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1. Introduction

The problem we consider here is how to combine linear regressions based on
data from two sources. There is a small data set of expensive high quality ob-
servations and a possibly much larger data set with less costly observations. The
big data set is thought to have similar but not identical statistical characteris-
tics to the small one. The conditional expectation might be different there or
the predictor variables might have been measured in somewhat different ways.
The motivating application comes from within Google. The small data set is a
panel of consumers, selected by a probability sample, who are paid to share their
internet viewing data along with other data on television viewing. There is a
second and potentially much larger panel, not selected by a probability sample
who have opted in to the data collection process.

The goal is to make predictions for the population from which the smaller
sample was drawn. If the data are identically distributed in both samples, we
should simply pool them. If the big data set is completely different from the
small one, then using it may not be worth the trouble.

Many settings are intermediate between these extremes: the big data set is
similar but not necessarily identical to the small one. We stand to benefit from
using the big data set at the risk of introducing some bias. Our goal is to glean
some information from the larger data set to increase accuracy for the smaller
one. The difficulty is that our best information about how the two populations
are similar is in our samples from them.

The motivating problem at Google has some differences from the problem we
consider here. There were two binary responses, one sample was missing one of
those responses, and tree-based predictions were used. See Chen et al. (2014).
This paper studies linear regression because it is more amenable to theoretical
analysis, is more fundamental, and sharper statements are possible.

The linear regression method we use is a hybrid between simply pooling
the two data sets and fitting separate models to them. As explained in more
detail below, we apply shrinkage methods penalizing the difference between the
regression coefficients for the two data sets. Both the specific penalties we use,
and our tuning strategies, reflect our greater interest in the small data set. Our
goal is to enrich the analysis of the smaller data set using possibly biased data
from the larger one.

To help navigate our paper, we present the following table of sections:

Sec. Contents

2 Penalized regression formulations
3 The intercept-only special case
4 Simulations
5 Inadmissibility of using the small data set only
6 Matrix oracle and comparison to James-Stein
7 Related literatures
8 Conclusions, confidence intervals and Bayesian interpretation
9 Proofs
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In more detail, the contents of those sections are as follows.
Section 2 presents our notation and introduces L1 and L2 penalties on the

parameter difference. Most of our results are for the L2 penalty. For the L2

penalty, the resulting estimate is a linear combination of the two within sample
estimates. Theorem 2.1 gives a formula for the degrees of freedom of that esti-
mate. Theorem 2.2 presents the mean squared error of the estimator and forms
the basis for plug-in estimation of an oracle’s value when an L2 penalty is used.
We also show how to use Stein shrinkage, shrinking the regression coefficient
in the small sample towards the estimate from the large sample. Such shrink-
age makes it inadmissible to ignore the large sample when there are 3 or more
coefficients including the intercept.

Section 3 considers in detail the case where the regression simplifies to a loca-
tion problem, i.e., an intercept-only regression. In that setting, we can determine
how plug-in, bootstrap and cross-validation estimates of tuning parameters be-
have. We get an expression for how much information the large sample can add.
Theorem 3.1 gives a soft-thresholding expression for the estimate produced by
L1 penalization and equation (3.7) can be used to find the penalty parameter
that an L1 oracle would choose when the data are Gaussian.

Section 4 presents some simulated examples. We simulate the location prob-
lem for several L2 penalty methods varying in how aggressively they use the
larger sample. The L1 oracle is outperformed by the L2 oracle in this setting.
When the bias is small, the data enrichment methods improve upon the small
sample, but when the bias is large then it is best to use the small sample only.
Things change when we simulate the regression model. For dimension d ≥ 5,
data enrichment outperforms the small sample method in our simulations at all
bias levels. We did not see such an inadmissibility outcome when we simulated
cases with d ≤ 4. In our simulated examples, the data enrichment estimator per-
forms better than plain Stein shrinkage of the small sample towards the large
sample.

Section 5 presents theoretical support for our estimator. Theorem 5.1. shows
that when there are 5 or more predictors and 10 or more degrees of freedom
for error, then some of our data enrichment estimators make small sample-only
least squares inadmissible. The reduction in mean squared error is greatest when
the bias is small, but no matter how large the bias is, we gain an improvement.
The estimator we study employs a data-driven weighting of the two within-
sample least squares estimators. In simulations, our plug-in estimator performed
even better than the estimator from Theorem 5.1. Section 6 explains how our
estimators are closer to a matrix oracle than the James-Stein estimators are,
and this may explain why they outperform simple shrinkage in our simulations.

There are many statistical settings where data from one population is used
to study a different one. They range from older methods in survey sampling, to
recently developed methods for bioinformatics. Section 7 surveys some of those
literatures. Section 8 has brief conclusions, including a discussion of confidence
intervals, and a comparison from a Bayesian point of view of our method to the
James-Stein one. The longer proofs are in Section 9 of the Appendix.

Our contributions include the following:
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• a new penalization method for combining data sets,
• an inadmissibility result based on that method,
• a comparison of L1 and L2 penalty oracles for the location setting, and
• evidence that more aggressive shrinkage pays in high dimensions.

2. Data enriched regression

Consider linear regression with a response Y ∈ R and predictors X ∈ R
d. The

model for the small data set is

Yi = Xiβ + εi, i ∈ S

for a parameter β ∈ R
d and independent errors εi with mean 0 and variance

σ2
S . Now suppose that the data in the big data set follow

Yi = Xi(β + γ) + εi, i ∈ B

where γ ∈ R
d is a bias parameter and εi are independent with mean 0 and

variance σ2
B . The sample sizes are n in the small sample and N in the big

sample.
There are several kinds of departures of interest. It could be, for instance,

that the overall level of Y is different in S than in B but that the trends are
similar. That is, perhaps only the intercept component of γ is nonzero. More
generally, the effects of some but not all of the components in X may differ in
the two samples. One could apply hypothesis testing to each component of γ
but that is unattractive as the number of scenarios to test for grows as 2d.

Let XS ∈ R
n×d and XB ∈ R

N×d have rows made of vectors Xi for i ∈ S
and i ∈ B respectively. Similarly, let YS ∈ R

n and YB ∈ R
N be corresponding

vectors of response values. We use VS = XT

SXS and VB = XT

BXB.

2.1. Partial pooling via shrinkage and weighting

Our primary approach is to pool the data but put a shrinkage penalty on γ. We
estimate β and γ by minimizing

∑

i∈S

(Yi −Xiβ)
2 +

∑

i∈B

(Yi −Xi(β + γ))2 + λP (γ) (2.1)

where λ ∈ [0,∞] and P (γ) ≥ 0 is a penalty function. There are several reason-
able choices for the penalty function, including

‖γ‖22, ‖XSγ‖22, ‖γ‖1, and ‖XSγ‖1. (2.2)

For each of these penalties, setting λ = 0 leads to separate fits β̂ and β̂+ γ̂ in the
two data sets. Similarly, taking λ = ∞ constrains γ̂ = 0 and amounts to pooling
the samples. We will see that varying λ shifts the relative weight applied to the
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two samples. In many applications one will want to regularize β as well, but in
this paper we only penalize γ. If we interpret P (γ) as minus the log of a prior,
we get a flat prior on β but an informative one on γ as discussed in Section 8.

The criterion (2.1) does not account for different variances in the two sam-
ples. Many people find it more natural to weight the sample sums of squares,
minimizing

∑

i∈S

(Yi −Xiβ)
2 + τ

∑

i∈B

(Yi −Xi(β + γ))2 + λP (γ) (2.3)

for some relative weight τ . If we knew the variance ratio, then τ = σ2
S/σ

2
B

would be a natural choice. Otherwise we might use our best prior guess for
that ratio. A large value of τ has the consequence of increasing the weight on
the B sample. Choosing τ is largely confounded with choosing λ because λ also
adjusts the relative weight of the two samples. For this reason we use τ = 1. Our
inadmissibility result does not depend on knowing the correct τ . An algorithm
for τ = 1 can be adapted to τ 6= 1 by simply dividing both Yi and Xi (including
intercept) by

√
τ for i ∈ B.

The L1 penalties in (2.2) have an advantage in interpretation because they
lead to sparsity. Then nonzero values identify which parameters βj or which
specific observations Yi might be differentially affected. The quadratic penalties
are more analytically tractable, so we focus most of this paper on them.

Both quadratic penalties can be expressed as ‖XTγ‖22 for a matrix XT . The
rows of XT represent a hypothetical target population of NT items for pre-
diction. The matrix VT = XT

TXT is then proportional to the matrix of mean
squares and mean cross-products for predictors in the target population.

If we want to remove the pooling effect from one of the coefficients, such
as the intercept term, then the corresponding column of XT should contain all
zeros. We can also constrain γj = 0 (by dropping its corresponding predictor)
in order to enforce exact pooling on the j’th coefficient.

A second, closely related approach is to fit β̂S by minimizing
∑

i∈S(Yi−Xiβ)
2,

fit β̂B by minimizing
∑

i∈B(Yi −Xiβ)
2, and then estimate β by

β̂(ω) = ωβ̂S + (1− ω)β̂B

for some 0 ≤ ω ≤ 1. In some special cases the estimates indexed by the weighting
parameter ω ∈ [n/(n + N), 1] are a relabeling of the penalty-based estimates
indexed by the parameter λ ∈ [0,∞]. In other cases, the two families of estimates
differ. The weighting approach allows simpler tuning methods. Although we find
in simulations that the penalization method is superior, we can prove stronger
results about the weighting approach.

Given two values of λ we consider the larger one to be more ‘aggressive’ in
that it makes more use of the big sample bringing with it the risk of more bias
in return for a variance reduction. Similarly, aggressive estimators correspond to
small weights ω on the small target sample. One of our main empirical findings
in Section 4 is that aggressive estimators do well in higher dimensions.
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2.2. Quadratic penalties and degrees of freedom

The quadratic penalty takes the form P (γ) = ‖XTγ‖22 = γTVT γ for a matrix
XT ∈ R

r×d and VT = XT

TXT ∈ R
d×d. The value r is d or n in the examples

above and could take other values in different contexts. Our criterion becomes

‖YS −XSβ‖2 + ‖YB −XB(β + γ)‖2 + λ‖XTγ‖2. (2.4)

Here and below ‖x‖ means the Euclidean norm ‖x‖2.
Given the penalty matrix XT and a value for λ, the penalized sum of

squares (2.4) is minimized by β̂λ and γ̂λ satisfying

XTX
(
β̂λ

γ̂λ

)
= XTY

where

X =



XS 0
XB XB

0 λ1/2XT


 ∈ R

(n+N+r)×2d, and Y =



YS

YB

0


 . (2.5)

To avoid uninteresting complications we suppose that the matrix XTX is
invertible. The representation (2.5) also underlies a convenient computational

approach to fitting β̂λ and γ̂λ using r rows of pseudo-data just as one does in
ridge regression.

The estimate β̂λ can be written in terms of β̂S = V −1
S XT

SYS and β̂B =
V −1
B XT

BYB as the next lemma shows.

Lemma 2.1. Let XS, XB, and XT in (2.4) all have rank d. Then for any

λ ≥ 0, the minimizers β̂ and γ̂ of (2.4) satisfy

β̂ = Wλβ̂S + (I −Wλ)β̂B

and γ̂ = (VB + λVT )
−1VB(β̂B − β̂) for a matrix

Wλ = (VS + λVTV
−1
B VS + λVT )

−1(VS + λVTV
−1
B VS). (2.6)

If VT = VS , then

Wλ = (VB + λVS + λVB)
−1(VB + λVS).

Proof. The normal equations of (2.4) are

(VB + VS)β̂ = VS β̂S + VB β̂B − VB γ̂ and (VB + λVT )γ̂ = VB β̂B − VB β̂.

Solving the second equation for γ̂, plugging the result into the first and solving
for β̂, yields the result with Wλ = (VS + VB − VB(VB + λVT )

−1VB)
−1VS . This

expression for Wλ simplifies as given and simplifies further when VT = VS .
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The remaining challenge in model fitting is to choose a value of λ. Because
we are only interested in making predictions for the S data, not the B data,
the ideal value of λ is one that optimizes the prediction error on sample S. One
reasonable approach is to use cross-validation by holding out a portion of sample
S and predicting the held-out values from a model fit to the held-in ones as well
as the entire B sample. One may apply either leave-one-out cross-validation or
more general K-fold cross-validation. In the latter case, sample S is split into K
nearly equally sized parts and predictions based on sample B and K − 1 parts
of sample S are used for the K’th held-out fold of sample S.

We prefer to use criteria such as AIC, AICc, or BIC in order to avoid the
cost and complexity of cross-validation. To compute AIC and alternatives, we
need to measure the degrees of freedom used in fitting the model. We define the
degrees of freedom to be

df(λ) =
1

σ2
S

∑

i∈S

cov(Ŷi, Yi), (2.7)

where ŶS = XS β̂λ. This is the formula of Ye (1998) and Efron (2004) adapted
to our setting where the focus is only on predictions for the S data. We will
see later that the resulting AIC type estimates based on the degrees of freedom
perform similarly to our focused cross-validation described above.

Theorem 2.1. For data enriched regression the degrees of freedom given at (2.7)
satisfies df(λ) = tr(Wλ) where Wλ is given in Lemma 2.1. If VT = VS, then

df(λ) =
d∑

j=1

1 + λνj
1 + λ+ λνj

(2.8)

where ν1, . . . , νd are the eigenvalues of

M ≡ V
1/2
S V −1

B V
1/2
S (2.9)

in which V
1/2
S is a symmetric matrix square root of VS .

Proof. Section 9.1 in the Appendix.

With a notion of degrees of freedom customized to the data enrichment con-
text we can now define the corresponding criteria such as

AIC(λ) = n log(σ̂2
S(λ)) + n

(
1 +

2df(λ)

n

)
and

AICc(λ) = n log(σ̂2
S(λ)) + n

(
1 +

df(λ)

n

) / (
1− df(λ) + 2

n

)
, (2.10)

where σ̂2
S(λ) = (n−d)−1

∑n
i∈S(Yi−Xiβ̂(λ))

2. The AIC is more appropriate than
BIC here since our goal is prediction accuracy, not model selection. We prefer
the AICc criterion of Hurvich and Tsai (1989) because it is more conservative
as the degrees of freedom become large compared to the sample size.
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Next we illustrate some special cases of the degrees of freedom formula in
Theorem 2.1. First, suppose that λ = 0, so that there is no penalization on γ.
Then df(0) = tr(I) = d as is appropriate for regression on sample S only.

We can easily see that the degrees of freedom are monotone decreasing in λ.
As λ → ∞ the degrees of freedom drop to df(∞) =

∑d
j=1 νj/(1 + νj). This can

be much smaller than d. For instance if VS = nΣ and VB = NΣ for some positive
definite Σ ∈ R

d×d, then all νj = n/N and so df(∞) = d/(1 +N/n) ≤ dn/N .
Monotonicity of the degrees of freedom makes it easy to search for the value

λ which delivers a desired degrees of freedom. We have found it useful to inves-
tigate λ over a numerical grid corresponding to degrees of freedom decreasing
from d by an amount ∆ (such as 0.25) to the smallest such value above df(∞).
It is easy to adjoin λ = ∞ (sample pooling) to this list as well.

2.3. Predictive mean square errors

We need to choose λ. We consider what value λ would minimize the squared
error of our estimator, available to an oracle that knows the data distribution.
Then we construct a plug-in estimator for the oracle’s λ. We work in the case
where VS = VT and we assume that VS has full rank. Given λ, the predictive
mean square error is E(‖XS(β̂ − β)‖2) where β̂ = β̂(λ).

We will use the matrices V
1/2
S and M from Theorem 2.1 and the eigende-

composition M = UDUT where the j’th column of U is uj and D = diag(νj).

Theorem 2.2. The predictive mean square error of the data enrichment esti-
mator is

E
(
‖XS(β̂ − β)‖2

)
= σ2

S

d∑

j=1

(1 + λνj)
2

(1 + λ+ λνj)2
+

d∑

j=1

λ2κ2
j

(1 + λ+ λνj)2
(2.11)

where κ2
j = uT

j V
1/2
S ΘV

1/2
S uj for Θ = γγT + σ2

BV
−1
B .

Proof. Section 9.2.

The first term in (2.11) is a variance term. It equals dσ2
S when λ = 0 but for

λ > 0 it is reduced due to the use of the big sample. The second term represents
the error, both bias squared and variance, introduced by the big sample.

2.4. A plug-in method

Our plug-in method replaces the unknown parameters σ2
S and κ2

j from Theo-

rem 2.2 by sample estimates. For estimates σ̂2
S and κ̂2

j we choose

λ̂ = argmin
λ≥0

d∑

j=1

σ̂2
S(1 + λνj)

2 + λ2κ̂2
j

(1 + λ+ λνj)2
. (2.12)
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From the sample data we take σ̂2
S = ‖YS−XSβ̂S‖2/(n−d). A straightforward

plug-in estimate of the matrix Θ in Theorem 2.2 is

Θ̂plug = γ̂γ̂T + σ̂2
BV

−1
B ,

where γ̂ = β̂B − β̂S . Now we take κ̂2
j = uT

j V
1/2
S Θ̂V

1/2
S uj recalling that uj and

νj derive from the eigendecomposition of M = V
1/2
S V −1

B V
1/2
S . The resulting

optimization yields an estimate λ̂plug.

The estimate Θ̂plug is biased upwards because E(γ̂γ̂T) = γγT + σ2
BV

−1
B +

σ2
SV

−1
S . We have used a bias-adjusted plug-in estimate

Θ̂bapi = σ̂2
BV

−1
B + (γ̂γ̂T − σ̂2

BV
−1
B − σ̂2

SV
−1
S )+ (2.13)

where the positive part operation on a symmetric matrix preserves its eigenvec-
tors but replaces any negative eigenvalues by 0. Similar results can be obtained
with

Θ̃bapi =
(
γ̂γ̂T − σ̂2

SV
−1
S

)
+
. (2.14)

This estimator is somewhat simpler but (2.13) has the advantage of being at
least as large as σ̂2

BV
−1
B while (2.14) can degenerate to 0.

2.5. James-Stein shrinkage estimators

Our estimator is of shrinkage type similar to James-Stein. Here we show that
a very simple James-Stein shrinkage estimator makes the small sample-only
estimator inadmissible when d ≥ 3.

For background on James-Stein estimators, see Efron and Morris (1973b). We

shrink θ̂S = V
1/2
S β̂S ∼ N (V

1/2
S β, σ2

SIn) towards a target vector, to get better

estimators of θS = V
1/2
S β. To make use of the big data set we shrink θ̂S towards

θ̂B = V
1/2
S β̂B ∼ N (V

1/2
S (β + γ), V

1/2
S V −1

B V
1/2
S σ2

B).

We consider two shrinkers

θ̂JS,B = θ̂B +
(
1− d− 2

‖θ̂S − θ̂B‖2/σ2
S

)
(θ̂S − θ̂B), and

θ̂JS,B+ = θ̂B +
(
1− d− 2

‖θ̂S − θ̂B‖2/σ2
S

)
+
(θ̂S − θ̂B). (2.15)

Each of these makes θ̂S inadmissible in squared error loss as an estimate of θS ,
when d ≥ 3. The squared error loss on the θ scale is

(θ̂S − θS)
T(θ̂S − θS) = (β̂S − βS)

TVS(β̂S − βS). (2.16)

When d ≥ 3 and our quadratic loss is based on VS , we can make β̂S inad-
missible by shrinkage, so long as d ≥ 3. Copas (1983) found that ordinary least
squares regression is inadmissible when d ≥ 4. Stein (1960) also obtained an
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inadmissibility result for regresssion, but under stronger conditions than Copas
needs. Copas (1983) applies no shrinkage to the intercept but shrinks the rest of
the coefficient vector towards zero. In this problem it is reasonable to shrink the
entire coefficient vector as the big data set supplies a nonzero default intercept.

We include the James-Stein estimator in the simulations of Section 4. The
data enrichment estimator generally outperforms James-Stein. A Bayesian in-
terpretation of the James-Stein approach to this problem differs from the data
enrichment one; see Section 8.

3. Intercept-only model

The simplest regressionmodel has only an intercept. It then reduces to a location
problem for a sample. This simplest setting sheds light on some properties of
data enrichment. We are also able to work out an L1 solution for this case.
Unlike the high-dimensional case, the small sample-only approach is admissible
here.

In the location model, XS is a column of n ones and XB is a column of N
ones. Then the vector β is simply a scalar intercept that we call µ and the vector
γ is a scalar mean difference that we call δ. The response values in the small
data set are Yi = µ+ εi while those in the big data set are Yi = (µ+ δ) + εi. In
the location family we lose no generality taking the quadratic penalty to be λδ2.

The quadratic criterion is
∑

i∈S(Yi − µ)2 +
∑

i∈B(Yi − µ− δ)2 + λδ2. Taking
VS = n, VB = N and VT = 1 in Lemma 2.1 yields

µ̂ = ωȲS + (1− ω)ȲB with ω =
nN + nλ

nN + nλ+Nλ
=

1 + λ/N

1 + λ/N + λ/n
.

Choosing a value for ω corresponds to choosing

λ =
nN(1− ω)

Nω − n(1− ω)
.

The degrees of freedom in this case reduce to df(λ) = ω, which ranges from
df(0) = 1 down to df(∞) = n/(n+N).

3.1. Oracle estimator of ω

The mean square error of µ̂(ω) is

MSE(ω) = ω2σ
2
S

n
+ (1− ω)2

(σ2
B

N
+ δ2

)
.

The mean square optimal value of ω (available to an oracle) is

ωorcl =
δ2 + σ2

B/N

δ2 + σ2
B/N + σ2

S/n
.

Pooling the data corresponds to ωpool = n/(N+n) and makes µ̂ equal the pooled
mean ȲP ≡ (nȲS +NȲB)/(n +N). Ignoring the large data set corresponds to
ωS = 1. Here ωpool ≤ ωorcl ≤ ωS .
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The mean squared error reduction for the oracle is

MSE(ωorcl)

MSE(ωS)
= ωorcl, (3.1)

after some algebra. If δ 6= 0, then as min(n,N) → ∞ we find ωorcl → 1 and the
optimal ω corresponds to simply using the small sample and ignoring the large
one. If instead δ 6= 0 and N → ∞ for finite n, then the effective sample size for
data enrichment may be defined using (3.1) as

ñ =
n

ωorcl
= n

δ2 + σ2
B/N + σ2

S/n

δ2 + σ2
B/N

→ n+
σ2
S

δ2
. (3.2)

The mean squared error from data enrichment with n observations in the small
sample, using the oracle’s choice of λ, matches that of ñ IID observations from
the small sample. We effectively gain up to σ2

S/δ
2 observations worth of infor-

mation. This is an upper bound on the gain because we will have to estimate λ.
Equation (3.2) shows that the benefit from data enrichment is a small sample

phenomenon. The effect is additive not multiplicative on the small sample size n.
As a result, more valuable gains are expected in small samples. In some of
the motivating examples we have found the most meaningful improvements
from data enrichment on disaggregated data sets, such as specific groups of
consumers.

3.2. Plug-in and other estimators of ω

A natural approach to choosing ω is to plug in sample estimates

δ̂0 = ȲB − ȲS , σ̂2
S =

1

n

∑

i∈S

(Yi − ȲS)
2, and σ̂2

B =
1

N

∑

i∈B

(Yi − ȲB)
2.

We then use ωplug = (δ̂20 + σ̂2
B/N)/(δ̂20 + σ̂2

B/N + σ̂2
S/n) or equivalently λplug =

σ̂2
S/(δ̂

2
0 + (σ̂2

B − σ̂2
S)/N). Our bias-adjusted plug-in method reduces to

ωbapi =
θ̂bapi

θ̂bapi + σ̂2
S/n

, where θ̂bapi =
σ̂2
B

N
+
(
δ̂20 −

σ̂2
S

n
− σ̂2

B

N

)
+
.

The simpler alternative ω̃bapi = ((δ̂20−σ̂2
S/n)/δ̂

2
0)+ gave virtually identical values

in our numerical results reported below.
If we bootstrap the S and B samples independently M times and choose ω

to minimize

1

M

M∑

m=1

(
ȲS − ωȲ m∗

S − (1− ω)Ȳ m∗
B

)2
,

then the minimizing value tends to ωplug as M → ∞. Thus bootstrap methods
give an approach analogous to plug-in methods, when no simple plug-in formula
exists.

We can also determine the effects of cross-validation in the location setting,
and arrive at an estimate of ω that we can use without actually cross-validating.
Consider splitting the small sample into K parts that are held out one by one
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in turn. The K − 1 retained parts are used to estimate µ and then the squared
error is judged on the held-out part. That is

ωcv = argmin
ω

1

K

K∑

k=1

(
ȲS,k − ωȲS,−k − (1 − ω)ȲB

)2
,

where ȲS,k is the average of Yi over the k’th part of S and ȲS,−k is the average
of Yi over all K − 1 parts excluding the k’th.

If n is a multiple of K and we average over all of the K-fold sample splits
we might use, then an analysis in Section 9.3 shows that K-fold cross-validation
chooses a weighting centered around

ωcv,K =
δ̂20 − σ̂2

S/(n− 1)

δ̂20 + σ̂2
S/[(n− 1)(K − 1)]

. (3.3)

Cross-validation allows ω < 0. This can arise when the bias is small and then
sampling alone makes the held-out part of the small sample appear negatively
correlated with the held-in part. The effect can appear with any K. We replace
any ωcv,K < n/(n+N) by n/(n+N).

Leave-one-out cross-validation has K = n (and r = 1) so it chooses a weight

centered around ωcv,n = [δ̂20 − σ̂2
S/(n− 1)]/[δ̂20 + σ̂2

S/(n− 1)2]. Smaller K, such
as choosingK = 10 versus n, tend to make ωcv,K smaller resulting in less weight
on ȲS . In other words, 10-fold cross-validation makes more aggressive use of the
large sample than does leave-one-out.

Remark 1. The cross-validation estimates do not make use of σ̂2
B because the

large sample is held fixed. They are in this sense conditional on the large sample.
Our oracle takes account of the randomness in set B, so it is not conditional. One
can define a conditional oracle without difficulty, but we omit the details. Neither
the bootstrap nor the plug-in methods are conditional, as they approximate our
oracle. Taking ωbapi as a representor of unconditional methods and ωcv,n as a
representor of conditional ones, we see that the latter has a larger denominator
while they both have the same numerator, at least when δ̂20 > σ̂2

S/n. This
suggests that conditional methods are more aggressive and we will see this in
the simulation results.

3.3. L1 penalty

For the location model, it is convenient to write the L1 penalized criterion as
∑

i∈S

(Yi − µ)2 +
∑

i∈B

(Yi − µ− δ)2 + 2λ|δ|. (3.4)

The minimizers µ̂ and δ̂ satisfy

µ̂ =
nȲS +N(ȲB − δ̂)

n+N
, and

δ̂ = Θ(ȲB − µ̂;λ/N)

(3.5)

for the soft thresholding function Θ(z; τ) = sign(z)(|z| − τ)+.
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The estimate µ̂ ranges from ȲS at λ = 0 to the pooled mean ȲP at λ = ∞.
In fact µ̂ reaches ȲP at a finite value λ = λ∗ ≡ nN |ȲB − ȲS |/(N + n) and both

µ̂ and δ̂ are linear in λ on the interval [0, λ∗]:

Theorem 3.1. If 0 ≤ λ ≤ nN |ȲB − ȲS |/(n+N) then the minimizers of (3.4)
are

µ̂ = ȲS +
λ

n
sign(ȲB − ȲS), and

δ̂ = ȲB − ȲS − λ
N + n

Nn
sign(ȲB − ȲS).

(3.6)

If λ > nN |ȲB − ȲS |/(n+N) then they are δ̂ = 0 and µ̂ = ȲP .

Proof. Section 9.4 in the Appendix.

With an L1 penalty on δ we find from Theorem 3.1 that

µ̂ = ȲS +min(λ, λ∗)sign(ȲB − ȲS)/n.

That is, the estimator moves ȲS towards ȲB by an amount λ/n except that
it will not move past the pooled average ȲP . The optimal choice of λ is not
available in closed form.

3.4. An L1 oracle

The L2 oracle depends only on moments of the data. The L1 case proves to
be more complicated, depending also on quantiles of the error distribution. To
investigate L1 penalization, we suppose that the errors are Gaussian. Then we
can compute E((µ̂(λ) − µ)2) for the L1 penalization by a lengthy expression
broken into several steps below. That expression is not simple to interpret. But
we can use it to numerically find the best value of λ for an oracle using the
L1 penalty. That then allows us to compare the L1 and L2 oracles in Sec-
tion 4.1.

Let D = ȲB − ȲS and then define

F = N/(n+N) c = λ/(nF )

τ = (σ2
S/n+ σ2

B/N)1/2 α = (σ2
B/N)/(σ2

S/n)

η+ = (δ − c)/τ η− = (−δ − c)/τ

ϕ± = ϕ(η±) Φ± = Φ(η±)

c0 = α/(α+ 1) + F − 1, and c1 = 1/(α+ 1).

Lemma 9.1 in the Appendix gives these identities:

E(1|D|≥c) = Φ+ +Φ−

E(D1|D|≥c) = δ(Φ+ +Φ−) + τ(ϕ+ − ϕ−)

E(D21|D|≥c) = (δ2 + τ2)(Φ+ +Φ−) + τc(ϕ+ + ϕ−) + τδ(ϕ+ − ϕ−)
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E(sign(D)1|D|≥c) = Φ+ − Φ−, and

E(D sign(D)1|D|≥c) = δ(Φ+ − Φ−) + τ(ϕ+ + ϕ−).

Section 9.5 of the Appendix shows that

E((µ̂ − µ)2) = F 2δ2 + c20τ
2 + c21(α

2σ2
S/n+ σ2

B/N)

+ (λ/n)2(Φ+ +Φ−)− 2c1δFE
(
D1|D|≥c)

+ F (F − 2c0)E
(
D21|D|≥c

)

+ 2c1δ(λ/n)E
(
sign(D)1|D|≥c

)

+ 2(λ/n)(c0 − F )E
(
D sign(D)1|D|≥c

)
.

(3.7)

Substituting the quantities above into (3.7) yields a computable expression for
the loss in the L1 penalized case.

4. Numerical examples

We have simulated some special cases of the data enrichment problem. First
we simulate the pure location problem which has d = 1. Then we consider the
regression problem with varying d.

4.1. Location

We simulated Gaussian data for the location problem. The large sample had
N = 1000 observations and the small sample had n = 100 observations: Xi ∼
N (µ, σ2

S) for i ∈ S and Xi ∼ N (µ + δ, σ2
B) for i ∈ B. Our data had µ = 0 and

σ2
S = σ2

B = 1. We define the relative bias as

δ∗ =
|δ|

σS/
√
n
=

√
n|δ|.

We investigated a range of relative bias values. It is only a small simplification
to take σ2

S = σ2
B . Doubling σ2

B has a very similar effect to halving N . Equal
variances might have given a slight relative advantage to a hypothesis testing
method as described below.

The accuracy of our estimates is judged by the relative mean squared error
E((µ̂−µ)2)/(σ2

S/n). Simply taking µ̂ = ȲS attains a relative mean squared error
of 1.

Figure 1 plots relative mean squared error versus relative bias for a collection
of estimators, with the results averaged over 10,000 simulated data sets. We
used the small sample only method as a control variate.

The solid curve in Figure 1 shows the L2 oracle’s value. It lies strictly below
the horizontal S-only line. The second lowest curve in Figure 1 is for the oracle
using the L1 version of the penalty. The L1 penalized oracle is not as effective
as the L2 oracle and it is also more difficult to approximate.

None of the non-oracle curves lie strictly below the horizontal line. None can
because ȲS is an admissible estimator for d = 1 (Stein, 1956). The highest ob-
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Fig 1. Numerical results for the location problem. The horizontal line at 1 represents using the
small sample only and ignoring the large one. The lowest line shown is for an oracle choosing
λ in the L2 penalization. The dashed black curve shows an oracle using the L1 penalization.
The other curves are as described in the text.

served predictive MSEs come from a method of simply pooling the two samples.
That method is very successful when the relative bias is near zero but has an
MSE that becomes unbounded as the relative bias increases.

Now we discuss methods that use the data to decide whether to use the small
sample only, pool the samples or choose an amount of shrinkage. We may list
them in order of their worst case performance. From top (worst) to bottom
(best) in Figure 1 they are: hypothesis testing, 5-fold cross-validation, 10-fold
cross-validation, AICc, leave-one-out cross-validation, and then the simple plug-
in method which is minimax among this set of choices. AICc and leave-one-out
are very close. Our cross-validation estimators used ω = max(ωcv,K , n/(n+N))
where ωcv,K is given by (3.3).

The hypothesis testing method is based on a two-sample t-test of whether
δ = 0. If the test is rejected at α = 0.05, then only the small sample data is
used. If the test is not rejected, then the two samples are pooled. That test was
based on σ2

B = σ2
S which may give hypothesis testing a slight advantage in this

setting (but it still performed poorly).
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The AICc method performs virtually identically to leave-one-out cross-valida-
tion over the whole range of relative biases.

None of these methods makes any other one inadmissible: each pair of curves
crosses. The methods that do best at large relative biases tend to do worst at
relative bias near 0 and vice versa. The exception is hypothesis testing. Com-
pared to the others it does not benefit fully from low relative bias but it recovers
the quickest as the bias increases. Of these methods hypothesis testing is best
at the highest relative bias, K-fold cross-validation with small K is best at the
lowest relative bias, and the plug-in method is best in between.

Aggressive methods will do better at low bias but worse at high bias. What
we see in this simulation is that K-fold cross-validation is the most aggressive
followed by leave-one-out and AICc and that plug-in is least aggressive. These
findings confirm what we saw in the formulas from Section 3. Hypothesis testing
does not quite fit into this spectrum: its worst case performance is much worse
than the most aggressive methods yet it fails to fully benefit from pooling when
the bias is smallest. Unlike aggressive methods it does very well at high bias.

4.2. Regression

We simulated our data enrichment method for the following scenario. The small
sample had n = 1000 observations and the large sample had N = 10,000. The
true β was taken to be 0. This is no loss of generality because we are not
shrinking β towards 0. The value of γ was taken uniformly on the unit sphere
in d dimensions and then multiplied by a scale factor that we varied.

We considered d = 2, 4, 5 and 10. All of our examples included an intercept
column of 1s in both XS and XB. The other d−1 predictors were sampled from
a Gaussian distribution with covariance CS or CB, respectively.

In one simulation we took CS and CB to be independent Wishart(I, d − 1,
d− 1) random matrices. In the other simulation, they were sampled as a spiked
covariance model (Johnstone, 2001). There CS = Id−1 + ρuuT and CB =
Id−1 + ρvvT where u and v are independently and uniformly sampled from
the unit sphere in R

d−1 and ρ ≥ 0 is a parameter that measures the lack of
proportionality between covariances. We chose ρ = d so that the sample specific
portion of the variance has comparable magnitude to the common part.

The variance in the small sample was σ2
S = 1. To model the lower quality of

the large sample we used σ2
B = 2. We kept τ = 1 to model a data analyst who

does not know the variance ratio and assumes it is 1.
We scaled the results so that regression using sample S only yields a mean

squared error of 1. We computed the risk of an L2 oracle, as well as sampling
errors when λ is estimated by the plug-in formula, by our bias-adjusted plug-in
formula and via AICc. In addition we considered the simple weighted combina-
tion ωβ̂S + (1− ω)β̂B with ω chosen by the plug-in formula. To optimize (2.12)
over λ we used the optimize function in R which is based on golden section
search (Brent, 1973).

We also included a shrinkage estimator. Because our simulated runs all had
βS = 0 it is not reasonable to include shrinkage of β̂S towards zero in the
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Fig 2. Predicted MSE versus relative bias for the Wishart covariances described in the text.
On this scale the small sample only has MSE one (horizontal dashed line). Five methods are
shown. The lowest curve is for the oracle.

comparison; we cannot in practice shrink towards the truth. Instead, we used
the positive part Stein shrinkage estimate (2.15) shrinking β̂S towards β̂B but
not past it. That shrinkage requires an estimate σ̂2

S of σ2
S . We used the true

value, σ2
S = 1, giving the shrinkage estimator a slight advantage.

We did not include hypothesis testing in this example, because there are
2d possible ways to decide which parameters to pool and which to estimate
separately.

We simulated each of the two covariance models with each of the four dimen-
sions 10,000 times. For each method we averaged the squared prediction errors
(β̂ − β)TVS(β̂ − β) and then divided those mean squared errors by the one for
using the small sample only. Figures 2 and 3 show the results.

At small bias levels, pooling the samples is almost as good as the oracle.
But the loss for pooling samples grows without bound when the bias increases.
For d = 2, shrinkage amounts to using the small sample only, but for d > 2 it
performs universally better than the small sample.
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Fig 3. Predicted MSE versus relative bias for the spiked covariances described in the text.
On this scale the small sample only has MSE one (horizontal dashed line). Five methods are
shown. The lowest curve is for the oracle.

When comparing methods we see that the curves usually cross. Methods that
are best at low bias tend not to be best at high bias. Note however that there
is a lot to gain at low bias, and there we see differences among the methods.
There is little or nothing to gain at high bias, where the methods have nearly
identical performance. As a result, the more aggressive methods making greater
use of the large data are more likely to yield a big improvement.

The weighting estimator generally performs better than the shrinkage esti-
mator in that it offers a meaningful improvement at low bias costing a minor
relative loss at high bias. We analyze that estimator in Section 5. The plug-in
estimator also is generally better than shrinkage. The AICc estimator is gen-
erally better than both of those. We do not graph the bias adjusted plug-in
estimators. Their performance is very close to AICc. Of those, the one using
Θ̂bapi was consistently at least as good as Θ̃bapi and sometimes a little better.

The greatest gains are at or near zero bias. Table 1 shows the quadratic
losses at δ = 0 normalized by the loss attained by the oracle. Pooling is almost
as good as the oracle in this case but we rule it out because of its extreme bad
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Table 1

This table shows the quadratic loss (2.16) normalized by that of the oracle when δ = 0
(the no bias condition). The methods are described in the text

Wishart Spiked
Method 2 4 5 10 2 4 5 10

Oracle 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Pool 1.03 1.02 1.02 1.01 1.04 1.04 1.03 1.03

Small only 4.13 3.34 3.31 3.18 6.04 4.43 4.55 4.78

Shrink 4.13 2.29 2.27 2.42 6.04 2.35 2.12 1.74

Weighting 1.91 1.99 2.12 2.43 2.13 1.65 1.62 1.60

Θ̃plug 2.17 1.73 1.69 1.56 2.80 2.01 2.00 1.95

Θ̃bapi 1.77 1.39 1.33 1.19 2.13 1.52 1.47 1.31

Θ̂bapi 1.76 1.39 1.33 1.19 2.12 1.51 1.45 1.30

AICc 1.73 1.35 1.30 1.15 2.06 1.47 1.41 1.24

performance when the bias is large. Some of our new estimators yield very much
reduced squared error compared to the shrinkage estimator. For example three
of the new methods’ squared errors are just less than half that of the shrinkage
estimator for d = 10 and the Wishart covariances.

5. Inadmissibility

Section 4 gives empirical support for our proposal. Several of the estimators
perform better than ordinary shrinkage. In this section we provide some theo-
retical support. We provide a data enriched estimator that makes least squares
on the small sample inadmissible. The estimator is derived for the proportional
design case but inadmissibility holds even when VB = XT

BXB is not propor-
tional to VS = XT

SXS . The inadmissibility is with respect to a loss function

E(‖XT (β̂ − β)‖2) where VT = XT

TXT is proportional to VS .
To motivate the estimator, suppose for the moment that VB = NΣ, VS = nΣ

and VT = Σ for a positive definite matrix Σ. Then the weighting matrix Wλ in
Lemma 2.1 simplifies to Wλ = ωI where ω = (N + nλ)/(N + nλ + Nλ). As

a result β̂ = ωβ̂S + (1 − ω)β̂B and we can find and estimate an oracle’s value
for ω.

We show below that the resulting estimator of β̂ with estimated ω domi-
nates β̂S (making it inadmissible) under mild conditions that do not require
VB ∝ VS . We do need the model degrees of freedom to be at least 5, and it will
suffice to have the error degrees of freedom in the small sample regression be
at least 10. The result also requires a Gaussian assumption in order to use a
lemma of Stein’s.

Write YS = XSβ + εS and YB = XB(β + γ) + εB for εS
iid∼ N (0, σ2

S) and

εB
iid∼ N (0, σ2

B). The mean squared prediction error of ωβ̂S + (1− ω)β̂B is

f(ω) = E(‖XT (β̂(ω)− β)‖2)
= tr((ω2σ2

SV
−1
S + (1 − ω)2(γγT + σ2

BV
−1
B ))Σ).
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This error is minimized by the oracle’s parameter value

ωorcl =
tr((γγT + σ2

BV
−1
B )Σ)

tr((γγT + σ2
BV

−1
B )Σ) + σ2

Str(V
−1
S Σ)

.

When VS = nΣ and VB = NΣ, we find

ωorcl =
γTΣγ + dσ2

B/N

γTΣγ + dσ2
B/N + dσ2

S/n
.

The plug-in estimator is

ω̂plug =
γ̂TΣγ̂ + dσ̂2

B/N

γ̂TΣγ̂ + dσ̂2
B/N + dσ̂2

S/n
(5.1)

where σ̂2
S = ‖YS −XS β̂S‖2/(n− d) and σ̂2

B = ‖YB −XBβ̂B‖2/(N − d). To al-
low a later bias adjustment, we generalize this plug-in estimator. Let h(σ̂2

B) be
any nonnegative measurable function of σ̂2

B with E(h(σ̂2
B)) < ∞. The general-

ized plug-in estimator is

ω̂plug,h =
γ̂TΣγ̂ + h(σ̂2

B)

γ̂TΣγ̂ + h(σ̂2
B) + dσ̂2

S/n
. (5.2)

Here are the conditions under which β̂S is made inadmissible by the data
enrichment estimator.

Theorem 5.1. Let XS ∈ R
n×d and XB ∈ R

N×d be fixed matrices with XT

SXS =
nΣ and XT

BXB = VB where Σ and VB both have rank d. Let YS ∼ N (XSβ, σ
2
SIn)

independently of YB ∼ N (XB(β+γ), σ2
BIN ). If d ≥ 5 and m ≡ n−d ≥ 10, then

E(‖XT β̂(ω̂)−XTβ‖2) < E(‖XT β̂S −XTβ‖2) (5.3)

holds for any matrix XT with XT

TXT = Σ and any ω̂ = ω̂plug,h given by (5.2).

Proof. Section 9.7 in the Appendix.

The condition on m can be relaxed at the expense of a more complicated
statement. From the details in the proof, it suffices to have d ≥ 5 and m(1 −
4/d) ≥ 2.

Because E(γ̂TΣγ̂) > γTΣγ we find that ω̂plug is biased upwards, making it
conservative. In the proportional design case we find that the bias is dσ2

S/n +
dσ2

B/N . That motivates a bias adjustment, replacing γ̂TΣγ̂ by γ̂TΣγ̂− dσ̂2
S/n−

dσ̂2
B/N . The result is

ω̂bapi =
γ̂TΣγ̂ − dσ̂2

S/n

γ̂TΣγ̂
∨ n

n+N
, (5.4)

where values below n/(n+N) get rounded up. This bias-adjusted estimate of ω
is not covered by Theorem 5.1. Subtracting only σ̂2

B/N instead of σ̂2
B/N + σ̂2

S/n
is covered, yielding

ω̂′
bapi =

γ̂TΣγ̂

γ̂TΣγ̂ + dσ̂2
S/n

, (5.5)
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which corresponds to taking h(σ̂2
B) ≡ 0 in equation (5.2). Data enrichment with

ω̂ given by (5.4) makes β̂S inadmissible whether or not the motivating covariance
proportionality holds.

6. A matrix oracle

In this section we look for an explanation of how data enrichment might be
more accurate than Stein shrinkage. We generalize our estimator to

β̂(W ) = Wβ̂S + (I −W )β̂B

and then find the optimal matrix W .

Theorem 6.1. Let β̂S ∈ R
d have mean β and covariance matrix σ2

SV
−1
S for

σS > 0. Let β̂B ∈ R
d be independent of β̂S, with mean β + γ and covari-

ance matrix σ2
BV

−1
B for σB > 0. Let β̂(W ) = Wβ̂S + (I −W )β̂B for a matrix

W ∈ R
d×d. Let VT ∈ R

d×d be any positive definite symmetric matrix. Then
E((β̂(W )− β)TVT (β̂(W )− β)) is minimized at

W = (γγT + σ2
BV

−1
B + σ2

SV
−1
S )−1(γγT + σ2

BV
−1
B ). (6.1)

Proof. Section 9.8.

It is interesting that when we are free to choose the entire d × d matrix W ,
then the optimal choice is the same for all weighting matrices VT .

The penalized least squares criterion (2.1) leads to a matrix weighting of the
two within-sample estimators. The weighting matrix Wλ is in a one dimensional
family indexed by 0 ≤ λ ≤ ∞. The optimal W from (6.1) is not generally in
that family.

Both Wλ from criterion (2.1) and W from (6.1) trade off bias and variance,
through the appearance γγT, σ2

S , and σ2
B , which for (2.1) appear in the formula

for the optimal λ. The advantage of working with Wλ instead of W is that Wλ

yields a one parameter family of candidate weighting matrices to search over.
When VS and VB are both proportional to the same positive definite matrix

VT , then the data enrichment oracle chooses W = ωId where

ω = ωorcl =
tr((γγT + σ2

BV
−1
B )VT )

tr([γγT + σ2
BV

−1
B + σ2

SV
−1
S ]VT )

which mimicks the form of the optimal W in equation (6.1), replacing numerator
and denominator by traces after multiplying both by VT .

The James-Stein shrinker chooses W = ωJSId where

ωJS = 1− d− 2

‖θ̂S − θ̂B‖2/σ2
S

= 1− d− 2

γ̂TVS γ̂/σ2
S

.

If we approximate γ̂TVS γ̂ by its expectation tr((γγT + σ2
SV

−1
S +σ2

BV
−1
B )VS) we

find ωJS centered around

ω̃JS =
tr((γγT + σ2

BV
−1
B )VS) + 2σ2

S

tr((γγT + σ2
BV

−1
B + σ2

SV
−1
S )VS)
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after ignoring a small δ-method bias arising from plugging a random value into
the denominator of ωJS. The presence of 2σ

2
S in the numerator leads the James-

Stein approach to make less aggressive use of the big data set than data enrich-
ment does. We believe that this is why the James-Stein method did not perform
well in our simulations.

7. Related literatures

There are many disjoint literatures that study problems like the one we have
presented. They do not seem to have been compared before, the literatures seem
to be mostly unaware of each other, and there is a surprisingly large variety of
problem contexts. Some quite similar sounding problems turn out to differ on
critically important details. We give a brief summary of those topics here.

The key ingredient in our problem is that we care more about the small sam-
ple than the large one. Were that not the case, we could simply pool all the data
and fit a model with indicator variables picking out one or indeed many different
special subsets of interest. Without some kind of regularization, that approach
ends up being similar to taking λ = 0 and hence does not borrow strength.

The closest match to our problem setting comes from small area estimation in
survey sampling. The monograph by Rao (2003) is a comprehensive treatment
of that work and Ghosh and Rao (1994) provide a compact summary. In that
context the large sample may be census data from the entire country and the
small sample (called the small area) may be a single county or a demographically
defined subset. Every county or demographic group may be taken to be the
small sample in its turn. The composite estimator (Rao, 2003, Chapter 4.3) is a
weighted sum of estimators from small and large samples. The estimates being
combined may be more complicated than regressions, involving for example ratio
estimates. The emphasis is usually on scalar quantities such as small area means
or totals, instead of the regression coefficients we consider. One particularly
useful model (Ghosh and Rao, 1994, equation (4.2)) allows the small areas to
share regression coefficients apart from an area specific intercept. Then BLUP
estimation methods lead to shrinkage estimators similar to ours.

Our methods and results are similar to empirical Bayes methods, drawing
heavily on ideas of Charles Stein. A Stein-like result also holds for multiple
regression in the context of just one sample. We mentioned already the regression
shrinkers of Copas (1983) and Stein (1960). Efron and Morris (1973a) find that
the Stein effect for shrinking to a common mean takes place at dimension 4 and
George (1986) finds that the effect takes place at dimension 3+q when shrinking
means towards a q–dimensional linear manifold.

A similar problem to ours is addressed by Chen and Chen (2000). Like us,
they have (X,Y ) pairs of both high and low quality. In their setting both high
and low quality pairs are defined for the same set of individuals. Their given
sample has all of the low quality data and the high quality data are available
only on a simple random sample of the subjects.

Boonstra et al. (2013a) consider a genomics problem where there are both
low and high quality versions of X , from two different technical platforms, but
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all data share the same Y . All observations have the low quality X ’s while a
subset have both high and low quality X measurements. They take a Bayesian
approach. Boonstra et al. (2013b) handle the same problem via shrinkage esti-
mates. A crucial difference in our setting, is that the subjects are completely
different in our two samples; no (X,Y ) pair in one data set comes from the same
person as an (X,Y ) pair in the other data set.

Mukherjee and Chatterjee (2008) use shrinkage methods to blend two es-
timators. One is a case-control estimate of a log odds ratio. The other is a
case-only estimator, derived under an assumption of gene-environment indepen-
dence. They also derive and employ a plug-in estimator. Their target parameter
is scalar so no Stein effect could be expected. Chen et al. (2009) address the
same issue via L1 and L2 shrinkage based methods, and give some asymptotic
covariances.

In chemometrics, a calibration transfer problem (Feudale et al., 2002) comes
up when one wants to adjust a model to new spectral hardware. There may be a
regression model linking near-infrared spectroscopy data to a property of some
sample material. The transfer problem comes up for data from a new machine.
Sometimes one can simply run a selection of samples through both machines
but in other cases that is not possible, perhaps because one machine is remote
(Woody et al., 2004). Their primary and secondary instruments correspond to
our small and big samples respectively. Their emphasis is on transfering either
principal components regression or partial least squares models, not the plain
regressions we consider here.

A common problem in marketing is data fusion, also known as statistical
matching. Variables (X,Y ) are measured in one sample while variables (X,Z)
are measured in another. There may or may not be a third sample with some
measured triples (X,Y, Z). The goal in data fusion is to use all of the data to
form a large synthetic data set of (X,Y, Z) values, perhaps by imputing missing
Z for the (X,Y ) sample and/or missing Y for the (X,Z) sample. When there
is no (X,Y, Z) sample, some untestable assumptions must be made about the
joint distribution, because it cannot be recovered from its bivariate margins.
The text by D’Orazio et al. (2006) gives a comprehensive summary of what can
and cannot be done. Many of the approaches are based on methods for handling
missing data (Little and Rubin, 2009).

Medicine and epidemiology among other fields use meta-analysis (Borenstein
et al., 2009). In that setting there are (X,Y ) data sets from numerous environ-
ments, no one of which is necessarily of primary importance.

Our problem is an instance of what machine learning researchers call domain
adaptation. They may have fit a model to a large data set (the ‘source’) and
then wish to adapt that model to a smaller specialized data set (the ‘target’).
This is especially common in natural language processing. NIPS 2011 included
a special session on domain adaptation. In their motivating problems there are
typically a very large number of features (e.g., one per unique word appearing
in a set of documents). They also pay special attention to problems where many
of the data points do not have a measured response. Quite often a computer
can gather high dimensional X while a human rater is necessary to produce Y .
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Daumé (2009) surveys various wrapper strategies, such as fitting a model to
weighted combinations of the data sets, deriving features from the reference
data set to use in the target one and so on. Cortes and Mohri (2011) consider
domain adaptation for kernel-based regularization algorithms, including kernel
ridge regression, support vector machines (SVMs), or support vector regression
(SVR). They prove pointwise loss guarantees depending on the discrepancy dis-
tance between the empirical source and target distributions, and demonstrate
the power of the approach on a number of experiments using kernel ridge re-
gression. We have given conditions under which adaptation is always beneficial.

A related term in machine learning is concept drift (Widmer and Kubat,
1996). There a prediction method may become out of date as time goes on.
The term drift suggests that slow continual changes are anticipated, but they
also consider that there may be hidden contexts (latent variables in statistical
teminology) affecting some of the data.

8. Conclusions

We have studied a middle ground between pooling a large data set into a smaller
target one and ignoring it completely. Looking at the left side of Figures 1, 2
and 3 we see that in the low bias cases the more aggressive methods have a clear
advantage. Fortune favors the bold. Pooling is the boldest and wins the most
when bias is small. But pooling has unbounded risk as bias increases. That is,
misfortune also favors the bold. Our shrinkage methods provide a compromise.
In higher dimensional settings of Figures 2 and 3, we see that AICc and bias
adjusted plug-in gain a lot of efficiency when the bias is low. When the bias is
high, they are squeezed into a narrow band between the oracle performance and
that of β̂S which ignores the big data set. As a result, the new methods show
large improvements compared to shrinkage when the bias is small but only lose
a little when the bias is large.

Our emphasis is on prediction and not on inference. By using the big sam-
ple to reduce variance we incur some bias. Confidence intervals are not easily
constructed around biased estimators. See Obenchain (1977) for a discussion of
those difficulties in ridge regression which is quite similar to the present problem.
With prediction as the main goal, an important inferential problem is estimat-
ing the accuracy of the predictions. We expect that cross-validation, holding out
some of the small sample, will be satisfactory.

Our approach, via empirical Bayes, is quite similar to a Bayesian approach.
Space does not permit a thorough comparison to a fully Bayesian approach. We
note that our criterion (2.1) is proportional to minus the log posterior distri-
bution of the data for fixed σ2

S = σ2
B, β diffuse, and γ | β ∼ N (β, σ2

S(λVS)
−1).

Here we take the penalty to be P (γ) = γTVSγ. The priors for both βS = β and
βB = β+γ are both diffuse, but their joint distribution is such that βB−βS = γ
has an informative prior distribution.

The James-Stein shrinkage approach starts with a model where βB = β+γ is
fixed at β̂B = V −1

B XT

BYB and then conditionally on βB = β̂B the slope βS = β

has a N (β̂B, σ
2
SV

−1
S ) prior distribution. The two approaches have an identical
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distribution for γ = βB − βS , but James-Stein makes βB fixed by conditioning
while in data enrichment both βS and βB are diffuse. The estimates from James-
Stein move β̂S towards a fixed β̂B while in data enrichment the two estimates
move towards each other. In addition to this difference in prior formulation, our
data enrichment tuned the amount of shrinkage by estimating λ from the data,
while the James-Stein shrinker was given the true σ2

S .
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9. Appendix: Proofs

This appendix presents proofs of the results in this article. They are grouped
into sections by topic, with some technical supporting lemmas separated into
their own sections.

9.1. Proof of Theorem 2.1

Proof. First

df(λ) = σ−2
S tr(cov(XS β̂, YS)) = σ−2

S tr(XSWλ(X
T

SXS)
−1XT

Sσ
2
S) = tr(Wλ).

Next with XT = XS , and M = V
1/2
S V −1

B V
1/2
S ,

tr(Wλ) = tr(VS + λVSV
−1
B VS + λVS)

−1(VS + λVSV
−1
B VS).

We place V
1/2
S V

−1/2
S between these factors and absorb them left and right. Then

we reverse the order of the factors and repeat the process, yielding

tr(Wλ) = tr(I + λM + λI)−1(I + λM).

Writing M = Udiag(ν1, . . . , νd)U
T for an orthogonal matrix U and simplifying

yields the result.

9.2. Proof of Theorem 2.2

Proof. First E(‖XT β̂−XTβ‖2) = tr(VSE((β̂−β)(β̂−β)T)). Next usingW = Wλ,
we make a bias-variance decomposition,

E
(
(β̂ − β)(β̂ − β)T

)
= (I −W )γγT(I −W )T + cov(Wβ̂S) + cov((I −W )β̂B)

= σ2
SWV −1

S WT + (I −W )Θ(I −W )T,

for Θ = γγT + σ2
BV

−1
B . Therefore E

(
‖XS(β̂ − β)‖2

)
= σ2

Str(VSWV −1
S WT) +

tr(Θ(I −W )TVS(I −W )).
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Now we introduce W̃ = V
1/2
S WV

−1/2
S finding

W̃ = V
1/2
S (VB + λVS + λVB)

−1(VB + λVS)V
−1/2
S

= (I + λM + λI)−1(I + λM)

= UD̃UT,

where D̃ = diag((1 + λνj)/(1 + λ+ λνj)). This allows us to write the first term
of the mean squared error as

σ2
Str(VSWV −1

S WT) = σ2
Str(W̃W̃T) = σ2

S

d∑

j=1

(1 + λνj)
2

(1 + λ+ λvj)2
.

For the second term, let Θ̃ = V
1/2
S ΘV

1/2
S . Then

tr
(
Θ(I −W )TVS(I −W )

)
= tr(Θ̃(I − W̃ )T(I − W̃ ))

= tr(Θ̃U(I − D̃)2UT)

= λ2
d∑

k=1

uT

kV
1/2
S ΘV

1/2
S uk

(1 + λ+ λνk)2
.

9.3. Derivation of equation (3.3)

We suppose for simplicity that n = rK for an integer r, so the K folds have
equal size. In that case ȲS,−k = (nȲS − rȲS,k)/(n− r). Now

ωcv =

∑
k(ȲS,−k − ȲB)(ȲS,k − ȲB)∑

k(ȲS,−k − ȲB)2
(9.1)

After some algebra, the numerator of (9.1) is

K(ȲS − ȲB)
2 − r

n− r

K∑

k=1

(ȲS,k − ȲS)
2

and the denominator is

K(ȲS − ȲB)
2 +

(
r

n− r

)2 K∑

k=1

(ȲS,k − ȲS)
2.

Letting δ̂0 = ȲB − ȲS and σ̂2
S,K = (1/K)

∑K
k=1(ȲS,k − ȲS)

2, we have

ωcv =
δ̂20 − σ̂2

S,K/(K − 1)

δ̂20 + σ̂2
S,K/(K − 1)2

.

The only quantity in ωcv which depends on the specific K-way partition used
is σ̂2

S,K . If the groupings are chosen by sampling without replacement, then
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under this sampling,

E(σ̂2
S,K) = E((ȲS,1 − ȲS)

2) =
s2S
r
(1− 1/K)

using the finite population correction for simple random sampling, where s2S =
σ̂2
Sn/(n− 1). This simplifies to

E(σ̂2
S,K) = σ̂2

S

n

n− 1

1

r

K − 1

K
= σ̂2

S

K − 1

n− 1
.

Replacing σ̂2
S,K in ωcv by its expectation yields (3.3).

9.4. Proof of Theorem 3.1

Proof. If λ > nN |ȲB − ȲS |/(n + N) then we may find directly that with any
value of δ > 0 and corresponding µ given by (3.5), the derivative of (3.4) with

respect to δ is positive. Therefore δ̂ ≤ 0 and a similar argument gives δ̂ ≥ 0, so
that δ̂ = 0 and then µ̂ = (nȲS +NȲB)/(n+N).

Now suppose that λ ≤ λ∗. We verify that the quantities in (3.6) jointly satisfy

equations (3.5). Substituting δ̂ from (3.6) into the first line of (3.5) yields

nȲS +N(ȲS + λ(N + n)η/(Nn))

n+N
= ȲS +

λ

n
sign(ȲB − ȲS),

matching the value in (3.6). Conversely, substituting µ̂ from (3.6) into the second
line of (3.5) yields

Θ
(
ȲB − µ̂;

λ

N

)
= Θ

(
ȲB − ȲS − λ

n
sign(ȲB − ȲS);

λ

N

)
. (9.2)

Because of the upper bound on λ, the result is ȲB− ȲS−λ(1/n+1/N)sign(ȲB−
ȲS) which matches the value in (3.6).

9.5. Derivation of equation (3.7)

Let f = n/(n + N) be the fraction of the pooled data coming from the small
sample and F = 1−f be the fraction from the large sample. Define D = ȲB−ȲS

and c = λ/(nF ) = λ(1/n+ 1/N). Then

µ̂ =

{
ȲS + λ/n sign(D), |D| ≥ c

f ȲS + FȲB , |D| ≤ c

= FȲB + fȲS + ((λ/n)sign(D)− FD)1|D|≥c.

We replace ȲB and ȲS by linear combinations of D and another variable H
chosen to be statistically independent of D. Specifically, H = ȲB + αȲS for
α = (σ2

B/N)/(σ2
S/n). The inverse transformation is

(
ȲS

ȲB

)
=

1

α+ 1

(
−1 1
α 1

)(
D
H

)
.
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In terms of these independent variables we have

µ̂ = c0D + c1H + ((λ/n)sign(D)− FD)1|D|≥c

where c0 = α/(α+ 1)− f , and c1 = 1/(α+ 1).
Without loss of generality, µ = 0. Then D ∼ N (δ, σ2

S/n + σ2
B/N) indepen-

dently of H ∼ N (δ, α2σ2
S/n+ σ2

B/N). After some algebra,

E(µ̂− µ)2 = c20E(D
2) + c21E(H

2) + 2c0c1E(D)E(H)

+ (λ/n)2E(1|D|≥c)− 2c1FE(H)E
(
D1|D|≥c

)

+ F (F − 2c0)E
(
D21|D|≥c

)

+ 2c1(λ/n)E(H)E
(
sign(D)1|D|≥c

)

+ 2(λ/n)(c0 − F )E
(
D sign(D)1|D|≥c

)
.

(9.3)

In addition to first and second moments of D and H , we need some expec-
tations of functions of D involving the sign function and some indicators. They
are given by Lemma 9.1 below. Let ϕ and Φ be the probabilty density and
cumulative distribution functions respectively of the N (0, 1) distribution.

Lemma 9.1. Let D ∼ N (δ, τ2). Define η+ = (δ − c)/τ , η− = (−δ − c)/τ ,
Φ± = Φ(η±) and ϕ± = ϕ(η±). Then for c ≥ 0,

E(1|D|≥c) = Φ+ +Φ− (9.4)

E(D1|D|≥c) = δ(Φ+ +Φ−) + τ(ϕ+ − ϕ−) (9.5)

E(D21|D|≥c) = (δ2 + τ2)(Φ+ +Φ−) (9.6)

+ τc(ϕ+ + ϕ−) + τδ(ϕ+ − ϕ−)

E(sign(D)1|D|≥c) = Φ+ − Φ−, and (9.7)

E(D sign(D)1|D|≥c) = δ(Φ+ − Φ−) + τ(ϕ+ + ϕ−). (9.8)

Proof. Equation (9.4) is almost immediate. For Z ∼ N (0, 1), using Chapter 2.5.1
of Patel and Read (1996) yields E(Z1Z≤c) = g1(c) ≡ −ϕ(c) and E(Z21Z≤c) =
g2(c) ≡ Φ(c)− cϕ(c). For D ∼ N (δ, τ2) we may write D = δ + τZ and then

E(D1D≤c) = g1(c, δ, τ) ≡ δΦ
(c− δ

τ

)
+ τg1

(c− δ

τ

)

= δΦ
(c− δ

τ

)
− τϕ

(c− δ

τ

)
, and

E(D21D≤c) = g2(c, δ, τ) ≡ δ2Φ
(c− δ

τ

)
+ 2δτg1

(c− δ

τ

)
+ τ2g2

(c− δ

τ

)

= (δ2 + τ2)Φ
(c− δ

τ

)
− τ(c+ δ)ϕ

(c− δ

τ

)
.

For c > 0, we write 1|D|≥c = 1D≤−c + 1D≥c = 1D≤−c + 1−D≤−c, and so
E(D1|D|≥c) = g1(−c, δ, τ) − g1(−c,−δ, τ) which simplifies to (9.5). Similarly
E(D21|D|≥c) = g2(−c, δ, τ) + g2(−c,−δ, τ) which simplifies to (9.6).

Equation (9.7) follows upon writing 1|D|≥c = 1D≥c − 1−D≥c. For (9.8) that
step yields E(D sign(D)1|D|≥c) = g1(−c,−δ, τ)− g1(−c, δ, τ)
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The formula in the article follows by making substitutions of the quantities
from Lemma 9.1 into equation (9.3). It also uses the identity c0 + c1 = F .

9.6. Supporting lemmas for inadmissibility

In this section we first recall Stein’s Lemma. Then we prove two technical lem-
mas used in the proof of Theorem 5.1.

Lemma 9.2. Let Z ∼ N (0, 1) and let g : R → R be an indefinite integral of the
Lebesgue measurable function g′, essentially the derivative of g. If E(|g′(Z)|) <
∞ then

E(g′(Z)) = E(Zg(Z)).

Proof. Stein (1981).

Lemma 9.3. Let η ∼ N (0, Id), b ∈ R
d, and let A > 0 and B > 0 be constants.

Let

Z = η +
A(b − η)

‖b− η‖2 +B
.

Then

E(‖Z‖2) < d+ E

(
A(A+ 4− 2d)

‖b− η‖2 +B

)
.

Proof. First,

E(‖Z‖2) = d+ E

(
A2‖b− η‖2

(‖b− η‖2 +B)2

)
+ 2A

d∑

k=1

E

(
ηk(bk − ηk)

‖b− η‖2 +B

)
.

Now define

g(ηk) =
bk − ηk

‖b− η‖2 +B
=

bk − ηk
(bk − ηk)2 + ‖b−k − η−k‖2 +B

.

By Stein’s lemma (Lemma 9.2), we have

E

(
ηk(bk − ηk)

‖b− η‖2 +B

)
= E(g′(ηk)) = E

(
2(bk − ηk)

2

(‖b− η‖2 +B)2
− 1

‖b− η‖2 +B

)

and thus

E(‖Z‖2) = d+ E

(
(4A+A2)‖b− η‖2
(‖b− η‖2 +B)2

− 2Ad

‖b− η‖2 +B

)

= d+ E

(
(4A+A2 − 2Ad)

‖b− η‖2 + B
− (4A+A2)B

(‖b− η‖2 +B)2

)
,

after collecting terms.
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Lemma 9.4. For integer m ≥ 1, let Q ∼ χ2
(m), C > 1, D > 0 and put

Z =
Q(C −m−1Q)

Q+D
.

Then

E(Z) ≥ (C − 1)m− 2

m+ 2 +D
.

and so E(Z) > 0 whenever C > 1 + 2/m.

Proof. The χ2
(m) density function is pm(x) = (2m/2−1Γ(m2 ))

−1xm/2−1e−x/2.
Thus

E(Z) =
1

2m/2Γ(m2 )

∫ ∞

0

x(C −m−1x)

x+D
xm/2−1e−x/2 dx

= m

∫ ∞

0

C −m−1x

x+D
pm+2(x) dx

≥ m
C − (m+ 2)/m

m+ 2 +D

by Jensen’s inequality.

9.7. Proof of Theorem 5.1

We prove this first for ω̂plug,h = ω̂plug, that is, taking h(σ̂2
B) = dσ̂2

B/n. We also
assume at first that VB = NΣ but remove the assumption later.

Note that β̂S = β + (XT

SXS)
−1XT

S εS and β̂B = β + γ + (XT

BXB)
−1XT

BεB. It
is convenient to define

ηS = Σ1/2(XT

SXS)
−1XT

S εS and ηB = Σ1/2(XT

BXB)
−1XT

BεB.

Then we can rewrite β̂S = β +Σ−1/2ηS and β̂B = β + γ +Σ−1/2ηB . Similarly,
we let

σ̂2
S =

‖YS −XSβ̂S‖2
n− d

and σ̂2
B =

‖YB −XBβ̂B‖2
N − d

.

Now (ηS , ηB , σ̂
2
S , σ̂

2
B) are mutually independent, with

ηS ∼ N
(
0,

σ2
S

n
Id

)
, ηB ∼ N

(
0,

σ2
B

N
Id

)
,

σ̂2
S ∼ σ2

S

n− d
χ2
(n−d), and σ̂2

B ∼ σ2
B

N − d
χ2
(N−d).

We easily find that E(‖Xβ̂S −Xβ‖2) = dσ2
S/n. Next we find ω̂ and a bound

on E(‖Xβ̂(ω̂)−Xβ‖2).
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Let γ∗ = Σ1/2γ so that γ̂ = β̂B − β̂S = Σ−1/2(γ∗ + ηB − ηS). Then

ω̂ = ω̂plug =
γ̂TΣγ̂ + dσ̂2

B/N

γ̂TΣγ̂ + dσ̂2
B/N + dσ̂2

S/n

=
‖γ∗ + ηB − ηS‖2 + dσ̂2

B/N

‖γ∗ + ηB − ηS‖2 + d(σ̂2
B/N + σ̂2

S/n)
.

Now we can express the mean squared error as

E(‖Xβ̂(ω̂)−Xβ‖2) = E(‖XΣ−1/2(ω̂ηS + (1− ω̂)(γ∗ + ηB))‖2)
= E(‖ω̂ηS + (1− ω̂)(γ∗ + ηB)‖2)
= E(‖ηS + (1− ω̂)(γ∗ + ηB − ηS)‖2)

= E

(∥∥∥ηS +
(γ∗ + ηB − ηS)dσ̂

2
S/n

‖γ∗ + ηB − ηS‖2 + d(σ̂2
B/N + σ̂2

S/n)

∥∥∥
2
)
.

To simplify the expression for mean squared error we introduce

Q = mσ̂2
S/σ

2
S ∼ χ2

(m)

η∗S =
√
nηS/σS ∼ N (0, Id),

b =
√
n(γ∗ + ηB)/σS ,

A = dσ̂2
S/σ

2
S = dQ/m, and

B = nd(σ̂2
B/N + σ̂2

S/n)/σ
2
S

= d((n/N)σ̂2
B/σ

2
S +Q/m).

The quantities A and B are, after conditioning, the constants that appear in
technical Lemma 9.3. Similarly C and D introduced below match the constants
used in Lemma 9.4.

With these substitutions and some algebra,

E(‖Xβ̂(ω̂)−Xβ‖2) = σ2
S

n
E

(∥∥∥∥η
∗
S +

A(b − η∗S)

‖b− η∗S‖2 +B

∥∥∥∥
2
)

=
σ2
S

n
E

(
E

(∥∥∥∥η
∗
S +

A(b − η∗S)

‖b− η∗S‖2 +B

∥∥∥∥
2 ∣∣∣ ηB , σ̂2

S , σ̂
2
B

))
.

We now apply the two technical lemmas from Section 9.6.
Since η∗S is independent of (b, A,B) and Q ∼ χ2

(m), by Lemma 9.3, we have

E

(∥∥∥∥η
∗
S +

A(b − η∗S)

‖b− η∗S‖2 +B

∥∥∥∥
2 ∣∣∣ ηB, σ̂2

S , σ̂
2
B

)
<d+E

(
A(A+ 4− 2d)

‖b− η∗S‖2 +B

∣∣∣ ηB , σ̂2
S , σ̂

2
B

)
.

Hence

∆ ≡ E(‖Xβ̂S −Xβ‖2)− E(‖Xβ̂(ω̂)−Xβ‖2)
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>
σ2
S

n
E

(
A(2d−A− 4)

‖b− η∗S‖2 +B

)

=
dσ2

S

n
E

(
Q(2−Q/m− 4/d)

‖b− η∗S‖2m/d+ (B −A)m/d+Q

)

=
dσ2

S

n
E

(
Q(C −Q/m)

Q+D

)
(9.9)

where C = 2− 4/d and D = (m/d)(‖b− η∗S‖2 + dnN−1σ̂2
B/σ

2
S).

Now suppose that d ≥ 5. Then C ≥ 2 − 4/5 > 1 and so conditionally on
ηS , ηB, and σ̂2

B, the requirements of Lemma 9.4 are satisfied by C, D and Q.
Therefore

∆ ≥ dσ2
S

n
E

(
m(1− 4/d)− 2

m+ 2 +D

)
(9.10)

where the randomness in (9.10) is only through D which depends on η∗S , ηB
(through b) and σ̂2

B. By Jensen’s inequality

∆ >
dσ2

S

n

m(1− 4/d)− 2

m+ 2 + E(D)
≥ 0 (9.11)

wheneverm(1−4/d) ≥ 2. The first inequality in (9.11) is strict because var(D) >
0. Therefore ∆ > 0. The condition on m and d holds for anym ≥ 10 when d ≥ 5.

For the general plug-in ω̂plug,h we replace dσ̂2
B/N above by h(σ̂2

B). This quan-
tity depends on σ̂2

B and is independent of σ̂2
S , ηB and ηS . It appears within B

where we need it to be non-negative in order to apply Lemma 9.3. It also ap-
pears within D which becomes (m/d)(‖b − η∗S‖2 + nh(σ̂2

B)/σ
2
S). Even when we

take var(h(σ̂2
B)) = 0 we still get var(D) > 0 and so the first inequality in (9.11)

is still strict.
Now suppose that VB 6= NΣ. The distributions of ηS , σ̂

2
S and σ̂2

B remain
unchanged but now

ηB ∼ N
(
0,Σ1/2V −1

B Σ1/2σ2
B

)

independently of the others. The changed distribution of ηB does not affect the
application of Lemma 9.3 because that lemma is invoked conditionally on ηB .
Similarly, Lemma 9.4 is applied conditionally on ηB . The changed distribution
of ηB changes the distribution of D but we can still apply (9.11).

The expectation at (9.9) is negative when d = 4, as can be verified by a
one dimensional quadrature. For this reason, the inadmissibilty result requires
d > 4.

9.8. Proof of Theorem 6.1

Recall that β̂(W ) = Wβ̂S + (I − W )β̂B . The first two moments of β̂(W ) are

E(β̂(W )) = β + (I −W )γ, and

var(β̂(W )) = σ2
SWVSW

T + σ2
B(I −W )VB(I −W )T.
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The loss is L(W ) = E((β̂(W )− β)TVT (β̂(W )− β)) and

L(W )= tr(γγTVT )+ tr(WVTW
TγγT)− 2tr(WVT γγ

T)

+ σ2
Str(WVSW

TVT )+σ2
Btr(VB)+σ2

Btr(WVBW
TVT )− 2σ2

Btr(WVBVT ).

We will use two rules from Brookes (2011) for matrix differentials. If A, B
and C don’t depend on the matrix X then the differential of tr(XA) and tr(AX)
are both AdX , and, the differential of tr(AXBXTC) is BXTCA+BTXTATCT

times dX .
The differential of L(W ) when W changes is

VTW
TγγT + V T

T WTγγT − 2VTγγ
T

+ σ2
S

(
VSW

TVT + V T

S WTV T

T

)

+ σ2
B

(
VBW

TVT + V T

BWTV T

T

)
− 2σ2

BVBVT

times dW . Let W ∗ be the hypothesized optimal matrix given at (6.1). It is
symmetric, as are VS , VB and VT . We may therefore write the differential at
that matrix as

2(GW ∗ −G+ σ2
SVSW

∗ + σ2
BVBW

∗ − σ2
BVB)VT

where G = γγT. This differential vanishes, showing that W ∗ satisfyies first order
conditions. The differential of this differential is 2(G+σ2

SVS+σ2
BVBW )VT which

is positive definite, and so W ∗ must be a minimum.
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