
Electronic Journal of Statistics
Vol. 10 (2016) 1709–1728
ISSN: 1935-7524
DOI: 10.1214/15-EJS1055

Bounding the expectation of the

supremum of an empirical process over

a (weak) VC-major class

Yannick Baraud

Univ. Nice Sophia Antipolis, CNRS
LJAD, UMR 7351
06100 Nice, France

e-mail: baraud@unice.fr

Abstract: Given a bounded class of functions G and independent random
variables X1, . . . , Xn, we provide an upper bound for the expectation of
the supremum of the empirical process over elements of G having a small
variance. Our bound applies when G is a VC-subgraph or a VC-major class
and it is of smaller order than those one could get by using a universal
entropy bound over the whole class G . It also involves explicit constants
and does not require the knowledge of the entropy of G .

MSC 2010 subject classifications: Primary 60E15; secondary 62G05.

Keywords and phrases: Suprema of empirical processes, expectation
bounds, VC type classes, concentration inequalities, nonparametric esti-
mation.

Received November 2014.

Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1710

2 The setting and the main result . . . . . . . . . . . . . . . . . . . . . 1712

2.1 Basic definitions and properties . . . . . . . . . . . . . . . . . . 1713

2.2 The main results . . . . . . . . . . . . . . . . . . . . . . . . . . 1714

3 Proofs of Theorem 2.1 and 2.2 . . . . . . . . . . . . . . . . . . . . . 1717

3.1 Proof of Lemma 2.1 . . . . . . . . . . . . . . . . . . . . . . . . 1717

3.2 The particular case of a class F of indicator functions . . . . . 1718

3.3 Completion of the proofs of Theorems 2.1 and 2.2 . . . . . . . . 1724

4 Additional proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1725

4.1 Proof of Proposition 2.1 . . . . . . . . . . . . . . . . . . . . . . 1725

4.2 Proof of Proposition 2.2 . . . . . . . . . . . . . . . . . . . . . . 1726

4.3 Proof of Proposition 2.3 . . . . . . . . . . . . . . . . . . . . . . 1726

4.4 Proof of Corollary 2.2 . . . . . . . . . . . . . . . . . . . . . . . 1726

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1727

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1727

1709

http://projecteuclid.org/ejs
http://dx.doi.org/10.1214/15-EJS1055
mailto:baraud@unice.fr


1710 Y. Baraud

1. Introduction

The control of the fluctuations of an empirical process is a central tool in statis-
tics for establishing the rate of convergence over a set of parameters of some
specific estimators such as minimum contrast ones for example. These tech-
niques have been used over the years in many papers among which van de
Geer [12], Birgé and Massart [5], Barron, Birgé and Massart [3] and the con-
nections between empirical process theory and statistics are detailed at length
in the book by van der Vaart and Wellner [14]. With the concentration of mea-
sure phenomenon and Talagrand’s Theorem 1.4 [11] relating the control of the
supremum of an empirical process over a class of functions F to the expectation
of this supremum, the initial problem reduces to the evaluation of that expec-
tation. This can be done under universal entropy conditions which measure the
massiveness of a class F by bounding from above and uniformly with respect to
probability measures Q on F the number N(F , Q, ε) of L2(Q)-balls of radius ε
that are necessary to cover F . A ready to use inequality is given by Theorem 3.1
in Giné and Koltchinski [7]. Roughly speaking their result says the following.
Let F admit an envelop function F ≤ 1 (which means that |f | ≤ F ≤ 1 for all
f ∈ F ) and logN(F , Q, ε) be not larger than H(‖F‖

L2(Q) /ε) for some non-
decreasing function H independent of Q and satisfying some mild conditions.
Then, given n i.i.d. random variables X1, . . . , Xn with an arbitrary distribu-
tion P ,

E [Z(F )] ≤ C(H)

[
σ

√
nH
(
2σ−1 ‖F‖

L2(P )

)
+H

(
2σ−1 ‖F‖

L2(P )

)]
(1.1)

where

Z(F ) = sup
f∈F

∣∣∣∣∣
n∑

i=1

(
f(Xi)− E [f(Xi)]

)∣∣∣∣∣ , (1.2)

C(H) is a positive number depending on H, and σ ∈ (0, 1] satisfies

sup
f∈F

Var(f(X1)) ≤ σ2.

However, computing the universal entropy of a class of functions F is not
an easy task and inequality (1.1) might not be so easy to use in general. For
illustration, let us consider the case of F = G ∩ B(g0, r) where G is the set
of nonincreasing functions from [0, 1] into itself and B(g0, r) the L2(P )-ball
centered at g0 ∈ G with radius r > 0. The universal entropy of F , which
depends on the choice of g0, is usually unknown. However, one may use that
of G , which is of order 1/ε, to bound the universal entropy of F ⊂ G from
above. Taking for envelope function F the constant function equal to 1, we
derive from (1.1) that there exists a universal constant C > 0 such that

E [Z(F )] ≤ C
[√

nσ + σ−1
]
. (1.3)
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While this inequality provides a satisfactory upper bound for E [Z(F )] in gen-
eral, Giné and Koltchinski [7] (Example 3.8 p. 1173) noticed that E [Z(F )] was
actually of smaller order than the right-hand side of (1.3) when g0 = 0. This
phenomenon is actually easy to explain and we shall see that the function g0 = 0
has in fact nothing magic: if g0 is decreasing very fast on [0, 1] then it is quite
easy to oscillate around g0 and still remain nonincreasing on [0, 1]. This implies
that G ∩ B(g0, r) is actually massive around g0. It is however impossible to
oscillate around a function g0 which is constant without violating the mono-
tonicity constraint. For a constant function g0, G ∩B(g0, r) turns out to be less
massive and E [Z(F )] much smaller than that of the previous set. A general
entropy bound on G which allows to bound the entropies of all sets G ∩B(g0, r)
independently of g0 therefore provides a pessimistic upper bound in the case of
a constant function g0.

The above argument is not only valid when G consists of monotone functions
but more generally when G is a bounded VC-major class on R for instance. For
such a class, the family of all level sets {g > c} with g ∈ G and c ∈ R form a
VC-class of subsets of R. When a function g oscillates around c, the level set
{g > c} is a union of disjoint intervals and since the class of all unions of disjoint
intervals is not VC, the elements of G cannot oscillate arbitrarily around the
constant function g0 = c.

The aim of this paper is to provide an upper bound for E [Z(F )] when F
consists of the elements of a class G (including the cases of VC-major and
VC-subgraph classes) which satisfy some suitable control of their L2-norms or
variances. The bounds we get are non-asymptotic, involve explicit numerical
constants and are true as long as the random variables X1, . . . , Xn are inde-
pendent but not necessarily i.i.d. They allow to improve the bounds one could
obtain by using a naive upper bound on the entropy of the whole class G .

As already mentioned, the expectations of suprema of empirical processes
play a central role in statistics and it is well known (we refer the reader to
Theorem 5.52 in the book of van der Vaart [13] and to the historical references
therein) that, given a sampling model indexed by a metric space Θ, the rate
of convergence of a minimum contrast estimator toward a parameter θ0 ∈ Θ is
governed by the expectation of the supremum of an empirical process over the
elements gθ of a class G = {gθ, θ ∈ Θ} lying within a small ball around gθ0 . Such
connections between suprema of empirical processes and rates of convergence
(or more generally risk bounds) of an estimator are not restricted to minimum
contrast estimators and have also recently proved, in Baraud, Birgé and Sart [2],
to be an essential tool for the study of ρ-estimators. Under suitable assumptions
on G and because of the phenomenon we have explained above, one can expect
some faster rates of convergence for these estimators toward specific parameters
θ0. An illustration of this fact, which relies on the results of the present paper,
can be found in Baraud and Birgé [1]. We show that the ρ-estimator built
on a class F of densities satisfying some shape constraints achieves a rate of
convergence toward some specific elements of F which may be much faster
than the minimax rate over the whole class. This phenomenon is actually not
specific to ρ-estimators and was already observed for the Grenander estimator of
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a monotone density which converges at parametric rate when the target density
is piecewise constant, as noticed by Birgé [4], although the minimax rate over
the whole set is of order n−1/3.

Our paper is organised as follows. The main definitions, including those of
VC-classes, VC-major and weak VC-major classes, as well as some basic prop-
erties relative to these classes are given in Section 2.1. The main results are
presented in Section 2.2. The proof of our main theorems, namely Theorems 2.1
and 2.2, are postponed to Section 3. We also establish there upper bounds for
E[Z(F )] in the special case where F consists of indicator functions indexed
by a class of sets C since these bounds may be of independent interest. When
C is VC and the Xi i.i.d., these bounds are compared to those provided by
Boucheron et al. [6]. Finally Section 4 gathers the proofs of our propositions
and that of Corollary 2.2 which is specific to the case of F being a VC-major
class and X1, . . . , Xn i.i.d.

In the sequel, we shall use the following conventions and notations. The word
countable will always mean finite or countable and, given a set A, |A| and P(A)
will respectively denote the cardinality of A and the class of all its subsets. Given
two numbers a, b, a∨ b and a∧ b mean max{a, b} and min{a, b} respectively. By
convention,

∑
∅
= 0.

2. The setting and the main result

Throughout the paper, X1, . . . , Xn are independent random variables defined
on a probability space (Ω,W ,P) with values in a measurable space (X ,A ), F
is a class of real-valued measurable functions on (X ,A ) and ε1, . . . , εn are i.i.d.
Rademacher random variables (which means that εi takes the values ±1 with
probability 1/2) independent of the Xi. We recall that Z(F ) is defined by (1.2)
and set

Z(F ) = sup
f∈F

∣∣∣∣∣
n∑

i=1

εif(Xi)

∣∣∣∣∣ .
In order to avoid measurability issues, E [Z(F )] and E

[
Z(F )

]
mean

supF ′ E [Z(F ′)] and supF ′ E
[
Z(F ′)

]
, respectively, where the suprema run

among all countable subsets F ′ of F . The relevance of the random variable
Z(F ) is due to the following classical symmetrization argument (see van der
Vaart and Wellner [14], Lemma 2.3.6):

Lemma 2.1. For all a1, . . . , an ∈ R,

E

[
sup
f∈F

∣∣∣∣∣
n∑

i=1

(f(Xi)− E [f(Xi)])

∣∣∣∣∣
]
≤ 2E

[
sup
f∈F

∣∣∣∣∣
n∑

i=1

εi (f(Xi)− ai)

∣∣∣∣∣
]

(2.1)

In particular,
E [Z(F )] ≤ 2E

[
Z(F )

]
. (2.2)

For the sake of completeness, we provide a proof in Section 3 below.
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2.1. Basic definitions and properties

We recall the following.

Definition 2.1. A class C of subsets of some set Z is said to shatter a finite
subset Z of Z if {C ∩ Z,C ∈ C } = P(Z) or, equivalently, |{C ∩ Z,C ∈ C }| =
2|Z|. A non-empty class C of subsets of Z is a VC-class if there exists an integer
k ∈ N such that C cannot shatter any subset of Z with cardinality larger than k.
The dimension d ∈ N of C is then the smallest of these integers k.

Of special interest is the class C of all intervals of R which is VC with
dimension 2: for Z = {0, 1}, {C ∩ Z,C ∈ C } = P(Z) and whatever Z ′ =
{x1, x2, x3} with x1 < x2 < x3, {x1, x3} 
∈ {C ∩ Z ′, C ∈ C }.

We extend this definition from classes of sets to classes of functions in the
following way.

Definition 2.2. Let F be a non-empty class of functions on a set X . We shall
say that F is weak VC-major with dimension d ∈ N if d is the smallest integer
k ∈ N such that, for all u ∈ R, the class

Cu(F ) =
{
{x ∈ X such that f(x) > u}, f ∈ F

}
(2.3)

is a VC-class of subsets of X with dimension not larger than k.

If F consists of monotone functions on (X ,A ) = (R,B(R)), Cu(F ) consists
of intervals of R and F is therefore weak VC-major with dimension not larger
than 2. For the same reasons, this is also true for the class F of nonnegative
functions f on R which are monotone on an interval of R (depending on f) and
vanish elsewhere.

There exist other ways of extending the concept of a VC-class of sets to
classes of functions. The two main ones encountered in the literature are the
following:

Definition 2.3. Let F be a non-empty class of functions on a set X .

• The class F is VC-major with dimension d ∈ N if

C (F ) =
{
{x ∈ X such that f(x) > u}, f ∈ F , u ∈ R

}
is a VC-class of subsets of X with dimension d.

• The class F is VC-subgraph with dimension d if

C×(F ) =
{
{(x, u) ∈ X × R such that f(x) > u}, f ∈ F

}
is a VC-class of subsets of X × R with dimension d.

These two properties are stronger than that of being weak VC-major:

Proposition 2.1. If F is either VC-major or VC-subgraph with dimension d
then F is weak VC-major with dimension not larger than d.

An alternative definition for a weak VC-major class can be obtained from
the following proposition.
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Proposition 2.2. The class F is weak VC-major with dimension d if and only
if d is the smallest integer k ∈ N such that, for all u ∈ R, the class

C+
u (F ) =

{
{x ∈ X such that f(x) ≥ u}, f ∈ F

}
is a VC-class of subsets of X with dimension not larger than k.

The following permanence properties can be established for weak VC-major
classes.

Proposition 2.3. Let F be weak VC-major with dimension d. Then for any
monotone function F , F ◦F = {F ◦f, f ∈ F} is weak VC-major with dimension
not larger than d. In particular {−f, f ∈ F} and {f ∨ 0, f ∈ F} are weak
VC-major with respective dimensions not larger than d.

2.2. The main results

Let us first introduce some combinatoric quantities. For u ∈ (0, 1), Cu(F )
defined by (2.3) and X = (X1, . . . , Xn) let

Eu(X) = {{i, Xi ∈ C}, C ∈ Cu(F )} and Γu = E [log(2 |Eu(X)|)] . (2.4)

Since Cu(F ) 
= ∅ and Eu(X) ⊂ P({1, . . . , n}), 1 ≤ |Eu(X)| ≤ 2n. Hence, Γu is
well defined and satisfies log 2 ≤ Γu ≤ (n+ 1) log 2 for all u ∈ (0, 1). The upper
bound (n+1) log 2 can be improved as follows when F is weak VC-major with
dimension d. For u ∈ (0, 1), the class Cu(F ) being VC with dimension not larger
than d, a classical lemma of Sauer [10] (see also van der Vaart and Wellner [14],

Section 2.6.3 p. 136) asserts that |Eu(X)| ≤
∑d∧n

j=0

(
n
j

)
for all n ≥ 1, therefore

Γu ≤ Γn(d) for all u ∈ (0, 1) with

Γn(d) = log

⎡
⎣2 d∧n∑

j=0

(
n

j

)⎤⎦ . (2.5)

Using the classical inequality
∑k

j=0

(
n
j

)
≤ (en/k)k for k ≤ n (see Barron, Birgé

and Massart [3], Lemma 6), a convenient upper bound for Γn(d) when d ≥ 1 is
given by

Γn(d) ≤ log 2 + (d ∧ n) log
( en

d ∧ n

)
≤ (d ∧ n) log

(
2en

d ∧ n

)
.

Since for d ≤ n, Γn(d) ≥ log
(
n
d

)
, it is not difficult to see that

Γn(d) = d logn(1 + o(1)) when n → +∞.

The following result holds.

Theorem 2.1. If F is a class of functions with values in [0, 1] and

σ = sup
f∈F

[
1

n

n∑
i=1

E
[
f2(Xi)

]]1/2
, (2.6)
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then,

E [Z(F )] ≤ 2
√
2nσ

[
1

σ

∫ σ

0

√
Γudu+

∫ 1

σ

√
Γu

u
du

]
+ 8

∫ 1

0

Γudu, (2.7)

with Γu defined by (2.4). In particular, if F is weak VC-major with dimension d,

E [Z(F )] ≤ 2

√
Γn(d)

[
σ log

( e
σ

)√
2n+ 4

√
Γn(d)

]
(2.8)

with Γn(d) given by (2.5).

In view of analysing (2.8), let G be a weak VC-major class with dimension
d ≥ 1 consisting of functions with values in [0, 1], σ ∈ [0, 1] and

F = G (σ) =

{
f ∈ G ,

n∑
i=1

E
[
f2(Xi)

]
≤ nσ2

}
. (2.9)

As a subset of G , F is weak VC-major with dimension not larger than d and
we may therefore apply our Theorem 2.1 to bound E [Z(F )] from above. When
n is large enough, the right-hand side of (2.8) is of order σ log(e/σ)

√
nd log n

for σ ≥
√

d/(n logn) and is equivalent to 2σ log(e/σ)
√
2nd logn when σ is fixed

and n tends to infinity. In the opposite situation where σ <
√
d/(n log n), (2.8)

is of order d log n.
For the sake of comparison with the results of Giné and Koltchinskii [7],

consider the case where theXi are i.i.d. with a nonatomic distribution P on [0, 1],
G is the set of nondecreasing functions f from [0, 1] into [0, 1] and F = G (σ)
is given by (2.9). The class F is weak VC-major with dimension 1 because the
elements of Cu(F ) are all of the form (a, 1] or [a, 1] with a ∈ [0, 1] for all u
and such classes of intervals cannot shatter a set of two elements {x1, x2} with
0 ≤ x1 < x2 ≤ 1 (the subset {x1} cannot be picked up). Besides, Γn(1) =
log(2(n+ 1)) and Theorem 2.1 gives

E [Z(F )] ≤ 2σ log(e/σ)
√
2n log(2(n+ 1)) + 8 log(2(n+ 1)). (2.10)

For σ < e−e, Giné and Koltchinskii [7] (Example 3.8 p. 1173) obtained an upper
bound for E [Z(F )] of order

B(n, σ) = σ
√

nL(σ) + L(σ) +
√
logn with

L(σ) =
[
log
(
σ−1
)]3/2

log log
(
σ−1
)
. (2.11)

If σ ≥
√

logn/n, then B(n, σ) ≥ √
nσ whileB(n, σ) ≥

√
logn for σ ≤

√
logn/n.

In any case, B(n, σ) ≥ max{√nσ,
√
logn}, which shows that the bound (2.11)

can only improve ours by some power of logn.
Giné and Koltchinskii’s bound is based on the fact that the class F possesses

an envelop function F = supf∈F f whose L2(P )-norm equals σ[log(e/σ2)]1/2

and is therefore small when σ is small. This property is no longer satisfied for
the class F ′ = {f(· − t)1[0,1](·), t ∈ R, f ∈ F} for which supf∈F ′ f = 1.
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The elements of F ′ also satisfy E[f2(X1)] ≤ σ2 when the Xi are uniformly
distributed on [0, 1] for instance, however, while Giné and Koltchinskii’s trick
fails for the class F ′, our Theorem 2.1 still applies: since F ′ is weak-VC major
with dimension not larger than 2 and Γn(2) ≤ 2Γn(1), E [Z(F ′)] is actually not
larger than twice the right-hand side of (2.10).

When σ2 is large enough compared to Γn(d)/n, inequality (2.8) can be further
improved as we shall see below. Let

H(x) = x

√
d

[
5 + log

(
1

x

)]
for x ∈ (0, 1] and a =

⎛
⎝32

√
Γn(d)

n

⎞
⎠∧1. (2.12)

Note that a = 32
√
(d log n)/n(1 + o(1)) when n tends to infinity.

Theorem 2.2. If F is a weak VC-major class with dimension not larger than
d ≥ 1, of functions with values in [0, 1],

E [Z(F )] ≤ 2E
[
Z(F )

]
≤ 10

√
nB(σ) (2.13)

where σ is given by (2.6) and

B(σ) =

⎧⎨
⎩

H [σ log (1/σ) + σ] for σ ≥ a

H [σ log (1/a) + a] for σ < a
. (2.14)

In both cases, we may note that

B(σ) ≤ H
[
(σ ∨ a) log

( e

σ ∨ a

)]
for all σ ∈ [0, 1].

When F = G (σ) is given by (2.9) and n is large, the right-hand side of (2.13)

is of order σ log3/2(e/σ)
√
nd when σ ≥ a and improves (2.8) when log(1/σ) is

small enough compared to logn. When σ < a, two situations may occur. Either
σ ≥

√
d/(n logn) and the right-hand sides of (2.13) and (2.8) are both of order

σ log(e/σ)
√
nd logn, or σ <

√
d/(n logn) and the right-hand side of (2.8), which

is of order d log n improves that of (2.13) which is of order d log3/2 n.
When the elements of F take their values in [−b, b] for some b > 0, one

should rather use the following result.

Corollary 2.1. Assume that F is a weak VC-major class with dimension not
larger than d ≥ 1 consisting of functions with values in [−b, b] for some b > 0.
Then,

4−1
E [Z(F )] ≤

[
σ log

(
eb

σ

)√
2nΓn(d) + 4bΓn(d)

]
∧
[
5
√
nbB(σb−1)

]
.

with Γn(d) given by (2.5), σ by (2.6) and B(·) by (2.14).

Proof. By homogeneity, we may assume that b = 1. Since F is weak VC-major
with dimension d, F+ = {f ∨ 0, f ∈ F} and F− = {(−f) ∨ 0, f ∈ F} are
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both weak VC-major with dimension not larger than d by Proposition 2.3. The
elements of F+ and F− take their values in [0, 1] and

max
ε∈{−,+}

sup
f∈Fε

1

n

n∑
i=1

E
[
f2(Xi)

]
≤ σ2.

We may therefore bound E
[
supf∈Fε

|
∑n

i=1 εif(Xi)|
]
from above for ε ∈ {−,+}

by applying Theorems 2.1 and 2.2. To conclude we use that f = f ∨0− (−f)∨0
for all f ∈ F so that

E

[
sup
f∈F

∣∣∣∣∣
n∑

i=1

εif(Xi)

∣∣∣∣∣
]
≤ E

[
sup

f∈F+

∣∣∣∣∣
n∑

i=1

εif(Xi)

∣∣∣∣∣
]
+ E

[
sup

f∈F−

∣∣∣∣∣
n∑

i=1

εif(Xi)

∣∣∣∣∣
]
.

Finally, we conclude this section with the special case of i.i.d. Xi and a VC-
major class F . It is then possible to replace the control of the L2(P )-norm of
the elements of F by a control of their variances. More precisely, the following
holds.

Corollary 2.2. Let X1, . . . , Xn be i.i.d random variables, F a VC-major class
of functions with values in [−b, b] and

σ = sup
f∈F

√
Var[f(X1)] ∈ (0, b].

If F is a VC-major class with dimension not larger than d ≥ 1,

E [Z(F )] ≤
[
2σ log

(
2eb

σ

)√
2nΓn(d) + 16bΓn(d)

]
∧
[
20

√
nbB

(
b

σ

)]

where Γn(d) is given by (2.5) and B(·) by (2.14).

3. Proofs of Theorem 2.1 and 2.2

3.1. Proof of Lemma 2.1

Let (X ′
1, . . . , X

′
n) be an independent copy of X = (X1, . . . , Xn). Then

E

[
sup
f∈F

∣∣∣∣∣
n∑

i=1

(
f(Xi)− E [f(Xi)]

)∣∣∣∣∣
]

= E

[
sup
f∈F

∣∣∣∣∣
n∑

i=1

(f(Xi)− E [f(X ′
i)|X])

∣∣∣∣∣
]

= E

[
sup
f∈F

∣∣∣∣∣E
[

n∑
i=1

(f(Xi)− f(X ′
i))

∣∣∣∣∣X
]∣∣∣∣∣
]

≤ E

[
sup
f∈F

∣∣∣∣∣
n∑

i=1

(f(Xi)− f(X ′
i))

∣∣∣∣∣
]
.
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By symmetry supf∈F |
∑n

i=1 (f(Xi)− f(X ′
i))| and supf∈F |

∑n
i=1 εi(f(Xi) −

f(X ′
i))| have the same distribution. Therefore

E

[
sup
f∈F

∣∣∣∣∣
n∑

i=1

(f(Xi)− f(X ′
i))

∣∣∣∣∣
]
= E

[
sup
f∈F

∣∣∣∣∣
n∑

i=1

εi (f(Xi)− ai − [f(X ′
i)− ai])

∣∣∣∣∣
]

≤ 2E

[
sup
f∈F

∣∣∣∣∣
n∑

i=1

εi (f(Xi)− ai)

∣∣∣∣∣
]
.

3.2. The particular case of a class F of indicator functions

We start with the following elementary situation.

Lemma 3.1. For a finite and non-empty subset T of R
n and v2 =

maxt∈T

∑n
i=1 t

2
i ,

E

[
sup
t∈T

∣∣∣∣∣
n∑

i=1

εiti

∣∣∣∣∣
]
≤
√
2 log(2 |T |)v2. (3.1)

Proof. For T = T ∪ {−t, t ∈ T},

E

[
sup
t∈T

∣∣∣∣∣
n∑

i=1

εiti

∣∣∣∣∣
]
= E

[
sup
t∈T

n∑
i=1

εiti

]

and the result follows from inequality (6.3) in Massart [9].

Let us now prove an analogue of Theorem 2.1 when F is a family of indicator
functions.

Theorem 3.1. Let X = (X1, . . . , Xn) be a random vector with independent
components taking their values in the measurable space (X ,A ) and let C be a
countable family of measurable subsets of X . For F = {1C , C ∈ C }, E (X) ={
{i, Xi ∈ C}, C ∈ C

}
,

σ = sup
C∈C

[
1

n

n∑
i=1

P(Xi ∈ C)

]1/2
and Γ = E [log(2 |E (X)|)]

the following holds,

E [Z(F )] ≤ 2E
[
Z(F )

]
≤ 2
[
σ
√
2nΓ + 4Γ

]
.

This result is of the same flavour as the one Pascal Massart established in
Massart [9] (see his Lemma 6.4). Massart’s result involves an inexplicit constant,
is established under the assumption that the Xi are i.i.d. and for σ satisfying an
inequality while our bound is true for all σ. Nevertheless, the proof of our The-
orem 3.1 is essentially included in that provided by Massart for his Lemma 6.4.
We provide a proof below to assess the constants.
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Proof. By the symmetrization argument (2.1),

E

[
sup
C∈C

n∑
i=1

1C(Xi)

]
≤ E

[
sup
C∈C

n∑
i=1

(1C(Xi)− P(Xi ∈ C))

]
+ nσ2

≤ 2E

[
sup
C∈C

∣∣∣∣∣
n∑

i=1

εi1C(Xi)

∣∣∣∣∣
]
+ nσ2

= 2E
[
Z(F )

]
+ nσ2. (3.2)

Let us denote by Eε the conditional expectation given X = (X1, . . . , Xn). Ap-
plying Lemma 3.1 with T = {(1E(1), . . . , 1E(n)), E ∈ E (X)} we get

Eε

[
sup
C∈C

∣∣∣∣∣
n∑

i=1

εi1C(Xi)

∣∣∣∣∣
]
= Eε

[
max

E∈E (X)

∣∣∣∣∣
∑
i∈E

εi

∣∣∣∣∣
]

≤

√√√√2 log(2 |E (X)|) sup
C∈C

n∑
i=1

1C(Xi).

Taking expectations with respect to X on both sides of this inequality, we derive
from Cauchy-Schwarz’s inequality and (3.2) that

E
[
Z(F )

]
≤

√√√√2ΓE

[
sup
C∈C

n∑
i=1

1C(Xi)

]
≤
√

2Γ
(
2E
[
Z(F )

]
+ nσ2

)
.

Solving the last inequality with respect to E
[
Z(F )

]
leads to

E
[
Z(F )

]
≤
√
2Γnσ2 + (2Γ)2 + 2Γ ≤

√
2Γnσ2 + 4Γ

and the conclusion follows from (2.2).

Of particular interest is the situation when C is VC with dimension d. In this
case, we derive from Sauer’s lemma that, for all n ≥ 1,

|E (X)| ≤
d∧n∑
j=0

(
n

j

)
.

This shows that for a VC-class C with dimension not larger than d,
log(2 |E (X)|) ≤ Γn(d) where Γn(d) is given by (2.5). We immediately deduce
from Theorem 3.1 the following corollary.

Corollary 3.1. Let X = (X1, . . . , Xn) be a random vector with independent
components taking their values in the measurable space (X ,A ) and let C be
a countable family of measurable subsets of X which is VC with dimension d.
For F = {1C , C ∈ C }

E [Z(F )] ≤ 2

[
σ

√
2nΓn(d) + 4Γn(d)

]
with σ2 = sup

C∈C

1

n

n∑
i=1

P(Xi ∈ C) (3.3)

and Γn(d) given by (2.5).
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To analyse this bound, let us consider the situation where G is the family
of indicators {1C , C ∈ D} indexed by a VC-class D of subsets of X with
dimension d ≥ 1 and F = G (σ) given by (2.9). The bound we get on E [Z(F )]
writes as

2
√
2nσ
√

d logn(1 + o(1)) when n → +∞.

It can be used to bound from above the smaller quantity

E = max

{
E

[
sup
C∈C

n∑
i=1

(1C(Xi)− P(Xi ∈ C))

]
;

E

[
sup
C∈C

n∑
i=1

(P(Xi ∈ C)− 1C(Xi))

]}
.

When the Xi are i.i.d., an alternative bound on E is given in Theorem 13.7 of
Boucheron et al. [6]. This bound, that we recall below, is based on the control
of the universal entropy of a VC-class of sets which is due to Haussler [8].

E ≤ 72
√
nσ

√
d log

(
4e2

σ

)
provided that σ ≥ 24

√
d

5n
log

(
4e2

σ

)
. (3.4)

This constraint on σ can be reformulated as σ ≥ σn where

σn =
24√
10

√
d log n

n
(1 + o(1)) when n → +∞.

In the case σ = σn, inequality (3.3) improves their bound in terms of constants
at least when n is large enough. However in the situation where σ is fixed and
n is large, their bound improves ours by a

√
logn factor. We provide below

an improvement of Boucheron et al.’s bound (and hence of (3.3)) in terms of
constants at least when σ is large enough compared to σn.

Proposition 3.1. Under the assumptions of Corollary 3.1 and provided that
the dimension of C is not larger than d ≥ 1,

E [Z(F )] ≤ 2E
[
Z(F )

]
≤ 10

√
n H (σ ∨ a) (3.5)

where H and a are given by (2.12).

Proof. Throughout this proof d stands for d ∧ n. Given X = (X1, . . . , Xn), let
PX = n−1

∑n
i=1 δXi be the empirical distribution based on the Xi and for η > 0

let Cη = Cη(X) be a maximal η-separated subset of C for the L1(PX)-norm,
that is, Cη is a (random) subset of C satisfying the following properties: for all
C,C ′ ∈ Cη with C 
= C ′, |CΔC ′|1,X =

∑n
i=1 |1Xi∈C − 1Xi∈C′ | > nη and for

all C ∈ C , their exists ΠηC ∈ Cη such that |CΔΠηC|1,X ≤ nη. Note that for
η < 1/n, we necessarily have that |CΔΠηC|1,X = 0 which means that

1C(Xi) = 1ΠηC(Xi) for all C ∈ C and 1 ≤ i ≤ n. (3.6)

The proof is decomposed into three steps.
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Step 1: An entropy bound In the sequel, we provide an upper bound for
the quantities log |Cη| with η > 0. We first note that given two distinct sets
C,C ′ ∈ Cη, |CΔC ′|1,X > nη > 0, hence

C ∩ {X1, . . . , Xn} 
= C ′ ∩ {X1, . . . , Xn},

and since the number of such subsets of {X1, . . . , Xn} is not larger than
∑d

k=0

(
n
k

)
by Sauer’s lemma, we necessarily have

log |Cη| ≤ log

⎡
⎣ d∑
j=0

(
n

j

)⎤⎦ = Γn(d)− log 2 for all η > 0.

Since two arbitrary subsets C,C ′ ∈ C satisfy |CΔC ′|1,X ≤ n, if η ≥ 1 one
should take Cη = C1 = {C0} for some arbitrary C0 ∈ C so that log |Cη| = 0 for
all η ≥ 1.

When η ∈ (0, 1) there exists k ∈ {1, . . . , n} such that (k − 1)/n ≤ η < k/n
and for all C,C ′ ∈ Cη, |CΔC ′|1,X > k− 1, hence |CΔC ′|1,X ≥ k, and it follows
from Haussler [8] Theorem 1 that

log (|Cη|) ≤ log

[
e(d+ 1)

(
2e

η

)d
]
.

Putting these bounds on log |Cη| together we obtain that, for all η > 0, log |Cη| ≤
h(η) with

h(η) =

{[
log
(
e(d+ 1)(2e)d

)
+ d log

1

η

]
∧
[
Γn(d)− log 2

]}
1(0,1)(η).

Note that h is a nonnegative, right-continuous and nonincreasing function which
is bounded from above by Γn(d) − log 2 and satisfies for d ≥ 1, n ≥ 1 and
η ∈ (0, 1),

h(η) ≥ min{2 log(2e), log(n+ 1)} ≥ log 2. (3.7)

Step 2: Preliminary calculations For q = 25/2e−6 ∈ (0, 1), the function H
defined by

H(x) =

∫ x

0

√
log 2 + h(u2) + h(q2u2)du for x > 0

is nondecreasing and concave. It is also differentiable from the right on (0,+∞)
and its right-hand derivative at x > 0 is given by

H ′(x) =
√
log 2 + h(x2) + h(q2x2) ≤

√
2Γn(d). (3.8)

Besides, for x ∈ (0, 1) H is differentiable and

H ′(x) ≤
√
cd + 4d log

1

x

with

cd = log 2 + 2 log
(
e(d+ 1)(2e)d

)
+ 2d log(1/q) ≤ 16d for d ≥ 1.
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In particular, we deduce from Jensen’s inequality that for x ∈ (0, 1],

H(x) ≤ x× 1

x

∫ x

0

√
cd + 4d log

1

u
du ≤ x

[
1

x

∫ x

0

(
cd + 4d log

1

u

)
du

]1/2

= x
[
cd + 4d log

e

x

]1/2
≤ 2x

[
d log

e5

x

]1/2
= 2H(x). (3.9)

Let

η0 = η0(X) = sup
C∈C

[
1

n

n∑
i=1

1Xi∈C

]
∈ [0, 1].

By the symmetrization argument (2.1),

nE [η0(X)] ≤ E

[
sup
C∈C

n∑
i=1

(1C(Xi)− P(Xi ∈ C))

]
+ nσ2

≤ 2E

[
sup
C∈C

∣∣∣∣∣
n∑

i=1

εi1C(Xi)

∣∣∣∣∣
]
+ nσ2

= 2E
[
Z(F )

]
+ nσ2. (3.10)

Step 3: Completion of the proof Let us now define for all positive integers
k, ηk = q2kη0, Ck = Πηk

C for C ∈ C and Tk as the subset of Rn gathering those
vectors of the form (1X1∈Ck+1

− 1X1∈Ck
, . . . , 1Xn∈Ck+1

− 1Xn∈Ck
) as C varies

along C . For all i ∈ {1, . . . , n},

1Xi∈C = 1Xi∈C0 +

+∞∑
k=0

(
1Xi∈Ck+1

− 1Xi∈Ck

)
where the sum is actually finite because of (3.6). Hence,∣∣∣∣∣

n∑
i=1

εi1Xi∈C

∣∣∣∣∣ ≤
∣∣∣∣∣

n∑
i=1

εi1Xi∈C0

∣∣∣∣∣+
+∞∑
k=0

∣∣∣∣∣
n∑

i=1

εi
(
1Xi∈Ck+1

− 1Xi∈Ck

)∣∣∣∣∣
and

Z(F ) ≤
∣∣∣∣∣

n∑
i=1

εi1Xi∈C0

∣∣∣∣∣+
+∞∑
k=0

sup
t∈Tk

∣∣∣∣∣
n∑

i=1

εiti

∣∣∣∣∣ .
Denoting by Eε the conditional expectation given X, the quantities
Eε [|

∑n
i=1 εi1Xi∈C0 |] and Eε

[
supt∈Tk

|
∑n

i=1 εiti|
]
can be bounded from above

by means of Lemma 3.1 using the facts that
∑n

i=1 1Xi∈C0 ≤ nη0, |Tk| ≤
|Cηk

||Cηk+1
| ≤ eh(ηk)+h(q2ηk) for all k ≥ 1 and for all C ∈ C

n∑
i=1

(
1Xi∈Ck+1

− 1Xi∈Ck

)2
= n |Ck+1ΔCk|1,X ≤ n

[
|Ck+1ΔC|1,X + |CkΔC|1,X

]

≤ n(1 + q2)ηk = n
1 + q2

(1− q)2
(
√
ηk −√

ηk+1)
2.
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We get,

Eε

[
Z(F )

]
≤

√
2n

[√
η0 log 2 +

√
1 + q2

1− q

+∞∑
k=0

(√
ηk −√

ηk+1

)√
log 2 + h(ηk) + h(q2ηk)

]

≤
√
2n

[√
η0 log 2 +

√
1 + q2

1− q

+∞∑
k=0

∫ √
ηk

√
ηk+1

√
log 2 + h(u2) + h(q2u2)du

]

≤
√
2n

[√
η0 log 2 +

√
1 + q2

1− q

∫ √
η0

0

√
log 2 + h(u2) + h(q2u2)du

]
.

Using (3.7),

√
η0 log 2 ≤

√
log 2

3 log 3

∫ √
η0

0

√
log 2 + h(u2) + h(q2u2)du

and hence,

Eε

[
Z(F )

]
≤

√
nbqH

[√
η0(X)

]
with bq =

√
2

(√
1 + q2

1− q
+

√
1

3

)
< 2.5.

Taking the expectation with respect to X on both sides and using Jensen’s
inequality yield to

E
[
Z(F )

]
≤

√
nbqE

[
H
(√

η0(X)
)]

≤
√
nbqH

[√
E [η0(X)]

]
. (3.11)

If a = 32(Γn(d)/n)
1/2 ≥ 1, a = a ∧ 1 = 1 and

E
[
Z(F )

]
≤

√
nbqH

[√
E [η0(X)]

]
≤ 2.5

√
nH(1) = 2.5

√
nH(σ ∨ 1). (3.12)

Otherwise a = a < 1 and let us set G(u) = H(
√
u) for u > 0. The function G is

nondecreasing, concave, differentiable from the right on (0,+∞) and its right-
hand derivative at x > 0 is given by G′(x) = H ′(

√
x)/(2

√
x). In particular,

using (3.10) and the fact that the graph of a concave function lies below its
tangents, we obtain that

H
[√

E [η0(X)]
]

= G(E [η0(X)]) ≤ G
(
σ2 + 2n−1

E
[
Z(F )

])
≤ G

(
σ2 ∨ a2 + 2n−1

E
[
Z(F )

])
≤ G(σ2 ∨ a2) + 2n−1

E
[
Z(F )

]
G′(σ2 ∨ a2)

= H(σ ∨ a) +
H ′(σ ∨ a)

an
E
[
Z(F )

]
≤ H(σ ∨ a) +

H ′(a)

an
E
[
Z(F )

]
.
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This inequality together with (3.11), leads to

E
[
Z(F )

]
≤

√
nbqH(σ ∨ a) +

bqH
′(a)

a
√
n

E
[
Z(F )

]
(3.13)

and, since by (3.8) and our choice of a (that is a > bq

√
2n−1Γn(d)/(1−bq/2.5)),

bqH
′(a)

a
√
n

≤ bq
a

√
2Γn(d)

n
≤ 1− bq

2.5
,

we obtain that
E
[
Z(F )

]
≤ 2.5

√
nH(σ ∨ a). (3.14)

Putting (3.12) and (3.14) together and using (3.9), we obtain that in both
cases

E
[
Z(F )

]
≤ 2.5

√
nH(σ ∨ a) ≤ 5

√
n H(σ ∨ a)

and we conclude by (2.2).

3.3. Completion of the proofs of Theorems 2.1 and 2.2

We start with the proof of Theorem 2.1. In view of our convention about the
definition of E [Z(F )] we may assume with no loss of generality that F is
countable. Let us fix u ∈ (0, 1) and write for simplicity, Cu(F ) = Cu. Since F
is weak VC-major with dimension not larger than d, Cu is VC with dimension
not larger than d as well. Besides, Cu is countable since F is and by Markov’s
inequality

sup
C∈Cu

n∑
i=1

P(Xi ∈ C) = sup
f∈F

n∑
i=1

P(f(Xi) > u) ≤ sup
f∈F

n∑
i=1

[
E
(
f2(Xi)

)
u2

∧ 1

]

≤ n

(
σ2

u2
∧ 1

)
.

Applying Theorem 3.1 to the class of sets Cu leads to

E

[
sup
C∈Cu

∣∣∣∣∣
n∑

i=1

εi1C(Xi)

∣∣∣∣∣
]
≤
(σ
u
∧ 1
)√

2nΓu + 4Γu. (3.15)

Since the elements f ∈ F take their values in [0, 1],∣∣∣∣∣
n∑

i=1

εif(Xi)

∣∣∣∣∣ =
∣∣∣∣∣
∫ 1

0

n∑
i=1

εi1f(Xi)>u du

∣∣∣∣∣ ≤
∫ 1

0

∣∣∣∣∣
n∑

i=1

εi1f(Xi)>u

∣∣∣∣∣ du.
Moreover,

sup
f∈F

∣∣∣∣∣
n∑

i=1

εi1f(Xi)>u

∣∣∣∣∣ = sup
C∈Cu

∣∣∣∣∣
n∑

i=1

εi1C(Xi)

∣∣∣∣∣
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and it follows that

sup
f∈F

∣∣∣∣∣
n∑

i=1

εif(Xi)

∣∣∣∣∣ ≤
∫ 1

0

sup
C∈Cu

∣∣∣∣∣
n∑

i=1

εi1C(Xi)

∣∣∣∣∣ du
and taking expectations on both sides gives

E
[
Z(F )

]
≤
∫ 1

0

E

[
sup
C∈Cu

∣∣∣∣∣
n∑

i=1

εi1C(Xi)

∣∣∣∣∣
]
du. (3.16)

Using (3.15),

E
[
Z(F )

]
≤

∫ 1

0

[(σ
u
∧ 1
)√

2nΓu + 4Γu

]
du

=
√
2nσ

[
1

σ

∫ σ

0

√
Γudu+

∫ 1

σ

√
Γu

u

]
+ 4

∫ 1

0

Γudu

and the conclusion follows from (2.2).
The proof of Theorem 2.2 is quite similar except that we now bound the

right-hand side of (3.16) using Proposition 3.1. Since u �→ H(u) is concave and
nondecreasing on [0, 1], we get

E

[
sup
f∈F

∣∣∣∣∣
n∑

i=1

εif(Xi)

∣∣∣∣∣
]

≤ 5
√
n

∫ 1

0

H
[
(u−1σ) ∧ 1) ∨ a

]
du

≤ 5
√
n H

[∫ 1

0

[(u−1σ) ∧ 1) ∨ a]du

]
= 5

√
n H [σ ∨ a− σ log(σ ∨ a)]

which leads to the result.

4. Additional proofs

4.1. Proof of Proposition 2.1

If F is VC-major with dimension d, C (F ) is a VC-class with dimension d there-
fore, whatever u ∈ R, its subset Cu(F ) is also a VC-class with dimension not
larger than d. Let us now turn to the case where F is VC-subgraph with di-
mension d. Let u ∈ R, if Cu shatters {x1, . . . , xk}, for any subset E of {1, . . . , k}
one can find a function f ∈ F , such that

E =
{
i ∈ {1, . . . , k} such that f(xi) > u

}
which exactly means that C×(F ) shatters {(x1, u), . . . , (xk, u)} and implies that
k ≤ d.
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4.2. Proof of Proposition 2.2

For all f ∈ F and u ∈ R, we can write

1{f≥u}(x) = lim
m→+∞

1{f>u−(1/m)}(x) for all x ∈ X .

This means that C+
u is the sequential closure of Cu for the pointwise convergence

of indicator functions. Lemma 2.6.17 (vi) in van der Vaart and Wellner [14] (and
its proof) asserts that C+

u (F ) is a VC-class with dimension not larger than that
of Cu. For the reciprocal, note that for all f ∈ F and u ∈ R,

1{f>u}(x) = lim
m→+∞

1{f≥u+(1/m)}(x) for all x ∈ X

and conclude in the same way.

4.3. Proof of Proposition 2.3

Let u ∈ R. If Cu(F ◦ F ) cannot shatter at least one point, its dimension is
0 and there is nothing to prove since d ≥ 0. Otherwise, there exist k ≥ 1
points x1, . . . , xk in X and m functions f1, . . . , fm ∈ F such that the set{
{F ◦ fj > u}, j = 1, . . . ,m

}
shatters {x1, . . . , xk}. In particular, there exists

a point xi and a function fj such that F ◦ fj(xi) ≤ u so that

s = max
i,j

{fj(xi) such that F ◦ fj(xi) ≤ u}

is well-defined. Clearly, for all i = 1, . . . , k and j = 1, . . . ,m,

F ◦ fj(xi) > u if and only if fj(xi) > s

and Cs(F ) therefore shatters {x1, . . . , xk}, which implies that k ≤ d.

4.4. Proof of Corollary 2.2

Let G be the class of all functions gf , f ∈ F , defined on X and with values in
[−b, b] given by

gf (x) =
1

2

(
f(x)− E [f(X1)]

)
.

Since

sup
g∈G

E
[
g2f (X1)

]
=

1

4
sup
f∈F

Var(f(X1)) ≤
σ2

4
,

Corollary 2.2 will follow from Corollary 2.1 if we can prove that G is weak
VC-major. This is a consequence of the next lemma.

Lemma 4.1. If F is VC-major with dimension d, G is weak VC-major with
dimension not larger than d.
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Proof. Let u ∈ R and {x1, . . . , xk} be a nonempty subset of X which is shat-
tered by Cu(G ) (if no such set exists then the dimension of Cu(G ) is 0 and there
is nothing to prove). For any E ⊂ {1, . . . , k}, there exists f ∈ F such that

E = {i ∈ {1, . . . , k} such that gf (xi)>u} = {i ∈ {1, . . . , k} such that f(xi)>t}

with t = 2(u + E[f(X1)]). Consequently, the class of sets C (F ) = {{f > t},
f ∈ F , t ∈ R} shatters {x1, . . . , xk} which implies that k ≤ d.
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