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Abstract: This paper is concerned with the study of the signed-rank es-
timator of the regression coefficients under the assumption that some re-
sponses are missing at random in the regression model. Strong consistency
and asymptotic normality of the proposed estimator are established under
mild conditions. To demonstrate the performance of the signed-rank esti-
mator, a simulation study is conducted under different settings of model
error’s distributions, and shows that the proposed estimator is more effi-
cient than the least squares estimator whenever the error distribution is
heavy-tailed or contaminated. When the model error follows a normal dis-
tribution, the simulation experiment shows that the signed-rank estimator
is more efficient than its least squares counterpart whenever a large pro-
portion of the responses are missing.
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1. Introduction

Nowadays the missing data problem is a troubleshooting problem in almost all
statistical studies; it occurs for several reasons in a large array of applications.
Such reasons may occur due to equipment malfunction, unfavorable weather
conditions, incorrect entry of the data or non-participation of individuals due to
illness. Examples of missing data problems include: users of a recommender sys-
tem rate, extremely small number of available books, movies, or songs leading
to massive amounts of missing data; in a clinical trial, participants may drop
out during the course of study leading to missing observations at subsequent
time points; while diagnosing a patient, all applicable tests may not be ordered
by a doctor; a sensor in a remote sensor network may be damaged and cease
to transmit data; certain regions of a gene microarray may fail to yield mea-
surements of the underlying gene expressions due to scratches, fingerprints, or
manufacturing defects; etc.
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The missingness scenario to be considered in this paper is that of the missing
response in the context of regression analysis that often arises in various ex-
perimental settings such as opinion polls, socioeconomic investigations, medical
studies and market research surveys.

This problem has been intensively investigated in the literature and appears
to be a very challenging task. The challenge comes from the fact that in most
cases, missing data contains either little or no information about the missing
data mechanism (MDM). The most common assumption used for the MDM
and also employed in this paper, is the missing at random (MAR) assumption,
whose details can be found in [35].

When f is taken to be a linear function of θ, several regression models in
the framework of missing data have been studied by many authors such as
[6, 21, 46, 45, 30, 52, 50, 51, 42, 31], among others. All of them have done
considerable work using different techniques, but most of them use the least
squares approach in estimating the regression parameters.

In this paper, we consider the study of a general signed-rank estimator of the
regression coefficients that is obtained as a minimizer of an objective function
Dnj(θ) defined in the next section with the assumption that some responses are
missing at random. The motivation for using the signed-rank approach comes
from the fact that it provides robust estimators compared to the more common
LS approach when dealing with situations where there are outlying observations
in the response space, and/or where the error distribution is heavy-tailed. A par-
ticular case of the signed-rank approach, the LAD estimator has been studied
by [28] and [14]. Although robust in many situations, the LAD has been shown
to be less efficient than the estimator commonly referred to as the signed-rank
estimator and, also, the general form of the signed-rank estimator defined as a
minimizer of Dnj(θ), has been extensively studied in the literature by authors
such as [16, 3], and [1] for models with i.i.d. errors. Applications of this approach
to factorial designs under dependent observations are given in [4]. As the signed-
rank procedure is based on rank scores, an important approach using such rank
scores in estimating the true nonlinear regression parameter is developed in [17]
and [18] for i.i.d. errors and [25] for time-series regression models. [25] provided
a comprehensive review of different techniques of estimation in the literature
including M-estimation, R-estimation and L-estimation. In the context of miss-
ing data with the MAR assumption and f taken to be a nonlinear function of θ,
[8] considered the LAD estimator of the regression coefficients and established
its asymptotic properties. Another important piece of work in the framework
of missing data is given in [26], who provided the estimation of a function of
the mean response with responses missing at random and also established the
asymptotic properties of its proposed estimator.

In the framework of general nonlinear regression with responses missing at
random, to the best of our knowledge, no asymptotic results have been provided
for the general signed-rank estimator. The purpose of this paper is to provide
conditions needed for the strong consistency and the

√
n-asymptotic normality

of the resulting estimator toward statistical inference when some responses in
the regression model are missing at random. To measure the accuracy of the
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proposed estimator, we run a Monte Carlo simulation to obtain MSEs of the SR
and compare them to those obtained via LS estimation. From the simulation
study, it is shown that the signed-rank approach outperforms the least squares
approach under different settings. This is also shown to be true even when the
errors’ distribution is normal, but with a high rate of missing information.

To this end, the rest of the paper is organized as follows: in section 2, we define
the model, discuss the missing mechanism, motivate the imputation procedure
and provide the estimation procedure of the regression coefficients. Section 3
and section 4 are concerned with the asymptotic properties of the signed-rank
estimator. Settings of the Monte Carlo simulation are presented in section 5
with section 6 providing the discussion on the simulation results. A conclusion
summarizing the findings of the paper is given in section 7. Finally, Appendix A
contains complete proofs and some sketches of proofs of the theorems presented
in the paper.

2. Model definition and estimation

Consider the nonlinear regression model

yi = f(xi, θ) + εi, 1 ≤ i ≤ n , (2.1)

where θ ∈ Θ ⊂ R
p is a vector of parameters, xi’s are i.i.d. p-variable random

covariate vectors, the function f is twice continuously differentiable as a func-
tion of θ and measurable as a function of x. Θ is assumed to be compact and
E(εi|xi) = 0, var(εi|xi) < ∞. In this paper, we are interested in inference on
the true parameter θ0 when there are missing responses in the nonlinear model
(2.1). Specifically, we consider the case where some values of y in the sample of
size n may be missing, but x is fully observed. That is, we obtain the following
incomplete observations {yi, δi,xi}i=1,2,··· ,n from (2.1), where xi’s are observed,
and,

δi =

{
0, yi is missing;
1, otherwise.

One major problem of dealing with missing data is that it is usually un-
known how nonresponse for each variable is generated, that is, the distribution
P (δ = 1|y,x), referred to as the nonresponse mechanism is unknown. It is often
necessary to make assumptions about this distribution, which are almost im-
possible to verify [19, 27, 22, 24]. To that extent, we assume that y is missing at
random (MAR). The MAR assumption implies that δ and y are conditionally
independent given x, that is P (δ = 1|y,x) = P (δ = 1|x). Although usually
very difficult to test in practice, this is a common assumption for statistical
analysis with missing data and is reasonable in many practical situations, see
chapter 1 of [23]. Under the MAR assumption, [45] developed inference tools
in the missing response case for the mean of y based on the least squares esti-
mation approach, and [47] studied the least squares estimator of the regression
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coefficient θ in the semi-parametric linear model. One method for constructing
the confidence interval for the true mean of y is that of the empirical likelihood
method introduced by [29]. This approach is used to investigate a variety of
statistical problems by [13, 6, 21, 30, 52, 50, 51], just to mention a few. These
works demonstrate that the method of empirical likelihood has a number of
advantages over methods such as those based on normal approximations or the
bootstrap. Studies which used this approach to study (2.1) under the MAR
assumption include [46, 45, 42], and [49]. Other missing mechanisms include
missing completely at random (MCAR) and missing not at random (MNAR),
and are discussed in [36].

Imputation in general makes use of a number of auxiliary variables that are
statistically related to the variable in which the item-nonresponse occurs by
means of an imputation model [22, 37]. The main reason for carrying out im-
putation is to reduce bias, which occurs because the distribution of the missing
values, assuming it was known, generally differs from the distribution of ob-
served items. When imputation is used properly, it is possible to recreate a
balanced design such that procedures used in tackling complete data can be
applied in many situations. Rather than deleting cases that are subject to item-
nonresponse, the sample size is maintained resulting in a potentially higher
efficiency than case deletion analysis. Imputation usually makes use of observed
auxiliary information for cases with nonresponse maintaining high precision [38].
However, such an imputation may result in a negative impact if the imputed
values are not properly used. Since the variance estimation is subject to the im-
putation procedure, an adequate estimation requires adjustment methods such
as those proposed by [26] to correct for the increase in variability due to nonre-
sponse and imputation. In most of the regression problems, the commonly used
approaches include linear regression imputation [15], nonparametric kernel re-
gression imputation [7, 46], and semi-parametric regression imputation [45, 47].
Another approach for handling missing data is the inverse probability weight-
ing. This approach has gained considerable attention as a way of dealing with
missing data problems. For a discussion of this approach, see [34, 54, 44, 45] and
references therein. As pointed out by [47], for missing problems, the inverse prob-
ability weighting approach usually depends on high dimensional smoothing for
estimating the completely unknown propensity score function. This suffers from
the curse of dimensionality that may restrict the use of the resulting estimator.
One way to avoid such a problem is to use the inverse marginal probability
weighted method proposed by [45].

To this end, let us introduce the following notations: σ2(x) = E(ε2|x), Δ(x) =
P (δ = 1|x = x). Taking advantage of the imputation procedure in [45] and [47],
that is, by simple imputation and inverse marginal weighting probability, define

yij =

⎧⎨
⎩
δiyi + (1− δi)f(xi, θ) j = 1

δi
Δ(xi)

yi +
(
1− δi

Δ(xi)

)
f(xi, θ) j = 2.

Under the MAR assumption and the fact that E(ε|xi) = 0, it can easily be
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shown that E(yij |xi) = f(xi, θ) = E(yi|xi).
Consider the signed-rank objective function,

Djn(θ) =
1

n

n∑
i=1

ϕ
( Rij

n+ 1

)
|zij(θ)|, (2.2)

where zij(θ) = yij − f(xi, θ), Rij is the ith rank of |zij(θ)| and ϕ is a differ-
entiable positive function with bounded derivative. It can also be shown that
E(zij(θ)|xi) = 0. The signed-rank estimator θ̂jn of θ0 is the minimizer ofDjn(θ),
that is

θ̂jn = Argmin
θ∈Θ

Djn(θ). (2.3)

From the definition of yij , θ̂jn is obtained based on complete observations, that
is, ignoring observations with missing responses. Note that Djn(θ) is a norm

(see [16]) and hence convex as a function of the residuals. The existence of θ̂nj
is ensured by the continuity of Djn(θ) on Θ compact. Also, setting ϕ(t) = 1 for

all t ∈ (0, 1) in (2.2), θ̂nj becomes the LAD estimator.

Remark 2.1. For the complete case which considers observations without miss-
ing responses, [3] give a brief discussion about the relative efficiency of the SR
with respect to the LS and the least absolute deviation (LAD). They show that
the SR is robust and more efficient than the LS and the LAD when dealing with
heavy-tailed model error’s distributions and/or outliers in the response space.
The same paper provides a weighted version of the signed rank that is robust
and more efficient than the LS and the LAD when dealing with high leverage
points (outliers in the design space). It is also well-known that when dealing
with heavy-tailed error distributions and/or outliers in the response space, the
SR is robust and more efficient compared to the LS, LAD and MLE, see [16].

In the expression of yij , we have the function Δ(x) = P (δ = 1|x) that might
be unknown and then needs to be estimated. Being a probability and under the
assumption that infx Δ(x) > 0, one can estimate Δ(x) non-parametrically. To
this end, define

ỹijn =

⎧⎨
⎩
δiyi + (1− δi)f(xi, θ̂jn) j = 1
δi

Γ̂(xi)
yi +

(
1− δi

Γ̂(xi)

)
f(xi, θ̂jn) j = 2,

where Γ̂(x) =
∑n

j=1 ωnj(x)δj , with

ωnj(x) =
K(

x−xj

hn
)∑n

j=1 K(
x−xj

hn
)
,

where K is a kernel function and hn a bandwidth sequence satisfying hn → 0
as n → ∞. Γ̂(x) defined above is known as a kernel smoother and is used in
the literature for different purposes including the machine learning literature
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under the banner of semi-supervised learning, see [9]. Also, under the MAR
condition and the fact that E(ε|xi) = 0, we have E(ỹijn|xi) = f(xi, θ). Note

that under assumptions (I1) and (I3) given in Theorem 2.1 below, Γ̂(x) → Δ(x)
a.s. as n → ∞. This together with the assumption that infx Δ(x) > 0, we have

1

Γ̂(x)
→ 1

Δ(x) a.s. as n → ∞. Now define D̃jn(θ) as

D̃jn(θ) =
1

n

n∑
i=1

ϕ
( R̃ij

n+ 1

)
|z̃ij(θ)|, (2.4)

where z̃ij(θ) = ỹijn − f(xi, θ), R̃ij is the ith rank of |z̃ij(θ)|. Note that the
objective function given in Equation (2.4) is defined on dependent residuals,
as the imputation procedures introduce a dependence structure. Therefore, the
asymptotic properties (consistency and asymptotic normality) of the minimizer

of D̃jn(θ) cannot be established following [3]. [2] established such results, but
strong mixing conditions were imposed on the model error. One way to avoid
such strong mixing conditions is to establish the following theorem whose proof
is provided in the Appendix.

Theorem 2.1. Under the following assumptions:

(I1) K(·) is a regular kernel function of order r > 2 and the bandwidth hn

satisfies nhn → ∞, nh4r
n → 0 and C(lnn/n)γ < hn < bn < 1, for any

C > 0, γ = 1− 2/p, p > 2 and bn → 0 as n → ∞.
(I2) ϕ is a bounded, twice continuously differentiable score function with bounded

derivatives, defined on (0, 1). Also, infx Δ(x) > 0.
(I3) supx E(εp|x = x) < ∞, for p ≥ 2.

we have
lim
n→∞

sup
θ∈Θ

|D̃jn(θ)−Djn(θ)| = 0

Remark 2.2. Assumptions (I1) and (I3) ensure the almost sure uniform con-

vergence of Γ̂n(x) to Δ(x). The optimal bandwidth for practical purposes can
be chosen to lie in the interval [an−1/5, bn−1/5], for 0 < a < b < ∞. More
discussion about this fact can be found in [12]. If we set

θ̃jn = Argmin
θ∈Θ

D̃jn(θ),

Theorem 2.1 stands for the asymptotic equivalence between θ̃jn and θ̂jn; that
is, in the neighborhood of θ0, they share the same asymptotic properties (strong
consistency,

√
n-consistency and asymptotic normality).

3. Consistency

Let (Ω,F , P ) be a probability space. For i = 1, ..., n, assume that εi and xi are
independent. Also, let xi ∼ H, εi ∼ G and |zij(θ)| ∼ Gj

θ. Consider the following
assumptions:
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(I4) P (di(θ) = 0) < 1 for all θ 
= θ0, where di(θ) = f(xi, θ)− f(xi, θ0).
(I5) E(|di(θ)|p) < ∞, for some p ≥ 2.
(I6) The conditional density of εi given xi is symmetric about 0 and strictly

decreasing on R
+.

Remark 3.1. Assumption (I4) stands for the identifiability condition. Under
this assumption, if B is an open neighborhood of θ0, it can be shown that

lim
n→∞

inf
θ∈Bc

[
E(Djn(θ))− E(Djn(θ0))

]
≥ α

for some α > 0. Both (I4) and (I6) are necessary to prove that infθ∈Θ∗ μj(θ) > μj(θ0)
in Lemma 3.1 below. (I3) and (I4) ensure the uniform convergence in Lemma 3.1.
Also, if we restrict ourselves just to the consistency result, continuity is enough
for f .

Theorem 3.1. Under assumptions (I1)− (I6), θ̃jn → θ0 a.s. as n → ∞.

The following Lemma is essential for the proof of Theorem 3.1. Its proof can
be constructed along the lines given in [3]. For sake of brevity, it will not be
included here.

Lemma 3.1. Under assumptions (I2)−(I6), limn→∞ supθ∈Θ Djn(θ) = μj(θ) a.s.,

where μj(θ) =
∫
ϕ(t)dGj

θ(t) is a continuous function of θ satisfying

inf
θ∈Θ∗

μj(θ) > μj(θ0)

and Θ∗ is a closed subset of Θ not containing θ0

Remark 3.2. θ̂jn being also a strong consistent estimator of θ0 [1], and by

continuity of f , f(xi, θ̂jn) → f(xi, θ), and this implies that ỹijn → yij as n → ∞.
From this, we have as n → ∞

θ̃jn − θ̂jn → 0 a.s.

and from Remark 2.2,
√
n
(
θ̃jn − θ̂jn

)
→ 0 a.s.

4. Asymptotic normality

Setting S̃jn(θ) = −∇D̃jn(θ), it is clear that θ̃jn is a zero of S̃jn(θ). With the
following notations for the gradient and the Hessian matrix, respectively:

∇θf(x, θ) = ∇θf(x), and ∇2
θf(x, θ) = ∇2

θf(x),

we have,

S̃jn(θ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1

n

n∑
i=1

ϕ
( R̃ij

n+ 1

)
δi∇θf(xi)× sgn(εi), if j = 1

1

n

n∑
i=1

ϕ
( R̃ij

n+ 1

) δi

Γ̂(xi)
∇θf(xi)× sgn(εi), if j = 2.
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Also, setting

λij =

⎧⎨
⎩

δi, if j = 1
δi

Γ̂(xi)
, if j = 2,

we have, S̃jn(θ) =
1
n

∑n
i=1 ϕ

(
R̃ij

n+1

)
λij∇θf(xi)× sgn(εi). Putting ei = yi−f(xi, θ0),

we have the following theorem,

Theorem 4.1. For any θ in the neighborhood of θ0 and with probability 1,

√
n
[
S̃jn(θ)− S̃jn(θ0)−GT

n (θ − θ0)
]
= o(1), (4.1)

where Gn = 1
n

∑n
i=1 ϕ

(
R∗

ij

n+1

)
λij∇2

ξf(xi)× sgn(εi), with ξ = λθ0 + (1 − λ)θ for

some λ ∈ (0, 1).

The proof of this theorem is provided in the Appendix, and is just a slight
modification of that given in [2] taking into account the strong consistency of

Γ̂(x).

Now assuming that the true parameter θ0 satisfies

θ0 = Argmin
θ∈Θ

E[D̃jn(θ)],

we have
E[S̃jn(θ0)] = 0.

Set G+
ij(t) = P (|z̃ij(θ0)| ≤ t) for j = 1, 2 and i = 1, · · · , n. Also, set

Fn(t) =
1

n

n∑
i=1

νijG
+
ij(t) and F̂n(t) =

1

n

n∑
i=1

νijI[0,∞)(t− |z̃ij(θ0)|),

Jn(t) =
1

n

n∑
i=1

G+
ij(t) and Ĵn(t) =

1

n

n∑
i=1

I[0,∞)(t− |z̃ij(θ0)|),

where νij = λij∇θ0f(xi). Then,

S̃jn(θ) =
1

n

n∑
i=1

νijϕ
( R̃ij

n+ 1

)
× sgn(z̃ij(θ0)) =

∫
sgn(z)ϕ

( n

n+ 1
Ĵn(|z|)

)
F̂n(dz).

On the other hand, note that E[S̃jn(θ0)] =
∫
sgn(z)ϕ

(
Jn(|z|)

)
Fn(dz) = 0. Set

Σjn = n2E[(S̃jn(θ0))(S̃jn(θ0))
T ]. (4.2)

Theorem 4.2. Let τjn represent the minimum eigenvalue of Σjn. Then assum-
ing that
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(I7) limn→∞
n2

τjn
= 0,

S̃jn(θ0) is asymptotically normal N(0,Σjn), where 0 is a vector of zeros.

The proof of this theorem can be constructed along the lines that of Theorem
5.2 of [4]. Hence for sake of brevity, it will not be included here.

From (4.1) and the fact that S̃jn(θ̃jn) = 0, we have

√
n(θ̃jn − θ0) = (

√
nGn)

−1S̃jn(θ0). (4.3)

To this end, we will assume that

(I8)
√
nGn = 1√

n

∑n
i=1 ϕ

(
R∗

ij

n+1

)
λij∇2

ξf(xi)× sgn(εi) → W a.s. as n → ∞,

where W is a positive definite matrix. Hence, we have the following asymptotic
normality theorem.

Theorem 4.3. Under assumptions (I1)− (I8), we have,

√
n(θ̃jn − θ0) ∼ N(0,W−1ΣjnW−1),

where Σjn is defined by equation (4.2) and W is obtained from assumption (I8).

Remark 4.1. This result allows us to make statistical inferences (confidence
intervals and hypothesis tests) about the true regression parameters. To achieve
this in practice, the covariance matrix in Theorem 4.3 above needs to be es-
timated. This turns out to be a complicated task in the nonlinear regression
setting, as it depends on the true parameters and the imputation procedure.
One way to avoid this problem is to use a plug-in or sandwich estimator as
discussed in [3] for the complete case and [26] in the missing responses case
under the MAR assumption. To this end, it needs to be stressed that standard
variance estimation for a point estimator valid for complete data may, in many
cases, lead to severe underestimation of the true variance if applied to observed
and imputed data [33]. Standard variance estimation techniques are therefore
not adequate in the presence of imputation. In general, all imputation methods
require adjustments to the variance estimation formula to reflect the additional
variability due to nonresponse and imputation correctly. Various methods exist
for estimating the variance of an estimator under imputation, including multi-
ple imputation [36, 42, 20], two-phase approaches [32, 40], model-assisted ap-
proaches [11, 5] and replication methods, such as jackknife variance estimators
[33, 39, 53, 41] and references therein.

5. Simulation

To illustrate the performance of the signed-rank estimator, a simulation study
is conducted using R. In model (2.1), two scenarios are being considered:
Scenario 1: We set f(θ, x) = β0x/(β1 + x), where x is generated from the nor-
mal distribution with mean 1 and standard deviation 1, θ = (β0, β1)

τ with
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the true parameter set at θ0 = (5, 0)τ . The random error is generated from a
set of two different distributions: a contaminated normal distribution CN (ε) =
(1 − ε)N(0, 1) + εN(0, σ2) with σ = 3 and ε taken to be a proportion of con-
tamination, and the t-distribution with various degrees of freedom (df). In this
scenario the sample size is set at n = 30.

Scenario 2: In signal processing, one important model is the sinusoidal model
defined via model (2.1) by setting f(x, θ) = C + A sin

(
(π
√
12/1.645)ωx + φ

)
,

where θ = (C,A, ω, φ)τ . C is a constant defining the mean level, A is an
amplitude for the sine wave, ω is the frequency, x is a time variable to be
generated from the uniform distribution in the interval [0, 2π], and φ is the
scale parameter known as the phase. For simplicity, we set C = 0, A = 1,
φ = (1.645/

√
12 −

√
3/2)/(3.29/

√
12) ≈ −0.412, and we are interested in the

estimation of the true frequency set at ω0 = 1/
√
3. To investigate the effect

of the sample size (n) and the tail thickness of the distribution, the random
error is generated from the Laplace distribution with different sample sizes
(n = 20, 35, 50, 70, 100).

As pointed out in [20], under the MAR assumption and when the distribu-
tion of the model error is fully parametric, when it comes to estimating the
regression parameters, it is enough to consider the complete case as it results
in consistent estimators. The same remark is valid for the considered approach,
as is shown in Theorem 3.1, and discussed in Remark 3.1 and Remark 3.2. In
practice, unfortunately, with high rates of missingness, it is almost impossible
to fully specify the distribution of the model error. Also, when making inference
(hypothesis testing, confidence intervals) about regression parameters, it is often
of interest to estimate the asymptotic variance of the corresponding estimators.
Such an estimation of the variance turns out to be dependent upon the impu-
tation procedure; see [45, 47, 42] and [26] regarding a discussion of this fact.
To this end, we show through the simulation below, based on both imputation
procedures, that the SR provides more efficient estimators compared to the LS.

To carry out the imputation for missing responses, δ was generated from the
Bernoulli (Δ(x)) distribution, where three cases were considered:

• Case 1: Δ(x) = η is taken to be a sequence of proportion of no missingness
starting from 50% to 100% with steps of 10%.

• Case 2: Δ(x) = 0.8 + 0.2|x − 1| if |x − 1| ≤ 1 and 0.95 elsewhere. The

expected value of Δ(x) is 0.91 while the empirical mean of Γ̂(x) is 0.905.
These values were also obtained by [8] under the same setting on x.

• Case 3: Δ(x) = 0.9 − 0.2|x − 1| if |x − 1| ≤ 4.5 and 0.1 elsewhere. The

expected value of Δ(x) is 0.79 while the empirical mean of Γ̂(x) is 0.78.

The first case is used to investigate the effect of missing completely at random,
as δ is independent of x, while the last two are used for the effect of missing at
random, as δ and x are dependent via Δ(x). Also, while all three cases are being
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Table 1

MSEs×10−3 of the SR & the LS against the rate of contamination (Case 2), under simple
imputation (SI) and inverse marginal probability (IP) based on the kernel (Ker) and the
logistic function (Log) for the contaminated normal distribution with different rates of

contamination (ε)

Ker Log SI
ε LS SR LS SR LS SR

β0

0.00 41.820 44.568 46.363 45.391 56.731 58.446
0.01 56.079 46.922 97.741 50.703 76.134 62.866
0.05 73.554 56.118 145.066 62.716 99.597 74.396
0.10 94.143 62.560 197.740 73.862 126.480 83.796
0.15 107.621 71.155 232.612 88.947 141.219 92.324
0.25 125.318 79.198 267.321 103.529 164.860 104.619

β1

0.00 0.011 0.012 0.018 0.031 0.497 0.040
0.01 0.021 0.016 0.676 0.131 0.544 0.047
0.05 0.033 0.019 1.655 0.187 0.679 0.088
0.10 0.051 0.030 1.857 0.814 0.780 0.111
0.15 0.051 0.037 3.063 1.277 0.886 0.144
0.25 0.078 0.048 3.311 1.589 1.317 0.220

used in scenario 1, just the last two cases are used in scenario 2. Furthermore, in
scenario 2, setting ζ(x) = 1−Δ(x), the expected value of ζ(x) can be obtained

from that of Δ(x) and the empirical average of ζ̂(x) = 1− Γ̂(x) is obtained from

that of Γ̂(x). This leads to a high missingness rate of about 91% for Case 2 and
79% for Case 3 to be investigated under the Laplace model error with different
sample sizes (n = 50, 70, 100). From these settings, θ0 is estimated using simple
imputation (SI) and the inverse marginal probability (IP) procedures. For the
inverse probability weighting imputation the function K(x) is chosen in two
ways: first, it is taken to be a Gaussian kernel (Ker), defined by

K(x) =
1

2π
e−x2/2

and, secondly, it is taken to be the logistic propensity score (Log), defined by

K(x) =
1

1 + e−x
,

as in [26]. The kernel estimation involves the choice of the bandwidth. This

can be done by either a joint minimization of D̃nj(h, θ) as a function of the

bandwidth h and θ, or a simultaneous minimization of D̃nj(h, θ) by first choosing
h ∈ {h : an−1/5 ≤ h ≤ bn−1/5} for a, b > 0, and obtaining the estimator of θ,
and next obtaining the estimator of h when θ is replaced by its estimator.
As shown in [10], the two minimization procedures are equivalent. Also, as
pointed out in [12] and [10], the estimated bandwidth is proportional to n−1/5.
So for simplicity, in our computations, the bandwidth is set at n−1/5. From 5000
simulations, MSEs of the signed-rank (SR) estimator of θ0 are reported and
compared to those of the least squares (LS) under different settings. Tables 1–8,
summarize the results of the simulation study which are discussed in the next
section.
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Table 2

MSEs×10−3 of the SR & LS estimators against the degree of freedom (Case 2), under
simple imputation (SI) and inverse marginal probability (IP) based on the kernel (Ker) and

the logistic function (Log) for the t-distribution with different degrees of freedom (df)

Ker Log SI
df LS SR LS SR LS SR

β0

5 70.429 56.205 77.509 57.189 94.254 75.042
10 50.482 49.036 57.558 50.191 67.250 64.590
15 48.520 48.064 52.429 49.927 63.691 62.890
20 47.679 46.010 51.685 48.988 61.526 61.047
25 46.428 45.931 49.793 47.144 61.274 60.104
30 44.316 45.750 49.651 46.866 59.883 59.753

β1

5 0.021 0.019 0.154 0.052 0.559 0.079
10 0.019 0.016 0.039 0.037 0.498 0.059
15 0.015 0.014 0.036 0.028 0.411 0.057
20 0.014 0.013 0.033 0.027 0.255 0.053
25 0.013 0.012 0.028 0.025 0.251 0.046
30 0.011 0.012 0.023 0.024 0.213 0.044

6. Discussion

Scenario 1: In Case 1, based on simple imputation and inverse marginal proba-
bility procedures with either the Gaussian kernel or the logistic propensity score
under the contaminated normal distribution model error, the SR performs bet-
ter than the LS as the rate of contamination increases (Table 3). Although, their
MSEs are comparable for the normal distribution model error (CN (0)), the SR
is still more efficient than the LS for the considered proportions of missingness.
A similar observation is made under the t-distribution model error with the SR
being superior to LS for the considered degrees of freedom (from heavier tails
to the situation when n gets larger), see Table 4.

In Case 2, once again under contaminated distribution model error, the SR
outperforms the LS as the proportion of contamination increases (Table 1),
whereas under the t-distribution model error, based on SI and IP(Ker, Log),
the SR is more efficient than the LS for the used degrees of freedom. As expected,
these MSEs become comparable with the increase of the degree of freedom. See
Table 2.

Finally, in Case 3, either under the contaminated normal distribution or the t-
distribution model error, we have a similar observation as in Case 2. See Tables 5
and 6.

In this entire scenario, as expected, the MSEs increase as the rate of con-
tamination increases for the contaminated normal distribution model error and
decrease as the degrees of freedom increase for the t-distribution model error.
Also, for the inverse marginal probability imputation, we note that the MSEs
obtained based on the Gaussian kernel are generally smaller than those obtained
based on the logistic propensity score. We suspect that this is due to the fact
that the given logistic propensity score is not a density. It is worth pointing out
that the higher the proportion of no missingness, the smaller the MSEs are for
both SR and LS.
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Table 3

MSEs×10−3 of the SR & LS estimators against the proportion of missingness (η) & the
rate of contamination (Case 1), under simple imputation (SI) and inverse marginal
probability (IP) based on the kernel (Ker) and the logistic function (Log) for the

contaminated normal distribution with different rates of contamination (ε)

β0 β1

ε\η .50 .60 .70 .80 .90 .50 .60 .70 .80 .90

LS-Ker

.00 96.80 73.42 59.74 49.37 41.14 1.57 0.85 0.43 0.48 0.23

.01 125.15 98.90 80.59 66.36 58.62 1.69 1.12 0.83 0.49 0.29

.05 154.66 127.89 104.91 85.23 74.28 2.14 1.42 1.05 0.70 0.42

.10 188.25 154.36 128.07 107.96 92.55 2.19 1.76 1.09 0.84 0.45

.15 207.78 168.21 145.56 124.71 111.54 2.77 1.88 1.31 0.85 0.64

.25 234.93 194.67 168.18 138.10 122.11 2.99 1.93 1.55 0.94 0.79

SR-Ker

.00 89.04 67.59 59.59 49.39 42.00 0.82 0.49 0.33 0.26 0.21

.01 98.41 76.05 63.24 54.77 50.55 0.84 0.56 0.42 0.34 0.24

.05 112.02 90.06 73.41 63.29 54.67 1.04 0.66 0.51 0.37 0.32

.10 127.93 104.75 87.37 75.01 62.78 1.17 0.84 0.56 0.48 0.33

.15 144.49 111.15 94.99 81.86 71.53 1.41 0.98 0.68 0.52 0.39

.25 157.39 125.01 107.29 88.30 78.78 1.68 1.04 0.73 0.56 0.49

LS-Log

.00 106.07 87.66 75.86 70.73 64.33 1.56 0.90 0.47 0.58 0.42

.01 136.02 114.52 97.87 91.83 86.68 1.84 1.23 0.95 0.74 0.68

.05 163.97 141.79 124.49 113.46 109.54 2.29 1.58 1.25 1.08 0.77

.10 197.23 170.61 149.42 137.78 129.51 2.42 2.20 1.30 1.28 1.22

.15 218.97 187.86 172.31 158.54 158.61 3.29 1.95 1.75 1.38 1.42

.25 244.34 211.77 203.73 172.85 168.17 3.29 2.44 2.01 1.67 1.88

SR-Log

.00 89.43 67.76 60.14 51.51 44.97 0.79 0.51 0.34 0.31 0.28

.01 98.23 76.24 63.59 55.73 53.34 0.84 0.57 0.45 0.38 0.30

.05 111.94 90.37 74.20 64.36 58.33 1.08 0.70 0.52 0.43 0.40

.10 127.97 105.35 87.57 76.41 65.16 1.26 0.91 0.59 0.54 0.46

.15 144.75 111.24 95.69 82.56 74.60 1.48 1.06 0.71 0.59 0.47

.25 156.52 123.45 107.76 88.85 81.41 1.75 1.10 0.74 0.64 0.67

LS-SI

.00 94.31 72.05 59.41 48.71 40.95 1.58 0.80 0.42 0.48 0.23

.01 123.62 97.00 79.12 65.98 58.48 1.74 1.13 0.80 0.49 0.29

.05 151.52 125.74 103.44 84.35 73.98 2.11 1.42 1.04 0.70 0.42

.10 184.10 152.02 127.80 107.18 92.11 2.17 1.78 1.10 0.84 0.45

.15 205.32 165.63 144.04 123.78 111.22 2.74 1.83 1.31 0.84 0.64

.25 230.66 191.90 166.17 136.58 121.03 2.86 1.89 1.43 0.93 0.78

SR-SI

.00 88.71 67.89 59.63 49.30 41.93 0.78 0.50 0.33 0.26 0.21

.01 98.26 75.83 63.24 54.77 50.44 0.84 0.55 0.41 0.34 0.24

.05 112.13 90.68 73.38 63.13 54.68 1.06 0.70 0.51 0.39 0.31

.10 127.43 104.59 87.43 74.84 62.55 1.22 0.85 0.56 0.48 0.33

.15 144.07 110.65 94.51 82.16 71.70 1.48 0.92 0.69 0.51 0.39

.25 157.31 124.70 107.28 88.09 78.40 1.71 1.02 0.72 0.56 0.49

Scenario 2: Considering either Case 2 or Case 3 under the Laplace distribution
based either on SI or IP(Ker, Log), it is observed that the SR outperforms
its LS counterpart by providing smaller MSEs. Also, as expected, these MSEs
decrease with increase of the sample size. See Table 7. A similar observation
is made when considering these same two cases with high rates of missingness
(Table 8).
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Table 4

MSEs×10−3 of the SR & LS estimators against the proportion of no missingness (η) & the
rate of contamination (Case 1), under simple imputation (SI) and inverse marginal
probability (IP) based on the kernel (Ker) and the logistic function (Log) for the

t-distribution with different degrees of freedom (df)

β0 β1

df\η .50 .60 .70 .80 .90 .50 .60 .70 .80 .90

LS-Ker

5 152.54 119.30 100.37 81.91 69.34 1.96 1.35 1.01 0.49 0.44
10 118.18 91.21 74.79 63.18 54.42 1.91 1.23 0.93 0.48 0.38
15 105.70 87.11 68.98 59.04 47.49 1.73 1.12 0.79 0.47 0.32
20 108.59 81.00 66.50 56.02 46.48 1.56 1.10 0.78 0.43 0.29
25 105.94 79.63 66.44 54.19 45.52 1.47 1.03 0.62 0.41 0.26
30 105.17 77.77 63.68 53.40 46.95 1.37 0.88 0.57 0.36 0.24

SR-Ker

5 115.58 92.27 78.29 64.86 56.62 1.11 0.76 0.59 0.38 0.29
10 100.06 79.93 67.79 58.27 50.31 0.88 0.55 0.45 0.32 0.27
15 95.53 77.07 63.59 56.13 46.97 0.83 0.54 0.38 0.29 0.23
20 94.24 73.64 62.96 53.79 46.10 0.82 0.50 0.37 0.29 0.23
25 92.77 71.72 60.22 52.55 46.04 0.81 0.49 0.36 0.28 0.22
30 91.54 70.98 60.02 52.32 44.91 0.77 0.49 0.36 0.27 0.21

LS-Log

5 163.36 135.86 121.59 112.03 101.47 2.08 1.47 1.33 0.86 0.91
10 126.96 106.80 95.15 86.69 80.22 2.04 1.30 1.00 0.65 0.61
15 118.73 101.48 85.34 81.76 73.53 1.80 1.23 0.99 0.63 0.47
20 115.63 92.98 84.26 75.99 73.27 1.60 1.15 0.88 0.55 0.46
25 114.13 92.88 82.36 75.90 69.50 1.51 1.15 0.71 0.55 0.44
30 114.00 92.49 80.10 72.25 69.41 1.39 0.93 0.66 0.54 0.39

SR-Log

5 115.18 92.55 78.44 66.08 58.35 1.12 0.78 0.70 0.42 0.35
10 99.49 80.01 68.27 59.21 52.90 0.89 0.58 0.47 0.35 0.34
15 95.70 77.67 64.25 57.01 49.57 0.85 0.54 0.42 0.33 0.28
20 93.60 73.20 63.69 54.90 48.84 0.83 0.52 0.41 0.33 0.27
25 92.86 71.93 61.08 54.50 48.40 0.80 0.51 0.41 0.33 0.26
30 91.37 71.70 61.00 53.09 47.30 0.80 0.47 0.39 0.29 0.26

LS-SI

5 150.66 119.78 97.00 80.48 73.43 2.21 1.59 0.88 0.71 0.43
10 116.69 93.02 73.65 61.86 51.49 1.62 1.20 0.81 0.65 0.33
15 108.24 86.29 67.91 58.33 47.77 1.55 1.10 0.69 0.56 0.32
20 105.02 85.07 63.99 56.26 47.24 1.50 1.03 0.67 0.50 0.31
25 104.70 79.86 63.12 56.08 46.47 1.44 0.96 0.62 0.47 0.28
30 100.43 74.44 62.19 52.58 43.52 1.39 0.74 0.59 0.46 0.24

SR-SI

5 116.22 95.39 76.81 64.21 58.63 1.12 0.78 0.48 0.38 0.32
10 101.24 79.47 65.01 56.30 49.04 0.89 0.63 0.48 0.32 0.26
15 95.32 77.66 64.84 53.95 47.31 0.87 0.58 0.42 0.31 0.22
20 93.51 77.44 60.22 53.26 46.15 0.86 0.56 0.38 0.29 0.21
25 93.26 76.68 59.40 52.64 45.97 0.81 0.54 0.37 0.28 0.21
30 88.84 71.57 59.26 51.39 43.54 0.72 0.47 0.37 0.27 0.20

Generally, while the MSEs of the SR obtained via SI and IP(Ker) for the
two scenarios considered are comparable, those obtained via IP(Log) are larger.
This suggests that for practical purposes the SR obtained via SI (j = 1) because
of its simplicity in the way the imputation is carried out, can be preferred to
that obtained via IP (j = 2). However, when it comes to estimating the vari-
ance, SR via IP is more flexible as the nonparametric estimator of Δ(x) can be
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Table 5

MSEs×10−3 of the SR & the LS against the rate of contamination (Case 3), under simple
imputation (SI) and inverse marginal probability (IP) based on the kernel (Ker) and the
logistic function (Log) for the contaminated normal distribution with different rates of

contamination (ε)

Ker Log SI
ε LS SR LS SR LS SR

β0

0.00 58.846 58.605 60.269 58.598 41.609 44.469
0.01 79.278 62.778 80.713 62.844 55.760 46.877
0.05 104.257 74.415 105.193 74.482 73.139 56.066
0.10 133.325 83.798 131.702 83.500 93.627 62.483
0.15 147.074 92.000 146.636 91.807 107.250 71.289
0.25 169.987 104.313 172.300 104.465 124.743 79.492

β1

0.00 0.497 0.041 0.521 0.045 0.011 0.012
0.01 0.544 0.048 0.547 0.052 0.021 0.016
0.05 0.781 0.091 0.912 0.114 0.033 0.022
0.10 0.781 0.127 0.931 0.139 0.050 0.030
0.15 0.936 0.138 1.307 0.252 0.051 0.039
0.25 1.218 0.284 1.645 0.296 0.083 0.050

Table 6

MSEs×10−3 of the SR & LS estimators against the proportion of missingness (η) & the
rate of contamination (Case 3), under simple imputation (SI) and inverse marginal
probability (IP) based on the kernel (Ker) and the logistic function (Log) for the

t-distribution with different degrees of freedom (df)

Ker Log SI
df LS SR LS SR LS SR

β0

5 97.161 75.048 552.834 546.500 63.241 52.920
10 70.523 64.616 547.132 544.049 46.394 42.321
15 67.284 62.889 541.121 541.101 41.983 40.568
20 64.416 62.179 540.989 539.725 41.868 39.768
25 63.717 60.880 540.488 535.668 40.094 38.993
30 63.212 59.856 537.408 532.051 39.632 37.933

β1

5 0.559 0.080 153.280 147.418 0.133 0.123
10 0.461 0.060 148.269 146.704 0.097 0.089
15 0.451 0.059 146.354 146.361 0.088 0.081
20 0.256 0.054 145.802 146.099 0.088 0.079
25 0.251 0.046 145.012 143.072 0.087 0.077
30 0.214 0.045 143.964 142.513 0.082 0.075

further adjusted to result in a more efficient estimator of the variance.

Overall, from this simulation study, we see that the SR performs better un-
der heavy-tailed error’s distributions and for cases containing contaminations.
Although more efficient than LS, even for the normal distribution model error
when dealing with high rates of missingness, it is generally comparable to LS
under normality (CN (0)) as the proportion of missingness decreases, or under
the t distribution model error as the degrees of freedom increase. This makes
the SR estimation extremely appealing for situations where we encounter high
rates of missing data.
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Table 7

MSEs×10−3 of the SR & LS estimators in scenario 2 (Case 2, Case 3), under simple
imputation (SI) and inverse marginal probability (IP) based on the kernel (Ker) and the

logistic function (Log) for the Laplace distribution with different sample sizes (n)

ω0

n 20 35 50 70 100

LS-Case2
SI 240.272 155.681 106.004 68.481 36.342
Ker 247.936 154.942 103.985 67.809 36.621
Log 338.420 175.772 113.542 71.108 39.629

SR-Case2
SI 52.203 22.352 13.127 8.641 5.639
Ker 52.573 21.929 13.104 8.619 5.531
Log 55.993 22.589 12.436 8.525 5.388

LS-Case3
SI 259.589 158.781 112.118 65.244 36.184
Ker 266.596 159.838 110.956 64.025 35.582
Log 278.192 176.343 113.576 69.985 38.804

SR-Case3
SI 55.177 22.989 13.027 8.475 5.366
Ker 52.630 22.623 13.007 8.352 5.362
Log 53.523 21.728 13.116 8.140 5.355

Table 8

MSEs×10−3 of the SR & LS estimators of ω0 in scenario 2 (Case 2, Case 3), under simple
imputation (SI) and inverse marginal probability (IP) based on the kernel (Ker) and the

logistic function (Log) for the Laplace distribution with different sample sizes (n)

ω0

Case 2 Case 3
n 50 70 100 50 70 100

LS
SI 354.876 318.222 299.459 327.135 310.413 262.084
Ker 354.153 318.931 300.843 329.611 306.509 264.282
Log 396.379 349.802 322.074 335.332 345.022 257.676

SR
SI 267.205 243.276 199.536 220.961 192.445 146.080
Ker 231.695 217.298 173.874 184.401 149.142 105.981
Log 254.874 236.600 191.041 210.110 176.385 136.561

7. Conclusion

This paper provides asymptotic properties (strong consistency and asymptotic
normality) of the signed-rank estimator under the assumption that some re-
sponses in the regression model are missing at random. Simulation studies
demonstrate the performance of SR when dealing with heavy-tailed or con-
taminated model error’s distributions and even for the normal model error’s
distribution when dealing with a high rate of missing responses.
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Appendix A: Proofs

This appendix provides sketches of proofs of some results stated in this paper.

Proof of Theorem 2.1. In this proof, L is taken to be an arbitrary positive con-
stant. Set bnij = R̃ij/(n + 1) and anij = Rij/(n + 1), and without loss of
generality, assume that anij < bnij . By the mean value theorem, there exists
αnij such that ϕ(bnij)− ϕ(anij) = ϕ′(αnij)(bnij − anij).

|D̃jn(θ)−Djn(θ)| =
∣∣∣ 1
n

n∑
i=1

[
ϕ(bnij)|z̃ij(θ)| − ϕ(anij)|zij(θ)|

]∣∣∣
=

∣∣∣ 1
n

n∑
i=1

[
ϕ(bnij))|z̃ij(θ)|

+ {ϕ′(αn(ij))(bnij − anij)− ϕ(bnij)}|zij(θ)|
]∣∣∣

Also, by uniform continuity of ϕ (since ϕ′ is bounded with bound L > 0) and
for fixed n, one can choose ε(n) = ξ(n)/(L + 1) > 0, such that for ξ(n) → 0 as
n → ∞ and

|anij − bnij | ≤ ξ(n) =⇒ |ϕ(anij)− ϕ(bnij)| < ε(n).

From this, we have,

|D̃jn(θ)−Djn(θ)| ≤ 1

n

n∑
i=1

|ϕ(bnij)|||z̃ij(θ)| − |zij(θ)||

+
1

n

n∑
i=

|ϕ′(αnij ||anij − bnij ||zij(θ)|

From the boundedness of ϕ, there exists a constant L > 0 such that |ϕ(bnij)| ≤ L.
Then,

|D̃jn(θ)−Djn(θ)| ≤ L

n

n∑
i=1

||z̃ij(θ)| − |zij(θ)||+ ξ(n)
L

n

n∑
i=1

|zij(θ)|

Note that ||z̃ij(θ)| − |zij(θ)|| ≤ |z̃ij(θ)− zij(θ)| and

z̃ij(θ)− zij(θ) =

⎧⎨
⎩
0 , if j = 1( 1

Γ̂(xi)
− 1

Δ(xi)

)
δiεi(θ) , if j = 2.

Then,



Signed-rank with missing responses 1441

|D̃jn(θ)−Djn(θ)|

≤

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ξ(n)
L

n

n∑
i=1

|zij(θ)|, if j = 1

L

n

n∑
i=1

∣∣∣ 1

Γ̂(xi)
− 1

Δ(xi)

∣∣∣δi|εi(θ)|+ ξ(n)
L

n

n∑
i=1

|zij(θ)|, if j = 2.

This implies that

sup
θ∈Θ

|D̃jn(θ)−Djn(θ)|

≤

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ξ(n)
L

n

n∑
i=1

sup
θ∈Θ

|zij(θ)|, if j = 1

L

n

n∑
i=1

∣∣∣ 1

Γ̂(xi)
− 1

Δ(xi)

∣∣∣δi sup
θ∈Θ

|εi(θ)|+ ξ(n)
L

n

n∑
i=1

sup
θ∈Θ

|zij(θ)|, if j = 2.

zij(θ) =

⎧⎨
⎩

δiεi(θ), if j = 1
δi

Δ(xi)
εi(θ), if j = 2.

f being continuous on a compact set Θ, we have supθ∈Θ f(xi, θ) < ∞, and
then, E

[
supθ∈Θ |zij(θ)| | xi

]
< ∞ since var(εi | xi) < ∞. Now, under the MAR

assumption and conditioning on xi, the Strong Law of Large Numbers implies
that

1

n

n∑
i=1

sup
θ∈Θ

|zij(θ)| → E
[
sup
θ∈Θ

|zij(θ)| | xi

]
< ∞ a.s as n → ∞

and then,

ξ(n)
L

n

n∑
i=1

sup
θ∈Θ

|zij(θ)| → 0 since ξ(n) → 0 as n → ∞.

On the other hand, note that a direct application of the Dominated Convergence
Theorem gives

E
[∣∣∣ 1

Γ̂(xi)
− 1

Δ(xi)

∣∣∣δi sup
θ∈Θ

|εi(θ)| | xi

]
→ 0 as n → ∞

since ∣∣∣ 1

Γ̂(xi)
− 1

Δ(xi)

∣∣∣ → 0 a.s as n → ∞.

Hence, again by the Strong Law of Large Numbers,

L

n

n∑
i=1

∣∣∣ 1

Γ̂(xi)
− 1

Δ(xi)

∣∣∣δi sup
θ∈Θ

|εi(θ)| → 0 a.s as n → ∞.

Consequently,

lim
n→∞

sup
θ∈Θ

|D̃jn(θ)−Djn(θ)| → 0 a.s as n → ∞.



1442 H. F. Bindele

Proof of Theorem 3.1. As pointed out in [48], for the result to follow, it is suf-
ficient to show that

lim
n→∞

inf
θ∈Bc

(
D̃jn(θ)− D̃jn(θ0)

)
> 0 a.s.

Note that

D̃jn(θ)− D̃jn(θ0) = D̃jn(θ)−Djn(θ) +Djn(θ)−Djn(θ0) +Djn(θ0)− D̃jn(θ0)

and so,

lim
n→∞

inf
θ∈Bc

(
D̃jn(θ)− D̃jn(θ0)

)
≥ lim

n→∞
inf

θ∈Bc

(
D̃jn(θ)−Djn(θ)

)
+ lim

n→∞
inf

θ∈Bc

(
Djn(θ)−Djn(θ0)

)
+ lim

n→∞

(
Djn(θ0)− D̃jn(θ0)

)
From the fact that Bc ⊂ Θ, by Theorem 2.1, we have

lim
n→∞

(
Djn(θ0)− D̃jn(θ0)

)
= lim

n→∞
inf

θ∈Bc

(
D̃jn(θ)−Djn(θ)

)
= 0 a.s.

To complete the proof, it is sufficient to show that

lim
n→∞

inf
θ∈Bc

(
Djn(θ)−Djn(θ0)

)
> 0 a.s.

To this end, decompose Djn(θ)−Djn(θ0) as

Djn(θ)−Djn(θ0) = Djn(θ)− μj(θ) + μj(θ)− μj(θ0) + μj(θ0)−Djn(θ0)

and so,

lim
n→∞

inf
θ∈Bc

(
Djn(θ)−Djn(θ0)

)
≥ lim

n→∞
inf

θ∈Bc

(
Djn(θ)− μj(θ)

)
+ inf

θ∈Bc

(
μj(θ)− μj(θ0)

)
+ lim

n→∞

(
μj(θ0)−Djn(θ0)

)
Now by Lemma 3.1,

lim
n→∞

inf
θ∈Bc

(
Djn(θ)− μj(θ)

)
= lim

n→∞

(
μj(θ0)−Djn(θ0)

)
= 0

and,
inf

θ∈Bc

(
μj(θ)− μj(θ0)

)
> 0.

Hence
lim

n→∞
inf

θ∈Bc

(
Djn(θ)−Djn(θ0)

)
> 0 a.s.

which completes the proof.
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Proof of Theorem 4.1. As in the proof of Theorem 2.1, set bnij = R̃ij/(n + 1)

and b∗nij = R∗
ij/(n+ 1), where R̃∗

ij is the ith rank of |λijei|. Then,

S̃jn(θ)−S̃jn(θ0) =
1

n

n∑
i=1

[
ϕ(bnij)λij∇θf(xi)×sgn(εi)−ϕ(b∗nij)λij∇θ0f(xi)×sgn(ei)

]
.

(A.1)

Now without loss of generality, assume that bnij > b∗nij . Then, by the mean
value theorem, ϕ being differentiable with bounded derivative, we have

ϕ(bnij)− ϕ(b∗nij) = ϕ′(αnij)(bnij − b∗nij) (A.2)

where αnij ∈ (b∗nij , bnij). On the other hand, f being twice continuously differ-
entiable, again by the mean value theorem, we have

∇θf(xi)−∇θ0f(xi) =
(
∇2

ξf(xi)
)T

(θ − θ0). (A.3)

To this end, (A.2) and (A.3) in (A.1) give

S̃jn(θ)− S̃jn(θ) =
1

n

n∑
i=1

ϕ(b∗nij)λij∇θ0f(xi)× [sgn(εi)− sgn(ei)]

+
1

n

n∑
i=1

ϕ(b∗nij)λij

(
∇2

ξf(xi)
)T

(θ − θ0)× sgn(εi)

+
1

n(n+ 1)

n∑
i=1

λijϕ
′(αnij)(R̃ij − R̃∗

ij)∇θf(xi)× sgn(εi)

and so,

√
n
(
S̃jn(θ)− S̃jn(θ)−GT

n (θ − θ0)
)

=

√
n

n

n∑
i=1

ϕ(b∗nij)λij∇θ0f(xi)× [sgn(εi)− sgn(ei)]

+
1√

n(n+ 1)

n∑
i=1

λijϕ
′(αij)(R̃ij − R̃∗

ij)∇θf(xi)× sgn(εi)

By assumptions E(ε|x) = E(e|x) = 0. Also, var(ε | x) = var(e | x). Then ε and
e have the same distribution. Now taking into consideration that ∞×0 = 0, we
have,

E
[
ϕ(b∗nij)λij∇θ0f(xi)× (sgn(εi)− sgn(ei))

]
= 0

and by the Strong Law of Large numbers for functions of order statistics, we
get

1

n

n∑
i=1

ϕ(b∗nij)λij∇θ0f(xi)× [sgn(εi)− sgn(ei)] → 0 a.s. as n → ∞.
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Thus,

√
n

n

n∑
i=1

ϕ(b∗nij)λij∇θ0f(xi)× [sgn(εi)−sgn(ei)] → ∞×0 = 0 a.s. as n → ∞.

(A.4)
On the other hand,

sup
θ∈B

∣∣∣ 1√
n(n+ 1)

n∑
i=1

λijϕ
′(αij)(R̃ij − R̃∗

ij)∇θf(xi)× sgn(εi)
∣∣∣

≤ 2M√
n(n+ 1)

n∑
i=1

λijR̃ij sup
θ∈B

‖∇θf(xi)‖1

≤ 2M√
n(n+ 1)

n∑
i=1

λijR̃ijJ(xi)

where |ϕ′(αij)| ≤ M for some positive constant M , J is an integrable function of
x such that ‖∇θf(xi)‖1 ≤ J(x) for any θ ∈ B and ‖·‖1 represents the L1-norm;
that is,

∫
J(x)dH(x) < ∞. Again, applying the strong law of large numbers for

functions of order statistics [43],

1

n

n∑
i=1

λijR̃ijJ(xi) →
∫ ∫

J(x)dF (ε)dH(x) < ∞ a.s. as n → ∞.

where

F (ε) =

⎧⎨
⎩

δG(ε), if j = 1
δ

Δ(x)
G(ε), if j = 2.

and so,

2M√
n(n+ 1)

n∑
i=1

λijR̃ijJ(xi) → 0 a.s. as n → ∞

lim
n→∞

sup
θ∈B

∣∣∣ 1√
n(n+ 1)

n∑
i=1

λijϕ
′(αij)(R̃ij − R̃∗

ij)∇θf(xi)× sgn(εi)
∣∣∣ = 0 a.s.

(A.5)
Now combining (A.4) and (A.5), we obtain

lim
n→∞

sup
θ∈B

∣∣∣√n
(
S̃jn(θ)− S̃jn(θ0)−GT

n (θ − θ0)
)∣∣∣ = 0 a.s.

which completes the proof.

Proof of Theorem 4.3. From (4.3) and for n large enough, we have

√
n(θ̃n − θ0) = (

√
nGn)

−1S̃jn(θ0) ≈ W−1S̃jn(θ0).

Combining this to Theorem 4.2, we complete the proof.
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