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Abstract: We consider high-dimensional inference when the assumed lin-
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1. Introduction

The construction of confidence intervals and statistical hypothesis tests is a
primary goal for assessing uncertainty in high-dimensional inference. Most of the
recent contributions for this task discuss some methods and approaches for high-
dimensional linear models [5, 35, 31, 19, 22, 13], but generalized linear models
[24, 25, 31], undirected graphical models [26, 18], instrumental variable models
[1] or very general models [23] have been considered as well, and all of these latter
references cover linear models as special case. Another philosophy for inference
in the high-dimensional setting is based on selective inference [3, 20, 27], but
we do not consider this here. Our goal is to interpret and analyze the meaning
of inference procedures when the linear model is misspecified. We address this
issue in greater detail for the de-sparsified (or de-biased) Lasso [35], but we
make a few more general comments in Section 6.1.

More concretely, we describe the correct interpretations and corresponding
(sufficient) assumptions which guarantee valid asymptotic inference for the pa-
rameters in a high-dimensional, misspecified linear model. That is, we assume
that the data is generated from an underlying true nonlinear model Y = f(X)+ξ
but we fit the wrong linear model Y = Xβ0 + ε to the data; see for example
Wasserman [32] who describes such settings as “weak modeling”. Precise def-
initions of the models are given later. Some arising questions are: first, what
is the interpretation of β0; and secondly, is the standard de-sparsified Lasso
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procedure valid for construction of statistical hypothesis tests and confidence
intervals for the components β0

j (j = 1, . . . , p). Regarding the first issue, it is
important to distinguish between random and fixed design scenarios. Regarding
the second point, we give sufficient conditions for asymptotic correctness of the
de-sparsified Lasso procedure, although for the random design case, one has to
estimate the asymptotic variance differently than for correctly specified models.

The novelty of this work is that we explicitly discuss the implications of linear
model misspecification for construction of confidence intervals and hypothesis
testing in high dimensions. We believe that this is a missing piece which should
be addressed and which is informally often treated according to the folklore that
the procedure leads to inference for the “best projected regression parameters”:
we make this precise and also show that some modifications are necessary for the
random design case (see above). The latter are implemented in the statistical
R-software package hdi [21] which includes various methods for frequentist high-
dimensional inference [10].

2. The de-sparsified Lasso for potentially misspecified linear models

We consider n data points (Y (1), X(1)), . . . , (Y (n), X(n)) with univariate re-
sponses Y (i) and p-dimensional covariatesX(i). Denote by Y = (Y (1), . . . , Y (n))T

and Xj = (X
(1)
j , . . . , X

(n)
j )T (j = 1, . . . , p) the n × 1 vectors, and by X =

(X1, . . . , Xp) the n× p design matrix.
We fit a potentially misspecified linear model

Y = Xβ0 + ε, (1)

where the model assumptions are as follows: i.i.d. distributed rows of X (if ran-
dom), and i.i.d. components of ε having mean zero, variance σ2

ε and which are
uncorrelated from X. In a misspecified setting, the meaning of the parameter
vector β0 and of the errors ε depends on the context, in particular whether
the design is random or fixed. The different interpretations are presented in
Sections 3 and 4 below.

For constructing confidence intervals and hypothesis tests for the individual
parameters β0

j (j = 1, . . . , p), we consider the de-sparsified Lasso, originally
proposed by Zhang and Zhang [35]. The procedure is as follows. First, do a
Lasso [28] or square root Lasso [2] regression fit of Xj versus all other variables
from X−j , the n × (p − 1) design matrix whose columns correspond to the
variables {Xk; k �= j}. That is, for the Lasso,

γ̂j = argminγ∈Rp−1

(
‖Xj −X−jγ‖22/n+ λX‖γ‖1

)
. (2)

or using the square root Lasso,

γ̂j = argminγ∈Rp−1

(
‖Xj −X−jγ‖2/

√
n+ λX‖γ‖1

)
. (3)

The residuals of such a regression are denoted by

Zj = Xj −X−j γ̂j .
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We then project the response Y onto this residual vector: if the model (1) were
correct, we have

ZT
j Y

ZT
j Xj

= β0
j +

∑
k �=j

ZT
j Xk

ZT
j Xj

β0
k +

ZT
j ε

ZT
j Xj

.

This suggests a bias correction as follows. Pursue a Lasso regression of Y ver-
sus X:

β̂ = argminβ
(
‖Y −Xβ‖22/n+ λ‖β‖1

)
,

plug it into the bias term and subtract the estimated bias. This leads to the
de-sparsified Lasso estimator:

b̂j =
ZT
j Y

ZT
j Xj

−
∑
k �=j

ZT
j Xk

ZT
j Xj

β̂k (j = 1, . . . , p). (4)

From the construction and assuming that model (1) is correct, we heuristi-
cally obtain:

ZT
j Xj√
nωp;jj

(b̂j − β0
j ) =

∑
k �=j

ZT
j Xk√
nωp;jj

(β̂k − β0
k) +

ZT
j ε√

nωp;jj
≈

ZT
j ε√

nωp;jj
≈ N (0, 1),

where we assume for the first approximation that the error in estimating the
bias is negligible, and where ω2

p;jj is the asymptotic variance of ZT
j ε/

√
n. This

reasoning has been made rigorous in earlier work [35, 31], see also Section 2.1.
When the model (1) is wrong, however, the heuristics above need to be justified
anew. Also from a practical point of view, we need to characterize the meaning
for β0 and we need to determine the correct specification of ω2

p;jj in order to
construct asymptotically correct confidence intervals and tests. The details are
described in the following Sections 3 and 4.

The procedure for the de-sparsified Lasso b̂j in (4) remains (essentially) the
same regardless whether the linear model is correct or not. Referring to the
parenthesis in the previous sentence, what potentially changes relative to a
correctly specified model is the proper asymptotic variance ω2

p;jj , see Section 3.1,
and this new feature is now also implemented in the R-software package hdi [21].

Throughout the paper, the asymptotic statements are for the setting where
the dimension p = pn is allowed to depend on n (and hence also the random
variables in the model), and we consider the behavior as n → ∞, typically with
p = pn → ∞ at a much faster rate than n. We often suppress the index n in the
notation.

2.1. Results when the model is correctly specified

The de-sparsified Lasso has been proposed and analyzed in Zhang and Zhang
[35] for correctly specified linear models. These results have been extended in
van de Geer et al. [31], including also the case of generalized linear models. In
both works, the theoretical analysis is made for fixed design and thus also for
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random design by the following argument:

T :=
ZT
j Xj√
nωp;jj

(b̂j − β0
j ), T |X ≈ N (0, 1)

and therefore, by integrating out also unconditional T ≈ N (0, 1).
The conditions in van de Geer et al. [31] for the correctly specified case are

a bit weaker than the ones which we present below in Section 3 for random
design: they are essentially the same except that the former does not require
(A3) (while the latter are more general allowing to require only 	r-sparsity
conditions in (A4,a) and (A5,a) instead of 	0-sparsity). For fixed design, the
assumptions in Section 4 are similar as in van de Geer et al. [31] and almost the
same as in van de Geer [30], except that we consider here only non-Gaussian
bounded design.

3. Random design model

Consider the true model

Y (0) = f0(X(0)) + ξ(0), (5)

where ξ(0) is independent of X(0) with E[ξ(0)] = 0. For simplicity, we assume
that E[f0(X(0))] = 0 as well as E[X(0)] = 0, and that furthermore the second
moments of X(0) and Y (0) exist. We assume that the data are realizations of
(Y (1), X(1)), . . . , (Y (n), X(n)) of i.i.d. copies of (Y (0), X(0)) from model (5).

Consider the linear projection

Y (0) = (X(0))Tβ0 + ε(0),

β0 = argminβE|f0(X(0))− (X(0))Tβ|2, (6)

where, due to the projection property, E[ε(0)X(0)] = Cov(ε(0), X(0)) = 0. We
denote the support of β0 by S0 = {j; β0

j �= 0}. While E[ε(0)] = 0 we typically

have that E[ε(0)|X(0)] �= 0, because E[ε(0)|X(0)] = f0(X(0))− (X(0))Tβ0. Thus,
when conditioning onX(0) the assumption of zero mean for the error is not valid.
However, when the inference for β0 is unconditional (not conditioning on X(0)),
then we have zero mean for the error: therefore, due to model misspecification,
the inference with random design should always be unconditional on X(0).

We note that β0 still has interesting model-free (and well known) interpre-

tations such as: the jth component β0
j = Lj ·Parcorr(Y (0), X

(0)
j |{X(0)

k ; k �= j})
equals the partial correlation between Y (0) and X

(0)
j given all other variables,

up to a constant Lj =
√
Kjj/KY Y , where K

−1 is the (p+1)×(p+1) covariance
matrix of (Y,X); thus, β0

j measures the linear effect of Xj on Y after adjust-
ing for the linear effects of all other variables Xk (k �= j) on Y . In addition,
for Gaussian design, we have the following important interpretation: if β0

j �= 0,

then the variable X
(0)
j is in the active set (i.e., relevant) of the nonlinear true

function f0, see Proposition 3.
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We consider here a concrete set of assumptions for Theorem 1 below. Denote
by

γ0
j = argminγE|X

(0)
j −

∑
k �=j

γj,kX
(0)
k |2,

Z
(0)
j = X

(0)
j −

∑
k �=j

γ0
j,kX

(0)
k

the population regression vector and residual variables when regressing the ran-

dom variable X
(0)
j on all other variables {X(0)

k ; k �= j}. It is well known that

γ0
j = −(Σ−1)•j/(Σ

−1)jj , where (Σ−1)•j denotes the jth column vector of Σ−1

(assuming it exists, see (A1)).

Assumptions. The covariates are such that:

(A1) Cov(X(0)) = Σ has smallest eigenvalue Λ2
min(Σ) ≥ C1 > 0;

(A2) maxj ‖X(0)
j ‖∞ ≤ C2 < ∞;

(A3) ‖Z(0)
j ‖∞ ≤ C3 < ∞;

(A4) We have either:

(a) ‖γ0
j ‖rr = o ((n/ log(p))

1−r
2 log(p)−1/2) for 0 < r < 1;

or

(b) sj = |Sj | = ‖γ0
j ‖00 =

∑
k �=j I((Σ

−1)jk �= 0) = o(
√
n/ log(p)).

Regarding the structure of the regression:

(A5) The sparsity satisfies either:

(a) ‖β0‖rr = o ((n/ log(p))
1−r
2 log(p)−1/2) for 0 < r < 1;

or

(b) s0 = |S0| = ‖β0‖00 =
∑p

j=1 I(β
0
j �= 0) = o(

√
n/ log(p)).

(A6) For the second moment ω2
p;jj := E|ε(0)Z0

j |2: ω2
p;jj ≥ C4 for some constant

C4 > 0. (The existence of ωp;jj < ∞ is implied by (A3) and (A7).)
(A7) The error satisfies one of the following conditions:

(a) |ε(0)| ≤ V , where V is a fixed random variable (not depending on p)
with E|V |2 < ∞;

or

(b) E|ε(0)|2+δ ≤ C5 < ∞ for some δ > 0.

Either of the conditions implies that for some constant C6 < ∞, E|ε(0)|2 ≤
C6 < ∞.

The assumptions (A2) and (A3) are somewhat restrictive (see also (B1) in van de
Geer et al. [31]). Assumption (A3) is implied by (A2) and assuming that ‖γ0

j ‖1
is bounded. Examples where (A7) holds are discussed in Section 3.2. Regarding
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the assumptions (A4) and (A5) we first note that:

(A4) can be replaced by (D2) in Section 7.1.1,

(A5) can be replaced (D3) in Section 7.1.1.

That is, (A4) and (A5) together with (A1), (A2), (A3) and (A7) imply (D2) and
(D3), see Lemma 2 in Section 7.1; and using (D2) and (D3) instead of (A4) and
(A5) is sufficient to prove the result in Theorem 1 below (using also (A1)–(A3),
(A6)–(A7)), see Section 7.1. Requiring some sparsity for the design as in (A4)
is due to our proof of Proposition 8: this is in contrast for fixed design, where
no sparsity condition on the design is needed when using the nodewise square
root Lasso in (3) (see Theorem 2). Finally, a sparsity assumption as in (A5) is
typical for the de-sparsified Lasso [35, 31, 30].

Theorem 1. Consider the de-sparsified Lasso in (4) with (2) or (3), and the
parameter β0 in (6) induced by the random design model (5). Assume (A1)–
(A7). If λ = D1

√
log(p)/n and λX = D2

√
log(p)/n for D1, D2 sufficiently

large, then:

√
n
ZT
j Xj/n

ωp;jj
(b̂j − β0

j ) ⇒ N (0, 1) (n → ∞),

where ω2
p;jj = E|ε(0)Z0

j |2.
A proof is given in Section 7. The representation of the normalization factor

should facilitate to recognize its order of magnitude
√
n. For construction of

confidence intervals and hypothesis tests we need to consistently estimate the
quantity ωp;jj : this is discussed in the following Section 3.1.

Remark 1. If the assumptions in (A3), (A4) and (A6) hold uniformly in j, we
can rephrase the statement of Theorem 1 as follows:

ZT
j Xj√
nωp;jj

(b̂j − β0
j ) = Δj +Wj ,

max
j=1,...,p

|Δj | = oP (1), Wj ⇒ N (0, 1)

3.1. Estimation of the variance

We can estimate ω2
p;jj = E|ε(0)Z0

j |2 by the empirical variance of ε̂iZj;i,

n−1
n∑

i=1

(ε̂iZj;i − n−1
n∑

r=1

ε̂rZj;r)
2, ε̂ = Y −Xβ̂.

Proposition 1. Consider the random design model (5) with the projected pa-
rameter β0 in (6). Assume (A1), (A2), (A3), ‖β0‖1 = o(

√
n/ log(p)), (A6),

(A7) and (D2) from Section 7 (the latter is implied by the additional assump-
tion (A4)). Then,

ω̂2
p;jj/ω

2
p;jj = 1 + oP (1).
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A proof is given in Section 7. We have as an estimate of the normalizing
factor in Theorem 1 the following expression:

ZT
j Xj√
nω̂p;jj

, (7)

corresponding to the “sandwich formula” in the case with p < n [12, 17, 34, 14].
In particular the formula in (7) is different than the usual expression for

correctly specified high-dimensional linear models, used in van de Geer et al. [31],

ZT
j Xj

‖Zj‖2σ̂ε
, (8)

where σ̂2
ε is an estimate of the error variance σ2

ε , e.g., σ̂
2
ε = n−1

∑n
i=1(ε̂i −

n−1
∑n

r=1 ε̂r)
2 with ε̂ = Y −Xβ̂.

3.1.1. Practical recommendation

While the formula in (8) is asymptotically valid for correctly specified models,
the analogue in (7) is robust and valid irrespective whether the model is correct
or not. Thus, for practical purposes, we recommend to use the expression in (7)
which is now also implemented in the R-software package hdi; see also Huber
[17]. As discussed above, the inference results from the latter recommended
approach should be interpreted as being unconditional on the covariates. As soon
as we condition on the covariates X(0), there will be a bias with E[ε(0)|X(0)] =
f0(X(0)) − (X(0))Tβ0, unless the model is correctly specified. In other words,
conditioning on the covariates is only justifiable if the model is correct and in
that case, it is a well established principle in the low-dimensional case with
p < n based on an ancillarity argument [4, 16].

3.2. Sparsity of the projection and implications on the error ε(0)

The statement in Theorem 1 depends, among other conditions, on assumptions
(A5)–(A7) which are depending on the projection of the nonlinear to a linear
model. In particular, (A5) requires sparsity of the projected parameter vector:
even if the underlying true nonlinear regression function depends only on a
few covariates, the projected parameter β0 in (6) is not necessarily sparse. We
provide here some sufficient conditions ensuring a sparse β0.

Throughout this subsection, β0 is as in (6). We know that

β0 = Σ−1Γ,

Σ = Cov(X(0)), Γ = (Cov(f0(X(0)), X
(0)
1 ), . . . ,Cov(f0(X(0)), X(0)

p )T .

Therefore,

β0
j =

p∑
�=1

(Σ−1)j�Γ�. (9)
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Denote by ‖Σ−1‖∞ = maxjk |(Σ−1)jk| and by (Σ−1)•� the 	th column of Σ−1,

and generally by ‖u‖00 =
∑d

r=1 I(ur �= 0) the 	0-sparsity of a d-dimensional
vector u.

Proposition 2. Consider the random design model (5) with the projected pa-
rameter β0 in (6). Assume that Σ is positive definite (but not requiring bounds
on its eigenvalues). The following holds:

1. 	r-sparsity for 0 < r ≤ 1:

‖β0‖r ≤ max
�

‖(Σ−1)•�‖r‖Γ‖r,

which implies, for s� = ‖γ0
� ‖00 =

∑
k �=� I((Σ

−1)k� �= 0),

‖β0‖r ≤ (max
�

s� + 1)1/r‖Σ−1‖∞‖Γ‖r.

2. 	0-sparsity:

‖β0‖00 ≤
∑
�∈SΓ

(s� + 1), SΓ = {j; Γj �= 0},

which implies

‖β0‖00 ≤ (max
�

s� + 1)‖Γ‖00.

A proof is given in Section 7. As an example, consider the case where Σ
is block-diagonal with maximal block-size equal to bmax. We then have that
max� s� + 1 = bmax and hence by Proposition 2:

‖β0‖r ≤ b1/rmax‖Σ−1‖∞‖Γ‖r (0 < r ≤ 1),

‖β0‖00 ≤ bmax‖Γ‖00.
In general, since f0(X(0)) is typically non-Gaussian, we cannot quantify ‖Γ‖00 as
a function of the active variables in the nonlinear regression function f0(·). In
the special case of block independence, however, this can be done as discussed
next.

Block independence Assume now that the predictor variables exhibit block
independence with blocks corresponding to the associated block-diagonal co-
variance matrix Σ. That is, there are blocks of variables, where the variables
from different blocks are (jointly) independent, and these blocks induce a block-
diagonal covariance matrix. Denote by Sf0 ⊆ {1, . . . , p} the support of f0(·)
which contains all the variables which have an influence in f0(·).
Corollary 1. Assume the conditions of Proposition 2. In addition, assume block
independence with maximal block-size equal to bmax. We have that

‖Γ‖00 ≤ bmax|Sf0 |,
and, due to Proposition 2,

‖β0‖00 ≤ b2max|Sf0 |.
A proof is given in Section 7.
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Proposition 2 and Corollary 1 obviously lead to justifications of the assump-
tion on the sparsity s0 in (A5), but also for the conditions in (A7). Regarding
the latter: if ‖β0‖1 ≤ C9 < ∞ (which is implied by ‖β0‖00 bounded and maxj |β0

j |
bounded) and assuming (A2) we have that

|ε(0)| = |Y (0) − (X(0))Tβ0| ≤ |Y (0)|+ C9C2.

Thus, assuming either |Y (0)| ≤ V for some fixed random variable V with E|V |2 <
∞ or E|Y (0)|2+δ ≤ M3 < ∞ (which are both rather weak assumptions) implies
either (A7,a) or (A7,b), respectively.

3.3. Gaussian design

The bound in Proposition 8 and Corollary 1 for 	0-sparsity can be much im-
proved when assuming that X(0) has a joint Gaussian distribution. This is in
conflict with assumption (A2). However, for the case with Gaussian design,
thereby dropping (A2) and (A3), it would be easier to derive the statements
from Theorem 1 and Proposition 1.

Proposition 3. Consider the random design model (5) with the projected pa-
rameter β0 in (6). Assume that X(0) has a joint Gaussian distribution with
positive definite covariance matrix Σ (but not requiring bounds on its eigenval-
ues). Then,

S0 ⊆ Sf0 .

A proof is given in Section 7. This is an important result saying that if we
infer a variable as an active variable (significantly different from zero) in the
misspecified linear model, it must be an active variable in the nonlinear true
model.

To make further statements, we represent the function f0 as follows:

f0(x) =

d∑
k=1

f0
k (xSk

),

{S1, . . . , Sd} a partition: Sf0 = ∪d
k=1Sk, Sk ∩ S� = ∅ (k �= 	),

where xA denotes the subvector of x with components in A ⊆ {1, . . . , p} and
E[f0

k (XSk
)] = 0; and the partition is finest in the sense that the representation

of f0 is given with the Sk’s of smallest possible cardinality. For example, for the
function considered in Section 5

f0(x) = −5 + 5 sin(πx1x2) + 4(x3 − 0.5)2 + 2x5 + x6, (10)

we have the partition S1 = {1, 2}, S2 = {3}, S3 = {5}, S4 = {6}.
Proposition 4. Consider the random design model (5) with the projected pa-
rameter β0 in (6). Assume that X(0) has a joint Gaussian distribution with
positive definite covariance matrix Σ (but not requiring bounds on its eigenval-
ues). Consider the projected parameter in the submodel with variables from Sk



1458 P. Bühlmann and S. van de Geer

(k ∈ {1, . . . , d}):

β̃(Sk) = argminβ∈R
|Sk|E|f0

k (X
(0)
Sk

)− (X
(0)
Sk

)Tβ|2.

For j ∈ Sk we denote by c(j) the index of the component in β̃(Sk) which corre-

sponds to variable X
(0)
j . Then,

β0
j = β̃c(j)(Sk),

saying that we can infer β0
j with j ∈ Sk from the submodel with variables X

(0)
Sk

.

A proof is given in the Appendix. As an example, we consider again f0

from (10). Proposition 4 then implies:

(β0
1 , β

0
2)

T = argminβ∈R2E|5 sin(πX(0)
1 X

(0)
2 )− (X

(0)
1 , X

(0)
2 )β|2 = (0, 0)T ,

β0
3 = argminβ∈R

E|4(X(0)
3 − 0.5)2 − 5−X

(0)
3 β|2 = −4,

β0
5 = argminβ∈R

E|2X(0)
5 −X

(0)
5 β|2 = 2,

β0
5 = argminβ∈R

E|X(0)
5 −X

(0)
6 β|2 = 1,

and all β0
j = 0 for j /∈ Sf0 . For the numerical values of β0

1 , β
0
2 and β0

3 , we used

that X(0) has mean zero.

4. Fixed design model

Consider the model as in (5) but now with fixed design:

Y (i) = f0(X(i)) + ξ(i), i = 1, . . . , n, (11)

where ξ(1), . . . , ξ(n) are i.i.d. with E[ξ(i)] = 0 and E|ξ(i)|2 = σ2. As before,
we denote the n × p design matrix by X and the n × 1 response vector by
Y = (Y (1), . . . , Y (n))T . We assume that rank(X) = n ≤ p and thus, we can
always represent the vector f0 = (f0(X(1)), . . . , f(X(n)))T as Xβ†. The vector
β† is not unique, but we can look for some sparsest solution. We consider the
basis pursuit solution [9], known also as the solution from compressed sensing
[8, 11]:

β0 = argminβ{‖β‖1;Xβ = f0}. (12)

Thus, the model in (11) is correctly specified as a linear model

Y = Xβ0 + ε with β0 as in (12), (13)

where ε = (ξ1, . . . , ξn)
T . In particular, due to correct specification, the interpre-

tation of β0 is standard.
We refer to this β0 in (12) throughout this section (unless stated otherwise).

We assume the following:

(B1) λX �
√

log(p)/n and ‖Zj‖22/n ≥ C > 0;

(B2) ‖β̂(λ)− β0‖1 = oP (1/
√
log(p)).

We justify these assumptions below.
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Theorem 2. Consider the de-sparsified Lasso in (4) with (2) or (3), and the
fixed design model (11) with rank(X) = n and linear representation as in (13)
with β0 as in (12). Assume either Gaussian errors or condition (A7) and assume
that σ2 ≥ L > 0. Suppose that (B1) and (B2) hold when using the nodewise
Lasso (2), or only (B2) when using the nodewise square root Lasso (3). Then

ZT
j Xj

σ‖Zj‖2
(b̂j − β0

j ) ⇒ N (0, 1).

Proof. This follows from van de Geer et al. [31, Th.2.1] for Gaussian errors. For
non-Gaussian errors, we invoke the Lindeberg condition and proceed as for the
proof of Theorem 1 (Proposition 7).

We argue first that (B1) holds with high probability. Assume the following.

Consider the setting where the rows of X arise as fixed i.i.d. realizations of a
p-dimensional random variable X with covariance matrix Σ.

(C1) (i) 0 < C7 ≤ 1/(Σ−1)jj = E|Z(0)
j |2 ≥ C8 < ∞ (the upper bound is

implied by (A3); the lower bound is the analogue of (A6));

(ii) maxj ‖Xj‖∞ ≤ C2 < ∞ (which is assumption (A2));

(iii) ‖γ0
j ‖1 = o(

√
n/ log(p)) (which is part of the assumption (A4a)).

(C2) (A1), (A2), (A5) and (A7).

Proposition 5 (for nodewise Lasso only). Assume that (C1) holds. Then, for
λX = D2

√
log(p)/n with D2 sufficiently large, assumption (B1) holds with prob-

ability tending to one.

A proof is given in Section 7.

Proposition 6. Consider the fixed design model (11) having a linear repre-
sentation as in (13) with β0 as in (12). Assume that (C2) holds. Then, for
λ = D1

√
log(p)/n with D1 sufficiently large, assumption (B2) holds with prob-

ability tending to one.

Proof. The statement can be derived as in the proof of statement 2 in Lemma 2
in Section 7.

Sparse solutions and misspecification We note that for a fixed design lin-
ear model, misspecification with respect to the linearity in the unknown param-
eters cannot happen. The same is true when conditioning on the covariates X.
In this scenario, we do not need to employ the “sandwich” variance formula
in (7) but we can use the more standard expression from (8). What is impor-
tant though is the interpretation of the parameter β0 and of the output of the
de-sparsified Lasso: the inferential statements are valid for a sparse approxima-
tion. We focused here on the choice of the basis pursuit solution in (12) which
is perhaps among the simplest and which can be computed. But in fact, any
solution of Xβ = f0 satisfying assumption (B2) is good enough: or in view of
Proposition 6, any solution which is weak 	r- (0 < r < 1) or 	0-sparse, see (A5),
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is fine. A confidence interval then means that it covers any sufficiently 	r- and
	0-sparse solution β0 of Xβ = f0. This itself is a nice and “strong” interpreta-
tion of a confidence interval, namely that despite non-uniqueness, it covers all
sparse solutions.

5. Some empirical results

We consider two non-linear models as in (5) (or versions thereof for fixed de-
sign, see Section 5.2). The first one uses a nonlinear regression function from
Friedman’s (1991) MARS paper but with smaller signal to noise ratio:

(M1)

X(0) ∼ Np(0,Σ), Σj,j = 1 ∀j, Σ3,4 = Σ4,3 = 0.8, Σj,k = 0 (j �= k; j, k /∈ {3, 4}),
f0(x) = −5 + 2 sin(πx1x2) + 4(x3 − 0.5)2 + 2x5 + x6,

ξ(0) ∼ N (0, 1).

(M2)

X(0) as in (M1),

f0(x) = sin(π/2x1)x2 + x3
3/5 + x5 + x6/2,

ξ(0) ∼ N (0, 1).

(M3)

X(0) ∼ Np(0,Σ), Σj,k = 0.8|j−k|, f0 as in (M1).

(M4)

X(0) ∼ as in (M3), f0 as in (M2).

The intercept −5 in the function f0 in (M1) and (M3) ensures that
E[f0(X(0))] = 0.

5.1. Simulations for random design

For random design, the corresponding parameters β0 in (6) are as follows:

for model (M1), (M3): β0 = (0, 0,−4, 0, 2, 1, 0, . . . , 0)T

for model (M2), (M4): β0 = (0, 0, 0.6, 0, 1, 0.5, 0, . . . , 0)T .

The values are in accordance with Proposition 4, because of Gaussianity of the
design: the active set S0 = {3, 5, 6} ⊂ Sf0 = {1, 2, 3, 5, 6}. Figure 1 displays
‖β‖rr as a function of r for 0 ≤ r ≤ 1. The log-sparsity is approximately a
linear function in r, once increasing (for (M1), (M3)) and once decaying (for
(M2), (M4)). Our theory requires either weak 	r-sparsity or 	0-sparsity of β0
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Fig 1. Random design for models (M1), (M3) and (M2), (M4) with p = 1000. Plot of ‖β0‖rr
(on log-scale) as a function of r ∈ [0, 1] (r = 0 corresponds to the �0-sparsity), where β0 is
as in (6).

Table 1

Random design. Average coverage and average length of confidence intervals (empirical
versions of (14) and (15)), for S0 and Sc

0 separately (note that Sc
0 = ∅ for (M3) and (M4)).

Nominal level equal to 0.95. Sample size n = 200 and dimension p = 1000

model avg. coverage S0 avg. coverage Sc
0 avg. length S0 avg. length Sc

0
(M1) 0.98 0.99 3.01 2.19
(M2) 0.91 0.95 0.48 0.41
(M3) 0.98 0.99 4.18 3.56
(M4) 0.95 0.95 0.70 0.65

(see (A5,a) or (A5,b)) and hence a possibly more realistic assumption than
	0-sparsity alone.

For simulations with random design, we generate n independent data points
according to the models (M1)–(M4) where for each realization, we generate the
X and ξ variables anew. We consider the case with sample size n = 200 and
dimension p = 1000. We use the de-sparsified Lasso procedure as described in
(4) with the nodewise Lasso (2) and tuning parameters λ and λX (the same for
all j) from the default in the R-software package hdi [21]. For estimation of the
asymptotic variance we use (7).

Table 1 and Figure 2 report empirical results based on 100 independent sim-
ulations. Denoting by CIj a confidence interval for β0

j , the average coverage
is

avgcov(S0) = |S0|−1
∑
j∈S0

P[β0
j ∈ CIj ],

avgcov(Sc
0) = |Sc

0|−1
∑
j∈Sc

0

P[β0
j ∈ CIj ], (14)

and the empirical analogue by replacing the probability “P” by an empirical
average over the 100 simulations. We consider the average expected length of
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Fig 2. Random design. Coverage as a function of the coefficients β0
j of the active variables

with j ∈ S0. Nominal level equal to 0.95. Sample size n = 200 and dimension p = 1000.

the confidence intervals

avglen(S0) = |S0|−1
∑
j∈S0

E[length(CIj)],

avglen(Sc
0) = |Sc

0|−1
∑
j∈Sc

0

E[length(CIj)], (15)

and the empirical analogue by replacing the expectation “E” with an empirical
average. The actual coverage results in Table 1 and the more detailed view given
in Figure 2 are very satisfactory. We note that the lengths of the confidence
intervals are not constant for the same covariance model for X. The reason
is that at least asymptotically (see Theorem 1), the length depends, among

other things, on E|Z(0)
j ε(0)|2, and the error term ε(0) itself depends on the true

function f0. This is in contrast to fixed design, where the asymptotic length of

the confidence intervals is a function of E|Z(0)
j |2 = 1/(Σ−1)jj and σ2 = E|ξi|2 =

E|εi|2 only (see Theorem 2 and formula (17) and (19)).
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Fig 3. Fixed design for models (M3) and (M4) with n = 200 and p = 1000. 100 independent
realizations and corresponding basis pursuit solutions β0 as in (12): the lines correspond to
the 100 different values of ‖β0‖rr (on log-scale) as a function of r ∈ [0, 1] (r = 0 corresponds
to the �0-sparsity).

5.2. Simulations for fixed design

We consider the same models (M1)–(M4) but now with fixed design with n =
200 and p = 1000, where we use a fixed realization of the X variables in the
corresponding model. We generate n independent data points according to the
models (M1)–(M4) where for each realization, we generate only the ξ error
variables anew.

We note that for all the four models with fixed design we have that |S0| =
n = 200. Figure 3 displays ‖β0‖rr as a function of r for 0 ≤ r ≤ 1, where
β0 is the basis pursuit solution from (12) and the parameter of interest, for
100 different independent simulation runs. The log-sparsity is approximately
a linear decreasing function in r. Even more pronounced here for fixed than
random design, we conclude that weak 	r-sparsity, as required by our theory,
seems to be a much more realistic assumption than 	0-sparsity which is always
equal to n = 200. However, we also see that for model (M3), the parameter β0

is not very 	r-sparse. Thus, it might be difficult that a confidence interval would
achieve good coverage, see also Figure 4 and the last paragraph of this section.

We use the de-sparsified Lasso procedure as described in (4) with the node-
wise Lasso (2) and tuning parameters λ and λX (the same for all j) from the
default in the R-software package hdi [21]. For estimation of the asymptotic
variance we use (8). Table 2 and Figure 4 report empirical results for the ba-
sis pursuit solution β0 in (12), based on 100 independent simulations where
the design is a fixed realization from the models (M1)–(M4). The actual aver-
age coverage results in Table 2 are very fine. However, with the more detailed
view in Figure 4, the coverage can be quite poor for a few coefficients although
this should be interpreted cautiously, as explained below. The poor coverage
is particularly visible for the models (M1) and (M3): a reason might be that
the degree of weak 	r-sparsity of the basis pursuit solution β0 in (12) is not as
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Fig 4. Fixed design. Coverage as a function of the coefficients β0
j (from basis pursuit in (12))

of the active variables with j ∈ S0. Nominal level equal to 0.95. Sample size n = 200 and
dimension p = 1000.

Table 2

Fixed design. Average coverage and average length of confidence intervals (empirical
versions of (14) and (15)) for the basis pursuit solution β0 in (12), for S0 and Sc

0
separately. Nominal level equal to 0.95. Sample size n = 200 and dimension p = 1000

model avg. coverage S0 avg. coverage Sc
0 avg. length S0 avg. length Sc

0
(M1) 0.97 0.98 1.68 1.69
(M2) 0.95 0.97 0.41 0.41
(M3) 0.96 0.97 3.26 3.27
(M4) 0.96 0.96 0.95 0.95

high as for (M2) and (M4) ((shown for (M3), (M4) in Figure 3). Regarding the
lengths of the confidence intervals: we cannot confirm the asymptotic behavior
saying that they are equal for the same covariance model for the realized X and
the same error variances (e.g. (M1) and (M2)), regardless of the true underlying
nonlinear regression function.

It is important to interpret the obtained confidence intervals as described
in the last paragraph of Section 4: any solution of Xβ = f0 which is weak 	r-
sparse (0 < r < 1) or 	0-sparse is fine and should be covered by the confidence
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Table 3

Conceptual summary of interpretation and required modification of the de-sparsified Lasso
procedure for misspecified high-dimensional linear model. The required assumptions for

asymptotic validity of the method are described in Theorems 1 and 2. In case of fixed design
where the true underlying regression function is linear with a corresponding sparsest “true”
parameter vector β0, the basis pursuit solution typically coincides with β0 (see compressed

sensing literature [7, cf.])

design interpretation of β0 modification

random design via projection in (6); modified variance in (7)
with model-free interp. described after (6);
Gaussian des.: active set property (Prop. 3)

fixed design any sparse solution of Xβ = f0 no modification
(e.g. basis pursuit solution in (12));
with standard interp. (since no misspecif.)

interval. Our findings in Figure 4 are for the basis pursuit solution only, and
the latter is not very sparse (see Figure 3). This doesn’t imply though that
there isn’t another solution β0 which is 	r- or 	0-sparse and whose components
would be covered well by the obtained confidence intervals. Unfortunately, the
latter statement is uncheckable due to the involved computational complexity;
in contrast to the findings for the basis pursuit solution which can be easily
computed with a linear program. Therefore, the somewhat negative findings
indicated in Figure 4 should be down-weighted.

6. Discussion

The current work offers a precise description of interpretation and (sufficient)
assumptions for inference in a misspecified high-dimensional linear model. The
following Table 3 summarizes the main points with respect to interpretation
and modification of the de-sparsified Lasso procedure. A modification of the
variance as in (7) is needed for the case of a random design misspecified model.
Such a modification seems always advisable for the random design case, as it is
consistent irrespective whether the model is correct or not and hence offers some
robustness against model misspecification; see Section 3.1.1. The conceptual
parts, as indicated in Table 3, will not change for generalized linear models as
one can link them to weighted linear regression. One should decide beforehand,
whether the inference should be performed with fixed X (or conditional on X)
or whether X is considered as random. The interpretation of the parameter β0

(see Table 3) changes when the true underlying regression function is non-linear,
perhaps more dramatically than expected. For the special case of Gaussian
random design we have the interesting property that S0 ⊆ Sf0 (Proposition 3),
saying that if a variable is significant in the misspecified linear model, it must
be relevant in the true nonlinear model.

6.1. Sample splitting methods

Regarding other methods for construction of p-values and confidence intervals,
we briefly discuss sample splitting techniques [33]. Such procedures, including
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the preferred multiple sample instead of single sample splitting [24], can be used
for the random design misspecified case. The reason is that the sample splitting
device implicitly assumes the same probability distribution in split samples, and
this holds for random X (but typically not for fixed X) and implies the same
projected parameter β0 in (6) in split samples. If the linear model is correct
with the same sparse true β0 for every sample point, sample splitting can also
be used for fixed design cases (because both split samples are from a fixed design
linear model with parameter vector β0). However, for the fixed design model as
in (13), the issue is different since e.g. the basis pursuit solution β0 in (12) would
be different for every split sample.

A modification is necessary though for the misspecified random design case:
even for low-dimensional inference, which is what is used after screening for
variables in the first half of the sample, one has to use a modified estimator for
the variance, analogously to the estimator in (7) which is robust against model
misspecification.

7. Proofs

7.1. Proof of Theorem 1 for random design

We prove here the statement of Theorem 1 under slightly weaker assumptions
than in condition (A). In this section, X is always random and the parameter
β0 as in (6).

7.1.1. Preliminary results

We show here that the following conditions hold:

(D1) maxk �=j |εTXk/n| = OP (
√

log(p)/n).
(D2) For either the nodewise Lasso in (2) or the square root Lasso in (3):

‖γ̂j(λX)− γ0
j ‖1 = oP (1/

√
log(p))).

(D3) ‖β̂(λ)− β0‖1 = oP (1/
√
log(p)).

Lemma 1. For random X, assume (A2) and E|ε(0)|2 ≤ C < ∞ for some
constant C > 0 (the latter is implied by (A7)). Then, (D1) holds, that is:

max
k �=j

|εTXk/n| = OP (
√
log(p)/n).

Proof. Using Nemirovski’s inequality [6, Lemma 14.24] we obtain:

E[ max
1≤j≤p

|n−1εTXj |2] ≤ 8 log(2p)C2
2C6/n = O(log(p)/n).

Thus, since E[εTXj ] = 0 and using Markov’s inequality:

P[ max
j=1,...,p

|n−1εTXj | > c] ≤ E[ max
j=1,...,p

|n−1εTXj |]/c
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≤
√
E[ max

j=1,...,p
|n−1εTXj |2]/c = O(

√
log(p)/n)/c.

This completes the proof.

Lemma 2. For random X, assume (A1) and (A2).

1. Then, for λX = D2

√
log(p)/n with D2 sufficiently large, (A3) and (A4)

imply (D2).
2. If E|ε(0)|2 ≤ C < ∞ for some constant C > 0 (the latter is implied

by (A7)), then for λ = D1

√
log(p)/n with D1 sufficiently large, (A5)

implies (D3).

Proof. The first and second statement can be proved analogously. For the first
one, due to (A3), the error when regressing Xj versus X−j = {Xk; k �= j} is
bounded.

When invoking the 	0-sparsity assumptions (A4,b) or (A5,b), respectively,
we know that the compatibility condition holds (with compatibility constant
bounded away from zero) with probability tending to one: because of (A1), (A2)
and the 	0-sparsity assumption [6, cf. Ch. 6.12]). Therefore, and using Lemma 1,
we obtain the statements invoking some oracle inequality for the Lasso [6, cf.
Th.6.1] or the square root Lasso [30, Th.1.4.2].

When invoking the 	r-sparsity (0 < r < 1) assumptions (A4,a) or (A5,a),
respectively, we can use the result from Bühlmann and van de Geer [6, Th.5.3]
which leads to the following explicit result in van de Geer [30, Cor.1.4]:

‖β̂ − β0‖1 = OP (
√

log(p)/n
1−r

‖β0‖rr/φ(S∗)),

where φ(S∗) is the compatibility constant for the set S∗ defined below; and
analogously for ‖γ̂j − γ0

j ‖1. This applies not only for the Lasso but also for the
square root Lasso [29, Sec.5]. We need to argue that the compatibility condition
holds with probability tending to one, with compatibility constant bounded
away from zero, for the set S∗ (when proving the second statement),

S∗ = {j; |β0
j | > C

√
log(p)/n}.

Due to the assumption on 	r-sparsity we have that |S∗| ≤ (C
√
log(p)/n)−r‖β0‖rr

= o(
√
n/ log(p)). Therefore, due to (A1) and (A2), the compatibility condition

holds for S∗, with compatibility constant bounded away from zero, with prob-
ability tending to one [6, cf. Ch. 6.12]).

7.1.2. Proof

Denote by Z0
j = Xj − X−jγ

0
j , analogously as in Section 3 but now for n × 1

vectors. We first analyze the behavior of the part ZT
j ε/n. We have that

E[εiXk;i] = 0 ∀k,

and hence E[(Z0
j )

T ε] = 0.
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Proposition 7. Assume (A1), (A3), (A6) (only that ωp;jj > 0) and (A7).

Denote by ω2
p;jj = E|ε(0)Z(0)

j |2. Then:

√
n
εTZ0

j /n

ωp;jj
⇒ N (0, 1) (n → ∞).

Note that p = pn is allowed to depend on n.

Proof. Denote by Wp;i = εiZ
0
j;i. Since Cov(εi, Xk;i) = 0 ∀k, we have that

E[Wp;i] = 0. Furthermore, Wp;1, . . . ,Wp;n are independent. We verify the Lin-
deberg condition. For κ > 0,

lim
n→∞

1

ω2
p;jj

∫
|Wp|>κ

√
nωp;jj

W 2
p dP = 0.

Assuming (A7,a), we invoke the dominated convergence theorem:

|Wp|2I|Wp|>κ
√
nωp;jj

≤ |Wp|2 ≤ |ε(0)|2|Z(0)
j |2 ≤ V 2C2

3 .

Because I(|Wp| > κ
√
nωp;jj) = 0 (n → ∞) in probability, and hence

|Wp|2I|Wp|>κ
√
nωp;jj

= oP (1),

and because of the dominated convergence theorem we conclude that the Linde-
berg condition holds. Assuming (A7,b), we have that E|Wp;i|2+δ ≤ E|εi|2+δC2+δ

3

≤ C5C
2+δ
3 . The Lindeberg condition is then implied by the Lyapunov theo-

rem.

Proposition 8 (with Zj instead of Z0
j ). Assume (A1), (A3), (A6), (A7), (D1)

and (D2). Then:

√
n
εTZj/n

ωp;jj
⇒ N (0, 1) (n → ∞).

Proof. We only need to control the difference εT (Zj − Z0
j )/n. We have that

|εT (Z0
j − Zj)/n| ≤ max

k �=j
|εTXk/n| ‖γ̂j − γ0

j ‖1.

The statement then follows from Proposition 7 and invoking (D1) and (D2).

Proposition 9. Assume (A2), (A3), (A6), (A7), (D1), (D2) and (D3). Then:

√
n
ZT
j Xj/n

ωp;jj
(b̂j − β0

j ) ⇒ N (0, 1) (n → ∞).

Proof. The statement follows by standard arguments as in van de Geer et al.
[31], requiring (D3), and using Proposition 8. For the case with the square root
Lasso in (3), the proof is analogous. One can easily show that ‖Zj‖2/

√
n =√

E|Z(0)
j |2+oP (1), due to (A2), (A3), and (D2), and E|Z(0)

j |2 is upper bounded

by (A3).

Using the results from Section 7.1.1 and Proposition 9 establish the result
from Theorem 1.
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7.2. Proof of Proposition 1

We write

n−1
n∑

i=1

(ε̂iZj;i)
2 = n−1

n∑
i=1

(εi + (ε̂i − εi))
2(Z0

j;i + (Zj;i − Z0
j;i))

2.

We then get

n−1
n∑

i=1

(ε̂iZj;i)
2 = n−1

n∑
i=1

(εiZ
0
j;i)

2 +Δ.

One can easily show that Δ = oP (1) by using Hölder’s inequality (for 	1 − 	∞;
and Cauchy-Schwarz for 	2 − 	2) and invoking the following:

max
i

|Z0
j;i| ≤ C3 < ∞ due to (A3)

max
i

|Zj;i − Z0
j;i| ≤ max

i
|Xi,j |‖γ̂j − γ0

j ‖1 = oP (1) due to (A2) and (D2),

‖ε̂− ε‖22/n = ‖X(β̂ − β0)‖22/n = oP (1)

due to (A2), ‖β0‖1 = o(
√

n/ log(p)) and (A7),

where the last bound follows from e.g. Bühlmann and van de Geer [6, Cor.6.1].
Therefore,

n−1
n∑

i=1

(ε̂iZj;i)
2 = E|ε(0)Z(0)

j |2 + oP (1).

Furthermore, and simpler to obtain:

n−1
n∑

i=1

ε̂iZj;i = E[ε(0)Z
(0)
j ] + oP (1) = oP (1).

Due to (A6), the latter two displayed formulae complete the proof.

7.3. Proof of Proposition 2

For statement 1, consider:
p∑

j=1

|β0
j |r

≤
p∑

j=1

(

p∑
�=1

|(Σ−1)j�||Γ�|)r ≤
p∑

j=1

p∑
�=1

|(Σ−1)j�|r|Γ�|r =

p∑
�=1

‖(Σ−1)•�‖rr|Γ�|r

≤ max
�

‖(Σ−1)•�‖rr‖Γ‖rr.

Furthermore, we have that max� ‖(Σ−1)•�‖rr ≤ (max� s�+1)‖Σ−1‖r∞ and there-
fore statement 1 is complete.

Regarding statement 2, we use the following argument. Every point 	 ∈ SΓ

can lead to at most s� + 1 non-zero values of the components of β0, due to
formula (9). Hence we obtain both bounds for ‖β0‖00.
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7.4. Proof of Corollary 1

The bound above for ‖Γ‖00 follows by a similar argument as for statement 2. in
Proposition 2: every support point in Sf0 exhibits a dependence with at most
bmax X-variables: therefore there are at most bmax|Sf0 | non-zero covariances
between f0(X) and the X-variables.

7.5. Proof of Proposition 3

It is well known that

β0
j = E[Z0

j f
0(X)] = E[Z0

j f(XSf0 )].

Furthermore, since Z
(0)
j is the residual when projecting X

(0)
j onto X

(0)
−j =

{X(0)
k ; k �= j} and due to the Gaussian assumption: Z

(0)
j is independent of

{X(0)
k ; k �= j}.
Therefore, if j /∈ Sf0 , Z

(0)
j is independent also ofX

(0)
Sf0

and therefore, using the

representation for β0
j above: β0

j = E[Z
(0)
j ]E[f0(XSf0 )] = 0, saying that j /∈ S0.

This proves the claim.

7.6. Proof of Proposition 4

As mentioned already in the proof of Proposition 3 we know that Z
(0)
j is inde-

pendent of {X(0)
k ; k �= j}. Therefore, for j ∈ Sk:

β0
j = E[Z

(0)
j f0(X(0))] = E[Z

(0)
j

(
f0
1 (X

(0)
S1

) + · · ·+ f0
d (X

(0)
Sd

)
)
] = E[Z

(0)
j f0

k (X
(0)
Sk

)].

This means that we can obtain β0
j from projecting f0(X

(0)
Sk

) onto {X(0)
j ; j =

1, . . . , p}:

γ = argminβ∈RpE|f0(X
(0)
Sk

)− (X(0))Tβ|2, (16)

and β0
j = γj . But we know from Proposition 3 that for the support of γ:

S(γ) = {j; γj �= 0} ⊆ Sk.

Therefore, we can restrict the projection in (16) to the variables from Sk:

γ̃ = argminβ∈R
|Sk|E|f0(X

(0)
Sk

)− (X
(0)
Sk

)Tβ|2,

and β0
j = γ̃c(j), where c(j) the index of the component in γ̃ which corresponds

to variable X
(0)
j . This completes the proof.



High-dimensional inference in misspecified linear models 1471

7.7. Proof of Proposition 5

We write

‖Zj‖22/n = ‖Z0
j ‖22/n+ ‖X−j(γ̂j − γ0

j )‖22/n+ Ξ,

|Ξ| ≤ 2‖Z0
j ‖2/

√
n‖X−j(γ̂j − γ0

j )‖2/
√
n. (17)

Due to (C1,i) we have that

‖Z0
j ‖22/n ≥ C7/2 with probability tending to one. (18)

We can also establish, analogous to Bühlmann and van de Geer [6, Cor.6.1]
invoking (C1,iii), but now controlling maxk �=j |(Z0

j )
TXk|/n = OP (

√
log(p)/n)

(see Lemma 1 and using (C1,i) and (C1,ii)):

‖X−j(γ̂j − γ0
j )‖22/n = oP (1). (19)

By (17), (18) and (19) we complete the proof.
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[23] Meinshausen, N. and Bühlmann, P. (2010). Stability selection (with
discussion). Journal of the Royal Statistical Society, Series B, 72:417–473.
MR2758523

[24] Meinshausen, N., Meier, L., and Bühlmann, P. (2009). P-values for
high-dimensional regression. Journal of the American Statistical Associa-
tion, 104:1671–1681. MR2750584

http://www.ams.org/mathscinet-getitem?mr=1639094
http://arxiv.org/abs/1408.4026
http://www.ams.org/mathscinet-getitem?mr=2241189
http://www.ams.org/mathscinet-getitem?mr=0214223
http://arxiv.org/abs/1404.5609
http://www.ams.org/mathscinet-getitem?mr=0630104
http://www.ams.org/mathscinet-getitem?mr=1091842
http://www.ams.org/mathscinet-getitem?mr=2777327
http://www.ams.org/mathscinet-getitem?mr=0216620
http://www.ams.org/mathscinet-getitem?mr=3354336
http://www.ams.org/mathscinet-getitem?mr=3277152
http://www.ams.org/mathscinet-getitem?mr=3210970
http://arxiv.org/abs/1309.3489
http://www.ams.org/mathscinet-getitem?mr=2758523
http://www.ams.org/mathscinet-getitem?mr=2750584


High-dimensional inference in misspecified linear models 1473

[25] Minnier, J., Tian, L., and Cai, T. (2011). A perturbation method for
inference on regularized regression estimates. Journal of the American Sta-
tistical Association, 106:1371–1382. MR2896842

[26] Ren, Z., Sun, T., Zhang, C.-H., and Zhou, H. (2015). Asymptotic
normality and optimalities in estimation of large Gaussian graphical model.
Annals of Statistics, 43:991–1026. MR3346695

[27] Taylor, J., Lockhart, R., Tibshirani, R. J., and Tibshirani, R.

(2014). Exact post-selection inference for forward stepwise and least angle
regression. Preprint, arXiv:1401.3889.

[28] Tibshirani, R. (1996). Regression shrinkage and selection via the Lasso.
Journal of the Royal Statistical Society, Series B, 58:267–288. MR1379242

[29] van de Geer, S. (2015a). χ2-confidence sets in high-dimensional regres-
sion. Preprint, arXiv:1502.07131.

[30] van de Geer, S. (2015b). Estimation and testing under sparsity. Lecture
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