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Abstract: Exact sampling methods have been recently developed for gen-
erating random variates for exponentially tilted α-stable distributions. In
this paper we show how to generate, exactly, random variates for a more
general class of tilted α-stable distributions, which is referred to as the
class of Laguerre-type exponentially tilted α-stable distributions. Beside
the exponentially tilted α-stable distribution, such a class includes also the
Erlang tilted α-stable distribution. This is a special case of the so-called
gamma tilted α-stable distribution, for which an efficient exact random
variate generator is currently not available in the literature. Our result fills
this gap.
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1. Introduction

A distribution F is stable if, for any two independent random variables X1 and
X2, with common distribution F , and for any constants a1, a2, there exist A > 0
and B(a1, a2) such that the random variableX3 = A(a1X1+a2X2+B) has again
distribution F . The class of stable distributions includes several distributions
and, among these, in this paper we focus on the unilateral stable distribution
with parameter α ∈ (0, 1). This is referred to as the α-stable distribution and it
is characterized by a Laplace-Stieltjes transform of the form exp{−λα}, for any
λ ≥ 0. We refer to Zolotarev [19] for a comprehensive account on the α-stable
distribution.
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A method for generating random variates for α-stable distributions was pro-
posed by Kanter [16]. Specifically, let Sα be a random variable distributed ac-
cording to the α-stable distribution, and let U and E be two independent ran-
dom variables such that U is distributed as a uniform distribution on (0, π) and
E is distributed as an exponential distribution with parameter 1. Kanter [16]
showed that

Sα
d
=

(

1

E

(

(sin(αU))α(sin(1− α)U)1−α

sin(U)

)
1

1−α

)

1−α
α

, (1)

where
d
= denotes the equality in distribution. The distributional identity (1) is

known as the Kanter’s method for sampling from Sα. A similar random variate
generator was proposed by Chambers et al. [5] for the entire class of stable ran-
dom variables. See also Zolotarev [19] for details. A different sampling method
based on the series expansion of the stable density function was developed by
Devroye [8].

Let fα be the density function of the α-stable random variable Sα, which, as
we know, is concentrated on the positive real line. A noteworthy generalization of
fα is the exponentially tilted, or Esscher-transformed, α-stable density function.
See, e.g., Sato [17] and references therein for details. Specifically, for any positive
real number β we say that the density function fα,β is the exponential tilting
of fα if

fα,β(x) =
exp{−βx}fα(x)

∫ +∞

0
exp{−βx}fα(x)dx

= exp{βα − βx}fα(x). (2)

We denote by Sα,β a random variable with density function of the form (2).
Exponentially tilted α-stable density functions first appeared in Tweedie [18]
and Hougaard [14] and, since then, they have attracted a great interest due to
their important role in the theory of importance sampling and in the study and
simulation of rare events. See, e.g, the monographs by Bucklew [2] and Bucklew
[3] for details.

Random variate generation for exponentially tilted α-stable distributions
could be done by a trivial rejection sampling with envelope distribution fα.
However, this approach becomes unacceptable if the tilting parameter β is large.
Indeed, the expected number of iterations before halting the rejection sampling
is exp{βα}. In order to overcome this drawback, Devroye [9] developed an exact
sampling method for Sα,β which is uniformly fast over all choices of α and β.
An alternative exact sampling method for Sα,β , the so-called fast rejection sam-
pling, has been recently proposed by Hofert [13]. In principle, the sampling
method by Hofert [13] works for any exponentially tilted density function over
the positive real line.

In this paper we show how to generate random variates for a more general
class of tilted α-stable distributions. Such a novel class, which includes as a
special case the exponentially tilted α-stable distribution, is referred to as the
class of Laguerre-type exponentially tilted α-stable distributions. Specifically,
for any n ∈ N0, β ≥ 0 and γ ≤ 0, a Laguerre-type exponentially tilted α-stable
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random variable is defined as a positive random variable Sα,β,n,γ with density
function

fα,β,n,γ(x) =
L
(γ−n)
n (βx) exp{−βx}fα(x)

∫ +∞

0 L
(γ−n)
n (βy) exp{−βy}fα(y)dy

, (3)

where L
(γ−n)
n (·) denotes the generalized (or associated) Laguerre polynomial,

namely

L(γ−n)
n (x) =

n
∑

i=0

(−1)i
(

γ

n− i

)

xi

i!
. (4)

The polynomial L
(γ−n)
n is a generalization of the classical Laguerre polynomial,

which is recovered under the assumption γ = n. The reader is referred to the
monograph by Ismail [15] for a detailed account on Laguerre and generalized

Laguerre polynomials. Since L
(γ)
0 = 1, for any γ ≤ 0, the exponentially tilted α-

stable density function is recovered from the density function fα,β,n,γ by setting
n = 0.

Another noteworthy special case of the density function fα,β,n,γ is obtained

by setting γ = 0. Under this assumption L
(−n)
n (x) = (−x)n/n! and the Laguerre-

type exponentially tilted α-stable density function reduces to a density function
which we refer to as the Erlang tilted α-stable density function. Such a density
function represents a special case of the so-called gamma tilted α-stable density
function

gα,β,ν(x) =
xν exp{−βx}fα(x)

∫∞

0
yν exp{−βy}fα(y)dy

, (5)

for any ν > 0. Precisely, the Erlang tilted α-stable density function fα,β,n,0 is
a gamma tilted α-stable density function with ν restricted to be a nonnegative
integer. The gamma tilted α-stable density function was first introduced by
Barndorff-Nielsen and Shephard [1] and, according to Remark 5 in Devroye [9],
no efficient methods for exact sampling from it are currently available in the
literature.

The paper is structured as follows. In Section 2 we show that the random
variable Sα,β,n,γ is equal in distribution to the convolution of two independent
random variables: a random variable distributed according to an exponentially
tilted α-stable distribution, and a random variable distributed according to a
suitable compound gamma distribution. Such a result thus provides a direct
method for sampling from Sα,β,n,γ . Indeed both the random variables involved
in our distributional identity can be sampled exactly: the former by exploiting
the random variate generators introduced in Devroye [9] and Hofert [13], whereas
the latter by means of standard sampling techniques. In Section 3 we provide
details on the exact sampling from the random variable Sα,β,n,γ, that, in turn,
forms the basis for an efficient rejection sampler for generating random variates
for the gamma tilted α-stable distribution. Numerical performances of such a
rejection sampler are also analyzed by means of a comprehensive simulation
study. The R codes used to run the simulations reported in the paper, are
available online in a supplemental file [10].
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2. Main result

We start by recalling the noncentral generalized factorial coefficients introduced
in Chak [4] and Gould and Hopper [11]. See also Charalambides and Koutras [6]
for details. For any real number a and any n ∈ N0 let (a)(n) = a(a+ 1) . . . (a+
n − 1) be the n-th order ascending factorial of a, with the proviso (a)(0) = 1.
Then, for any n ∈ N0, 0 ≤ k ≤ n and any real numbers s and r, the noncentral
generalized factorial coefficient C (n, k; s, r) is the coefficient of the k-th order
ascending factorial of t in the expansion of the n-th order ascending factorial of
(st− r). Formally,

(st− r)(n) =

n
∑

k=0

C (n, k; s, r)(t)(k).

This definition implies that C (0, 0; s, r) = 0. Also, C (n, 0; s, r) = (−r)(n) for
any n ∈ N and C (n, k; s, r) = 0 for any k > n. Noncentral generalized factorial
coefficients are exploited in the next proposition in order to establish the dis-
tributional identity for the Laguerre-type exponentially tilted α-stable random
variable Sα,β,n,γ .

Proposition 1. Let Ga,b be a gamma random variable with shape parameter a
and rate parameter b. Then,

Sα,β,n,γ
d
= Sα,β +GX−αY,β (6)

where

P[X = x, Y = y] =
(−1)x

(

γ
n−x

)

1
x!β

αyC (x, y;α, 0)
∑n

i=0

∑i
j=0(−1)i

(

γ
n−i

)

1
i!β

αjC (i, j;α, 0)
, (7)

for any x ∈ {0, 1, . . . , n} and y ∈ {0, 1, . . . , x}. Finally, the random variables

Sα,β and GX−Y α,β are independent.

Proof. For any integer n ≥ 1 and any integer 1 ≤ k ≤ n let Dn,k be the set of all
vector of integers (n1, . . . , nk) such that ni ≥ 1 for i = 1, . . . , k and

∑

1≤i≤k ni =
n. By combining Theorem 2.15 with Equation 2.56 in Charalambides [7], we can
write

αk

n
∑

s=k

(

n

s

)

(−γ)(n−s)
s!

k!

∑

(s1,...,sk)∈Ds,k

k
∏

i=1

(1 − α)(si−1)

si!
= C (n, k;α, γ).

Note that (s!/k!)
∑

(s1,...,sk)∈Ds,k

∏

1≤i≤k(1−α)(si−1)/si! is the k-th partial Bell

polynomial Bs,k(w•) with w• = (wi)i≥1 such that wi = (1 − α)(i−1) for i ≥ 1.
Consider the Bell polynomial Bs(v•, w•) with v• = (vi)i≥1 such that vi = αiβαi

for i ≥ 1. Then

n
∑

s=0

(

n

s

)

(−γ)(n−s)Bs(α
•βα•, (1− α)(•−1)) =

n
∑

k=0

βαk
C (n, k;α, γ). (8)



1234 S. Favaro et al.

Finally, let us consider the exponential generating function wα(ξ) associated
with (1− α)(•−1), i.e.,

wα(ξ) =
∞
∑

i=1

(1− α)(i−1)
ξi

i!
=

1− (1 − ξ)α

α
. (9)

According to the well-known Faà di Bruno formula, for any n ≥ 0 the left-hand
side of (8) corresponds to the coefficient of ξn/n! in the expansion of the term
(1− ξ)γ exp{βααwα(ξ)}. See Charalambides [7] for details. We can write, then,
the identity

(1− ξ)γ exp{βααwα(ξ)} (10)

=

∞
∑

n=0

n
∑

s=0

(

n

s

)

(−γ)(n−s)Bs(α
•βα•, (1− α)(•−1))

ξn

n!
.

At this stage, we can combine the identity (8), (9) and (10). Such a combination
leads to

(1− ξ)γ exp{βα} exp{−(β(1− ξ))α} =

∞
∑

n=0

n
∑

k=0

βαk
C (n, k;α, γ)

ξn

n!
. (11)

On the left-hand side of (11), the term exp{−(β(1 − ξ))α} can be read as the
Laplace transform of a positive α-stable random variable. If fα is the density
function of a positive α-stable random variable, then we can write the left-hand
side of (11) as

(1− ξ)γ exp{βα}

∫ +∞

0

exp{−y(β(1− ξ))}fα(y)dy (12)

= (1− ξ)γ exp{βα}

∫ +∞

0

exp{yξβ} exp{−βy}fα(y)dy

= exp{βα}

∫ +∞

0

exp{−βy}

∞
∑

s=0

ysβs

∞
∑

n=s

(

n

s

)

(−γ)(n−s)
ξn

n!
fα(y)dy

= exp{βα}

∞
∑

n=0

n
∑

s=0

(

n

s

)

(−γ)(n−s)β
s

∫ +∞

0

ys exp{−βy}fα(y)dy
ξn

n!

= exp{βα}
∞
∑

n=0

(−n)(n)

∫ +∞

0

L(γ−n)
n (βy) exp{−βy}fα(y)dy

ξn

n!

where the last equality is obtained by standard algebraic manipulations and
by a direct application of the identity (4). See Equation 8.970.1 in Gradshteyn
and Ryzhik [12] for details. Then, by combining (11) with (12) we obtain the
identity

∫ +∞

0

L(γ−n)
n (βy) exp{−βy}fα(y)dy =

exp{−βα}

(−n)(n)

n
∑

k=0

βαk
C (n, k;α, γ). (13)
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The proof is completed by computing the Laplace transform of Sα,β,n,γ. Indeed,
by means of (13),

E[exp{−λSα,β,n,γ}]

=

n
∑

i=0

i
∑

j=0

(−1)i
(

γ
n−i

)

1
i!β

αjC (i, j;α, 0)
∑n

l=0

∑l

r=0(−1)l
(

γ
n−l

)

1
l!β

αrC (l, r;α, 0)

× exp{βα − (λ+ β)α}

(

β

λ+ β

)i−αj

where (β/(λ+β))i−αj is the Laplace transform ofGi−αj,β and exp{βα−(λ+β)α}
is the Laplace transform of the exponentially tilted α-stable random variable
Sα,β. Finally, the random variable Sα,β is independent of the random variable
Gi−αj,β .

3. Exact sampling from Sα,β,n,γ

Proposition 1 shows that the problem of generating random variates for a
Laguerre-type exponentially tilted α-stable distribution reduces to the prob-
lem of sampling from an exponentially tilted α-stable random variable and from
a random variable distributed according to a compound gamma distribution.
While the former can be sampled by exploiting the methods in Devroye [9] and
Hofert [13], in this section we focus on sampling from the compound gamma
distribution. If n ≥ 1, we can exploit Proposition 1 and first simulate from a
discrete random vector (X,Y ) taking values in {(x, y) : x ∈ {0, 1, . . . , n}, y ∈
{0, 1, . . . , x}}, with probability mass function (7). To this end, a simple approach
is to compute the non-central generalized factorial coefficients, and hence the
probabilities in (7), explicitly. This can be easily achieved by using the following
recursion

C (n, k;α, 0) = αC (n− 1, k − 1;α, 0) + (n− 1− kα)C (n− 1, k;α, 0),

for any n ≥ 1 and k ≤ n and with C (1, 1;α, 0) = α. Note that the algorithm
for sampling (X,Y ) from (7), scales quadratically with the parameter n due to
the computation of the non-central generalized factorial coefficients. However,
these can be cheaply precomputed and stored for practical values of n and,
in simulation studies we ran, constitute a negligible part of the computational
cost. Finally, given (X,Y ) = (x, y), we simulate independently the exponentially
tilted α-stable variate Sα,β and the gamma variate Gx−αy,β , and return their
sum. The devised random sampler for Laguerre-type exponentially tilted α-
stable distributions is exact and therefore allows for independent and identically
distributed samples to be generated.

The case corresponding to γ = 0 is particularly interesting as it represents the
starting point of the random variate generator for the gamma tilted α-stable
distribution that we describe in the next section. In this case, if n ≥ 1, the
distribution of X is degenerate on n, while Y take values in {1, . . . , n} with
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probabilities

P[Y = y] =
βαyC (n, y;α, 0)

∑n

i=1 β
αiC (n, i;α, 0)

.

Finally, we recall that if n = 0, the problem of sampling from Sα,β,n,0 boils down
to the problem of sampling from Sα,β . Indeed, in such a case P[X = 0, Y = 0] =
1 and G0,β = 0 almost surely. Accordingly, the right-hand side of (6) reduces
to Sα,β .

3.1. Exact random variates for gamma tilted α-stable distributions

We show how the proposed strategy for sampling from Sα,β,n,0 can be used to
devise an exact random variate generator for gamma tilted α-stable random
variables. The performance of this simulation algorithm will be investigated by
means of a comprehensive simulation study in Section 3.2. The rationale of our
methodology consists in reducing the problem of sampling from density gα,β,ν
in (5), to that one of sampling from fα,β,n,0 in (3). When ν = n ≥ 0 the
two densities coincide, while, when ν > 0 is non-integral, we can use a simple
rejection sampling procedure. Specifically, we set n = ⌊ν⌋ and observe that, for
any β′ ∈ (0, β),

gα,β,ν(x)

fα,β′,n,0(x)
=

Zα,β′,n

Zα,β,ν

xν−n exp{−(β − β′)x}, (14)

where

Zα,b,c =

∫ ∞

0

yc exp{−by}fα(y)dy.

As ν > n and β > β′, the ratio in (14) is bounded above, with the maximum
value

Zα,β′,n

Zα,β,ν

Mβ,β′,ν,n (15)

at x′ = (ν−n)/(β−β′), where Mβ,β′,ν,n = ((ν−n)/(β−β′))ν−n exp{−(ν−n)}.
Then, we can use the distribution of Sα,β′,n,0 as the proposal, and accept a draw
x with probability

xν−n exp{−(β − β′)x}

Mβ,β′,ν,n

.

The expected number of proposals required to draw one sample coincides with
(15). By means of (13), we observe that (15), as a function of the parameter β′,
is proportional to

h(β′) =
exp{−β′α}

(−n)(n)
(β − β′)n−ν

n
∑

k=0

β′αk−n
C (n, k;α, 0). (16)

In order to maximize the acceptance rate, β′ can be set in such a way to mini-
mize the function h(β′). Unfortunately, we do not have an analytic solution for
this optimization problem that, anyway, can be easily solved numerically. In the
simulation studies presented in the next section, we consider an alternative ap-
proach. Such an approach consists in choosing the heuristic value β∗ = β(n+1)/
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Fig 1. Plot of the function h(β′) in (16), proportional to the expected number of proposals
needed to draw one sample, for β = 1, ν = 3.5 and α = 0.1 (top), α = 0.5 (center) and
α = 0.9 (bottom). The dashed vertical line corresponds to β∗ = 0.889.

(ν+1) as a proxy for the value β′ that minimizes (16). Such value arises by ap-
proximating with a constant function the stable density in the integral defining
Zα,b,c and, thus, minimizing the resulting approximation of (15). By visually in-
vestigating the plot of the function h(β′) for several combinations of values for α,
β and ν, we could observe that the choice of β∗ in general works well as the cor-
responding expected number of iterations is always close to the minimum. This
fact can be appreciated in Figure 1, for β = 1, ν = 3.5 and α ∈ {0.1, 0.5, 0.9}.

3.2. Simulation study

We conclude by analyzing the proposed sampler for the gamma tilted α-stable
distribution, by means of a simulation study. The goal of our analysis is two-fold:
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Fig 2. Number of rejected proposals per 10000 samples. Parameters are α = .5, β = 5 and
ν = 3.0, . . . , 3.9 in increments of 0.1 (left panel) and ν = 0.9, 1.9, 10.9, 100.9 (right panel).
The number of rejections is small in most scenarios.

on the one side we aim at investigating the efficiency of the sampler in terms of
empirical acceptance rate; on the other side we want to assess the goodness of
the choice of β∗ as a proxy for the value that minimizes the expected number
of rejections.

In our first set of simulations, we study the number of rejected proposals
required to draw 10000 samples from a random variable distributed according
to the gamma tilted α-stable distribution. The results of our analysis are il-
lustrated in Figure 2, where we have set α = 0.5, β = 5, and varying values
for ν. Overall, the number of rejected proposals is small, increasing for larger
discrepancy between ν and n. In general, the smaller ν, α and β are, the smaller
is the acceptance rate. The number of rejected proposals is anyway manageable
even in the worst cases we considered: for example (not shown) when α = 0.1,
β = 0.1 and ν = 0.9, approximately 9 proposals are required on average per
each sample.

In Figure 3 we explore how the computation time is affected by the choice of
β′ and made comparisons with a näıve rejection sampler in which the proposal
distribution is simply fα. We see that our proposed method works much better
than the näıve approach, and that our heuristic choice of β∗ works well. Note
that for small values of β and ν, the optimal value of β′ is actually smaller
than β∗ (see, e.g. top left panel): although a better choice would slightly im-
prove both the run time and the number of rejected proposals, our simulations
suggest that β∗ represents a good compromise as, while not requiring numerical
optimizations, it leads to a number of rejections that is close to the empirical
minimum. Note that these findings are in line with what previously observed in
Figure 1.

In Figure 4, we compare the run time of our sampler and the run time of
the näıve rejection sampler over a larger range of values of α, β and ν. We see
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Fig 3. Computation time required to draw 10000 samples, for varying values of β′. Parameters
are α = .5, β = 1 (top panels), β = 5 (bottom panels), ν = 0.5 (left panels) and ν = 3.5
(right panels). The heuristic value of β∗ = β(n+1)/(ν +1), indicated by (∗) in labels, works
reasonably well. The computation time is not very sensitive to the exact β′ value, and our
proposed method is significantly faster than the näıve rejection method.

that our proposed sampler is significantly more efficient than the näıve sampler.
Similar observations follow by comparing the theoretical expected number of
proposals needed to draw one sample with the two approaches, that is (15) for
our sampler, and

(

ν

βe

)ν
1

Zα,β,ν

for the näıve rejection sampler. For example, if α = 0.5, ν = 1.5 and β = 9 (cfr.
second panel of Figure 4), then the expected number of proposals is 1.06 with
our sampler, and 8.53 with the näıve rejection sampler. Note that the difference
becomes even more evident for larger values of ν or β: for example, if α = 0.5,
ν = 1.5 and β = 1000, then, with our sampler, about 25 proposals are needed,



1240 S. Favaro et al.

0.1 0.3 0.5 0.7 0.9

5
1
0

1
5

Time per 10000 samples

alpha

S
e
c
o
n
d
s

Naive

Ours

α

1 3 5 7 9

2
3

4
5

Time per 10000 samples

S
e
c
o
n
d
s

Naive

Ours

β

0.5 1.5 2.5 3.5 4.5

2
3

4
5

6
7

8

Time per 10000 samples

n

S
e
c
o
n
d
s

Naive

Ours

�

Fig 4. Computation time required to draw 10000 samples, for varying values of parameters
α, β and ν. Default parameters are α = .5, β = 1 and ν = 1.5, with α varying in first panel,
β in second panel, and ν in third panel. Our proposed method is significantly faster than the
näıve rejection method.

whereas the näıve approach becomes useless as it requires 1017 proposals per
sample.
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