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Abstract: In this paper we consider the semiparametric transformation
model Λθo (Y ) = m(X) + ε, where θo is an unknown finite dimensional pa-
rameter, the function m(·) = E(Λθo (Y )|X = ·) is “smooth”, but otherwise
unknown, and the covariate X is independent of the error ε. An estimator
of the distribution function of ε is investigated and its weak convergence
is proved. The proposed estimator depends on a profile likelihood estima-
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1. Introduction

Consider a sample (X1, Y1), . . . , (Xn, Yn) of independent copies of a bivariate
random vector (X,Y ), that satisfies the semiparametric transformation model

Λθo(Y ) = m(X) + ε, (1.1)

where ε is independent of X and E(ε) = 0. Here, {Λθ : θ ∈ Θ} (with Θ ⊂ R
p

compact) is a parametric family of strictly increasing functions defined on an
unbounded subset D of R, and m is the unknown regression function belonging
to an infinite dimensional parameter set M. We assume that M is a space of
functions endowed with the norm ‖ · ‖M = ‖ · ‖∞. We denote θo ∈ Θ and
m ∈ M for the true unknown finite and infinite dimensional parameters, and
we define the function mθ(x) = E(Λθ(Y )|X = x) and the error εθ = ε(θ) =
Λθ(Y )−mθ(X) for arbitrary θ ∈ Θ. Clearly, mθo ≡ m.

Our objective in this paper is to estimate the cumulative distribution function
(c.d.f.) Fε(t) = P(ε ≤ t). Our estimation approach is based on a two-step
strategy which, in a first step, replaces the unobserved regression errors εi’s by
semiparametric estimators ε̂i(θ̂) = Λθ̂(Yi)−m̂θ̂(Xi), where θ̂ and m̂θ̂ are suitable
estimators of θo and mθo respectively. In a second step, the distribution function

Fε is estimated by the empirical distribution function of the ε̂i(θ̂)’s as if they
were the true errors. To estimate θo we use a profile likelihood (PL) approach,
developed in [24], whereas for each fixed θ, mθ(x) is estimated by means of the
Nadaraya-Watson [28, 42] method.

To the best of our knowledge, the estimation of the distribution of the er-
ror ε in model (1.1) has not yet been investigated in the statistical literature.
However, it may be very useful in various regression problems. First, taking
transformations of the data may induce normality and error variance homo-
geneity in the transformed model. So the estimation of the error distribution in
the transformed model may be used for testing these hypotheses. It may also
be used for goodness-of-fit tests of a specified error distribution in a paramet-
ric or semiparametric regression setting, for testing the symmetry of the error
distribution, or for various other testing problems, like tests for the parametric
form of the regression or variance function, tests for comparing two regression
functions, tests for the validity of the model, etc. Hence, the error distribution
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plays a very important role in model (1.1), both for exploratory analyses and
for statistical inference.

There exists a large literature on the estimation of model (1.1) when the
regression function m is parametric. A major contribution to this methodology
was made by [4], who proposed a parametric power family of transformations
(called the Box-Cox family) that includes the logarithm and the identity. Lots of
effort has been devoted to the investigation of the Box-Cox transformation since
its introduction. See, for example, [6, 17, 38, 15] for some of the more recent
references. Other dependent variable transformations have been suggested, see
for example, [43, 25, 3], and the Arcsinh transformation discussed in [23] and
more recently in [36]. See also the book of [5] and the review paper by [37] for
more details and references on parametric transformation models.

Over the last ten years a lot of research has been done on estimation and
testing problems under model (1.1) when Λθo is known and equals the identity
function. The starting point was the paper by [1], who studied the estimation
of the error distribution under the model

Y = m(X) + σ(X)ε, (1.2)

i.e. a heteroscedastic version of model (1.1) with Λθo ≡ id. They showed the
weak convergence of their estimator of the error distribution. Their results were
generalized by [33] to the case where the covariate is multi-dimensional. When
σ(X) ≡ 1, [26] investigated linear functionals of the error distribution whereas
the same authors estimated this distribution in partial linear models (see [27]).
The estimator of [1] has been used in various testing problems related to model
(1.2). See e.g. [31, 9, 34, 7, 10, 32, 21], among many others. Tests for the validity
of model (1.2) have been developed in [13, 14, 30, 22], whereas the consistency
of a smooth bootstrap procedure has been shown by [29]. Finally, model (1.2)
has also been applied in other contexts, like e.g. for estimating ROC curves (see
[18]) and for estimating the production frontier in efficiency analysis, where one
analyzes how firms transform their inputs to produce a set of outputs (see [16]).

A major element of our estimation procedure is the estimation of the param-
eter θo. As mentioned before, we will make use of the results in [24] to this end.
In the latter paper, the authors propose two estimation approaches for θo. The
first approach is a semiparametric profile likelihood (PL) approach, whereas the
second one is based on a ‘mean squared distance from independence (MD)’-idea
using the estimated distributions of X, εθ and (X, εθ). [24] derived the asymp-
totic distributions of their estimators under certain regularity conditions, and
proved that both estimators of θo are asymptotically normal. The authors also
showed that, in practice, the PL method outperforms the MD method. For this
reason, we focus in this paper on the PL method.

The remainder of the paper is organized as follows. In Section 2 we introduce
some notations and give the precise definition of our estimator of the error
distribution. In Section 3 we present the main asymptotic results of the paper,
together with the assumptions under which they are valid. The results of a
simulation study are given in Section 4, Section 5 is devoted to the analysis of
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a data set on the scattering of sunlight in the atmosphere and the proofs of the
main results are collected in Section 6 and in two appendices.

2. The estimator

Our estimation procedure for the error distribution Fε consists of two steps. In
a first step, we estimate the finite dimensional parameter θo. This parameter is
estimated by the profile likelihood (PL) method, studied in [24]. To this end,
note that under model (1.1), we have

P (Y ≤ y|X) = P (Λθo(Y ) ≤ Λθo(y)|X)

= P (εθo ≤ Λθo(y)−mθo(X)|X)

= Fε (Λθ(y)−mθo(X)) .

Therefore
fY |X(y|x) = fε (Λθo(y)−mθo(x)) Λ

′
θo(y),

where fε and fY |X are the densities of ε, and of Y given X, respectively. Then,
the log likelihood function with respect to θ ∈ Θ is given by

n∑
i=1

{log fεθ (Λθ(Yi)−mθ(Xi)) + log Λ′
θ(Yi)} , (2.3)

where fεθ is the density function of εθ. The idea of the PL method is to replace
all unknown expressions in the likelihood function by nonparametric kernel es-
timators. For this, let

m̂θ(x) =

∑n
i=1 Λθ(Yi)K1

(
Xi−x

h

)∑n
i=1 K1

(
Xi−x

h

) (2.4)

be the Nadaraya-Watson [28, 42] estimator of mθ(x) based on the ‘responses’
Λθ(Yi), i = 1, . . . , n, and let

f̂εθ (t) =
1

ng

n∑
i=1

K2

(
ε̂i(θ)− t

g

)
(2.5)

be a kernel estimator of the density of ε(θ), where ε̂i(θ) = Λθ(Yi) − m̂θ(Xi).
Here, K1 and K2 are kernel functions and h and g are appropriate bandwidth
sequences, tending to zero as n tends to infinity. This leads to the following PL
estimator of θo:

θ̂ = argmax
θ∈Θ

n∑
i=1

[
log f̂εθ (Λθ(Yi)− m̂θ(Xi)) + log Λ′

θ(Yi)
]
. (2.6)

Since the estimator m̂θ(Xi) converges to mθ(Xi) at a slower rate for those Xi

that are close to the boundary of the support X of X, we assume implicitly that
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the estimator θ̂ trims the observations Xi that are outside a subset X0 of X .
Note that by doing so, we keep the root-n consistency of θ̂ proved in [24].

Next, we use the estimator θ̂ to build the estimated residuals ε̂i(θ̂) = Λθ̂(Yi)−
m̂θ̂(Xi) (where as above, observations Xi that are outside X0 are not consid-

ered). Then, our proposed estimator F̂ε̂(t) for Fε(t) is defined by

F̂ε̂(t) =
1

n

n∑
i=1

1
(
ε̂i(θ̂) ≤ t

)
. (2.7)

In order to obtain the asymptotic distribution of this estimator, we will also
need the (unfeasible) estimator F̂ε(t) = 1

n

∑n
i=1 1(εi ≤ t), based on the true,

but unknown errors εi = εi(θo) = Λθo(Yi) −m(Xi). It will turn out that both

the expressions F̂ε̂(t) − F̂ε(t) and F̂ε(t) − Fε(t) contribute to the asymptotic

distribution of the estimator F̂ε̂(t) (see Section 3 for more details).

Remark 2.1. The estimator F̂ε̂(·) in (2.7) could be compared with a classical

integrated density estimator of the type (2.5), where θ is replaced by θ̂ in (2.6).
This idea has already been studied in a number of other contexts (see e.g. [35]
among others). It is expected that this alternative estimator of the error dis-

tribution has the same asymptotic distribution as the original estimator F̂ε̂(·),
provided the new bandwidth coming from the final kernel density estimator
(which invokes an additional bias compared to the original estimator) is chosen
in an appropriate way. In practice, the alternative estimator will have the ad-
vantage of being smooth, but on the other hand it has the important drawback
that the additional bandwidth, which controls the smoothing of the final kernel
estimator, needs to be chosen in an appropriate way in order to avoid bias ef-
fects. For the latter reason, we have preferred to focus on the original estimator
F̂ε̂(·) in this paper.

Remark 2.2. The above methodology could be extended to the multivariate
case. The procedure could indeed be used with a multivariate kernel estimator
instead of the estimator m̂θ(x) in (2.4). Theoretically, the asymptotic properties
of the estimator of the error distribution given in [33] should be extended to the
case where Λθ0(·) is not the identity function.

Remark 2.3. Recently, new maximization procedures with respect to both
the parametric and the nonparametric components have been developed (see
for example [11]). These have been shown to improve efficiency of the resulting
estimators but might suffer from numerical problems. More precisely, maximiz-
ing (with respect to ‘bundled’ parameters) can be achieved in a sieve space
where unknown functions can be approximated by B-splines. In our log likeli-
hood (2.3), there would be two nuisance parameters ζ1 and ζ2 corresponding to
the unknown functions mθ and fεθ , that should be approximated by B-splines.
Similarly to the notations used in [11], we can rewrite (2.3) as

n∑
i=1

ml(Yi, θ, ζ2(Yi, θ, ζ1(Xi, θ))),
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where ml corresponds to the likelihood function for a single data point. First,
the assumptions of Theorem 2.1 of [11] should be studied in the present context.
Next, as it can be seen from the above expression, ζ2 depends on ζ1 and max-
imization should be achieved with respect to two nested sets of coefficients of
the B-spline basis functions. It is unclear whether this will lead to a numerically
stable maximization problem.

In addition, our objective is to estimate the cumulative distribution function
of the errors (not the density) and therefore the residuals themselves are of pri-
mary interest. We fear that if we try to estimate everything at once, then the
errors, which are the building blocks of our procedure, might be badly influ-
enced by numerical instability problems coming from the important number of
parameters that need to be estimated at once, and the whole estimation proce-
dure might become unstable. For these reasons and since in any case, a practical
automatic choice of the knots (or possibly a smoothing splines technique) has
to be conducted, we finally decided to develop the strategy proposed above.

3. Asymptotic results

Before we give the main asymptotic results of this paper, we first need to in-
troduce a number of notations, and we also give the assumptions under which
these results are valid.

3.1. Notations

We denote Xn = {(Xj , Yj) : j = 1, . . . , n} and FY |X(y|x) = P(Y ≤ y|X = x).
When there is no ambiguity possible, we use the abbreviated notations ε and m
to indicate εθo and mθo . Throughout the paper, N (θo) represents a neighbor-
hood of θo. For the kernelKj (j = 1, 2) and for any q, let μ(q,Kj) =

∫
vqKj(v)dv

and let K
(q)
j be the qth derivative of Kj . For any function ϕθ(y), denote ϕ̇θ(y) =

∂ϕθ(y)/∂θ = (∂ϕθ(y)/∂θ1, . . . , ∂ϕθ(y)/∂θp)
t and ϕ′

θ(y) = ∂ϕθ(y)/∂y. Also, let

‖A‖ = (AtA)1/2 be the Euclidean norm of any vector A. For any functions m̃,

r, f , ϕ and q, and any θ ∈ Θ, let s = (m̃, r, f, ϕ, q), sθ = (mθ, ṁθ, fεθ , f
′
εθ
, ḟεθ ),

εi(θ, m̃) = Λθ(Yi)− m̃(Xi), and define

Gn(θ, s)

= n−1
n∑

i=1

{
1

f{εi(θ, m̃)}
[
ϕ{εi(θ, m̃)}{Λ̇θ(Yi)− r(Xi)}+ q{εi(θ, m̃)}

]
+

Λ̇′
θ(Yi)

Λ′
θ(Yi)

}
,

G(θ, s) = E[Gn(θ, s)] and G(θo, sθo) = ∂
∂θG(θ, sθ)

∣∣
θ=θo

.
For any compact subset I in R with nonempty interior and for any α > 0

and 0 < M < ∞, let C1+α
M (I) represent the class of all differentiable functions

d defined on I such that ‖d‖1+α ≤ M , where

‖d‖1+α = max

{
sup
x

|d(x)|, sup
x

|d′(x)|
}
+ sup

x,x′

|d′(x)− d′(x′)|
|x− x′|α ,

and where all suprema are taken over I.
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3.2. Technical assumptions

(A1) The function Kj (j = 1, 2) is symmetric, has compact support,∫
vkKj(v)dv = 0 for k = 1, . . . , qj − 1 and

∫
vqjKj(v)dv �= 0 for some qj ≥ 4,

and Kj is twice continuously differentiable.

(A2) The bandwidths h and g satisfy nh2q1 = o(1), ng2q2 = o(1),
nhq1+1(log h−1)−1 → ∞ and ng6(log g−1)−2 → ∞ when n → ∞ (where q1
and q2 are defined in (A1)).

(A3) (i) The support X of the covariate X is a compact subset of R, and X0 is
a compact subset with nonempty interior inside the interior of X .
(ii) The density fX is bounded away from zero and infinity on X , and is q1 − 1
times continuously differentiable.

(A4) The function mθ(x) is continuously differentiable with respect to θ on
X ×N (θ0), and the functions mθ(x) and ṁθ(x) are q1 times continuously differ-
entiable with respect to x on X ×N (θ0). All derivatives are bounded, uniformly
in (x, θ) ∈ X ×N (θo).

(A5) The error ε = Λθo(Y )−m(X) has finite fourth moment, ε is independent
of X and fε(y) > 0 for all y.

(A6) The distribution Fεθ|X(t|x) of εθ is three times continuously differentiable
with respect to t and θ, and

sup
θ,t,x

∣∣∣∣∣ ∂k+�

∂tk∂θ�11 . . . ∂θ
�p
p

Fεθ|X(t|x)
∣∣∣∣∣ < ∞

for all k and 	 such that 0 ≤ k+	 ≤ 2, where 	 = 	1+. . .+	p and θ = (θ1, . . . , θp)
t.

(A7) (i) The transformation Λθ(y) is three times continuously differentiable
with respect to both θ and y, and there exists α > 0 such that

E

[
sup

θ′:‖θ′−θ‖≤α

∣∣∣∣∣ ∂k+�

∂yk∂θ�11 . . . ∂θ
�p
p

Λθ′(Y )

∣∣∣∣∣
]
< ∞

for all θ ∈ Θ, and for all k and 	 such that 0 ≤ k+ 	 ≤ 3, where 	 = 	1+ . . .+ 	p
and θ = (θ1, . . . , θp)

t. Moreover, supx∈X ‖E[Λ̇4
θo
(Y )|X = x]‖ < ∞.

(ii) The density function of (Λ̇θ(Y ), X) exists and is continuous for all θ ∈ Θ.

(A8) For all η > 0, there exists ε(η) > 0 such that

inf
‖θ−θo‖>η

‖G(θ, sθ)‖ ≥ ε(η) > 0.

Moreover, the matrix G(θo, sθo) is non-singular.
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(A9) E(Λθo(Y )) = 1, Λθo(0) = 0 and the set {x ∈ X0 : m′(x) �= 0} has nonempty
interior.

Assumptions (A1), part of (A2), (A3) (i) and part of (A3)(ii), (A4), (A6),

part of (A7)(i) and (A8) are used by [24] to show that the PL estimator θ̂ of θo is
root n-consistent. Part of assumptions (A2), (A3) (ii) and (A7) (i), assumptions
(A5) and (A7) (ii), are needed to obtain the uniform convergence rates of the
Nadaraya-Watson estimator m̂θ̂(x) and its derivatives with respect to x and θ.
Finally, (A9) is needed for identifying the model (see [40]).

3.3. Main results

The estimator F̂ε̂(t) is not a sum of independent terms. Therefore, we start by

constructing an asymptotic representation for F̂ε̂(t), which decomposes F̂ε̂(t) in
essentially four parts. The first one equals the empirical distribution function
based on the true errors εi’s, the second and third parts account for the replace-
ment of the unknown mθo(Xi) and Λθo(Yi) in εi by m̂θ̂(Xi) and Λθ̂(Yi), while
the last part is asymptotically negligible.

Theorem 3.1. Assume (A1)–(A9). Then,

F̂ε̂(t)− Fε(t) = n−1
n∑

i=1

φθo(t,Xi, Yi) +Rn(t),

where sup{|Rn(t)| : −∞ < t < +∞} = oP(n
−1/2),

φθo(t, x, y) = 1(∞,t](Λθo(y)−m(x))−Fε(t)+ fε(t)(Λθo(y)−m(x))+ρtθo(x, y)h(t),

1A(·) denotes the indicator function, θ̂ − θo = 1
n

∑n
i=1 ρθo(Xi, Yi) + oP(n

1/2) is
the i.i.d. representation given in Theorem 4.1 of [24], ρt denotes the transpose
of ρ and

h(t) = E

[
∂

∂θ
Fεθ|X (t|X)

∣∣
θ=θo

]
.

We continue with the statement of the weak convergence of the process
n1/2(F̂ε̂(t)− Fε(t)) (−∞ < t < +∞).

Corollary 3.1. Suppose that the assumptions of Theorem 3.1 are satisfied.
Then, the process Ẑn(t) = n1/2[F̂ε̂(t)−Fε(t)], −∞ < t < +∞, converges weakly
to a zero-mean Gaussian process Z(t) with covariance function

Cov (Z(t), Z(t′)) = E (φθo(t,X, Y )φθo(t
′, X, Y )) .
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Remark 3.1. It is possible to relax assumption (A3) by allowing the bounds
of a compact subset of the support of X to tend to infinity with n. Let cn
correspond to these bounds (according to the notations of [19], who treated
this problem for classical kernel estimators with dependent data) and assume
that δn = inf |x|≤cn fX(x) > 0 (that tends to 0 when n tends to infinity). It is
then possible to show that the uniform consistency rate of Nadaraya-Watson
type estimators of the regression function is multiplied by δ−1

n (with respect to
the case where the support of X is compact). If δn tends to zero sufficiently
slowly, the final rates and the weak convergence of our estimator of the error
distribution would then be preserved. However, the proof of this result would
require two important steps. First, the asymptotic normality of the estimator θ̂
of [24] should be extended to the case where the likelihood function only uses
factors corresponding toXi, i = 1, . . . , n, included in the above subset depending
on n. Second, this extension should also be achieved for our estimator of the
error distribution, first for the asymptotic equicontinuity property of Lemma 1
in Appendix B and next, for the treatment of the asymptotic representation,
where each term depends on n.

4. Simulations

In this section, the finite sample performance of our estimator F̂ε̂(t) is investi-
gated. This is achieved through simulations described hereunder. Consider the
following transformation model:

Λθo(Y ) = b0 + b1X
2 + b2 sin(πX) + σee, (4.8)

where Λθ is the Box-Cox [4] transformation:

Λθ(y) =

{
yθ−1

θ , θ �= 0,

log(y), θ = 0,

X is uniformly distributed on the interval [−1, 1] and ε = σee is independent
of X. We choose θo = 0, 0.5 or 1, and for each θ0, three different models are
considered:

Model 1: b0 = 6.5, b1 = 5, σe = 1.5;
Model 2: b0 = 4.5, b1 = 3.5, σe = 1;
Model 3: b0 = 2.5, b1 = 2.5, σe = 0.5.

For each model, b2 = b0 − 3σe. We study two simulation settings that corre-
spond to two different distributions of e in (4.8): first, a standard normal dis-
tribution and, second, a mixture of the normal distributions N(−1.5, 0.25) and
N(1.5, 0.25) with equal weights. In order to avoid negative values of Λθo(Yi),
i = 1, . . . , n, these distributions are truncated on [−3, 3] (namely, the corre-
sponding densities are put to zero outside the interval [−3, 3] but their integrals
on this support are equal to one).
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One hundred samples of sizes n = 100 and n = 200 are generated and the
Epanechnikov kernel K(x) = 15

16 (1− x2)21(|x| ≤ 1) is used for both the estima-
tors of the regression and the density functions. For the estimation of θ0 and
Fε(t), we proceed as follows. Let

Lθ(h, g) =
n∑

i=1

[
log f̂εθ (ε̂i(θ, h)) + log Λ′

θ(Yi)
]
,

where ε̂i(θ, h) = Λθ(Yi) − m̂θ(Xi, h) and m̂θ(x, h) denotes m̂θ(x) constructed
with bandwidth h. This function will be maximized with respect to θ for given
(optimal) values of (h, g). For each value of θ, h∗(θ) is obtained by least squares
cross-validation,

h∗(θ) = argmin
h

n∑
i=1

(Λθ(Yi)− m̂−i,θ(Xi))
2,

where

m̂−i,θ(Xi) =

∑n
j=1,j �=i Λθ(Yj)K

(
Xj−Xi

h

)
∑n

j=1,j �=i K
(

Xj−Xi

h

)
and g can be chosen with a classical bandwidth selection rule for kernel density
estimation. Here, for simplicity, the normal rule is used (ĝ(θ) = (40

√
π)1/5n−1/5

σ̂ε̂(θ,h∗(θ)), where σ̂ε̂(θ,h∗(θ)) is the classical empirical estimator of the standard
deviation based on ε̂i(θ, h

∗(θ)), i = 1, . . . , n). The solution

θ̂ = argmax
θ

Lθ(h
∗(θ), ĝ(θ))

is therefore obtained iteratively (maximization problems are solved with the
function ‘optimize’ in R with h ∈ [0, 2] and θ ∈ [−20, 20]) and the estimator of
Fε(t) is finally given by

F̂ε̂(t) =
1

n

n∑
i=1

1
(
ε̂i(θ̂, h

∗(θ̂)) ≤ t
)
.

Figure 1 shows realizations of the estimator F̂ẽ(t) (the above empirical es-

timator but based on standardized residuals ẽi = ε̂i(θ̂, h
∗(θ̂))/σe, instead of

ε̂i(θ̂, h
∗(θ̂)), i = 1, . . . , n) when the error distribution is normal and when it is a

mixture of two normals. Tables 1, 3 and 4 show the bias, the variance (Var) and

the mean squared error (MSE) of F̂ẽ(t) for these two error distributions and for
a number of values of t. Dividing the residuals by σe only aims at comparing
models 1, 2 and 3 (modes are the same); in practice, if we would rather construct

a standardized version of F̂ε̂(t), a (global) estimator of σe should be introduced
in the procedure (see Section 5). Moreover, Tables 2 and 5 show the integrated

mean squared error (IMSE) of F̂ẽ(t) for both assumed error distributions.
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Fig 1. Realizations of F̂ẽ(t) for n = 200 and θ0 = 0, when the distribution of e is either
a standard normal (on the left) or a mixture of two normal distributions (N(−1.5, 0.25),
N(1.5, 0.25)) with equal weights (on the right). The first row corresponds to model 1, the
second row to model 2 and the third row to model 3.

As expected, we can observe (in particular from Tables 2 and 5) that estima-
tion improves for sample sizes going from n = 100 to n = 200 and is better for
the normal error density than for the mixture. These tables also suggest that a
larger σe globally leads to worse results. In these simulated examples, the best
results are obtained for the logarithmic transformation. This is intuitively clear,
because the shape of the logarithmic function is very different from a power
function (the range of log(y) equals (−∞,+∞) and log(y) is very steep close to
y = 0, while (yθ − 1)/θ takes values from −1/θ to +∞ for a given θ > 0 and is
less steep close to y = 0). Therefore, if the logarithm is the true transformation,
then it should be relatively easy to detect. This is in line with the findings in
[24], who reported the MSE of θ̂ for several values of θ.
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Table 1

Bias(F̂ẽ(t)) (×102), Var(F̂ẽ(t)) (×104) and MSE(F̂ẽ(t)) (×104) for different models,
values of t and sample sizes, when e has a standard normal density

Model θ0 n = 100 n = 200

F̂ẽ(−1) F̂ẽ(0) F̂ẽ(1) F̂ẽ(−1) F̂ẽ(0) F̂ẽ(1)
Bias -2.13 -0.74 2.33 -0.63 -0.68 0.66

θ0 = 0 Var 54.86 10.74 60.90 35.09 4.18 34.56
MSE 59.38 11.29 66.31 35.49 4.63 34.99

b0 = 6.5 Bias -2.20 -0.88 2.57 -0.40 -0.61 0.48
b1 = 5 θ0 = 0.5 Var 128.71 10.73 126.17 75.15 4.22 77.49
σe = 1.5 MSE 133.53 11.51 132.75 75.31 4.59 77.73

Bias -2.38 -0.87 2.90 -0.11 -0.59 0.31
θ0 = 1 Var 152.11 10.98 146.01 101.49 4.65 96.59

MSE 157.75 11.74 154.39 101.50 5.00 96.68
Bias -2.25 -0.74 2.34 -0.78 -0.64 0.62

θ0 = 0 Var 49.29 11.27 52.96 27.26 4.31 30.33
MSE 54.33 11.81 58.41 27.87 4.71 30.72

b0 = 4.5 Bias -1.86 -0.75 2.07 -0.47 -0.68 0.54
b1 = 3.5 θ0 = 0.5 Var 112.15 11.60 107.15 62.40 4.14 61.93
σe = 1 MSE 115.59 12.17 111.42 62.62 4.59 62.21

Bias -1.54 -0.76 2.08 -0.64 -0.64 0.65
θ0 = 1 Var 139.96 11.42 135.58 88.93 4.29 85.20

MSE 142.35 11.99 139.89 89.34 4.70 85.62
Bias -1.48 -0.52 1.29 -0.96 -0.69 0.71

θ0 = 0 Var 40.46 10.98 41.96 21.11 3.85 22.93
MSE 42.64 11.25 43.62 22.02 4.32 23.43

b0 = 2.5 Bias -1.55 -0.46 1.14 -0.91 -0.72 0.65
b1 = 2.5 θ0 = 0.5 Var 78.60 11.44 92.06 45.07 3.86 46.43
σe = 0.5 MSE 80.99 11.65 93.35 45.89 4.37 46.85

Bias -1.17 -0.58 1.25 -0.78 -0.76 0.55
θ0 = 1 Var 100.62 11.70 103.77 56.34 3.81 56.16

MSE 101.98 12.04 105.33 56.95 4.38 56.46

Table 2

IMSE(F̂ẽ(t)) (×104) for different models, values of t and sample sizes, when e has a
standard normal density

Model θ0 n = 100 n = 200
b0 = 6.5 θ0 = 0 28.20 15.78
b1 = 5 θ0 = 0.5 82.73 36.80
σe = 1.5 θ0 = 1 95.59 56.26
b0 = 4.5 θ0 = 0 25.13 13.04
b1 = 3.5 θ0 = 0.5 59.91 30.20
σe = 1 θ0 = 1 80.95 49.67
b0 = 2.5 θ0 = 0 20.54 10.25
b1 = 2.5 θ0 = 0.5 43.77 20.59
σe = 0.5 θ0 = 1 56.73 26.03

5. Data analysis

We apply our testing procedure to a data set composed of 355 observations
resulting from an experiment on the scattering of sunlight in the atmosphere
(see [2]). The data can be found in [8]. The response Y is the scattering angle
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Table 3

Bias(F̂ẽ(t)) (×102), Var(F̂ẽ(t)) (×104) and MSE(F̂ẽ(t)) (×104) for different models,
values of t and n = 100, when the distribution of e is a mixture of two normal densities

(N(−1.5, 0.25), N(1.5, 0.25)) with equal weights

Model θ0 n = 100

F̂ẽ(−1.5) F̂ẽ(−1) F̂ẽ(0) F̂ẽ(1) F̂ẽ(1.5)
Bias -4.83 -7.14 -0.09 5.45 3.84

θ0 = 0 Var 57.44 27.40 20.95 25.03 49.03
MSE 80.70 78.34 20.96 54.70 63.77

b0 = 6.5 Bias -8.33 -11.09 -0.14 9.43 7.85
b1 = 5 θ0 = 0.5 Var 106.59 83.41 20.55 87.30 101.71
σe = 1.5 MSE 175.98 206.34 20.57 176.18 163.33

Bias -9.03 -12.37 -0.09 10.37 8.30
θ0 = 1 Var 128.39 103.06 20.10 115.22 138.46

MSE 209.93 256.01 20.11 222.70 207.35
Bias -4.92 -7.45 -0.16 5.78 4.00

θ0 = 0 Var 52.07 33.71 20.04 30.88 46.08
MSE 76.28 89.17 20.06 64.25 62.08

b0 = 4.5 Bias -7.29 -9.96 -0.18 8.38 6.85
b1 = 3.5 θ0 = 0.5 Var 90.41 67.51 20.84 68.86 81.26
σe = 1 MSE 143.55 166.66 20.87 139.04 128.18

Bias -8.32 -11.09 -0.18 9.56 7.73
θ0 = 1 Var 109.51 85.19 20.67 91.99 102.16

MSE 178.74 208.12 20.71 183.33 161.91
Bias -5.73 -8.30 -0.22 7.00 5.39

θ0 = 0 Var 54.40 34.58 21.43 36.19 49.72
MSE 87.23 103.43 21.47 85.15 78.77

b0 = 2.5 Bias -6.81 -9.63 -0.30 8.14 6.29
b1 = 2.5 θ0 = 0.5 Var 82.54 59.52 21.04 53.56 75.14
σe = 0.5 MSE 128.92 152.21 21.13 119.78 114.70

Bias -7.71 -10.80 -0.25 9.35 7.31
θ0 = 1 Var 99.68 73.63 21.32 72.65 96.30

MSE 159.13 190.21 21.38 160.02 149.73

at which the polarization of sunlight vanishes, called the Babinet point. Note
that the response is positive, which justifies the use of a Box-Cox transforma-
tion. Moreover, the covariate X is the cube root of a measure of particulate
concentration in the atmosphere and we standardize it.

This data set has already been analyzed, but without transformation of the
response variable, in different articles, like in [20, 44, 41]. A test for linearity
of the underlying regression function was realized in [20], while different tests
for lth degree polynomial regression (l = 1, 2, 3, 4) were realized in [44, 41],
both with their own testing procedure. Here, similarly to Section 4 and for
graphical representation purposes, we compute the error distribution based on
standardized residuals ε̂i(θ̂, h

∗(θ̂))/σ̂ε̂(θ̂,h∗(θ̂)), where σ̂ε̂(θ̂,h∗(θ̂)) is defined as the

classical empirical estimator of the standard deviation based on ε̂i(θ̂, h
∗(θ̂)),

i = 1, . . . , n. We obtain θ̂ = 1, 9. As we can see from Figure 2, this estimated
error distribution seems classical (close to the standard normal distribution),
suggesting it makes sense to consider the applied Box-Cox transformation.
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Table 4

Bias(F̂ẽ(t)) (×102), Var(F̂ẽ(t)) (×104) and MSE(F̂ẽ(t)) (×104) for different models,
values of t and n = 200, when the distribution of e is a mixture of two normal distributions

(N(−1.5, 0.25), N(1.5, 0.25)) with equal weights

Model θ0 n = 200

F̂ẽ(−1.5) F̂ẽ(−1) F̂ẽ(0) F̂ẽ(1) F̂ẽ(1.5)
Bias -2.47 -3.93 0.01 3.22 1.82

θ0 = 0 Var 37.46 12.96 10.34 11.20 28.77
MSE 43.53 28.42 10.34 21.58 32.06

b0 = 6.5 Bias -4.69 -5.88 -0.02 4.72 4.43
b1 = 5 θ0 = 0.5 Var 81.25 33.96 10.38 32.59 73.38
σe = 1.5 MSE 103.20 68.51 10.38 54.89 93.01

Bias -5.57 -6.80 -0.04 5.45 5.45
θ0 = 1 Var 105.76 51.05 10.32 47.79 97.34

MSE 136.73 97.26 10.32 77.46 127.04
Bias -2.65 -4.20 0.04 3.42 1.95

θ0 = 0 Var 34.76 13.85 10.40 15.05 28.90
MSE 41.76 31.46 10.40 26.76 32.70

b0 = 4.5 Bias -4.18 -5.19 0.02 4.25 3.76
b1 = 3.5 θ0 = 0.5 Var 66.39 24.66 10.32 24.88 55.59
σe = 1 MSE 83.86 51.62 10.32 42.92 69.69

Bias -4.73 -6.06 0.00 4.91 4.40
θ0 = 1 Var 86.47 36.52 10.39 37.13 77.11

MSE 108.80 73.27 10.39 61.21 96.47
Bias -2.73 -4.42 -0.07 3.72 2.52

θ0 = 0 Var 26.57 10.74 10.01 10.44 22.37
MSE 34.00 30.30 10.02 24.26 28.70

b0 = 2.5 Bias -3.60 -4.91 -0.07 4.17 3.26
b1 = 2.5 θ0 = 0.5 Var 48.62 17.48 10.07 16.90 38.65
σe = 0.5 MSE 61.54 41.61 10.08 34.27 49.28

Bias -4.10 -5.28 -0.08 4.45 3.79
θ0 = 1 Var 57.91 21.34 10.01 21.46 47.42

MSE 74.68 49.24 10.02 41.28 61.78

Table 5

IMSE(F̂ẽ(t)) (×104) for different models, values of t and sample sizes, when the
distribution of e is a mixture of two normal distributions (N(−1.5, 0.25), N(1.5, 0.25)) with

equal weights

Model θ0 n = 100 n = 200
b0 = 6.5 θ0 = 0 35.86 17.80
b1 = 5 θ0 = 0.5 80.74 38.92
σe = 1.5 θ0 = 1 105.91 51.24
b0 = 4.5 θ0 = 0 37.23 17.19
b1 = 3.5 θ0 = 0.5 66.28 30.42
σe = 1 θ0 = 1 83.10 40.66
b0 = 2.5 θ0 = 0 43.50 14.87
b1 = 2.5 θ0 = 0.5 65.54 23.19
σe = 0.5 θ0 = 1 81.86 27.40
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Fig 2. Error distribution for the Box-Cox model linking the scattering angle at which the
polarization of sunlight vanishes to the cube root of particulate concentration. The solid line
corresponds to our empirical estimator and the dashed line to the standard normal distribu-
tion.

6. Proofs

6.1. Auxiliary results

This section states a number of results concerning the estimators m̂θ̂(x), m̂θo(x)
and Λθ̂(Y ), which are needed for proving Theorem 3.1. These results are of
independent interest and their proofs can be found in Appendix A.

Proposition 6.1. Assume (A1)–(A9). Then,

sup
x∈X0

|m̂θ̂(x)−mθo(x)| = OP((nh)
−1/2(log h−1)1/2).

Proposition 6.2. Under (A1)–(A9), we have

sup
x∈X0

|m̂′
θ̂
(x)−m′

θo(x)| = OP((nh
3)−1/2(log h−1)1/2).

Proposition 6.3. Assume (A1)–(A9). Then, for all δ ∈ (0, 1),

sup
x,x′∈X0

|m̂′
θ̂
(x)−m′

θo
(x)− m̂′

θ̂
(x′) +m′

θo
(x′)|

|x− x′|δ = OP((nh
3+2δ)−1/2(log h−1)1/2).

Proposition 6.4. Let Varn(·) be the conditional variance given Xn and assume
that (A1)–(A9) hold. Then,

Varn
[
1
(
Λθ̂(Y ) ≤ t+ m̂θ̂(X)

)
− 1 (Λθo(Y ) ≤ t+mθo(X))

]
= oP(1).
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Proposition 6.5. Assume (A1)–(A9). Then,∫
(m̂θo(x)−mθo(x))dFX(x)

= n−1
n∑

i=1

(Λθo(Yi)−mθo(Xi)) +
hq1

q1!
μ(q1,K1)E

[
m

(q1)
θo

(X)
]
+ oP(h

q1),

where m
(q)
θo

(x) denotes the q−th derivative of mθo(x) with respect to x.

Proposition 6.6. Assume (A1)–(A9). Then,

P
(
Λθ̂(Y )− m̂θ̂(X) ≤ t|Xn

)
− P (Λθo(Y )−mθo(X) ≤ t)

= n−1
n∑

i=1

εifε(t) + (θ̂ − θo)
th(t) + hq1

fε(t)

q1!
μ(q1,K1)E

[
m

(q1)
θo

(X)
]
+Rn(t),

where sup{|Rn(t)| : t ∈ R} = o(hq1) + oP(n
−1/2).

The proofs of these propositions are given in Appendix A.

6.2. Proofs of the main results

This section contains the proofs of Theorem 3.1 and Corollary 3.1. Some tech-
nical results needed in the proof of Theorem 3.1 are deferred to Appendices A
and B.

Proof of Theorem 3.1. The result of the theorem directly follows from Lemma 1
in Appendix B and Proposition 6.6. Indeed, using the latter results and the
notations in the statement of the theorem, we have

F̂ε̂(t)− Fε(t) = n−1
n∑

i=1

{1 (Λθo(Y )−mθo(X) ≤ t)− Fε(t)}

+ P
(
Λθ̂(Y )− m̂θ̂(X) ≤ t|Xn

)
− P (Λθo(Y )−mθo(X) ≤ t) + oP(n

−1/2)

= n−1
n∑

i=1

{1 (εi ≤ t)− Fε(t)}

+ n−1
n∑

i=1

εifε(t) + (θ̂ − θo)
th(t) + oP(n

−1/2),

where the last term oP(n
−1/2) is uniform in t.

Proof of Corollary 3.1. To show the weak convergence of the process Ẑn(t)
(−∞ < t < +∞), we make use of the techniques developed in [39], involving
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the theory of bracketing numbers. In particular, we will show that (see Theorem
2.5.6 in that book) ∫ ∞

0

√
logN[](ε,F , L2(P ))dε < ∞, (6.9)

where N[] is the bracketing number, P is the probability measure corresponding
to the joint distribution of (X,Y ), L2(P ) is the L2-norm, and

F = {φθo(t,X, Y ) : −∞ < t < +∞} .

Proving this entails that the class F is Donsker and hence the weak convergence
of the given process follows from pp. 81-82 in Van der Vaart and Wellner’s book.
The two last terms of φθo(t,X, Y ) are the product of a random factor that
is independent of t and a deterministic function, while the term 1[Λθo(Y ) −
mθo(X) ≤ t] is decreasing in Λθo(Y )−mθo(X). Hence, O(exp(Kε−1)) brackets
are needed for this term by Theorem 2.7.5 in the aforementioned book. This
concludes the proof, since the integration in (6.9) can be restricted to the interval
[0, 2M ], if the functions in the class F are bounded by M (for ε > 2M we take
N[](ε,F , L2(P )) = 1).

Appendix A: Proof of the auxiliary results

This appendix presents the proof of the propositions stated in Section 5.

Proof of Proposition 6.1. Let cn = (nh)−1/2(log h−1)1/2 and write

m̂θ̂(x)−mθo(x) = (m̂θo(x)−mθo(x)) +
(
m̂θ̂(x)− m̂θo(x)

)
.

We need to show that each of the above terms is OP(cn) uniformly in x ∈ X0.
The term m̂θo(x) − mθo(x) is treated by Lemma 2 in Appendix B. Consider

m̂θ̂(x) − m̂θo(x). Since θ̂ − θo = OP(n
−1/2) by Theorem 4.1 in [24], a Taylor

expansion applied to the function θ → m̂θ(x), yields (to simplify notations, we
assume here that p = dim(θ) = 1)

m̂θ̂(x)− m̂θo(x) = (θ̂ − θo) ˙̂mθo(x) +
1

2
(θ̂ − θo)

2 ¨̂mθ∗(x)

= OP(n
−1/2)(nhf̂X(x))−1

n∑
i=1

Λ̇θo(Yi)K1

(
Xi − x

h

)

+ OP(n
−1)(nhf̂X(x))−1

n∑
i=1

Λ̈θ∗(Yi)K1

(
Xi − x

h

)
, (A.2)

where f̂X(x) = (nh)−1
∑n

j=1 K1(
Xj−x

h ), and where θ∗ is an intermediate value

between θo and θ̂. Moreover, by Lemma 2 (in Appendix B), (A7)(i) and the
Markov inequality, it can be shown that

(nhf̂X(x))−1
n∑

i=1

Λ̇θo(Yi)K1

(
Xi − x

h

)
= OP(1)
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(nhf̂X(x))−1
n∑

i=1

Λ̈θ∗(Yi)K1

(
Xi − x

h

)
= OP(h

−1),

uniformly in x ∈ X0. Substituting these orders in (A.2), gives

m̂θ̂(x)− m̂θo(x) = OP(n
−1/2) = OP(cn),

uniformly in x ∈ X0 under (A2). This completes the proof of the proposition.

Proof of Proposition 6.2. Let c′n = (log h−1)1/2(nh3)−1/2 and write

m̂′
θ̂
(x)−m′

θo(x) = (m̂′
θo(x)−m′

θo(x)) + (m̂′
θ̂
(x)− m̂′

θo(x)). (A.3)

We need to show that each of the above terms is OP(c
′
n) uniformly in x ∈ X0.

Consider the first term of (A.3) and note that E[Λ4
θo
(Y )|X = x] ≤ C(|mθo(x)|4+

E[ε4]), for some C > 0. Since E[ε4] < ∞, the compactness of X0 and the continu-
ity of mθo ensure that E[Λ4

θo
(Y )|X = x] < ∞ uniformly in x ∈ X0. Then using

arguments similar to Theorem 2 in [12] and Lemma 2 in Appendix B (extended
to derivatives with respect to x) leads to supx |m̂′

θo
(x)−m′

θo
(x)| = OP(c

′
n). For

the second term of (A.3), we have similarly to the proof of Proposition 6.1 (for

some θ∗ between θo and θ̂ and p = 1 to simplify notations)

m̂′
θ̂
(x)− m̂′

θo(x) = (θ̂ − θo) ˙̂m
′
θo(x) + (θ̂ − θo)

2 ¨̂m
′
θ∗(x)

= (θ̂ − θo)
d

dx

[∑n
i=1 Λ̇θo(Yi)K1

(
Xi−x

h

)∑n
i=1 K1

(
Xi−x

h

) ]

+
(θ̂ − θo)

2

2

f̂X(x) ∂
∂xR(Λ̈θ∗ , x)−R(Λ̈θ∗ , x)f̂ ′

X(x)

f̂2
X(x)

, (A.4)

where R(Λ, x) = 1
nh

∑n
i=1 Λ(Yi)K1

(
Xi−x

h

)
. Since θ̂ − θo = OP(n

−1/2) by Theo-
rem 4.1 of [24], the first term on the right hand side of the above expression is
OP(n

−1/2) using the same arguments as above ([12] and Lemma 2 in Appendix
B) applied to the data Λ̇θo(Yi), i = 1, . . . , n, while the second term is treated
with assumptions (A3)(ii), (A7)(i) and the Markov inequality. This finishes the
proof.

Proof of Proposition 6.3. Let c̃n = (log h−1)1/2(nh3+2δ)−1/2, dn(x) = m̂θ̂(x) −
mθo(x) and define βn(x, x

′) = |x − x′|−δ|d′n(x) − d′n(x
′)|. We need to show

that supx,x′ |βn(x, x
′)| = OP(c̃n). Note that by Proposition 6.2 the result is

straightforward when |x−x′| ≥ Ch, for some C > 0. Let us now consider x and
x′ such that |x− x′| ≤ Ch. Then a Taylor expansion applied to |d′n(x)− d′n(x

′)|
gives

|βn(x, x
′)|1 (|x− x′| ≤ Ch) ≤ 1 (|x− x′| ≤ Ch) |x− x′|1−δ sup

x
|d′′n(x)|

≤ (Ch)1−δ sup
x

|d′′n(x)|,
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so that the result of the proposition holds if supx |d′′n(x)| = OP((log h
−1)1/2

(nh5)−1/2). For this, arguments similar to [12] and Lemma 2 in Appendix B
(used in the same way as in Proposition 6.2) enable to show that m̂′′

θo
(x) −

m′′
θo
(x) = OP((log h

−1)1/2(nh5)−1/2) uniformly in x. Moreover, in a completely
similar way as done for (A.4) in the proof of Proposition 6.2, it can be shown
that m̂′′

θ̂
(x)− m̂′′

θo
(x) = OP((log h

−1)1/2(nh5)−1/2) uniformly in x. This finishes
the proof of the proposition.

Proof of Proposition 6.4. Write

Varn
[
1
{
Λθ̂(Y ) ≤ t+ m̂θ̂(X)

}
− 1 {Λθo(Y ) ≤ t+mθo(X)}

]
≤ 2Varn

[
1
{
Λθ̂(Y ) ≤ t+mθo(X) + dn(X)

}
−1 {Λθo(Y ) ≤ t+mθo(X) + dn(X)}]

+ 2Varn [1 {Λθo(Y ) ≤ t+mθo(X) + dn(X)}
−1 {Λθo(Y ) ≤ t+mθo(X)}] . (A.5)

We will show that each of the above terms is oP(1) as n → ∞. For the first term
of (A.5), let Anθ̂(x) = t + mθo(x) + dn(x), Φn(θ, x, y) = P(Y ≤ Vθ(y)|x,Xn),

Vθ(y) = Λ−1
θ (y) for all θ ∈ Θ and write

Varn
[
1
{
Λθ̂(Y ) ≤ t+mθo(X) + dn(X)

}
−1 {Λθo(Y ) ≤ t+mθo(X) + dn(X)}]

≤ E

[(
1
{
Λθ̂(Y ) ≤ Anθ̂(X)

}
− 1

{
Λθo(Y ) ≤ Anθ̂(X)

})2 |Xn

]
=

∫
|FY |X(Vθ̂(Anθ̂(x))|x,Xn)− FY |X(Vθo(Anθ̂(x))|x,Xn)|dFX(x)

= (θ̂ − θo)
t

∫ ∣∣∣ ∂
∂θ

FY |X(Vθ(Anθ̂(x))|x,Xn)
∣∣
θ=θ∗

∣∣∣dFX(x),

for some θ∗ between θo and θ̂ and where ∂
∂θFY |X(Vθ(·)|x,Xn)|θ=θ∗ denotes the

vector of partial derivatives of FY |X(Vθ(·)|x,Xn) with respect to θ calculated

at the point θ = θ∗. This term is thus oP(1) by (A6) and the fact that θ̂ − θo =
OP(n

−1/2).
Consider now the second term of (A.5).

Varn [1 (Λθo(Y ) ≤ t+mθo(X) + dn(X))− 1 (Λθo(Y ) ≤ t+mθo(X))]

≤ E

[
{1 (Y ≤ Vθo(t+mθo(X) + dn(X)))− 1 (Y ≤ Vθo(t+mθo(X)))}2 |Xn

]
=

∫
|FY |X(Vθo(t+mθo(x)+ dn(x))|x,Xn)−FY |X(Vθo(t+mθo(x))|x)|dFX(x)

≤ K sup
x

|dn(x)| sup
θ,x,y

∣∣∣∣ ∂∂yFY |X (Vθ(y)|x)
∣∣∣∣ ,

for some K > 0. This term is oP(1), since supx |dn(x)| = oP(1) uniformly in x.
This finishes the proof.
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Proof of Proposition 6.5. Let cn = (nh)−1/2(log h−1)1/2 and note that∫
(m̂θo(x)−mθo(x))dFX(x)

=

∫
f̂X(x)

fX(x)
(m̂θo(x)−mθo(x))dFX(x)

+

∫ (
fX(x)− f̂X(x)

fX(x)

)
(m̂θo(x)−mθo(x))dFX(x)

= An +Bn, (A.6)

where f̂X(x) = (nh)−1
∑n

j=1 K1(
Xj−x

h ). For the first term above, write

An =

∫
f̂X(x)

fX(x)
(m̂θo(x)−mθo(x))dFX(x)

= (nh)−1
n∑

i=1

∫
(Λθo(Yi)−mθo(x))K1

(
Xi − x

h

)
dFX(x)

fX(x)

= (nh)−1
n∑

i=1

∫
(Λθo(Yi)−mθo(Xi))K1

(
Xi − x

h

)
dx

+ (nh)−1
n∑

i=1

∫
(mθo(Xi)−mθo(x))K1

(
Xi − x

h

)
dx

= A1n +A2n. (A.7)

Next,

A1n = (nh)−1
n∑

i=1

∫
(Λθo(Yi)−mθo(Xi))K1

(
Xi − x

h

)
dx

= n−1
n∑

i=1

(Λθo(Yi)−mθo(Xi)). (A.8)

For the second term of (A.7), a Taylor expansion applied to mθo(·) yields

A2n = (nh)−1
n∑

i=1

∫
(mθo(Xi)−mθo(x))K1

(
Xi − x

h

)
dx

= n−1
n∑

i=1

∫
(mθo(Xi)−mθo(Xi − vh))K1(v)dv

=
hq1

q1!
n−1

n∑
i=1

m
(q1)
θo

(Xi)

∫
vq1K1(v)dv + oP(h

q1). (A.9)

Hence by (A.9), (A.8), (A.7) and (A.6), the result of the proposition holds since
Bn = oP(h

q1) by assumption (A2).



Semiparametric transformation models 2411

Proof of Proposition 6.6. Let cn = (nh)−1/2(log h−1)1/2 and write

P
(
Λθ̂(Y )− m̂θ̂(X) ≤ t|Xn

)
− P (Λθo(Y )−mθo(X) ≤ t)

= [P (Λθo(Y )− m̂θo(X) ≤ t|Xn)− P (Λθo(Y )−mθo(X) ≤ t)]

+
[
P
(
Λθ̂(Y )− m̂θ̂(X) ≤ t|Xn

)
− P (Λθo(Y )− m̂θo(X) ≤ t|Xn)

]
.

(A.10)

Consider the first term above. By Lemma 2 in Appendix B, we have m̂θo(x)−
mθo(x) = OP(cn) uniformly in x. Then, applying a Taylor expansion to
FY |X(Vθo(·)|x) and using assumption (A6),

FY |X (Vθo(t+ m̂θo(x))|x,Xn)− FY |X (Vθo(t+mθo(x))|x)

= (m̂θo(x)−mθo(x))
∂

∂t
FY |X(Vθo(t+mθo(x))|x) +OP(c

2
n),

where the term OP(c
2
n) is uniform in t and x. Therefore, since c2n = o(hq1) and

since fε(t) =
∂
∂tFY |X(Vθo(t+mθo(x))|x) for all x,

P (Λθo(Y )− m̂θo(X) ≤ t|Xn)− P (Λθo(Y )−mθo(X) ≤ t)

=

∫
[FY |X (Vθo(t+ m̂θo(x))|x,Xn)− FY |X (Vθo(t+mθo(x))|x)]dFX(x)

=

∫
(m̂θo(x)−mθo(x))

∂

∂t
FY |X(Vθo(t+mθo(x))|x)dFX(x) +OP(c

2
n)

= fε(t)

∫
(m̂θo(x)−mθo(x))dFX(x) +OP(c

2
n)

= fε(t)n
−1

n∑
i=1

εi +
hq1

q1!
fε(t)μ(q1,K1)E[m

(q1)
θo

(X)] + oP(h
q1), (A.11)

using Proposition 6.5 and where oP(h
q1) is uniform in t. For the second term

of (A.10), let Φt(θ, x, y,Xn) = FY |X(Vθ(t+ y)|x,Xn). Then, applying a Taylor
expansion to the function θ → Φt(θ, x, m̂θ(x),Xn) and using (A6) and (A7)(i),
we have

P
(
Λθ̂(Y )− m̂θ̂(X) ≤ t|Xn

)
− P (Λθo(Y )− m̂θo(X) ≤ t|Xn)

=

∫
[Φt(θ̂, x, m̂θ̂(x),Xn)− Φt(θo, x, m̂θo(x)Xn)]dFX(x)

= (θ̂ − θo)
t

∫
d

dθ
Φt(θ, x, m̂θ(x),Xn)|θ=θo

dFX(x) + oP(n
−1/2)

= (θ̂ − θo)
t

∫
d

dθ
[Φt(θ, x, m̂θ(x),Xn)− Φt(θ, x,mθ(x))]|θ=θo

dFX(x)

+ (θ̂ − θo)
t

∫
d

dθ
Φt(θ, x,mθ(x))|θ=θo

dFX(x) + oP(n
−1/2)

= An +Bn + oP(n
−1/2),

where oP(n
−1/2) is uniform in t. Using the uniform consistency of m̂θo(x) and

˙̂mθo(x) stated in Lemma 2 (Appendix B) and (A6),
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An = (θ̂ − θo)
t

∫
d

dθ
[Φt(θ, x, m̂θ(x)|Xn)− Φt(θ, x,mθ(x))]|θ=θo

dFX(x)

= oP(n
−1/2).

Therefore

P
(
Λθ̂(Y )− m̂θ̂(X) ≤ t|Xn

)
− P (Λθo(Y )− m̂θo(X) ≤ t|Xn)

= Bn + oP(n
−1/2)

= (θ̂ − θo)
t

∫
d

dθ
Φt(θ, x,mθ(x))|θ=θo

dFX(x) + oP(n
−1/2)

= (θ̂ − θo)
t
E

[
d

dθ
FY |X (Vθ(t+mθ(X))|X)

∣∣
θ=θo

]
+ oP(n

−1/2)

= (θ̂ − θo)
th(t) + oP(n

−1/2),

where the term oP(n
−1/2) is uniform in t ∈ R. The result of the proposition now

follows from the above equality, (A.11) and (A.10).

Appendix B

We start this appendix with a technical result needed in the proof of Theo-
rem 3.1.

Lemma 1. Assume (A1)-(A9). Then,

n−1
n∑

i=1

{
1
(
Λθ̂(Yi)− m̂θ̂(Xi) ≤ t

)
− 1 (Λθo(Yi)−mθo(Xi) ≤ t)

−P
(
Λθ̂(Y )− m̂θ̂(X) ≤ t|Xn

)
+ P (Λθo(Y )−mθo(X) ≤ t)

}
= oP(n

−1/2),

uniformly for t ∈ R.

Proof. Note that Λθ̂(Y )− m̂θ̂(X) = Λθ̂(Y )−mθo(X)− dn(X), where dn(X) =
m̂θ̂(X)−mθo(X). The proof of the lemma is based on results in [39]). Define

F1 =

{
(x, y) → 1 (Λθ(y) ≤ t+mθo(x) + d(x)) , Λθ : R → R strictly increasing,

θ ∈ Θ, t ∈ R and d ∈ C1+δ
1 (X0)

}
.

We observe that by Propositions 6.1, 6.2 and 6.3, we have P
(
dn ∈ C1+δ

1 (X0)
)
→

1 as n → ∞. In a first step, we will show that the class F1 is Donsker. From
Theorem 2.5.6 in [39], it follows that it suffices to show that∫ ∞

0

√
logN[](ε̄,F1, L2(P ))dε̄ < ∞, (B.1)
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where N[] is the bracketing number, P is the probability measure corresponding
to the joint distribution of (Y,X), and L2(P ) is the L2-norm.

Embed Θ into a hypercube [θ�1, θ
u
1 ]×· · ·× [θ�p, θ

u
p ] of dimension p, and for each

j = 1, . . . , p, let θ�j = θ0j ≤ θ1j ≤ . . . ≤ θmjj = θuj partition the finite interval

[θ�j , θ
u
j ] into mj = O(ε̄−2) intervals of length O(ε̄2). This results in a partition

of Θ into at most
∏p

j=1 mj = O(ε̄−2p) hypercubes, which we denote by Ri,

i = 1, . . . ,
∏p

j=1 mj . For each nonempty Ri, let Γ
�
i(Y ) = minθ∈Ri∩Θ Λθ(Y ) and

Γu
i (Y ) = maxθ∈Ri∩Θ Λθ(Y ).

For the class C1+δ
1 (X0), Corollary 2.7.2 in [39] ensures that

log r := logN[]

(
ε̄2, C1+δ

1 (X0), ‖ · ‖∞
)
≤ Kε̄−2/(1+δ),

for some K > 0.

Let d�1 ≤ du1 , . . . , d
�
r ≤ dur be the functions defining the r brackets for the class

C1+δ
1 (X0). Then, for each θ ∈ Θ and each d ∈ C1+δ

1 (X0), there exist i and j
such that

1
{
Γu
i (Y ) ≤ t+mθo(X) + d�j(X)

}
≤ 1 {Λθ(Y ) ≤ t+mθo(X) + d(X)}
≤ 1

{
Γ�
i(Y ) ≤ t+mθo(X) + duj (X),

}
.

Define

pu�ij (t) = P
(
Γu
i (Y ) ≤ t+mθo(X) + d�j(X)

)
and let tu�ijk, k = 1, . . . , O(ε̄−2), partition the line in segments having pu�ij -

probability less than or equal to a fraction of ε̄2. Similarly, define

p�uij (t) = P
(
Γ�
i(Y ) ≤ t+mθo(X) + duj (X)

)
and let t�uijk, k = 1, . . . , O(ε̄−2), partition the line in segments having p�uij -

probability less than or equal to a fraction of ε̄2. Let us now define the following
brackets for t:

tu�ijk1
≤ t ≤ t�uijk2

,

where tu�ijk1
is the largest of the tu�ijk with the property of being less than or equal

to t, and t�uijk2
is the smallest of the t�uijk with the property of being larger than

or equal to t. We will now show that the ε̄-brackets for our function are given
by

1
{
Γu
i (Y ) ≤ tu�ijk1

+mθo(X) + d�j(X)
}

≤ 1 {Γ(Y ) ≤ t+mθo(X) + d(X)}
≤ 1

{
Γ�
i(Y ) ≤ t�uijk2

+mθo(X) + duj (X)
}
.

To this end, let us calculate
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{
Γ�
i(Y ) ≤ t�uijk2

+mθo(X) + duj (X)
}

− 1
{
Γu
i (Y ) ≤ tu�ijk1

+mθo(X) + d�j(X)
}∥∥2

2

= P
(
Γ�
i(Y ) ≤ t�uijk2

+mθo(X) + duj (X)
)

−P
(
Γu
i (Y ) ≤ tu�ijk1

+mθo(X) + d�j(X)
)

= p�uij (t)− pu�ij (t) +O(ε2),

where ‖ · ‖2 = ‖ · ‖P,2 is the L2(P )-norm. Since Γ�
i(y) and Γu

i (y), i = 1, . . . ,∏p
j=1 mj , are strictly increasing continuous functions of y ∈ R, they have in-

verse functions Γ�−1

i (·) and Γu−1

i (·). Moreover, it is easy to check that Γ�−1

i (·) =
maxθ∈Ri Vθ(·) and Γu−1

i (·) = minθ∈Ri Vθ(·). Therefore,

p�uij (t)− pu�ij (t)

=

∫ [
P
{
Γ�
i(Y ) ≤ t+mθo(x) + duj (x)|X = x

}
−P

{
Γu
i (Y ) ≤ t+mθo(x) + d�j(x)|X = x

} ]
dFX(x)

=

∫ [
FY |X(Γ�−1

i (t+mθo(x) + duj (x))|x)

−FY |X(Γu−1

i (t+mθo(x) + duj (x))|x)

+FY |X(Γu−1

i (t+mθo(x) + duj (x))|x)

−FY |X(Γu−1

i (t+mθo(x) + d�j(x))|x)
]
dFX(x)

≤
∫ [

p∑
q=1

sup
θ∈Θ,y∈R

∣∣∣∂FY |X(Vθ(t+mθo(x) + y)|x)
∂θq

∣∣∣ε̄2
+ sup

θ∈Θ,y∈R

∣∣∣∂FY |X(Vθ(t+mθo(x) + y)|x)
∂y

∣∣∣ε̄2] dFX(x)

= O(ε̄2),

using assumption (A6). That leads to∥∥1{Γ�
i(Y ) ≤ t�uijk2

+mθo(X) + duj (X)
}

−1
{
Γu
i (Y ) ≤ tu�ijk1

+mθo(X) + d�j(X)
}∥∥2

2
= O(ε̄2).

Hence, for each ε̄ > 0, we need at most O(ε̄−2(p+1) exp(Kε̄−2/(1+δ))) brackets
(for some K > 0) to cover the class F1. However, for ε̄ > 1, one bracket suffices.
So we have ∫ ∞

0

√
logN[](ε̄,F1, L2(P ))dε̄ < ∞,

which gives (B.1). This shows that the class F1 is Donsker, and hence by
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straightforward calculations,

F =

{
(x, y) → 1 (Λθ(y) ≤ t+mθo(x) + d(x))− 1 (Λθo(y) ≤ t+mθo(x))

−P (Λθ(Y ) ≤ t+mθo(X) + d(X)) + P (Λθo(Y ) ≤ t+mθo(X)) ,

θ ∈ Θ, t ∈ R, d ∈ C1+δ
δ (X0)

}
is a Donsker class as well.

Next, observe that for dn(X) = m̂θ̂(X) − mθo(X), Proposition 6.4 ensures
that

Varn

[
1
(
Λθ̂(Y ) ≤ t+mθo(X) + dn(X)

)
− 1 (Λθo(Y ) ≤ t+mθo(X))

−P
(
Λθ̂(Y ) ≤ t+mθo(X) + dn(X)|Xn

)
+ P (Λθo(Y ) ≤ t+mθo(X))

]
= Varn

[
1
(
Λθ̂(Y ) ≤ t+mθo(X) + dn(X)

)
− 1 (Λθo(Y ) ≤ t+mθo(X))

]
= oP(1)

as n → ∞. Since the class F is Donsker, it then follows from Corollary 2.3.12
in [39] that

lim
α↓0

lim sup
n→∞

P

(
sup

f∈F ,Var(f)<α

n−1/2

∣∣∣∣∣
n∑

i=1

f(Xi)

∣∣∣∣∣ > ε̄

)
= 0,

for each ε̄ > 0. Hence by restricting the supremum inside the above probability
to the elements in F corresponding to d(X) = dn(X) as defined above, the
result of the lemma follows.

Lemma 2. Assume (A1)-(A5) and (A7). Then,

sup
x∈X0

|m̂θo(x)−mθo(x)| = OP((nh)
−1/2(log h−1)1/2),

sup
x∈X0

| ˙̂mθo(x)− ṁθo(x)| = OP((nh)
−1/2(log h−1)1/2).

Proof. We only give the proof for the uniform consistency of ˙̂mθo(x)− ṁθo(x),
the proof for m̂θo(x)−mθo(x) being very similar. Let cn = (nh)−1/2(log h−1)1/2,
and define

˙̂rθo(x) =
1

nh

n∑
j=1

Λ̇θo(Yj)K1

(
Xj − x

h

)
,

ṙθo(x) = E[ ˙̂rθo(x)], fX(x) = E[f̂X(x)],

where f̂X(x) = (nh)−1
∑n

j=1 K1(
Xj−x

h ). Then,
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sup
x∈X0

| ˙̂mθo(x)− ṁθo(x)|

≤ sup
x∈X0

∣∣∣∣ ˙̂mθo(x)−
ṙθo(x)

fX(x)

∣∣∣∣+ sup
x∈X0

1

fX(x)

∣∣ṙθo(x)− fX(x)ṁθo(x)
∣∣ . (B.2)

Since E[Λ̇4
θo
(Y )|X = x] < ∞ uniformly in x ∈ X by assumption (A7), a similar

proof as was given for Theorem 2 in [12] ensures that

sup
x∈X0

∣∣∣∣ ˙̂mθo(x)−
ṙθo(x)

fX(x)

∣∣∣∣ = OP (cn) .

Consider now the second term of (B.2). Since E[ε̇(θo)|X] = 0, where ε̇(θo) =
d
dθ (Λθ(Y )−mθ(X))|θ=θo , we have

ṙθo(x) = h−1
E

[
{ṁθo(X) + ε̇(θo)}K1

(
X − x

h

)]
= h−1

E

[
ṁθo(X)K1

(
X − x

h

)]
=

∫
ṁθo(x+ hv)K1(v)fX(x+ hv)dv,

from which it follows that

ṙθo(x)− fX(x)ṁθo(x) =

∫
[ṁθo(x+ hv)− ṁθo(x)]K1(v)fX(x+ hv)dv.

Hence, Taylor expansions applied to ṁθo(·) and fX(·) yield

sup
x∈X0

∣∣ṙθo(x)− fX(x)ṁθo(x)
∣∣ = O(hq1) = O (cn) ,

since nh2q1+1(log h−1)−1 = O(1) by (A2). This proves that the second term of
(B.2) is O(cn), since it can be shown that for h small enough f̄X(·) is bounded
away from 0 and infinity uniformly on X .
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[18] González-Manteiga, W., Pardo-Fernández, J.C. and Van Keile-

gom, I. (2011). ROC curves in nonparametric location-scale regression
models. Scand. J. Statist., 38, 169–184. MR2760145

[19] Hansen, B.E. (2008). Uniform convergence rates for kernel estimation
with dependent data. Econometric Theory, 24, 726–748. MR2409261

[20] Hart, J.D. (1997). Nonparametric Smoothing and Lack-of-fit Tests.
Springer, New-York. MR1461272

[21] Heuchenne, C. and Van Keilegom, I. (2010). Goodness-of-fit tests for
the error distribution in nonparametric regression. Comput. Statist. Data
Anal., 54, 1942–1951. MR2640298
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