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First of all, we would like to thank all the discussants for their interesting,
thought–provoking comments and thorough investigation. We also thank the
editors for the opportunity to comment briefly on a few issues raised in the
discussions.

The comments of the discussants underline importance of the topic discussed
in our paper, namely, that of application of convex optimization methodology to
statistical inference problems. Of special interest is the diversity of perspectives,
which include theoretical and practical issues. Before addressing comments of
the discussants, we would like to restate as simply as possible the main point of
this paper.

Our approach. In the nutshell, our approach is as follows. Let P , Q be two
families of probability distributions on an observation space Ω. Given observa-
tion ω ∼ P ∈ P ∪ Q, our goal is to decide on the hypotheses H1, H2 stating
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that P ∈ P and P ∈ Q, respectively. Consider the optimization problem

ε∗ = min
φ(·),ε

{
ε : sup

P∈P

∫
Ω

exp{−φ(ω)}P (dω) ≤ ε, sup
P∈Q

∫
Ω

exp{φ(ω)}P (dω) ≤ ε

}

= min
φ(·),ε

{
ε : sup

P∈P̄

∫
Ω

exp{−φ(ω)}P (dω) ≤ ε, sup
P∈Q̄

∫
Ω

exp{φ(ω)}P (dω) ≤ ε

}
,

(1)

where P̄ and Q̄ are convex hulls of P and Q.
Then

• it is immediately seen that a feasible solution (φ(·), ε) to the problem
induces a test deciding on H1, H2 with risk ≤ ε; given observation ω, this
test accepts H1 when φ(ω) ≥ 0, and accepts H2 otherwise;

• the best risk ε∗ achievable with this approach is not too far from the
“ideal” risk: if “in the nature” there exists a (perhaps, randomized) test
deciding on H1, H2 with risk δ < 1/2, then (1) admits a feasible solution
(φ̄(·), ε̄) with ε̄ ≤ 2

√
δ(1− δ) < 1. Moreover, for every K = 1, 2, ..., the

risk of the test which, given an i.i.d. sample ωt ∼ P ∈ P ∪ Q, 1 ≤ t ≤ K,
accepts H1 when

∑K
t=1 φ̄(ωt) ≥ 0, and accepts H2 otherwise, does not

exceed ε̄K . As a result, if the ideal risk δ∗ of deciding on H1, H2 via a
single observation is, say, ≤ 0.016, and repeated observations are allowed,
then the accuracy of the test given by a (near)-optimal solution to (1)
and based on the sample size K = 3 is as good as the one of the ideal
single–observation test.

The bottom line is that an optimal, or nearly so, solution to (1) induces a
test with attractive near-optimality properties. Although this fact is well known
for more than thirty years (it can be traced back to [1] and [3], cf. Lucien
Birgé’s discussion), it is of limited “practical value” by itself. Unfortunately,
even though (1) is a convex program, it is typically computationally intractable:
it is infinite-dimensional, and the constraints are, in general, difficult to compute.
Furthermore, in this respect, (1) is not different from the infinite-dimensional
convex optimization problem which is responsible for the ideal (randomized)
test, that is, the problem

δ∗ = min
ψ(·),ε

{
ε : sup

P∈P̄

∫
Ω

(1− ψ(ω))P (dω)≤ ε, sup
P∈Q̄

∫
Ω

ψ(ω)P (dω)≤ ε, 0≤ψ(·)≤ 1

}
.

(2)
The principal observation underlying all other developments in our paper is

that in several special cases (1) becomes computationally tractable, namely, in
the cases of (stationary K-repeated) Gaussian, Poisson, and Discrete observa-
tion schemes with “convex” hypotheses H1, H2. The convexity here means that
P , Q are generated by convex sets in the spaces of parameters of the corre-
sponding distributions.1

1In contrast, the only known to us cases when the problem (2) responsible for exactly
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One of our principal objectives in this work was to demonstrate that already
this (restricted) statistical framework, “augmented” with some matrix calcu-
lus, encompasses several classical applications. In particular, our attention was
attracted to inverse problems, where the proposed approach leads to a “uni-
versal” problem treatment – in order to build a near-optimal testing procedure
one should solve a certain optimization problem (which admits a numerically
efficient solution). For instance, in Gaussian o.s. ω = Ax+ξ, where ξ ∼ N (0, I),
the tests are “tuned” precisely for the problem matrix A; in the case of indi-
rect observation ω ∼ Pμ, μ = Ax in Discrete o.s., the exact structure of A
(which may describe noisy observations, censored observations, their composi-
tion, etc) is taken into account “automatically”, and so on. We also believe that
this approach to testing is also important for “real” problems: in many cases its
direct application leads to testing procedures with reasonable (that is, nearly
the best possible) “practical performance”. Last but not least, it can be easily
implemented and tested using widely available optimization tools, such as CVX
[2].

Discussion. We would like to thank Lucien Birgé who more than thirty years
ago made fundamental contributions to development of the approach presented
in our paper. He is certainly the best person to put this work into the right his-
torical perspective, and he has done this with sparkle in his thought–provoking
discussion. In his work Lucien Birgé studied various consequences of the afore-
mentioned theoretical result. He also pioneered different weighting schemes for
test aggregations, in particular those arising in the problem of nonparametric
estimation through multiple testing.

An important point which is recurrent in several discussions (Alekh Agarwal;
Fabienne Comte, Céline Duval and Valentine Genon–Catalot; Axel Munk and
Frank Werner, and Philippe Rigollet) is related to principal limitations of the
proposed approach. In our opinion, extending the testing framework to the case
where the requirements of good o.s. are not satisfied is of high interest. The
following questions appear essential in this regard:

1. can the proposed construction be extended to encompass a larger variety
of distribution families?

2. is it possible to extend the discussed framework beyond testing of unions
of “not very large” number of convex hypotheses?

The question which is subsidiary to question 1) above is that of existence of
good o.s. other than Gaussian, Poisson and Discrete one, described in section

optimal test is tractable are the cases of 1) Gaussian o.s. with convex hypotheses H1, H2,
where the exactly optimal test, “by chance,” is given by an optimal solution to (1), and 2)
Discrete o.s. Ø with convex hypotheses H1, H2. The latter case is of very limited consequences,
since usually one is interested in the case of repeated observations, that is, in the case of K-
repeated o.s. ØK as defined in section 2.4.1 of the paper. On the other hand, problem (2)
associated with ØK , K ≥ 2, is usually intractable, the difficulties stemming from the necessity
to describe in a computation-friendly manner the convex hulls of direct powers of probability
distributions from P and Q, not speaking about exponential growth with K of the cardinality
of observation space associated with ØK (and thus – of the design dimension of (2)).
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2.3 of the paper. The simple answer is “we do not know”, but, this being said,
the main result (Theorem 2.1) allows for some extensions. For instance, we
currently work on extending Discrete o.s. to the case where P and Q are families
of continuous distributions P , given by bounds on a finite number of linear
functionals of P (i.e., on expectations of some vector-valued functions Ψ(ω)).
In the latter case the optimal solution φ∗ to the optimization problem in (1)
admits an alternative description in terms of the problem dual to (1), and under
favorable circumstances it can be computed efficiently. An alternative approach
uses quadratic approximation of the functional∫

Ω

exp{−φ(ω)}P (dω)

and under analogous conditions allows for constructing efficiently computable
tests (a similar approach is described in Alekh Agarwal’s discussion).

Some directions to follow in order to answer question 2) above are given in
discussions by Munk and Werner, and Rigollet. Axel Munk and Frank Werner
consider the problem of testing multiple change–points in the nonparametric
regression model. Note that direct application of our approach to this prob-
lem is problematic for at least two reasons. First of all, the complexity of the
testing becomes prohibitive as the number of hypotheses to test grows expo-
nentially with the number of signal jumps. Furthermore, the pairwise detectors
corresponding to testing of different signals are strongly correlated. Meanwhile,
the calculus of tests, given in section 3 of the paper does not take this pos-
sibility into account, and the resulting detection boundaries become subopti-
mal. Philippe Rigollet discusses testing a sparsity pattern of the normal mean
vector. The basic idea here is to use convex relaxations in order to construct
efficiently computable tests in the case where the hypotheses are not associ-
ated with compact convex sets. Usually, analysis of accuracy of a statistical
procedure obtained in this way is a difficult task, and one cannot expect here
any “universal results”, as those described in our paper. For instance, quality
of the resulting decision rules depends heavily on the chosen relaxation of the
non-convex constraints. However, in some specific cases such approximations
lead to near-optimal statistical procedures. In particular, this is the case where
the non-convex component of the problem is due to sparsity constraint on the
signals, which can be approximated by a union of “not very large” number of
convex sets.

Arnak Dalalyan in his discussion presents interesting connections between
our approach to testing problems and a widely adopted approach to classifi-
cation in Learnig Theory. His revealing comments shed some additional light
on construction of tests used in our paper. We have also implemented some
changes in the paper following comments of Fabienne Comte, Céline Duval and
Valentine Genon–Catalot.

In conclusion we again express our deep thanks to all the discussants and
editors.
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