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Abstract: Professors Cai, Ren and Zhou ought to be congratulated for
writing such a wonderful expository paper on optimal estimation of high-
dimensional covariance and precision matrices. Nearly all optimality results
on large matrix estimation were established by the authors (and their co-
authors). Thus, they are the most appropriate team to write this much
needed review article. My discussion contains three sections.
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1. SURE information criteria

Cai, Zhang and Zhou (2010) developed the first minimax optimality result for
estimating bandable covariance matrices. They derived the minimax rates of
convergence under the matrix �2, �1 and Frobenius norms where the parameter
space is defined as

Fα = {Σ : max
j

∑
i

{|σij | : |i− j| > k} ≤ Mk−α ∀k, andλmax(Σ) ≤ M0}. (1)

A tapering covariance estimator was constructed to achieve the minimax bound
and its tapering bandwidth differs under difference matrix norms. The optimal

tapering bandwidth is n
1

2α+2 under Frobenius norm and n
1

2α+1 under the �2
norm.
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The �2 norm is a preferred metric if the estimated covariance matrix is used
in another estimation problem. Frobenius norm is a good metric for checking
the goodness of fit. Frobenius norm can serve as a very good tuning metric for
selecting a covariance matrix estimator that can perform well under the �2 norm.
There are at least two reasons for such a practice. First, an optimal covariance
matrix estimator under Frobenius norm should also perform very well (although
may not be optimal) under the �2 norm. For example, under Frobenius norm the

minimax rate optimal tapering estimator uses a bandwidth n
1

2α+2 and its �2 risk

is bounded by O(n− α
α+1 + log(p)

n ). We can compare it to the minimax optimal

rate under the �2 norm: O(n− 2α
2α+1 + log(p)

n ). The difference is very small for large
α. Let log(p) = nγ for some 0 < γ < 1, then for 1

α+1 � γ, both bounds reduce

to O(nγ−1). Second, the Frobenius norm is smoother than the �2 norm which
has an important practical consequence. It has been empirically demonstrated
in Yi and Zou (2013) that when using cross-validation to select the tapering
bandwidth, the chosen bandwidth under the �2 norm is highly variable while
the chosen bandwidth under Frobenius norm is more stable.

Li and Zou (2014) extended Stein’s unbiased risk estimation (SURE) theory
to bandable covariance matrices estimation and proved its asymptotical opti-
mality under the Frobenius norm. To provide a unified treatment of the banding
estimator (Wu and Pourahmadi, 2003; Bickel and Levina, 2008) and the taper-
ing estimator (Cai, Zhang and Zhou, 2010), we consider the generalized tapering
estimator of the covariance matrix:

Σ̂
(τ)

=
(
σ̂
(τ)
ij

)
1≤i,j≤p

=
(
ω
(τ)
ij σ̃ij

)
1≤i,j≤p

(2)

where Σ̃ is the MLE of Σ and the generic tapering weights (ω
(τ)
ij )1≤i,j≤p should

satisfy

(i) ω
(τ)
ij = 1 for |i− j| ≤ � τ

2 �,
(ii) ω

(τ)
ij = 0 for |i− j| ≥ τ ,

(iii) 0 ≤ ω
(τ)
ij ≤ 1 for � τ

2 � < |i− j| < τ .

For any generalized tapering estimator Σ̂(τ), its Frobenius risk is R(τ) =
E(‖Σ̂(τ) − Σ‖2F ). It is shown that (Yi and Zou, 2013; Li and Zou, 2014)

R(τ) = E(SURE(τ)) (3)

SURE(τ) =
∑

1≤i,j≤p

(
n

n− 1
− ω

(τ)
ij )2σ̃2

ij (4)

+
∑

1≤i,j≤p

(2ω
(τ)
ij − n

n− 1
)(anσ̃

2
ij + bnσ̃iiσ̃jj)

with

an =
n(n− 3)

(n− 1)(n− 2)(n+ 1)
and bn =

n

(n+ 1)(n− 2)
. (5)
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We pick the best tapering estimator from the list of all tapering estimators by

minimizing SURE(τ) as a function of τ . The chosen tapering estimator is Σ̂
(τ̂n)

where
τ̂n = argmin

τ
SURE(τ). (6)

We call this method SURE tuning. The following theorem shows that SURE
tuning achieves the minimax optimal rate of convergence under Frobenius norm.

Theorem 1 (Li and Zou, 2014). Assume n ≤ p and log p = o(n), then

supΣ∈Fα
E‖Σ̂

(τ̂n) −Σ‖2F 
 pn−(2α+1)/2(α+1).

If the true covariance matrix is exactly banded with a bandwidth k0, then
it is shown that SURE tuning almost surely selects a larger bandwidth. See
Theorem 6 in Li and Zou (2014). In order to achieve consistent selection, Li and
Zou (2014) further modified SURE criterion as follows:

SURElogn(τ) =
∑

1≤i,j≤p

(
n

n− 1
− ω

(τ)
ij )2σ̃2

ij

+
∑

1≤i,j≤p

(log(n)ω
(τ)
ij − n

n− 1
)(anσ̃

2
ij + bnσ̃iiσ̃jj). (7)

Note that we replace the constant 2 with log(n) to go from SURE to SURElogn.
Since the true covariance matrix is banded, we select a banding estimator from

the list of all banding estimators. So ω
(τ)
ij = I(|i− j| < τ).

Theorem 2 (Li and Zou, 2014). Let the true covariance matrix Σ be a banded
matrix with bandwidth k0 such that σij = 0 if |i−j| ≥ k0 and min|i−j|≤k0−1 σ

2
ij �

logn/n, where k0 is a constant doesn’t depend on n. If n ≤ pn and log pn = o(n),
k0 = argminτ SURElogn(τ) almost surely.

Theorem 1 and Theorem 2 suggest that SURE and SURElog n can be regarded
as AIC and BIC for estimating large bandable covariance matrices, respectively.

2. Sparse recovery in precision matrix estimation

Sparse precision matrix estimation has received a lot of attention recently due
to its immediate application to graphical models. A sparse precision matrix of a
normal distribution can be easily turned into a Gaussian graphical model where
the nonzero entries in the precision matrix correspond to the edges in the graph.
So far, we have seen three approaches for constructing a sparse precision matrix
estimator. The first one is by using a sparse penalized likelihood (Yuan and Lin,
2007; Ravikumar et al., 2008; Rothman et al., 2008; Friedman et al., 2008). The
second is the so-called neighborhood regression estimation where the method
tries to estimate each column (or row) of the precision matrix one by one and
then combines them into a matrix. See the neighborhood lasso regression esti-
mator (Meinshausen and Bühlmann, 2006), the neighborhood Dantzig selector
(Yuan, 2010) and the neighborhood scaled lasso estimator (Sun and Zhang,
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2012). The third approach uses a direct constrained minimization criterion, see
CLIME by Cai, Liu and Luo (2011). Each approach has its own distinct merits
and drawbacks. The penalized loss approach always gives a positive definite ma-
trix, while the other two do not even guarantee the estimator is symmetric and
some postprocessing is needed. The neighborhood approach is computationally
very friendly: there are many software for doing sparse penalized regression. The
computation of CLIME can be done in parallel as well and CLIME enjoys a nice
rate of convergence without assuming any difficult structure assumption, such
as the irrepresentable conditions required in the lasso penalized likelihood and
neighborhood lasso regression.

Fan, Xue and Zou (2014) proposed a hybrid method to obtain a sparse pre-
cision matrix estimator that is also positive definite and enjoys strong oracle
property without requiring the irrepresentable condition. The hybrid estimator
uses the CLIME estimator as its initial value and then performs the weighted
�1 penalized likelihood estimation twice.

The hybrid precision matrix estimator by Fan, Xue and Zou (2014)

1. Initialize Θ̂
(0)

= Θ̂
clime

where

Θ̂
clime

= argmin
Θ

‖Θ‖1 subject to ‖Σ̂Θ− I‖max ≤ λclime. (8)

2. Compute ŵ
(1)
ij = P

′

λ(|θ̂
(0)
ij |) and solve Θ̂

(1)
from

Θ̂
(1)

= arg min
Θ�0

⎧⎨
⎩− log det(Θ) + 〈Θ, Σ̂n〉+

∑
(i,j),i �=j

λŵ
(1)
ij |θij |

⎫⎬
⎭ . (9)

3. Compute ŵ
(2)
ij = P

′

λ(|θ̂
(1)
ij |) and solve Θ̂

(2)
from

Θ̂
(2)

= arg min
Θ�0

⎧⎨
⎩− log det(Θ) + 〈Θ, Σ̂n〉+

∑
(i,j),i �=j

λŵ
(2)
ij |θij |

⎫⎬
⎭ . (10)

4. Report Θ̂(λclime, λ) = Θ̂
(2)

as the final estimator.

We need some notation to present the theorem justifying the above hybrid
estimator. Let the true precision matrix Θ� = (θ�jk)q×q with the support set
A = {(j, k) : θ�jk �= 0}. Write L = ‖Θ�‖1, ‖Θ�

A‖min = min{|θ�jk| : i, j ∈ A},
s = #{(j, k) : j ≤ k, θ�jk �= 0} and d = maxj #{k : θ�jk �= 0}. LetH� = Σ� ⊗Σ�

and define

K1 = ‖Σ�‖�∞ , K2 = ‖(H�
AA)

−1‖�∞ , and K3 = ‖H�
AcA(H

�
AA)

−1‖�∞ .

The theoretical oracle estimator is defined as

Θ̂
oracle

= arg min
Θ�0: ΘAc=0

{
− log det(Θ) + 〈Θ, Σ̂n〉

}
. (11)
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Theorem 3 (Fan, Xue and Zou, 2014). If
‖Θ�

A‖min

a+1 > λ > 4L
a0

λclime, then

Θ̂(λclime, λ) is equal to the oracle estimator Θ̂
oracle

with probability at least
1− δ1 − δ2 − C0p exp(− c0n

L2 λ
2
clime), where

δ1 = C0s · exp
(
−c0

4
n ·min

{ a21λ
2

(2K3 + 1)2
,

1

9K2
1K

2
2d

2
,

1

9K6
1K

4
2d

2

})

+ C0(p− s) · exp
(
−c0a

2
1

4
nλ2

)
,

δ2 = C0s · exp
(
− c0n

4K2
2

·min
{ 1

9K2
1d

2
,

1

9K6
1K

2
2d

2
, (‖Θ�

A‖min − aλ)2
})

,

and C0, c0 are constants.

3. Semiparametric Gaussian copulas

In many covariance/precision matrices estimation problems the multivariate
normal distribution assumption about the data is not needed and the rates of
convergence can be established by assuming certain tail probability bounds. The
authors have explained this fact clearly in this review article. On the other hand,
it is often desirable to have normality in practice. For example, normality is a
key link that bridges a sparse precision matrix and a Gaussian graphical model.
Even from theoretical viewpoint, normality is also helpful, because it yields
faster rates of convergence than polynomial tail bounds. The difficulty here
is that observed data often violate normality: the distribution can be heavily
skewed, multimodal or have heavy tails.

Semiparametric Gaussian copulas offer a nice compromise between the reality
and normality by assuming the data after univariate monotone transformations
will follow a multivariate normal distribution.

The Semiparametric Gaussian Copula Model: (X1, . . . , Xp)
follows a p-dimensional semiparametric Gaussian copula, if there
exists a vector of unknown univariate monotone increasing transfor-
mations, denoted by (f1, . . . , fp), such that the transformed random
vector follows a multivariate normal distribution with mean 0 and
covariance Σ:

(f1(X1), . . . , fp(Xp)) ∼ Np(0,Σ), (12)

where without loss of generality the diagonals of Σ are equal to 1.

Note that the marginal normality is always achieved by transformations, so the
key assumption is that those marginally normal-transformed variables are jointly
normal, which is the parametric component of the semiparametric Gaussian
copula model.

It is interesting to see that the conditional dependence/independence rela-
tions among Xjs can be seen from the precision matrix Σ−1. Hence, the graph-
ical model problem is still equivalent to the problem of estimating a sparse
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precision matrix under the semiparametric Gaussian copula model. If we knew
the transformation functions, then we could work on the transformed data and
apply methods such as the penalized likelihood and CLIME to estimate Σ−1.
Xue and Zou (2012) showed a systematic rank-based inference approach to es-
timating Σ−1 without involving any estimators of these p many univariate non-
parametric monotone functions. Define the rank correlation matrix as follows:

R̂
s
= (r̂sij)1≤i,j≤p. (13)

where
r̂sij = 2 sin(

π

6
r̂ij). (14)

and r̂ij is the Spearman’s correlation between variables i and j. One can feed

R̂
s
to a regular sparse precision matrix method to obtain the corresponding

rank-based counterpart. For example, the rank-based graphical lasso estimator
is defined as

Θ̂
s

g = arg min
Θ�0

⎧⎨
⎩− log det(Θ) + 〈R̂s

,Θ〉+ λ
∑
i �=j

|θij |

⎫⎬
⎭ . (15)

The rank-based CLIME is defined as

Θ̂
s

c = argmin
Θ

‖Θ‖1 subject to ‖R̂s
Θ− I‖max ≤ λ. (16)

Xue and Zou (2012) showed that the rank-based estimators work as well as the
corresponding “oracle” estimators by using the transformed “oracle” data.

Rank-based estimation of Σ under bandable or sparse structure assumptions
has been considered in Xue and Zou (2014) and Xue and Zou (2013).

Mai and Zou (2015) used the semiparametric copula model to develop a
sparse semiparametric discriminant analysis classifier where the estimation of
the monotone transformation functions are required. Mai and Zou (2015) de-
rived a uniformly consistent estimator of (f1, . . . , fp) under the assumption that
log(p) = O(nγ) with γ < 1

3 . It would be interesting to further raise the upper
bound on γ to 1.

Acknowledgements

I thank Professor George Michailidis for inviting me to contribute this discus-
sion.

References

Fan, J., Xue, L. and Zou, H. (2014). Strong Oracle Optimality of Folded
Concave Penalized Estimation. Annals of Statistics 42 819–849. MR3210988

Li, D. and Zou, H. (2014). SURE Information Criteria for Large Covariance
Matrix Estimation and Their Asymptotic Properties. arXiv:1406.6514.

http://www.ams.org/mathscinet-getitem?mr=3210988
http://arxiv.org/abs/1406.6514


66 H. Zou

Mai, Q. and Zou, H. (2015). Sparse Semiparametric Discriminant Analysis.
Journal of Multivariate Analysis 135 175–188. MR3306434

Xue, L. and Zou, H. (2012). Regularized Rank-based Estimation of High-
dimensional Nonparanormal Graphical Models. Annals of Statistics 40 2541–
2571. MR3097612

Xue, L. and Zou, H. (2013). Optimal Estimation of Sparse Correlation Matri-
ces of Semiparametric Gaussian Copulas. Statistics and Its Interface 7 201–
209. MR3199378

Xue, L. and Zou, H. (2014). Rank-based Tapering Estimation of Bandable
Correlation Matrices. Statistica Sinica 24 83–100. MR3183675

Yi, F. and Zou, H. (2013). SURE-tuned Tapering Estimation of Large Co-
variance Matrices. Computational Statisticsa and Data Analysis 58 339–351.
MR2997947

http://www.ams.org/mathscinet-getitem?mr=3306434
http://www.ams.org/mathscinet-getitem?mr=3097612
http://www.ams.org/mathscinet-getitem?mr=3199378
http://www.ams.org/mathscinet-getitem?mr=3183675
http://www.ams.org/mathscinet-getitem?mr=2997947

	SURE information criteria
	Sparse recovery in precision matrix estimation
	Semiparametric Gaussian copulas
	Acknowledgements
	References

