = (β01, 1)

T , where β01 is the
intercept parameter. For λ0 = 0, 1/2 we chose β01 = 5; for λ0 = 1, β01 = 8;
for λ0 = −1/2, β01 = −5; and for λ0 = −1, β01 = −8. The different choices
of β01 were chosen to ensure positive response. The candidate set Aλ equals
{0, 1/2,−1/2, 2,−2} for the transformation parameter. Note that Aλ does not
include 1,−1. For each setting, we conducted 500 simulation runs with sample
sizes of n = 100, 400, 800 and 1600. The simulation results for λ0 = 0, 1/2, and
−1/2 are summarized in Tables 3 and 4. For such cases, λ0 is contained in
the candidate set Aλ. The simulation results for λ0 = 1,−1 are summarized in
Table 5. For such cases, λ0 is not contained in the candidate set Aλ.

We also conducted a comparison between the prediction intervals based on the
proposed adaptive method and the method of Cho et al. (2001). We considered
the same simulation settings as above with the sample size of n = 100, 400.
Five different prediction points are used, which are x0 = (1, 0), (1, 1), (1,−1),
(1, 2) and (1,−2) with the first component being the intercept. The coverage
probabilities of corresponding 95% prediction intervals and their standard errors
are reported in Table 6
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Table 4

Simulation results for λ0 = 1/2 and −1/2

method β01 β02 λ0

Bias MAD ESE CP Bias MAD ESE CP Bias Freq.

λ0 = 0.5, n = 100
MLE 0.16 1.23 1.71 0.95 0.06 0.40 0.54 0.93 -0.01
Fixed (0.10) (0.12) (0.10) (0.35)

adaptive -0.17 0.17 0.10 0.91 -0.05 0.14 0.11 0.88 -0.04 0.67
oracle -0.00 0.10 -0.01 0.10

λ0 = 0.5, n = 400
-0.05 0.62 0.69 0.95 -0.01 0.19 0.22 0.93 -0.01
Fixed (0.05) (0.14) (0.05) (0.38)

adaptive -0.04 0.06 0.05 0.93 -0.01 0.06 0.05 0.91 -0.01 0.84
oracle -0.00 0.05 -0.00 0.05

λ0 = 0.5, n = 800
MLE -0.01 0.44 0.49 0.94 -0.00 0.14 0.16 0.94 -0.01
Fixed (0.04) (0.13) (0.04) (0.36)

adaptive -0.02 0.04 0.04 0.94 -0.01 0.04 0.04 0.92 -0.00 0.91
oracle 0.00 0.04 0.00 0.04

λ0 = 0.5, n = 1600
MLE -0.00 0.33 0.34 0.96 0.00 0.11 0.11 0.96 -0.00
Fixed (0.03) (0.11) (0.03) (0.35)

adaptive -0.01 0.03 0.03 0.93 -0.00 0.03 0.03 0.94 -0.00 0.92
oracle -0.00 0.03 0.00 0.02

λ0 = −0.5, n = 100
MLE -0.05 1.18 1.64 0.96 0.02 0.38 0.51 0.95 0.02
Fixed (0.09) (0.13) (0.10) (0.38)

adaptive 0.19 0.17 0.10 0.90 -0.05 0.14 0.11 0.88 0.04 0.64
oracle -0.00 0.10 -0.01 0.10

λ0 = −0.5, n = 400
MLE -0.08 0.67 0.72 0.95 0.03 0.21 0.23 0.95 -0.00
Fixed (0.05) (0.12) (0.05) (0.36)

adaptive 0.03 0.06 0.05 0.94 -0.01 0.06 0.05 0.92 0.01 0.88
oracle -0.00 0.05 -0.00 0.05

λ0 = −0.5, n = 800
MLE -0.02 0.44 0.49 0.96 0.01 0.14 0.16 0.96 0.00
Fixed (0.04) (0.11) (0.04) (0.36)

adaptive -0.02 0.04 0.04 0.95 0.00 0.04 0.04 0.94 -0.00 0.92
oracle 0.00 0.04 0.00 0.04

λ0 = −0.5, n = 1600
MLE -0.02 0.35 0.34 0.96 0.01 0.11 0.11 0.95 -0.00
Fixed (0.03) (0.11) (0.03) (0.34)

adaptive -0.01 0.03 0.03 0.93 0.00 0.03 0.03 0.94 -0.00 0.93
oracle -0.00 0.03 0.00 0.02

MAD, the median absolute deviation of the estimates divided by 0.6745; ESE, the median of
the estimated standard errors; CP, the empirical coverage probabilities of the Wald-type 95%
confidence interval; Freq., the selection frequency of the true power transformation parameter
over 500 runs.
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Table 5

Simulation results for λ0 = 1 and −1

method β01 β02 λ0

Bias MAD ESE CP Bias MAD ESE CP Bias Freq.

λ0 = 1, n = 100
MLE 2.01 4.72 6.80 0.92 0.47 0.85 1.26 0.89 -0.01
Fixed (0.11) (0.04) (0.10) (0.18)

adaptive 1.82 5.40 5.82 0.79 0.45 0.86 1.07 0.77 -0.04 0.12
oracle -0.00 0.10 -0.01 0.10

λ0 = 1, n = 400
MLE 0.16 2.31 2.68 0.92 0.05 0.42 0.50 0.91 -0.03
Fixed (0.05) (0.03) (0.05) (0.16)

adaptive -0.05 2.42 2.64 0.88 0.02 0.43 0.48 0.87 -0.05 0.08
oracle -0.00 0.05 -0.00 0.05

λ0 = 1, n = 800
MLE 0.10 1.73 1.93 0.93 0.03 0.33 0.36 0.93 -0.01
Fixed (0.04) (0.03) (0.04) (0.20)

adaptive -0.06 1.71 1.89 0.92 0.00 0.32 0.35 0.91 -0.03 0.02
oracle 0.00 0.04 0.00 0.04

λ0 = 1, n = 1600
MLE 0.04 1.29 1.33 0.95 0.01 0.24 0.24 0.95 -0.01
Fixed (0.03) (0.02) (0.00) (0.15)

adaptive -0.05 1.29 1.31 0.94 -0.00 0.24 0.24 0.94 -0.01 0.00
oracle -0.00 0.03 0.00 0.02

λ0 = −1, n = 100
MLE -1.49 4.23 6.03 0.92 0.38 0.72 1.09 0.88 0.05
Fixed (0.09) (0.04) (0.09) (0.17)

adaptive -1.31 4.58 5.17 0.75 0.36 0.75 0.93 0.73 0.09 0.15
oracle -0.00 0.10 -0.01 0.10

λ0 = −1, n = 400
MLE -0.70 2.68 2.91 0.95 0.15 0.49 0.53 0.94 -0.01
Fixed (0.05) (0.04) (0.05) (0.17)

adaptive -0.49 2.61 2.86 0.90 0.12 0.49 0.52 0.89 0.01 0.06
oracle -0.00 0.05 -0.00 0.05

λ0 = −1, n = 800
MLE -0.25 1.69 1.94 0.95 0.06 0.31 0.36 0.95 0.00
Fixed (0.04) (0.03) (0.04) (0.15)

adaptive -0.10 1.74 1.87 0.95 0.03 0.31 0.35 0.94 0.01 0.01
oracle 0.00 0.04 0.00 0.04

λ0 = −1, n = 1600
MLE -0.16 1.34 1.35 0.96 0.04 0.24 0.25 0.95 -0.00
Fixed (0.03) (0.04) (0.03) (0.15)

adaptive -0.08 1.33 1.34 0.95 0.02 0.24 0.24 0.94 0.00 0.00
oracle -0.00 0.03 0.00 0.02

MAD, the median absolute deviation of the estimates divided by 0.6745; ESE, the median of
the estimated standard errors; CP, the empirical coverage probabilities of the Wald-type 95%
confidence interval; Freq., the selection frequency of the true power transformation parameter
over 500 runs.
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Table 6

Simulation results for coverage probabilities of prediction intervals and their standard
deviations

λ0 n method x0 = (1, 0) x0 = (1, 1) x0 = (1,−1) x0 = (1, 2) x0 = (1,−2)
0.0 100 MLE 0.945 (18) 0.943 (21) 0.945 (22) 0.940 (32) 0.942 (33)

adaptive 0.945 (17) 0.945 (19) 0.945 (20) 0.943 (25) 0.944 (28)
400 MLE 0.948 ( 8) 0.949 (10) 0.947 (10) 0.948 (15) 0.946 (15)

adaptive 0.948 ( 8) 0.948 ( 9) 0.948 ( 9) 0.948 (11) 0.948 (11)

0.5 100 MLE 0.945 (18) 0.944 (21) 0.943 (23) 0.942 (29) 0.939 (37)
adaptive 0.945 (17) 0.947 (18) 0.942 (22) 0.948 (22) 0.936 (37)

400 MLE 0.948 ( 8) 0.949 (10) 0.947 (10) 0.949 (14) 0.945 (17)
adaptive 0.948 ( 8) 0.949 ( 9) 0.948 ( 9) 0.949 (10) 0.947 (13)

-0.5 100 MLE 0.945 (18) 0.942 (22) 0.946 (22) 0.936 (36) 0.944 (30)
adaptive 0.945 (17) 0.941 (22) 0.947 (20) 0.934 (38) 0.948 (25)

400 MLE 0.948 ( 8) 0.948 (10) 0.948 (10) 0.947 (16) 0.947 (14)
adaptive 0.948 ( 8) 0.948 ( 9) 0.949 ( 9) 0.947 (12) 0.949 (10)

1.0 100 MLE 0.945 (18) 0.944 (21) 0.944 (22) 0.942 (29) 0.940 (36)
adaptive 0.945 (18) 0.945 (21) 0.943 (23) 0.943 (30) 0.938 (37)

400 MLE 0.948 ( 8) 0.949 (10) 0.947 (10) 0.949 (14) 0.945 (17)
adaptive 0.948 ( 8) 0.949 (10) 0.947 (11) 0.950 (14) 0.944 (18)

-1.0 100 MLE 0.945 (18) 0.943 (22) 0.945 (21) 0.937 (35) 0.944 (30)
adaptive 0.945 (18) 0.942 (22) 0.946 (22) 0.935 (37) 0.945 (30)

400 MLE 0.948 ( 8) 0.948 (10) 0.948 (10) 0.948 (16) 0.947 (14)
adaptive 0.948 ( 8) 0.948 (11) 0.948 (10) 0.946 (17) 0.947 (15)

The numbers in the parenthesis are the standard deviations of the coverage probabilities×103.

Supplementary Material

R Code
(doi: 10.1214/15-EJS1083SUPP; .zip). The R files that contains the code for the
case studies analysis.
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