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Abstract: Sign consistency of the Lasso requires the stringent irrepre-
sentable condition. This paper examines whether preconditioning can cir-
cumvent this condition. Let X ∈ R

n×p and Y ∈ R
n satisfy the standard

linear regression equation. Instead of computing the Lasso with (X, Y ),
preconditioning first left multiplies by F ∈ R

n×n and then computes the
Lasso with (FX, FY ).

While others have proposed preconditioning for other purposes, we pro-
vide the first results that show FX can satisfy the irrepresentable condi-
tion even when X fails to satisfy the condition. Preconditioning the Lasso
creates a new estimator that is sign consistent in a wider variety of set-
tings. Importantly, left multiplying the regression equation by F does not
change β, the vector of unknown coefficients. However, left multiplying this
equation by F often inflates the variance of the errors. We propose a class
of preconditioners to balance these costs and benefits.
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1. Introduction

Recent breakthroughs in information technology have provided new experimen-
tal capabilities in astronomy, biology, chemistry, neuroscience, and several other
disciplines. Many of these new measurement devices create data sets with many
more “measurements” than units of observation. For example, due to experi-
mental constraints, both fMRI and microarray experiments often include tens
or hundreds of people. However, the fMRI and microarray technologies can si-
multaneously measure thousands to millions of different pieces of information
for each individual. Sparse high dimensional regression aims to select a small
set of measurements that relate to an outcome of interest.

The Lasso (Tibshirani, 1996) is one of the most popular techniques for sparse
high dimensional regression because it is the solution to a convex optimization
problem, allowing for fast algorithms and assurances of global optimality. A rich
theoretical literature describes the conditions for the Lasso to consistently es-
timate the regression coefficients (Bühlmann and van de Geer, 2011). Because
of the Lasso’s ability to select a sparse solution, it is of particular interest to
understand when the Lasso can select the true nonzero coefficients in the linear
regression model. Stated loosely, the Lasso performs well in this respect when
the columns of X are weakly correlated. This concept is formalized with sign
consistency and the irrepresentable condition (see Section 2).

It is well known that the Ordinary Least Squares (OLS) estimator performs
poorly when the columns of the design matrix are highly correlated. However,
more samples overcome this problem; OLS is still consistent. With the Lasso, the
detrimental effects of correlation are more severe. If the columns of the design
matrix are correlated in a way that violates the irrepresentable condition, then
the Lasso will fail to estimate the correct signs and the estimation performance
will not improve by increasing the number of samples or increasing the signal
to noise ratio. This paper demonstrates that, for the purposes of the Lasso,
the correlation in the design matrix is malleable and can be diminished (at the
expense of marginally more variance) by preconditioning, a classical technique
to accelerate solvers of systems of equations. This paper demonstrates that in
many sparse regression settings, preconditioning the Lasso produces a better
estimator of the sparsity pattern. The next section gives a surprising simulation
that shows how correcting for heteroskedasticity with generalized least squares
(GLS) can act as a bad preconditioner and degrade the estimation performance
of the Lasso. This contrasts with the classical results that demonstrate how GLS
improves upon the estimation performance of ordinary least squares (OLS).

1.1. Some notation and a surprising simulation

Suppose the regression model

Y = Xβ∗ + ǫ (1)

where Y ∈ R
n, X ∈ R

n×p, β∗ ∈ R
p, and ǫ ∼ N(0,Σ). By observing Y and X,

we are interested in estimating the support of β∗,
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Fig 1. GLS acts as a bad preconditioner, making the design matrix ill-conditioned. Thus,
correcting for the heteroskedasticity degrades the estimation performance. In this simulation,
n = 200, p = 1000 and there are 10 nonzero elements in β∗. Appendix D contains further
details on this simulation.

S = {j : β∗
j 6= 0} ⊂ {1, . . . , p}. (2)

The rest of the paper assumes Σ = σ2In (where In ∈ Rn×n is the identity ma-
trix). However, this motivating simulation uses a heteroskedastic model where
Σ is a diagonal matrix with diagonal entries σ2

i . Each σi is an independent
draw from the Gamma distribution. In all simulations E(σi) = 1. The horizon-
tal axis in Figure 1 represent the standard deviation of σi (i.e. the amount of
heteroskedasticity).

Figure 1 compares two techniques under this heteroskedastic model. The
first estimator does not correct for heteroskedasticity. It is the standard Lasso
estimator that we study in the rest of the paper

β̂(λ) = argmin
b

1

2
‖Y −Xb‖22 + λ ‖b‖1 (3)

where ‖x‖r = (
∑k

i=1 |xi|r)1/r for x ∈ R
p. To correct for the heteroskedastic or

correlated errors, GLS left multiplies the regression equation (1) by Σ−1/2,

Σ−1/2Y = Σ−1/2Xβ∗ +Σ−1/2ǫ. (4)

Then, the error term becomes a vector of iid normal variables, Σ−1/2ǫ ∼ N(0, I).
Instead of computing the Lasso with (X, Y ) as in Equation (3), use

(Σ−1/2X,Σ−1/2Y )

and define the resulting estimator as β̂GLS+Lasso(λ).
The vertical axis of Figure 1 reports the proportion of fifty simulations in

which there exists a tuning parameter λ such that the support of the esti-
mator aligns perfectly with the true support S. At the very left, the model
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is homoskedastic and the estimators are equivalent. As the heteroskedasticity
increases, one expects the β̂GLS+Lasso(λ) to outperform β̂(λ). However, the

performance of β̂GLS+Lasso(λ) quickly degrades, failing to estimate the correct
sparsity pattern. In this simulation, correcting for heteroskedasticity degrades es-
timation. This surprising result happens because Σ−1/2 in Equation (4) acts as a
preconditioner, a bad preconditioner. It makes the design matrix ill-conditioned.
In least squares regression, an ill-conditioned design matrix does not create bias.
As such, GLS can improve the estimation performance in the classical setting.
However, in penalized least squares regression, an ill-conditioned design matrix
prevents support recovery; any decrease in the variance is offset by an increase
in the support recovery bias.

Just as there are several settings where the original data has heteroskedastic
or correlated errors, there are several settings where the original data contains
an ill-conditioned design matrix. The techniques described in this paper cor-
rect for ill-conditioned design matrices. For example, perhaps some rows of X
have a much larger ℓ2 length than some other rows. Where GLS “whitens”
the errors (with the side effect of making the design ill-conditioned), precondi-
tioning “whitens” the design matrix (with the side effect of making the errors
heteroskedastic and correlated). In this sense, GLS and the preconditioning are
opposite transformations. Figure 1 gives a simulation setting where penalized
regression (1) can accommodate heteroskedastic errors and (2) cannot accommo-
date an ill-conditioned design matrix. This suggests that the classical intuition,
which ignores the conditioning of the design and focus exclusively on the distri-
bution of the errors, does not extend to the modern settings. The rest of this
paper focuses on preconditioning matrices that make the design matrix well
conditioned, thus improving the estimation performance of the Lasso.

In this simulation, Σ does not describe heteroskedastic behavior in X. This
is why Σ−1/2 acts as a poor preconditioner. However, in many applications,
the underlying structure which leads to covariance or heteroskedasticity in ǫ
(e.g. spatial dependence) may create covariance or heteroskedasticity in the
rows of X. In these situations, Σ−1/2 will act as a good preconditioner because
it will decorrelate and normalize the rows of X.

2. Preconditioning to circumvent the irrepresentable condition

This section defines sign consistency and the irrepresentable condition, a neces-
sary and almost sufficient condition for the Lasso to be sign consistent.

Let Y = (Y1, . . . , Yn)
T

and ǫ = (ǫ1, ǫ2, . . . , ǫn)
T
. For T ⊂ {1, . . . , p} with

|T | = t, define XT ∈ R
n×t to contain the columns of X indexed by T . For any

vector x ∈ R
p, define xT = (xj)j∈T . Define s = |S|, the cardinality of S in

Equation (2). To define an appropriate measure of selection consistency, define

sign(x) =







1 if x > 0
0 if x = 0

−1 if x < 0.

For a vector b ∈ R
p, sign(b) ∈ R

p is defined elementwise: [sign(b)]i = sign(bi).
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Definition 1. The Lasso is sign consistent if there exists a sequence λn such
that,

P
(

sign(β̂(λn)) = sign(β∗)
)

→ 1, as n → ∞.

This implies that β̂(λ) can asymptotically identify the relevant and irrelevant
variables when it is sign consistent. Several authors, including Meinshausen
and Bühlmann (2006); Zou (2006); Zhao and Yu (2006), have studied the sign
consistency property and found a sufficient condition for sign consistency. Zhao
and Yu (2006) call this assumption the irrepresentable condition. For a vector x,
denote ‖x‖∞ = maxi |xi|.
Definition 2. The design matrix X satisfies the irrepresentable condition

for β∗ if, for some constant η ∈ (0, 1],

∥

∥

∥
XT

ScXS

(

XT
SXS

)−1
sign(β∗

S)
∥

∥

∥

∞
≤ 1− η. (5)

In the above sufficient condition, η > 0. If this is replaced with η ≥ 0,
then it is a necessary condition for sign consistency (Zhao and Yu, 2006; Zou,
2006). This condition is difficult to check because it relies on the unknown set S.
Section 2 of Zhao and Yu (2006) gives several sufficient conditions. For example,
if |cor(Xi, Xj)| ≤ c/(2s− 1) for a constant 0 ≤ c < 1, then the irrepresentable
condition holds for any S.

The extant literature has proposed several ways of circumventing the irrep-
resentable condition. The two methods that have received the most attention
both focus on refining the ℓ1 penalty term in the Lasso objective function (3).
Fan and Li (2001) and Zhang (2010) proposed making the penalty function con-
cave. The adaptive Lasso is another popular approach (Zou, 2006); this applies
a different ℓ1 penalty to each element of the coefficient vector; these penalty
weights come from an initial run of OLS. van de Geer et al. (2011) illustrated
how this can be extended to the high dimensional setting by using an initial
run of the Lasso instead of OLS. While these previous approaches alter the
penalty function, preconditioning instead changes the shape of the least squares
contours in the data fidelity term ‖Y −Xb‖22. Similar to work presented here,
Xiong et al. (2011) also propose adjusting the data fidelity term to avoid the
irrepresentable condition. However, instead of preconditioning, they proposed
a procedures which (1) makes the design matrix orthogonal by adding rows,
and (2) applies an EM algorithm, with concave penalty SCAD, to estimate the
outcomes corresponding to the additional rows in the design matrix.

2.1. The Puffer transformation

In this paper, we always assume that the design matrix X ∈ R
n×p has rank

d = min{n, p}. From the singular value decomposition, there exist matrices
U ∈ R

n×d and V ∈ R
p×d with UTU = V TV = Id and diagonal matrixD ∈ R

d×d

such that X = UDV T . Define the Puffer transformation F = UD−1UT . The
preconditioned design matrix FX has the same singular vectors as X. However,
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all of the nonzero singular values of FX are set to unity: FX = UV ′. When
n ≥ p, the columns of FX are orthonormal. When n ≤ p, the rows of FX are
orthonormal.

After left multiplying the regression equation

Y = Xβ∗ + ǫ

by the matrix F , the transformed regression equation becomes

FY = (FX)β∗ + Fǫ.

If ǫ ∼ N(0, σ2In), then Fǫ ∼ N(0, Σ̃) where Σ̃ = σ2UD−2UT . The parenthesis
around (FX) emphasize that preconditioning is transforming X, not β∗. Just as
in GLS (Equation 4), β∗ remains unchanged after left multiplying the regression
equation.

The scale of Σ̃ depends on the diagonal matrix D, which contains the d
singular values ofX. If any singular values ofX approach zero, the corresponding
elements of D−2 grow, amplifying the noise Fǫ. This increased noise can quickly
overwhelm the benefits of a well conditioned design matrix. For this reason,
Section 3.3 proposes a slightly modified preconditioner that bounds the spectral
norm of Σ̃.

In numerical linear algebra, the objective is speed, and there is a trade off
between the time spent computing the preconditioner vs. solving the system of
equations. Better preconditioners make the resulting system of equations eas-
ier to solve. However, these preconditioners themselves can be time consuming
to compute. In our setting, the objective is inference, not speed per se, and
the tradeoff is between a well behaved design matrix and a well behaved error
term. Preconditioning can aid statistical inference if it can balance these two
constraints.

2.1.1. Previous literature on preconditioning for sparse inference

This paper contributes to the existing literature by studying when precondi-
tioning can circumvent the irrepresentable condition. For other reasons, precon-
ditioning the Lasso has been proposed elsewhere.

Paul et al. (2008) estimate a type of latent factor model; theoretical and
simulation results suggest that their preconditioning technique improved esti-
mation in settings with a low signal to noise ratio. However, Paul et al. (2008)
do not study the relationship between preconditioning and the irrepresentable
condition.

More recently, Huang and Jojic (2011) use preconditioning to remove the
effects of confounding in high-throughput biological experiments and are mo-
tivated by empirical observations in genome wide association studies. In such
biological studies, Alter et al. (2000) show how the leading singular vectors from
X often “represent additive or multiplicative noise, experimental artifacts, or
even irrelevant biological processes.” As such, several papers have studied tech-
niques that screen out the (typically large) singular vectors of X; see Yang et al.
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(2014) for a further references and discussion. These empirical observations, not
the irrepresentable condition, motivated Huang and Jojic (2011) to emphasize
the bottom singular values in X. Although they accomplish this through pre-
conditioning, their motivation is focused on biological experiments. With data
analysis and biologically motivated simulations, they show that that precondi-
tioning improves the model selection performance of the Lasso.

Most recently, Rauhut and Ward (2011) study interpolation with orthogonal
polynomials. They precondition the polynomials with a diagonal preconditioner
to satisfy the restricted isometry principal with high probability. In the cur-
rent paper, we employ non-diagonal preconditioning which drastically increases
the class of design matrices that benefit from preconditioning. Moreover, we
demonstrate how preconditioning alters the error term, creating a statistical
tradeoffs between a well conditioned design matrix and a well behaved error
term.

The technical report for this paper introduced the Puffer Transformation.
This led to two pieces of follow up research. First, Qian and Jia (2012) demon-
strate the benefits of the Puffer transformation for the fused Lasso, a sparse
high dimensional regression problem that is particularly plagued by correla-
tion in the design matrix. Second, Wauthier et al. (2013) compares the Puffer
transformation to the two two previous techniques in Paul et al. (2008) and
Huang and Jojic (2011). Their analysis assumes that there exists a range of
λ ∈ [λl, λu] for which the standard Lasso estimates the correct sign. They study
when preconditioning increases the ratio λu/λl, thus making sign estimation
more robust to the choice of tuning parameter λ. Their results highlight the
fact that the preconditioners in Paul et al. (2008) and Huang and Jojic (2011)
project onto rank deficient subspaces. Wauthier et al. (2013) goes on to present
a specific model for the design matrix X under which the Puffer transforma-
tion deterministically scales λu/λl. Under their model, if the largest singular
vectors have small values in the positions of S, then the Puffer transformation
will increase λu/λl. Otherwise, the Puffer transformation will decrease λu/λl.
In this paper, we are particularly interested in situations where the design ma-
trix fails to satisfy the irrepresentable condition before preconditioning (i.e.
λu < λl).

Section 4.3 gives two brief simulations that compare the Puffer transformation
to the preconditioners defined in Paul et al. (2008) and Huang and Jojic (2011).

In the sparse regression literature, other papers have considered left multi-
plying the regression equation for alternative reasons. Bootstrapping techniques
such as Chatterjee and Lahiri (2011) left multiply the regression equation by
a random diagonal matrix. Penalized generalized linear models are fit by iter-
atively reweighted least squares, which is equivalent to left multiplying by a
diagonal matrix at each iteration; van de Geer (2008) highlights how it is the
conditioning of the final iteration that matters for sign consistency. The subbag-
ging technique in Bradic (2013) concludes by solving the Lasso with a random
diagonal weighting matrix on each sub-Lasso problem. These weights are chosen
to obtain a random approximation for the solution of the original unweighted
problem, not to adjust for the irrepresentable condition.
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A B

Fig 2. Panel A illustrates the Lasso without preconditioning. In panel B, preconditioning
turns the ellipse from the ℓ2 loss into a sphere. Here, the Lasso correctly selects the true
model. These figures were drawn with the R library RGL (Adler et al., 2003).

2.2. Geometrical representation of preconditioning and the

irrepresentable condition

Figure 2 displays the geometry of the Lasso before and after the Puffer trans-
formation. This figure (i) demonstrate what happens when the irrepresentable
condition is not satisfied, (ii) reveal how the Puffer transformation circumvents
the irrepresentable condition, and (iii) illustrate why we call F the Puffer trans-
formation.

The figures in this section are derived from the following optimization prob-
lem which is equivalent to the Lasso, β̂(c) = argminb:‖b‖1≤c ‖Y −Xb‖22. The def-
inition of β̂(c) abuses notation. In fact, there is a one-to-one function φ(c) = λ
to make the Lagrangian form of the Lasso (Equation 3) equivalent to the con-

strained form of the Lasso denoted by β̂(c). Given the constraint set ‖b‖1 ≤ c
and a continuum of sets ‖Y −Xb‖22 ≤ x for x ≥ 0, define

I(c, x) = {b : ‖b‖1 ≤ c} ∩ {b : ‖Y −Xb‖22 ≤ x}.

Let x∗ be the smallest x such that I(c, x) is nonempty. Then, β̂(c) ∈ I(c, x∗).
Under certain conditions on X (e.g. full column rank), the solution is unique

and β̂(c) = I(c, x∗). In Figure 2, the constraint set {b : ‖b‖1 ≤ c} appears
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as a diamond shaped polyhedron and the level set of the loss function {b :
‖Y − Xb‖22 < x∗} appears as an ellipse. The rows of X are sampled as three
dimensional Gaussian vectors with mean zero. The first two elements are inde-
pendent Gaussians and the third element has correlation .6 with both the first
and second elements. To highlight the effects of preconditioning, the noise is
very small and n = 10,000.

In panel A, the design matrix is not preconditioned. In panel B, the problem
has been preconditioned, and the ellipse represents the set ‖FY −FXb‖22 ≤ x∗;
preconditioning turns the oblong ellipse in panel A into the sphere in panel B.

In this simulation, β∗ = (1, 1, 0) and in all illustrations, the third dimension
is represented by the axis that points up and down. Thus, the Lasso estimates
the correct sign if the ellipse intersects the constraint set in the (horizontal)
plane formed by the first two dimensions. The design matrix in panel A fails
the irrepresentable condition because the elongated ellipse forces β̂(c) off of the
true plane. This is shown in the bottom illustration in panel A.

In panel B, the design matrix FX satisfies the irrepresentable condition be-
cause the elongated direction of the ellipse shrinks down and the ellipse is puffed
out into a sphere. Because of this, β̂(λ) lies in the true plane. When n > p (as in
these figures) preconditioning with F makes the ellipse a sphere. When p > n,
preconditioning with F can make low dimensional projections of the ellipse more
spherical. The name Puffer transformation comes from the pufferfish. As Fig-
ure 2 illustrates, the Puffer transformation inflates the smallest singular values
of the design matrix, making the contours of ‖FY −FXb‖22 ≤ x∗ more spherical.

2.3. Low dimensional results

If n ≥ p and X is full rank, then the preconditioned design matrix is orthonor-
mal.

(FX)TFX = V DUTUD−1UTUD−1UTUDV T = I

Orthogonal matrices trivially satisfy the irrepresentable condition and other
conditions such as the restricted eigenvalue condition for ℓ2 consistency (Bickel
et al., 2009). Theorem 1 proves that the preconditioned Lasso is sign consistent,
so long as the smallest eigenvalue of 1

nX
TX is bounded away from zero.

Theorem 1. Suppose that data (X, Y ) follows the linear model described in
Equation (1) with iid Gaussian noise ǫ ∼ N(0, σ2In). Define the singular value
decomposition of X as X = UDV T . Suppose that n ≥ p and X has rank p.
Further assume that Λmin(

1
nX

TX) ≥ C̃min > 0. Define the Puffer trans-

formation, F = UD−1UT . Let X̃ = FX and Ỹ = FY . Define β̃(λ) =
argminb

1
2
‖Ỹ − X̃b‖22 + λ‖b‖1.

If minj∈S |β∗
j | ≥ 2λ, then β̃(λ) =s β

∗ with probability greater than

1− 2p exp

{

−nλ2C̃min

2σ2

}

.
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A proof can be found in Appendix A in the supplementary material (Jia and
Rohe, 2015) on page 5. The proof is very similar to the standard result for the
homogenous linear model. The difference here is that after the Puffer Transfor-
mation, the vector ǫ contains correlated entries. To overcome this difficulty, the
proof relies on a Gaussian comparison result that does not need any assump-
tions on the correlations of Gaussian random variables. Instead, it depends on
the maximum among a set of Gaussian (or sub-Gaussian) random variables.

Remark 1. The loss function defined in the Lasso estimator,

β̃(λ) = argmin
b

1

2
‖Ỹ − X̃b‖22 + λ‖b‖1,

is slightly different from the classical definition, which uses 1
2n‖Ỹ − X̃b‖22. In

fact, the the Puffer Transformation accounts for this change of scale because it
depends on the SVD of X , instead of 1

nX
TX . As such, it changes the scale of

the loss function.

Remark 2. Suppose that C̃min > 0 is a constant. If p,minj∈S |β∗
j | and σ2 do

not change with n, then choosing λ such that λ → 0 and λ2n → ∞, ensures

that β̃(λ) is sign consistent. One possible choice is λ =
√

logn
n .

In classical linear regression, increasing the correlation between columns of
X amplifies the variance of the standard OLS estimator; correlated predictors
make estimation more difficult. Without preconditioning, this intuition does not
hold for the standard Lasso; increased correlation in X creates an increasingly
biased estimator. Theorem 1 shows that after preconditioning, the intuition
from OLS again translates; increasing the correlation between the columns of
X decreases the smallest singular value of X, increasing the spectral norm of
F and the variance of the noise terms. Importantly, a large sample size n can
overcome the additional noise induced by preconditioning.

Theorem 1 applies to the more general class of penalized least squares meth-
ods

argmin
b

1

2
‖Y −Xb‖22 + pen(b, λ) (6)

for some type of penalty function pen(b) : Rp → R, e.g. Lasso, SCAD, and MCP
(Fan and Li, 2001; Zhang, 2010). After preconditioning, the design matrix FX

is orthogonal and several convenient facts follow. First, if the penalty decom-
poses, pen(b, λ) =

∑p
j=1 penj(bj , λ) so that penj does not rely on bk for k 6= j,

then the penalized least squares methods admit closed form solutions. If it is
also true that all the penj ’s are identical functions that have a cusp at zero
(e.g. Lasso, SCAD, MCP), then the solution to the preconditioned penalized
least squares problem selects the same sequence of models as preconditioned
correlation screening (i.e. select Xj if |cor(FY, FXj)| ≥ λ) (Fan and Lv, 2008).
Theorem 1 implies that all such methods are sign consistent. These observations
rely on the fact that FX is an orthogonal matrix. In high dimensions, FX is no
longer orthogonal. So, the various methods could potentially estimate different
models.
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Fig 3. As the correlation ρ increases, most values of ICβ∗(FX) (in black) remain below the
dashed line corresponding to the critical threshold at 1. Without preconditioning, ICβ∗(X)
(in grey) quickly surpasses the critical threshold. Each point corresponds to one design matrix.
The thick black and grey lines pass through the average IC value for each setting of ρ. The
thin solid lines correspond to +/− one standard deviation.

3. High dimensional results

Subsection 3.1 gives a motivating simulation that illustrates the benefits of pre-
conditioning in the high dimensional setting. Theorem 2 in Subsection 3.2 shows
that FX satisfies the irrepresentable condition for many design matrices X.
Subsection 3.3 proposes a class of generalized Puffer transformations and The-
orem 3 proves that the Lasso with a specific preconditioner in this class can be
sign consistent with arbitrarily small singular values in X.

3.1. Motivating simulation

Figure 3 presents an illustrative numerical simulation to prime our intuition on
preconditioning in high dimensions. In this simulation, n = 200, p = 10,000, and
each row of X is an independent Gaussian vector with mean zero and covariance
matrix Σ. The diagonal of Σ is all ones and the off diagonal elements are all ρ;
ρ varies on the horizontal axis of Figure 3. The vertical axis plots the values

ICβ∗(X) =
∥

∥

∥
XT

ScXS

(

XT
SXS

)−1
sign(β∗

S)
∥

∥

∥

∞
(7)

where S = {1, . . . , 10} and the nonzero elements of β∗ are all positive. Along
with ICβ∗(X), the figure also contains ICβ∗(FX) and a horizontal line at 1.
Recall that if ICβ∗(X) < 1, then X satisfies the irrepresentable condition.

The figure shows that ICβ∗(X) quickly exceeds 1, while ICβ∗(FX) < 1 for
all values of ρ. The reason that this happens is that preconditioning drasti-
cally reduces the correlation between the columns. For example, for ρ = .9, the
pairwise correlations between the columns of X have an average of .90 with a
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standard deviation of .01. After the transformation, the average correlation is
.005, and the standard deviation is .07. By reducing the pairwise correlations,
preconditioning helps the design matrix satisfy the irrepresentable condition.

3.2. Uniform distribution on the Stiefel manifold

When p ≥ n and X is full rank the rows of FX are orthogonal. It lies in the
Stiefel manifold,

FX ∈ V (n, p) = {V ∈ R
n×p : V V T = In}.

Moreover, when p≥n, F can be computed as (XX′)−1/2 and FX=(XX′)−1/2X

is the projection of X onto V (n, p) under any unitarily invariant norm (Fan and
Hoffman, 1955). Denote the orthogonal group of matrices as O(p,R) = V (p, p).

Definition 3 (Chikuse (2003)). A random matrix V is uniformly distributed on
V (n, p), written V ∼ uniform(V (n, p)), if the distribution of V is equal to the
distribution of V O for any fixed O in the orthogonal group of matrices O(p,R).

Theorem 2 shows that if FX ∼ uniform(V (n, p)), then the matrix satisfies
the irrepresentable condition with high probability. Propositions 1 and 2 give
two examples of random design matrices X where FX is uniformly distributed
on V (n, p).

Theorem 2. Suppose that V ∼ uniform(V (n, p)) and let X = UDV T for any
U ∈ O(p,R) and diagonal matrix D. If p− s ≥ n, p > 9n and n > 400(s+ 1)2,
then

P [ICβ∗(FX) ≥ 4/5] ≤ 10p exp
{

− n

800s

}

.

Section C in the supplementary material contains a proof for this theorem.
The proof is on page 17 and restated as Theorm C.2 in the supplementary ma-
terial. The first step of the proof is to relate the matrix FX, drawn uniformly
from Stifle manifold, to matrices that contain iid N(0, 1) elements. Then, results
for random matrix theory control the spectral norm of the Gaussian random
matrix and provide the result (Davidson and Szarek, 2001). A similar argu-
ment obtains a similar result for a non-preconditioned design matrix X with iid
N(0, 1) entries; this is included in Theorem B.2 in the supplementary material.
Propositions 1 and 2 give two models for X that make FX ∼ uniform(V (n, p)).

Proposition 1. If the elements of X are independent N(0, 1) random variables,
then FX ∼ uniform(V (n, p)).

Proposition 2. Suppose that UΣ ∈ R
p×p is drawn uniformly from O(p,R) and

DΣ ∈ R
p×p is a diagonal matrix with positive entries. Define Σ = UΣDΣU

T
Σ

and suppose the rows of X are drawn independently from N(0,Σ), then FX ∼
uniform(V (n, p)).

The proofs for these propositions are in the supplementary material, Sec-
tion C.
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3.3. Generalized Puffer transformation

In the preconditioned regression equation, the noise ǫ becomes Fǫ. Since the
spectral norm of F is unbounded as the smallest nonzero singular value of
X approaches zero, the preconditioned noise Fǫ has unbounded variance. To
diminish the increase in variance from preconditioning, this section studies a
generalized form of the Puffer transformation.

Definition 4. Let X ∈ R
n×p be a design matrix with singular value decom-

position X = UDV T . For the matrix X, the generalized Puffer transformation
with g : R2 → R and τ ∈ R is Fg,τ = UD̂UT , where D̂ii = g(Dii, τ)/Dii.

This definition implies that Fg,τX = UD̃V T where D̃ii = g(Dii, τ). Here, g
is a function of the singular values of X and a tuning parameter τ . The Puffer
transformation is F = F1,τ where 1(Dii, τ) = 1. To illustrate the potential ben-
efits from this generalized preconditioner, define the hard thresholding function
as

h(x, τ) = 1 if x ≥ τ and zero otherwise. (8)

The spectral norm of Fh,τ is bounded by 1/τ , limiting the amount that the pre-
conditioner amplifies the noise. This next theorem studies this preconditioner
under a model where the singular values of X are potentially very small and
assumes that V ∼ uniform(V (n, p)), where V contains the right singular vec-
tors of X. This highlights the tradeoff between (a) satisfying the irrepresentable
condition and (b) limiting the amount of additional noise created by precondi-
tioning.

Theorem 3. Suppose that V ∼ uniform(V (n, p)) and let X = UDV T for
any U ∈ O(p,R) and diagonal matrix D. Suppose Y = Xβ∗ + ǫ, where ǫ ∼
N(0, σ2In), independent of X. For τn > 0, let ñ be the number of Dii’s greater
than or equal to τn.

Define the hard thresholding function h(x, τn) as in Equation (8) and the
generalized preconditioner Fh,τn as in Definition 4. Define Ỹ = Fh,τnY, X̃ =

Fh,τnX, and β̃(λ) = argminb
1
2
‖Ỹ −X̃b‖22+λ‖b‖1. Suppose that p−s ≥ ñ, p > 9ñ

and ñ > 400(s+ 1)2. If minj∈S |β∗
j | ≥ 2λ

√

9sp/(5ñ), then

P
(

β̃(λ) =s β
∗
)

≥
[

1−10p exp

{

− ñ

800s

}

−5 exp

{

− ñ

800

}][

1−2p exp

{

−λ2τ2n
50σ2

}]

.

A proof can be found in Section C in the supplementary material. The proof
is on page 20 and restated as Theorm C.4 in the supplementary material. The
proof for this result relies on the previous result in Theorem 2 saying that with
high probably the irrepresentable condition holds.

The assumption on minj∈S |β∗
j | appears restrictive. However, the scale of

λ, τn, and D play an essential role. After accounting for these terms, this con-
dition is comparable to previous results. For the probability bound to converge
to one, λ2τ2n must grow faster than log p. So, it is necessary to consider how τn
grows in a standard setting. In the situation where the elements of X contain iid
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random variables with constant variance, the average element of D is O(
√
p). If

τn grows at this rate, then choosing λ2 = p−1 logn log p ensures the last term
in the probability bound converges to one. This yields the condition

min
j∈S

|β∗
j | ≥ c

logn√
ñ

,

which is comparable to previous results. If τn is smaller, then ñ is larger. How-
ever, λ2 must also be larger. As a result, but the lower bound on minj∈S |β∗

j |
becomes more strict. To ensure that this lower bound is not growing, τn should
grow faster than

√

p/n.
This theorem does not assume that X satisfies the irrepresentable condition.

Instead, it supposes that V ∼ uniform(V (n, p)) and only presumes that D has
sufficiently many values greater than τ . Several previous papers have also stud-
ied the Lasso (without preconditioning) under generative models for X (e.g.
(Rudelson and Vershynin, 2006; Candes and Romberg, 2007)). The previous
literature has constructed these random designs in a few different ways. For
example, containing independent and identically distributed elements (e.g. bi-
nary or Gaussian) or by taking an orthonormal basis O ∈ V (p, p) (e.g. Fourier
transform) and sampling n elements of this basis uniformly at random; these
n elements are then concatenated to form an n× p design matrix. In all previ-
ous cases, these matrices will be well conditioned (i.e. the smallest non-zero
singular value of X has the same order of magnitude as the largest singu-
lar value). However, if the experimental design or physical constraints restrict
the sampling mechanism in X, then X will likely be ill conditioned and thus
fail the irrepresentable condition. Theorem 3 allows for such design matri-
ces by not making any assumptions on the smallest elements in D, show-
ing that the Lasso can still be sign consistent with a generalized precondi-
tioner.

4. Simulations

This section contains two simulations that study the performance of the Puffer
transformation and the generalized Puffer transformation. The first simulation
compares the model selection and ℓ2 estimation performance of the Puffer trans-
formed Lasso with the standard Lasso, Elastic Net, SCAD, and MC+ (Zou and
Hastie, 2005; Fan and Li, 2001; Zhang, 2010). The second simulation illustrates
a situation where the generalized preconditioner improves upon the Puffer trans-
formation.

4.1. Preconditioning with F

After preconditioning, the noise vector Fǫ contains statistically dependent terms
that are no longer exchangeable. This complicates many of the standard methods
of tuning parameter selection (e.g. CV, AIC, BIC). We use the following OLS-
BIC procedure. Appendix D gives an additional simulation that ensures this
procedure does not differentially favor the preconditioned Lasso.
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OLS-BIC; To choose a model in a path of models Starting from the null
model, select the first model along the solution path with nz nonzero elements,
for nz = 1, . . . , 40. For each value of nz, use the selected nz features to fit an
OLS model with the un-preconditioned data. Compute the BIC for the resulting
OLS model. Finally, select the tuning parameter that corresponds to the model
with the lowest OLS-BIC score. The OLS models were fit with the R function
lm and the BIC was computed with the R function BIC.

In this simulation, n = 250, s = 20, and p grows along the horizontal axis
of the figures (from 25 = 32 to 215 = 32,768). All nonzero elements in β∗ equal
three and σ2 = 1. The rows of X are mean zero Gaussian vectors with constant
correlation ρ. In the top row of plots in Figure 4 and 5, ρ = .1. In the middle
and bottom rows, ρ = .5 and .85 respectively.

The first column of plots in Figure 4 corresponds to the number of false
negatives. The second column corresponds to the number of false positives.
Figure 5 plots the ℓ2 error ‖β̂(λ)− β∗‖2 on the right. Each data point in every
plot comes from an average of ten simulation runs.

In many settings, across both p and ρ, the preconditioned Lasso simultane-
ously admits fewer false positives and fewer false negatives than the competing
methods. The number of false negatives when ρ = .85 (displayed in the bottom
left plot of Figure 4) gives the starkest example. In particular, as the correla-
tion increases or the number of predictors grows, the preconditioned Lasso has
the best relative performance. When p ≈ n = 250, the preconditioned Lasso
performs poorly; this is because the singular values of X follow the Marchenko-
Pastur law and when p ≈ n, this distribution has mass around zero. As a result,
F has large spectral norm leading to excessive noise. This would be an appro-
priate regime to explore the use of a generalized preconditioner.

All simulations in this section were deployed in R with the packages LARS
(for the Lasso), PLUS (for SCAD and MC+), and glmnet (for the elastic net)
(Efron et al., 2004; Zhang, 2010; Friedman et al., 2010).

4.2. Bounded preconditioning

This simulation compares the Puffer transformation to the generalized precon-
ditioner Fg,.1 with g(x, τ) = min(1, τ−1x). Note that ‖Fg,τ‖ ≤ τ−1, where ‖ · ‖
is the spectral norm.

The design matrix is simulated as Xij = (Gi/α)Zij , where Zij are iid N(0, 1)
random variables and the Gi are independent Gamma random variables with
shape α and rate one. The Gamma random variables make the rows of X have
heterogeneous lengths. The horizontal axis of Figure 6 represents the standard
deviation of (Gi/α). As α → ∞, Gi/α concentrates around one. So, large values
of α are on the left. As α → 0, the standard deviation of Gi/α grows; these
values are plotted on the right.

The top plot in Figure 6 shows that IC(X) quickly surpasses the critical
threshold of one. As such, X is much less likely to satisfy the irrepresentable
condition when the standard deviation of Gi/α is large. The middle plot in
Figure 6 shows that as the standard deviation of row length increases, the Puffer
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Fig 4. From top to bottom, the correlation in X increases. The results from the preconditioned
Lasso appear as a solid black line. Note that the number of false negatives cannot exceed
s = 20. In the plots on the left side, a dashed horizontal line at 20 represents this limit. For
scale, this dashed line is also included in the false positive plots. For both ρ = .5 and .85, the
competing methods miss a significant fraction of the true nonzero coefficients.

transformation drastically reduces the signal to noise ratio, where SNRdB is
defined as

SNRdB(Xβ∗, e) = log10
‖Xβ∗‖2
‖e‖2

. (9)

After preconditioning with F , the SNRdB becomes SNRdB(FXβ∗, F e).

The top plot in Figure 6 shows that Fg,τ retains many of the advantages of
preconditioning by drastically expanding the region of design matrices that can
satisfy the irrepresentable condition. At the same time, it drastically increases
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Fig 5. From top to bottom, the correlation in X increases. The results from the preconditioned
Lasso appear as a solid black line. The dashed line corresponds to the ℓ2 error for the estimate
β̂ = 0.

the signal to noise ratio (compared to the Puffer transformation). As a result,
Fg,τ a yields better sign estimator than both the standard Lasso and the Puffer
preconditioned Lasso (bottom plot). In all simulations in Figure 6, there are
s = 10 nonzero elements in β∗ and each nonzero element is 30. The error terms
are iid N(0, 1), n = 200, and p = 1000. The tuning parameter is τ = .05

√
p.
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Fig 6. The horizontal axis controls the amount of heterogeneity in the row lengths of X. As
this increases, the irrepresentable condition evaluated with X quickly fails by surpassing the
red line. Simultaneously, the signal to noise ratio (defined in equation 9) for FX converges
to −∞ because the spectrum of X decays faster as the row heterogeneity increases. The
generalized preconditioner Fg,τ balances these trade-offs and improves sign estimation.

4.3. Comparing Lasso preconditioners

This simulation compares four different preconditioning methods, investigating
their ability to (1) satisfy the irrepresentable condition and (2) select the correct
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model. In addition to the Puffer Transformation, this simulation investigates the
following three techniques:

• Row Normalization. This preconditioner is a diagonal matrix D, with
Dii equal to the ℓ2 length of the ith row of of X. Preconditioning with D
creates a design matrix with equal row lengths.

• Correlation Sifting. Huang and Jojic (2011) suggests a preconditioner
that projects X and Y onto the n −K smallest principal components of
X. To define the preconditioner, take the SVD X = UDV T and define
UA ∈ Rn×n−k to contain the n − K smallest left singular vectors of X.
The preconditioner is UAU

T
A .

• Latent Model. To estimate a Gaussian latent variable model, Paul et al.
(2008) propose the following preconditioning technique: First, identify the
q columns of X that are maximally correlated with Y and place these
columns into a matrix XS . Then, project Y onto the K largest principal
components of XS . In this routine, X is not preconditioned.

Latent Model preconditioning differs from the others in two important re-
spects. First, it only preconditions Y . So, it does not alter the IC value of the
design matrix (see Equation 7). Second, both Correlation Sifting and the
Puffer transformation remove the effect of the largest singular vectors in X.
Meanwhile, Latent Model emphasizes these directions.

The simulation in Figure 7 samples each row of X ∈ R300×p independently
from a multivariate normal distribution, with mean zero and covariance matrix

Σ = (1− ρ)I + ρ11T .

The value of ρ is represented in the horizontal axis in each of the four plots.
The first simulation is “very-sparse,” with p = 10,000 columns in X and q = 10
nonzero elements in β∗. The second simulation is “semi-sparse,” with p = 500
and q = 50. Here, we use q to denote both the true number of nonzeros in β∗ and
also the number of variables screened for the Latent Model preconditioner.
The nonzero elements of β∗ are all 10 and the noise variance is 1. Because Σ
is a rank one perturbation of the identity, this simulation uses K = 1 for both
Correlation Sifting and Latent Model preconditioning.

The top left panel in Figure 7 displays the IC values (7) under the very-sparse
setting; recall that FX satisfies the irrepresentable condition when IC(FX) < 1.
In this plot, as the correlation increases from 0 to .09, the IC values of both
Correlation Sifting and Puffer preconditioning are unchanged. In fact, both
techniques are insensitive to ρ all the way through ρ = .95 (not shown). How-
ever, as ρ exceeds .08, X begins to fail the irrepresentable condition. In the top
plots, Latent Model is over plotted by “no preconditioning” because it does
not precondition X. The lower left plot shows that both Correlation Sifting

and Puffer preconditioning estimate the correct model for ρ ∈ [0, .09]. They
select the correct model all the way through ρ = .95 (not shown). The lower
left plot shows that for all levels of ρ ∈ [0, .09], Latent Model preconditioning
has worse model selection performance than the Lasso without any precondi-
tioning.
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Fig 7. In both the very- and semi-sparse settings, Puffer preconditioning creates a well con-
ditioned design matrix that allows for good model selection performance.

The top right panel in Figure 7 shows the conditioning performance under the
semi-sparse setting. In this setting, Puffer preconditioning is again insensitive
to ρ and satisfies the irrepresentable condition for all values of ρ ∈ [0, .09]. This
performance translates into far superior model selection performance (shown
in the bottom right panel). These simulations were created with ρ taking the
values 0, .01, .02, . . . , .09. For each of these values, both X and Y were sampled
100 different times. The lines connect the average of 100 points. A technique is
deemed to “select the correct model” if there exists a value of λ such that β̂(λ)
has the same support as β∗.

5. Discussion

This paper shows that preconditioning has the potential to circumvent the ir-
representable condition in several sparse regression settings. This means that a
preprocessing step can make the Lasso, and several other methods, sign consis-
tent with fewer restrictions on the design matrix. Furthermore, this preprocess-
ing step is easy to implement and it is motivated by a wide body of research in
numerical linear algebra. The preconditioning described in this paper left multi-
plies the design matrix X and the response Y by a matrix F = UD−1UT , where
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U and D are derived from the SVD of X = UDV T . This preprocessing step
makes the columns of the design matrix less correlated; while the original design
matrix X might fail the irrepresentable condition, the new design matrix FX

can satisfy it. In low dimensions, the Puffer transformation, ensures that the
design matrix always satisfies the irrepresentable condition. In high dimensions,
the Puffer transformation projects the design matrix onto the Stiefel manifold,
and Theorem 2 shows that in the high dimensional asymptote, most matrices on
the Stiefel manifold satisfy the irrepresentable condition. Section 3.3 introduces
the generalized Puffer transformation. Theorem 3 proves that one type of gen-
eralized Puffer transformation makes the Lasso sign consistent under drastically
reduced assumptions on the singular values of X.

In our simulation settings, the Puffer transformation drastically improves
the Lasso’s estimation performance, particularly in high dimensions. This opens
the door to several other important questions (theoretical, methodological, and
applied) on how preconditioning can aid sparse high dimensional inference. For
example, can preconditioning be formulated in a way that it both whitens the
design matrix similarly to the Puffer transformation and also allows for fast
computation?

This is the first paper to demonstrate how preconditioning the standard
linear regression equation can circumvent the irrepresentable condition. This
represents a computationally straightforward fix for the Lasso inspired by an
extensive numerical linear algebra literature. The algorithm easily extends to
high dimensions and, in our simulations, demonstrates a selection advantage
and improved ℓ2 performance over previous techniques in very high dimen-
sions.

Supplementary Material

Supplement to “Preconditioning the Lasso for sign consistency”

(doi: 10.1214/15-EJS1029SUPP; .pdf).
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