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Abstract: In this paper we introduce randomized t-type statistics that
will be referred to as randomized pivots. We show that these randomized
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This constitutes a desirable result when a relatively small number of data is
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approach taken is shown to relate naturally to estimating distributions of
both small and big data sets.
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1. Introduction

In this paper we address the problem of making inference about the population
mean when the available sample is either small or big. In case of having a
small sample, we develop a randomization technique that yields central limit
theorems (CLT’s) with a significantly smaller magnitude of error that would
compensate for the lack of sufficient information as a result of not having a
large number of observations. In case of having a relatively small sample, our
randomization technique provides an efficient alterative to the computationally
intensive bootstrap (cf. Efron [12] and Efron and Tibshirani [13]). Assigning
appropriate random weights to the data, the randomization approach used in
this paper yields the same asymptotic accuracy as that of the bootstrap without
a need for repeated re-sampling from the original data (cf. Hall [17] for details
on the asymptotic accuracy of the bootstrap).

For more on the bootstrap, we refer to Shao and Tu [26] and Lahiri [20] for
bootstrapping time series data. We note also that the randomly weighted pivotal
quantities that are to be introduced in (3) and (4) are normalized randomly
weighted partial sums of the original data. This, in turn, suggests a closeness in
nature between our approach to creating more accurate pivots to that of the so-
called weighted bootstrap (cf., for example, Arenal-Gutiérrez and Matrán [1],
Barbe and Bertail [2], Csörgő et al. [7], Mason and Newton [21] and Mason
and Shao [22]). Despite the mentioned similarity, our viewpoint in this article
is fundamentally different from the bootstrap. Unlike the bootstrap, we use
randomization to create direct more accurate pivots for the parameter of interest
in hand, i.e., the mean. To illustrate the idea, we mention that the weighted
t-statistic as in (3) is used as a direct pivot for the sample mean X̄n rather
than being used to estimate the cut-off points of the sampling distribution of
the classical t-pivot for the mean, as it is the case in the bootstrap. In contrast
we introduce a randomized and more accurate direct pivot, as in (4), for the
population mean.

The randomization framework in this paper also accommodates the super-
population perspective in which a finite population of numbers is viewed as
a random sample drawn from an imaginary super-population (cf. Hartley and
Silken [18]). Adopting this view, via randomization, we also study important
characteristics, such as the mean and distribution, of a finite population in this
context.

Unless stated otherwise, X,X1, . . . throughout are assumed to be indepen-
dent random variables with a common distribution function F (i.i.d. random
variables), mean µ := EXX and variance 0 < σ2 := EX(X − µ)2 < +∞. Based
on X1, . . . , Xn, a random sample on X , for each integer n ≥ 1, define

X̄n :=

n
∑

i=1

Xi

/

n and S2
n :=

n
∑

i=1

(Xi − X̄n)
2
/

n,

the sample mean and sample variance, respectively, and consider the classical
Student t-statistic
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Tn(X) :=
X̄n

Sn/
√
n
=

∑n
i=1 Xi

Sn
√
n

(1)

that, in turn, on replacing Xi by Xi − µ, 1 ≤ i ≤ n, yields

Tn(X − µ) :=
X̄n − µ

Sn/
√
n

=

∑n
i=1(Xi − µ)

Sn
√
n

, (2)

the classical Student t-pivot for the population mean µ.

Define now T
(1)
mn,n and G

(1)
mn,n, randomized versions of Tn(X) and Tn(X − µ)

respectively, as follows:

T (1)
mn,n :=

X̄mn,n − X̄n

Sn

√

∑n
i=1(

w
(n)
i

mn
− 1

n )
2

=

∑n
i=1

(w
(n)
i

mn
− 1

n

)

Xi

Sn

√

∑n
i=1(

w
(n)
i

mn
− 1

n )
2

, (3)

G(1)
mn,n :=

∑n
i=1

∣

∣

w
(n)
i

mn
− 1

n

∣

∣

(

Xi − µ
)

Sn

√

∑n
i=1(

w
(n)
i

mn
− 1

n )
2

, (4)

where,

X̄mn,n :=

n
∑

i=1

w
(n)
i Xi/mn, (5)

is the randomized sample mean and the weights (w
(n)
1 , . . . , w

(n)
n ) have a multi-

nomial distribution of size mn :=
∑n

i=1 w
(n)
i with respective probabilities 1/n,

i.e.,

(w
(n)
1 , . . . , w(n)

n ) d
= multinomial(mn;

1

n
, . . . ,

1

n
).

The just introduced respective randomized T
(1)
mn,n and G

(1)
mn,n versions of

Tn(X) and Tn(X − µ) can be computed via re-sampling from the set of in-
dices {1, . . . , n} of X1, . . . , Xn with replacement mn times so that, for each

1 ≤ i ≤ n, w
(n)
i is the count of the number of times the index i of Xi is chosen

in this re-sampling process.

Remark 1.1. In view of the preceding definition of w
(n)
i , 1 ≤ i ≤ n, they

form a row-wise independent triangular array of random variables such that
∑n

i=1 w
(n)
i = mn and, for each n ≥ 1,

(w
(n)
1 , . . . , w(n)

n ) d
= multinomial(mn;

1

n
, . . . ,

1

n
),

i.e., the weights have a multinomial distribution of size mn with respective prob-

abilities 1/n. Clearly, for each n, w
(n)
i are independent from the random sample

Xi, 1 ≤ i ≤ n. Weights denoted by w
(n)
i will stand for triangular multinomial

random variables in this context throughout.
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Thus, T
(1)
mn,n and G

(1)
mn,n can simply be computed by generating, indepen-

dently from the data, a realization of the random multinomial weights (w
(n)
1 , . . . ,

w
(n)
n ) as in Remark 1.1.

Define the similarly computable further randomized versions T
(2)
mn,n andG

(2)
mn,n

of Tn(X) and Tn(X − µ) respectively, as follows:

T (2)
mn,n :=

X̄mn,n − X̄n

Smn,n

√

∑n
i=1(

w
(n)
i

mn
− 1

n )
2

=

∑n
j=1

(w
(n)
i

mn
− 1

n

)

Xi

Smn,n

√

∑n
i=1(

w
(n)
i

mn
− 1

n )
2

(6)

G(2)
mn,n :=

∑n
i=1

∣

∣

w
(n)
i

mn
− 1

n

∣

∣

(

Xi − µ
)

Smn,n

√

∑n
i=1(

w
(n)
i

mn
− 1

n )
2

, (7)

where S2
mn,n is the randomized sample variance, defined as

S2
mn,n :=

n
∑

i=1

w
(n)
i

(

Xi − X̄mn,n

)2/
mn. (8)

Unlike Tn(X) that can be transformed into Tn(X −µ), the Student pivot for
µ as in (2) (cf. Giné et al. [16] for the asymptotic equivalence of the two), its

randomized versions T
(1)
mn,n and T

(2)
mn,n do not have this straightforward property,

i.e., they do not yield a pivotal quantity for the population mean µ = EXX by

simply replacing each Xi by Xi − µ in their definitions. We introduced G
(1)
mn,n

and G
(2)
mn,n in this paper to serve as direct randomized pivots for the population

mean µ, while T
(1)
mn,n and T

(2)
mn,n will now be viewed on their own as randomized

pivots for the sample mean X̄n in case of a big data set.
Our Theorem 2.1 and its corollaries will explain the higher order accuracy

these randomized pivots provide for inference about the mean µ, as compared
to that provided by Tn(X − µ).

Among the many outstanding contributions in the literature studying the
asymptotic behavior of Tn(X) and Tn(X − µ), our main tool in this paper,
Theorem 2.1 below, relates mostly to Bentkus et al. [4], Bentkus and Götze [5],
Pinelis [24] and Shao [27].

A short outline of the contributions of this paper reads as follows.

In Section 2 we derive the rates of convergence for G
(i)
mn,n and T

(i)
mn,n, i = 1, 2,

via establishing Berry-Esséen type results in Theorem 2.1 and its Corollaries 2.1–

2.3. In Corollary 2.3 we show that, on takingmn = n, G
(i)
mn,n and T

(i)
mn,n, i = 1, 2,

converge, in distribution, to the standard normal at the rate of O(1/n). This rate
is significantly better than the best possible O(1/

√
n) rate of convergence under

similar moment conditions for the classical t-statistic Tn(X) and its Student
pivot Tn(X −µ), based on a random sample of size n. The latter O(1/

√
n) rate

is best possible in the sense that it cannot be improved without restricting the
class of distribution functions of the data, for example, to normal or symmetrical
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distributions. In section 2 we also present numerical studies that well support

our conclusion that, on taking mn = n, G
(i)
mn,n and T

(i)
mn,n, i = 1, 2, converge to

standard normal at a significantly faster rate than that of the classical CLT. In
Sections 4 and 5, the respective rates of convergence of the CLT’s in Section 2

will be put to significant use. In Section 4, G
(i)
mn,n, i = 1, 2, are studied as natural

asymptotic pivots for the population mean µ = EXX . In section 5, T
(i)
mn,n,

i = 1, 2, are studied as natural asymptotic pivots for the sample mean X̄n that
closely shadows µ, when dealing with big data sets of univariate observations
of n labeled units {X1, . . . , Xn}. In this case, instead of trying to process the
entire data set that may even be impossible to do, sampling it via generating
random weights independently from the data as in Remark 1.1 (cf. Section 5)

makes it possible to use T
(2)
mn,n to construct an interval estimation for the sample

mean X̄n based on significantly smaller sub-samples. The latter confidence set
for X̄n in turn will be seen to contain the population mean µ as well, and with
same rates of convergence, in terms mn and n, as those established for having
X̄n in there. In Section 6 the sample and population distribution functions are
studied along the lines of Sections 2–5. The proofs are given in Sections 7 and
Appendices A and B.

For throughout use, we let (ΩX ,FX , PX) denote the probability space of the
random variablesX,X1, . . ., and (Ωw,Fw, Pw) be the probability space on which
the weights

(

w
(1)
1 , (w

(2)
1 , w

(2)
2 ), . . . , (w

(n)
1 , . . . , w(n)

n ), . . .
)

are defined. In view of the independence of these two sets of random vari-
ables, jointly they live on the direct product probability space (ΩX ×Ωw,FX ⊗
Fw, PX,w = PX . Pw). For each n ≥ 1, we also let P.|w(.) stand for the conditional

probabilities given F
(n)
w := σ(w

(n)
1 , . . . , w

(n)
n ) with corresponding conditional ex-

pected value E.|w(.).

2. The rate of convergence of the CLT’s for G(i)
mn

and T (i)
mn

, i = 1, 2

One of the efficient tools to control the error when approximating the distri-
bution function of a statistic with that of a standard normal random variable
is provided by Berry-Esséen type inequalities (cf., e.g., Serfling [25]), which
provide upper bounds for the error of approximation for any finite number of
observations in hand. It is well known that, on assuming EX |X −µ|3 < +∞, as
the sample size n increases to infinity, the rate at which the Berry-Esséen upper
bound for sup−∞<t<+∞ |PX(Tn(X−µ) ≤ t)−Φ(t)| vanishes is O(n−1/2), where,
and also throughout, Φ stands for the standard normal distribution function.

Furthermore, the latter rate is best possible in the sense that it cannot be
improved without narrowing the class of distribution functions considered.

Our Berry-Esséen type inequalities for the respective conditional, given the

weights w
(n)
i ’s, distributions of G

(1)
mn,n and T

(1)
mn,n, as in (4) and (3) respectively,

and G
(2)
mn,n and T

(2)
mn,n, as in (7) and (6) respectively, read as follows.
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Theorem 2.1. Assume that EX |X |3 < +∞ and let Φ(.) be the standard normal
distribution function. Also, for arbitrary positive numbers δ, ε, let ε1, ε2 > 0
be so that δ > (ε1/ε)

2 + PX(|S2
n − σ2| > ε21) + ε2 > 0, where, for t ∈ R,

Φ(t− ε)− Φ(t) > −ε2 and Φ(t+ ε)− Φ(t) < ε2. Then, for all n,mn we have

(A) Pw

{

sup
−∞<t<+∞

∣

∣

∣
PX|w(G

(1)
mn,n ≤ t)− Φ(t)

∣

∣

∣
> δ

}

≤ δ−2
n (1− ε)−3(1− 1

n
)−3(

n

m3
n

+
n2

m3
n

){15m
3
n

n3
+

25m2
n

n2
+

mn

n
}

+ ε−2 m2
n

(1− 1
n )

{1− 1
n

n3m3
n

+
(1− 1

n )
4

m3
n

+
(mn − 1)(1− 1

n )
2

nm3
n

+
4(n− 1)

n3mn
+

1

m2
n

− 1

nm2
n

+
n− 1

n3m3
n

+
4(n− 1)

n2m3
n

− (1− 1
n )

2

m2
n

}

,

and also

(B) Pw

{

sup
−∞<t<+∞

∣

∣

∣
PX|w(T

(1)
mn,n ≤ t)− Φ(t)

∣

∣

∣
> ε

}

≤ δ−2
n (1− ε)−3(1− 1

n
)−3(

n

m3
n

+
n2

m3
n

){15m
3
n

n3
+

25m2
n

n2
+

mn

n
}

+ ε−2 m2
n

(1− 1
n )

{1− 1
n

n3m3
n

+
(1− 1

n )
4

m3
n

+
(mn − 1)(1− 1

n )
2

nm3
n

+
4(n− 1)

n3mn
+

1

m2
n

− 1

nm2
n

+
n− 1

n3m3
n

+
4(n− 1)

n2m3
n

− (1− 1
n )

2

m2
n

}

,

where

δn :=
δ − (ε1/ε)

2 − PX(|S2
n − σ2| > ε21) + ε2

CEX |X − µ|3/σ3/2
,

with C being a universal constant as in the Berry-Esséen upper bound for in-
dependent and not necessarily identically distributed summands (cf. page 33 of
Serfling [25]).

The following result, a corollary to Theorem 2.1, gives the rate of convergence

of the respective conditional CLT’s for G
(1)
mn,n and T

(1)
mn,n, as well as for G

(2)
mn,n

and T
(2)
mn,n.

Corollary 2.1. Assume that EX |X |3 < +∞. If n, mn → +∞ in such a way
that mn = o(n2), then, for arbitrary δ > 0, we have

(A) Pw

{

sup
−∞<t<+∞

∣

∣

∣
PX|w(G

(1)
mn,n ≤ t)− Φ(t)

∣

∣

∣
>δ

}

= O
(

max{mn

n2
,

1

mn
}
)

,

(B) Pw

{

sup
−∞<t<+∞

∣

∣

∣
PX|w(T

(1)
mn,n ≤ t)− Φ(t)

∣

∣

∣
>δ

}

= O
(

max{mn

n2
,

1

mn
}
)

.

Moreover, if EXX4 < +∞, if n,mn → +∞ in such a way that mn = o(n2) and
n = o(m2

n) then, for δ > 0, we also have

(C) Pw

{

sup
−∞<t<+∞

∣

∣

∣
PX|w(G

(2)
mn,n ≤ t)− Φ(t)

∣

∣

∣
>δ

}

= O
(

max{mn

n2
,

1

mn
,
n

m2
n

}
)

,
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(D) Pw

{

sup
−∞<t<+∞

∣

∣

∣
PX|w(T

(2)
mn,n ≤ t)− Φ(t)

∣

∣

∣
>δ

}

= O
(

max{mn

n2
,

1

mn
,
n

m2
n

}
)

.

When 0 < EXX2 < +∞, the conditional PX|w CLT’s for G
(i)
mn,n and T

(i)
mn,n,

i = 1, 2, whose respective rates of convergence are established in Corollary 2.1,
can be concluded as direct consequences of a realization of the Lindeberg-Feller
CLT (cf. Theorems 27.3 and 27.4 of Billingsley [6]) as formulated in Lemma 5.1
of Csörgő et al. [7] (cf. also Appendix B) that is also known as the Hájeck -Sidák
Theorem (cf., e.g., Theorem 5.3 in Das Gupta [10]).

Remark 2.1. On taking mn = n, when EX |X |3 < +∞, the rates of conver-

gence of Corollary 2.1 for both G
(1)
mn,n and T

(1)
mn,n are of order O(n−1). The same

is true for G
(2)
mn,n and T

(2)
mn for mn = n when EXX4 < +∞.

Remark 2.2. When EXX4 < +∞, the extra term n/m2
n which appears in

the rate of convergence of G
(2)
mn,n and T

(2)
mn,n in (C) and (D) of Corollary 2.1,

is the rate at which Pw{PX|w(|S2
mn,n − S2

n| > ε1) > ε2} approaches zero as
n,mn → +∞, where ε1 and ε2 are arbitrary positive numbers.

The conditional CLT’s resulting from (A), (B), (C) and (D) of Corollary 2.1
imply respective unconditional CLT’s in terms of the joint distribution PX,w as
in the following Corollaries 2.2 and 2.3.

Corollary 2.2. Assume that EX |X |3 < +∞. If n, mn → +∞ in such a way
that mn = o(n2), then

sup
−∞<t<+∞

∣

∣PX,w(G
(1)
mn,n ≤ t)− Φ(t)

∣

∣ ≤ O
(

max{mn

n2
,

1

mn
}
)

, (9)

sup
−∞<t<+∞

∣

∣

∣
PX,w(T

(1)
mn,n ≤ t)− Φ(t)

∣

∣

∣
≤ O

(

max{mn

n2
,

1

mn
}
)

. (10)

Moreover, if EXX4 < +∞, if n,mn → +∞ in such a way that mn = o(n2) and
n = o(m2

n), then

sup
−∞<t<+∞

∣

∣PX,w(G
(2)
mn,n ≤ t)− Φ(t)

∣

∣ ≤ O
(

max{mn

n2
,

1

mn
,
n

m2
n

}
)

(11)

sup
−∞<t<+∞

∣

∣PX,w(T
(2)
mn,n ≤ t)− Φ(t)

∣

∣ ≤ O
(

max{mn

n2
,

1

mn
,
n

m2
n

}
)

(12)

The following Corollary 2.3, a trivial consequence of Corollary 2.2 on taking
mn = n, is of particular interest as it asserts that the rate at which each of the
error terms of the CLT’s therein vanishes happens at the optimal O(1/n) rate.
This is a significant improvement over the classical Berry-Esséen O(1/

√
n) rate

of error for Tn(X) and Tn(X − µ) on only assuming the same E|X |3 < +∞
moment condition for G

(1)
n,n and T

(1)
n,n, and EXX4 < +∞ as well in the case of

G
(2)
n,n and T

(2)
n,n. Further moment conditions would not improve the O(1/n) rates

of convergence in hand, as below.
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Corollary 2.3. When mn = n, as n → +∞, we have

sup
−∞<t<+∞

∣

∣PX,w(G
(1)
n,n ≤ t)− Φ(t)

∣

∣ ≤ O(1/n), (13)

sup
−∞<t<+∞

∣

∣

∣
PX,w(T

(1)
n,n ≤ t)− Φ(t)

∣

∣

∣
≤ O(1/n), (14)

sup
−∞<t<+∞

∣

∣PX,w(G
(2)
n,n ≤ t)− Φ(t)

∣

∣ ≤ O(1/n), (15)

sup
−∞<t<+∞

∣

∣PX,w(T
(2)
n,n ≤ t)− Φ(t)

∣

∣ ≤ O(1/n), (16)

where (13) and (14) hold true when EX |X |3 < +∞, and (15) and (16) hold
true when EXX4 < +∞.

Remark 2.3. The bootstrap is a computationally extensive method that is
widely practiced to infer about parameters of the population. A nonparametric
bootstrap method of constricting a confidence interval (C.I.) for µ is called the
bootstrap t-percentile (cf. Efron and Tibshirani [13]). In this method the Student
t-statistic Tn(X − µ) is used as a pivot for µ and its percentiles are estimated
by repeatedly drawing bootstrap sub-samples from the original data set. It is
generally known that the bootstrap t-percentile is of second order efficient, i.e.,
approximating the sampling distribution of the pivot Tn(X − µ) results in an
error of order 1/n. In view of Remark 2.1 and (13) and (15) of Corollary 2.3,

the randomized pivots G
(1)
n,n and G

(2)
n,n possess the same asymptotic property as

the bootstrap. However, the use of G
(i)
n,n, i = 1, 2, has a number of advantages

over the nonparametric bootstrap.

Firstly, making asymptotic inference about µ based on G
(i)
n,n, i = 1, 2, by no

means is a computationally demanding process. In fact, they can be computed

directly by generating only one realization of the multinomial weights w
(n)
i ,

1 ≤ i ≤ n. A much shorter computation running time is a significant benefit
of the use of these randomized pivots. Moreover, the bootstrap inference can
be effected by the number of bootstrap sub-samples (cf. Yatracos [29]). Clearly,

G
(i)
n,n, i = 1, 2, are immune to this type of error that is introduced in a bootstrap

based inference when an insufficiently large number of bootstrap sub-samples
are drawn.

Secondly, in addition to the assumption of the existence and finiteness of a
sufficiently large number of moments for the data, the efficiency of the bootstrap
in the literature is usually limited to non-lattice, mainly continuous, distribu-

tions (cf., for example, Singh [28] and Hall [17]). On the other hand G
(1)
n,n, for

instance, is of correct second order for both continuous and discrete data on as-
suming only EX |X |3 < +∞. Moreover, in both discrete and continuous cases, it
does not result in excessively wide C.I.’s for µ, i.e., it delivers smooth inference

even when the sample is of discrete nature. The same is true for G
(2)
n,n when

EXX4 < +∞. Discrete data of course are very common in applications. The
number of insurance claims in a period of time, the number of car accidents
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or earthquakes during a certain period of time in a city are just a few exam-

ples of discrete data appearing in practice for which G
(i)
n,n, i = 1, 2, provide a

more accurate inference about their means (cf. Section 4) and related percentiles
(cf. Section 6) in a nonparametric framework.

3. Numerical studies

In this section we use the statistical software R to conduct our numerical studies
for comparing the performance of G

(1)
n,n as in (13) of Corollary 2.3 to that of its

classical counterpart Tn(X − µ).
In order to provide initial motivation for the more in-depth numerical studies

as in Table 2 below, that indicate a significantly better performance of the

pivot G
(1)
n,n for µ over its classical counterpart Tn(X − µ), we first compare the

empirical probabilities of coverage of these pivots for µ in Table 1. The nominal
probability coverage for the one sided C.I.’s in Table 1 is 95% in terms of the
standard normal cutoff point 1.644854. The C.I.’s in Table 1 are based on 1000

replications of the data (X1, . . . , Xn) for both pivots G
(1)
n,n and Tn(X − µ), and

1000 replications of (w
(n)
1 , . . . , w

(n)
n ), with

∑n
i=1 w

(n)
i = n, for computing G

(1)
n,n.

The intervals are obtained by setting:

G(1)
n,n ≤ 1.644854 and Tn(X − µ) ≤ 1.644854.

The empirical probabilities of coverage for each one of these pivots are presented
in Table 1 for the distributions therein.

Table 1 below shows that the sampling distribution of G
(1)
n,n in each case,

even for small sample sizes, is close enough to the standard normal distribution.

Namely, using standard normal percentiles, G
(1)
n,n, as a pivot for the population

mean µ, tends to yield probability coverages that are near to the nominal 95%
even for sample sizes for which the classical CLT for Tn(X − µ) provides less
valid C.I.’s for µ.

In order to study in-depth the refinement provided by G
(1)
n,n over the classical

Tn(X − µ) in view of Corollary 2.3, in the following Table 2 we present some
numerical illustrations of the rates of convergence of one sided C.I.’s for the

Table 1

Comparing the empirical probability coverage of pivot G
(1)
n,n to Tn(X − µ)

Distribution of Sample n coverage of G
(1)
n,n coverage of Tn(X − µ)

Binomial(10, 0.1)
20 0.956 0.964
30 0.953 0.960

Exponential(1)
20 0.959 0.975
30 0.956 0.968

Normal(0, 1)
20 0.945 0.931
30 0.951 0.946

Beta(5, 1)
20 0.914 0.903
30 0.949 0.909

Binomial(10, .9)
20 0.922 0.904
30 0.956 0.936
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Table 2

Comparing the pivot G
(1)
n,n to Tn(X − µ)

Distribution of Sample n prop G(1) prop Tn(X − µ)

Binomial(10, 0.1)
20 0.745 0.486
30 0.764 0.546
40 0.768 0.511

Poisson(1)
20 0.552 0.322
30 0.554 0.376
40 0.560 0.364

Lognormal(0, 1)
20 0.142 0.000
30 0.168 0.000
40 0.196 0.000

Exponential(1)
20 0.308 0.016
30 0.338 0.020
40 0.432 0.044

Normal(0, 1)
20 0.566 0.486
30 0.600 0.568
40 0.634 0.612

Beta(5, 1)
20 0.074 0.000
30 0.136 0.016
40 0.234 0.058

population mean µ based on the pivot G
(1)
n,n whose validity and the rate at

which they approach to their nominal probability coverage are concluded in

(13) of our Corollary 2.3 for G
(1)
n,n.

To construct our asymptotic 95% C.I.’s based on G
(1)
n,n, in Table 2 we use

the standard normal 95% cutoff point 1.644854. All the one sided C.I.’s in Ta-
ble 2 are asymptotic, with both pivots in hand having standard normal limiting
distribution as n → +∞.

Table 2 displays the proportion of 500 generated one sided C.I.’s with
empirical coverage probability value falling in the interval [0.94, 0.96] right
around the standard normal 95% coverage that we use. Each one of these 500
C.I.’s is constructed by generating 500 sets of i.i.d. observations (X1, . . . , Xn),
with n as displayed, from the indicated respective underlying distributions. For

simulating each value of G
(1)
n,n, we also generate 500 sets of the multinoimal

weights (w
(n)
1 , . . . , w

(n)
n ), with

∑

1≤i≤n w
(n)
i = n and associated probability vec-

tor (1/n, . . . , 1/n).
Both Tables 1 and 2 indicate a highly satisfactory performance of the pivot

G
(1)
n,n as compared to Student t-confidence intervals.

To exhibit the performance of the pivotG
(1)
n,n in Table 2, in addition to normal,

we also consider data from skewed distributions. It is known that the Student
t-distribution converges to standard normal at a rate of order O(1/n). The

numerical results in Table 2 show that, based on normal data, G
(1)
n,n performs

as well as the t-statistic Tn(X − µ). The latter is an empirical indication that

G
(1)
n,n does indeed converge to standard normal at the rate of O(1/n).
In Table 2, we denote the proportions of the C.I.’s with empirical probability

coverage values between 94% and 96% associated with the pivots G
(1)
n,n and

Tn(X − µ), respectively by prop G(1) and prop Tn(X − µ).
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In Table 2 the standard normal 95% cutoff point 1.644854 was used for both

pivots G
(1)
n,n and Tn(X−µ). Furthermore, in Table 2, Lognormal(0,1) stands for

the Lognormal distribution with mean zero and variance one.

4. Randomized asymptotic pivots for the population mean µ

We are now to present G
(1)
mn,n of (4) and G

(2)
mn,n of (7) as direct asymptotic

randomized pivots for the population mean µ = EXX , first when only 0 <
σ2 := EX(X − µ)2 < +∞ is assumed, followed by assuming EX |X |3 < +∞ as
in Remark 4.1, and EXX4 < +∞ as in Remark 4.2.

We note that for the coinciding numerator terms of G
(1)
mn,n and G

(2)
mn,n we

have

EX|w

(

n
∑

i=1

|w
(n)
i

mn
− 1

n
|(Xi − µ)

)

= 0. (17)

Furthermore, given w
(n)
i ’s, for the randomized weighted average

n
∑

i=1

|w
(n)
i

mn
− 1

n
|(Xi − µ) =: X̄mn,n(µ), (18)

mutatis mutandis in verifying (86) in Appendix A, we conclude that when the
original sample size n is fixed and m := mn, then, as m → +∞, we have

X̄mn,n(µ) = X̄m,n(µ) → 0 in probability − PX,w, (19)

and the same holds true if n → +∞ as well.
In view of (17)

∑n
i=1 |

w
(n)
i

mn
− 1

n |Xi

∑n
j=1 |

w
(n)
j

mn
− 1

n |
=: X̂mn,n. (20)

is an unbiased estimator for µ with respect to PX|w.
It can be shown that when EXX2 < +∞, as n,mn → +∞ such that mn =

o(n2), X̂mn,n is a consistent estimator for the population mean µ in terms of
PX,w, i.e.,

X̂mn,n → µ in probability − PX,w. (21)

In Appendix A we give a direct proof for (21) for the important case when
mn = n, for which the CLT’s in Corollary 2.1 hold true at the O(1/n) rate.

As to G
(1)
mn,n of (4), on replacing (

w
(n)
i

mn
− 1

n ) by |w
(n)
i

mn
− 1

n | in the proof of (a)
of Corollary 2.1 of Csörgő et al. [7] (cf. Appendix B), as n,mn → +∞ so that
mn = o(n2), when 0 < σ2 := EX(X − µ)2 < 0, we arrive at

PX|w(G
(1)
mn,n ≤ t) → Φ(t) in probability− Pw for all t ∈ R, (22)

and, via Lemma 1.2 in S. Csörgő and Rosalsky [9], we conclude also the uncon-
ditional CLT

PX,w(G
(1)
mn,n ≤ t) → Φ(t) for all t ∈ R. (23)
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Remark 4.1. When EX |X |3 < +∞ and n,mn → +∞ so that mn = o(n2),
then, in addition to (22), we have (A) of Corollary 2.1 as well, and, in addition
to (23), we also have (9) and (13) as in Corollaries 2.2 and 2.3 respectively.

When EXX2 < +∞, in Appendix A we show that when n is fixed and
m := mn → +∞, the randomized sample variance S2

mn,n, as defined in (8),
converges in probability-PX,w to the sample variance S2

n, i.e., we have (cf. (87)
in Appendix A or Remark 2.1 of Csörgő et al. [7])

S2
m,n → S2

n in probability − PX,w. (24)

For related results along these lines in terms of u- and v-statistics, we refer to
Csörgő and Nasari [8], where, in a more general setup, we establish in probability
and almost sure consistencies of randomized u- and v-statistics.

In Appendix A we also show that, when EXX2 < +∞, if n, mn → +∞ so
that n = o(mn), then we have (cf. (87) in Appendix A)

(

S2
mn,n − S2

n

)

→ 0 in probability − PX,w. (25)

When EXX4 < +∞, the preceding convergence also holds true if, instead of
n = o(mn), we assume n = o(m2

n) (cf. the proof of (C) and (D) of Corollary 2.1).
On combining (25) with the CLT in (23), when EXX2 < +∞, as n,mn →

+∞ so that mn = o(n2) and n = o(mn), the following unconditional CLT holds
true as well in terms of PX,w

G(2)
mn,n

d
−→ Z, (26)

where, and also throughout, d
−→ stands for convergence in distribution, G

(2)
mn,n

is as defined in (7), and Z stands for a standard normal random variable.

Remark 4.2. Assuming that EXX4 < +∞ and n,mn → +∞ so that mn =
o(n2) and n = o(m2

n), then we have (11) and (15) as in Corollaries 2.2 and 2.3
respectively, i.e., then the unconditional CLT

G(2)
mn,n

d
−→Z (27)

holds true in terms of PX,w at the therein indicated respective rates of conver-
gence, and we have (C) of Corollary 2.1 as well, i.e.,

PX|w(G
(2)
mn,n ≤ t) → Φ(t) in probability− Pw for all t ∈ R (28)

at the therein indicated rate of convergence.

With G
(1)
mn,n and G

(2)
mn,n in mind as direct asymptotic pivots for µ, the CLT’s

as in (22) and (23), as well as their respective versions as spelled out in Re-
mark 4.1, together with the CLT’s as in (26), (27) and (28), can be used to
construct exact size asymptotic C.I.’s for the population mean µ = EXX . Thus,

in terms of G
(1)
mn,n, as n,mn → +∞ and mn = o(n2), we conclude as follows, a

1−α size asymptotic C.I. for the population mean µ = EXX , which is valid both
in terms of the conditional PX|w and in unconditional PX,w distributions as in
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(22) and (23) respectively, as well as with rates of convergence as in Remark 4.1:

X̂mn,n − zα/2
SnDn

∑n
j=1 |

w
(n)
j

mn
− 1

n |
≤ µ ≤ X̂mn,n + zα/2

SnDn

∑n
j=1 |

w
(n)
j

mn
− 1

n |
(29)

where zα/2 satisfies P (Z ≥ zα/2) = α/2, X̂mn,n is as in (20) and Dn :=
√

∑n
j=1(

w
(n)
j

mn
− 1

n )
2.

When EXX4 < +∞, then we can replace Sn by Smn,n in (29), and then the
thus obtained 1 − α size asymptotic C.I. for the population mean µ holds true

in terms of G
(2)
mn,n via both of the respective CLT’s as in (27) and (28) with

respective rates of convergence as indicated in Remark 4.2.
In view of Remark 4.1, on taking mn = n, when EX |X |3 < +∞, then both

CLT’s as in (22) and (23) hold true with a O(1/n) rate of convergence (cf. Re-
mark 2.1 and (9) of Corollary 2.3). Hence, the 1−α size asymptotic C.I. for µ as
in (29) is also achieved at that rate in both cases. The same conclusion remains
true on replacing Sn by Smn,n in (29) and taking mn = n when EXX4 < +∞
(cf. Remarks 4.2 and 2.1, and (15) of Corollary 2.3).

5. Randomized asymptotic pivots for the sample and population

means of big data sets

Big data sets problems represent a new era of having too many data in one
sample that in some cases need to be stored on several machines and, on oc-
casions, even on thousands of machines. In some cases dealing with samples of
this volume directly is virtually impossible.

We use a method of sub-sampling from the original data of size n in such
a way that only the picked elements of the original sample are to be used to
infer about a parameter of interest of the population. This can be done by

generating a realization of multinomial random variables (w
(n)
1 , . . . , w

(n)
n ) with

size mn =
∑n

i=1 w
(n)
i , where mn << n, independently from the data. The

generated weights are to be put in a one-to-one correspondence with the indices
of the members of the original sample. Then, only those data in the sample are
to be observed whose corresponding weights are not zero.

We note that in the case when the sub-sample size mn and the sample size

n are so that mn/n ≤ 0.05, then, for each i, 1 ≤ i ≤ n, w
(n)
i is either zero or

one almost all the time. In this case, practically, we are then sampling with-
out replacement from the original massive data set of size n in the context of
Remark 1.1.

A closer look at our approach of sub-sampling from a big data set reveals
a close connection of this approach to the super-population viewpoint of finite
populations as in Hartley and Sielken [18]. According to this viewpoint, a finite
population of size n can be seen as a random sample drawn from an imaginary
super-population. This is the sampling step that is viewed as an imaginary step
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by Hartley and Sielken. To study the latter finite population as a sample, a
smaller sub-sample of size mn without replacement is then drawn from it. This
viewpoint agrees with that of ours with the proviso that in our approach the
super-population and the process of sampling from it can be either imaginary or
real. While Hartley and Sielken [18] aimed at studying only the finite population,
our approach permits studying not only the finite population itself but also its
parent super-population via drawing a sub-sample as explained above. We only
impose moment assumptions on the parent super-population.

The super-population viewpoint works perfectly for big data sets as well, for
they can be viewed as finite populations and their uncomputable characteristics,
such as their means, are to be estimated on their own. In this case the sample is
so big that, to a large extent, it portrays the population, viewed now as a real
super-population, from which it was drawn.

The numerical characteristics of a big data set, viewed as a finite population,
should be fairly close to their super-population counterparts. For instance, the
sample mean of a give data set {X1, . . . , Xn} of large size n will be seen to
deviate from the population mean only by a negligible error in the context of
this section. The same will be seen to be true for the sample percentiles and
their population counterparts in Section 6.

In this section, in view of the finite population viewpoint, we construct confi-
dence sets for the sample mean, X̄n, of a large i.i.d. sample. In case of big data
sets when the mean of the parent super-population is also to be captured, these
confidence sets can in turn be used to serve as C.I.’s for the population mean µ,
due to closeness of the two parameters X̄n and µ (cf. (37) and (38)).

To begin with, we consider the associated numerator term of T
(i)
mn,n, i = 1, 2,

and write
n
∑

i=1

(
w

(n)
i

mn
− 1

n
)Xi =

1

mn

n
∑

i=1

w
(n)
i Xi −

1

n

n
∑

i=1

Xi (30)

= X̄mn,n − X̄n.

We note that when the original sample size n is assumed to be fixed, then
on taking only one large sub-sample of size m := mn, via re-sampling the
set of indices of the observations with replacement as in Remark 1.1, when
EXX2 < +∞, as m → +∞, we have

X̄m,n → X̄n in probability − PX,w (31)

(cf. (86) of Appendix A).
Further to (31), as n, mn → +∞, then (cf. (86) in Appendix A)

(

X̄mn,n − X̄n

)

→ 0 in probability − PX,w. (32)

As to T
(1)
mn,n, and further to (32), we have that EX|w(

∑n
i=1(

w
(n)
i

mn
− 1

n )Xi) = 0

and, if n,mn → +∞ so that mn = o(n2), then (cf. part (a) of Corollary 2.1 of
Csörgő et al. [7] and Appendix B)

PX|w(T
(1)
mn,n ≤ t) → P (Z ≤ t) in probability − Pw for all t ∈ R. (33)
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Consequently, when EXX2 < +∞, as n,mn → +∞ so that mn = o(n2), we
also arrive at

PX,w(T
(1)
mn,n ≤ t) → P (Z ≤ t) for all t ∈ R, (34)

an unconditional CLT.

Remark 5.1. When EX |X |3 < +∞ and n,mn → +∞ so that mn = o(n2),
then, in addition to (33), we have (B) of Corollary 2.1 as well, and in addition
to (34), we also have (10) and (14) as in Corollaries 2.2 and 2.3 respectively.

Furthermore, in view of the CLT as in (34) and conclusion (25), as n,mn →
+∞ so that mn = o(n2) and n = o(mn), in terms of probability-PX,w we
conclude the unconditional CLT

T (2)
mn,n

d
−→ Z, (35)

where T
(2)
mn,n is as defined in (6).

Remark 5.2. Assuming that EXX4 < +∞ and n,mn → +∞ so that mn =
o(n2) and n = o(m2

n), we then have (12) and (16) as in Corollaries 2.2 and 2.3
respectively, i.e., then the unconditional CLT as in (35), in terms of PX,w, holds
true at the therein indicated respective rates of convergence. Naturally, under
the same conditions, as n,mn → +∞, we have (D) of Corollary 2.1 as well, i.e.,

PX|w(T
(2)
mn,n ≤ t) −→ Φ(t) in probability − Pw for all t ∈ R (36)

at the therein indicated rate of convergence.

Remark 5.3. Considering that our approach to randomizing the original sam-
ple in this section coincides with drawing a smaller sub-sample of size mn with
replacement from the original big data set {X1, . . . , Xn} via re-sampling its in-
dex set {1, . . . , n} as in Remark 1.1, it is important to note that in order to
compute both X̄mn,n and S2

mn,n, as in (5) and (8), respectively, only those Xi’s

are needed whose w
(n)
i 6= 0. This means that both X̄mn,n and S2

mn,n are com-
putable based only on the smaller sub-sample rather than the entire original big
data set.

Under their respective conditions the CLT’s as in (35) and (36) can be used to
construct confidence sets for the sample mean X̄n that is an unknown parameter
in our present context.

We spell out the one based on T
(2)
mn,n as in (35) that is also valid in terms

of (36), i.e., both in the context of Remark 5.2. Accordingly, when EXX4 < +∞
and mn, n → +∞ so that mn = o(n2) and n = o(m2

n), then for any α ∈ (0, 1),
we conclude a 1−α size asymptotic confidence set for X̄n, at the indicated rates
of convergence, as follows

X̄mn,n − zα/2Smn,nDn ≤ X̄n ≤ X̄mn,n + zα/2Smn,nDn, (37)

where zα/2 is as in (29), and Dn :=

√

∑n
j=1(

w
(n)
i

mn
− 1

n )
2.
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When EX |X | < +∞, as n → +∞, we have that X̄n−µ =: εn = o(1), almost
surely in PX -probability, as n → +∞. Since, the original sample size n of a big
data set is already very large to begin with, εn is already negligible with high
PX -probability. Consequently, the confidence set (37) for X̄n can actually be
viewed as a (1 − α) size asymptotic C.I. as well for the population mean µ, by
simply rewriting it as follows

X̄mn,n − zα/2Smn,nDn ≤ µ+ εn ≤ X̄mn,n + zα/2Smn,nDn, (38)

where zα/2 and Dn are as in (37).
We emphasize that (37) and (38) are identical statements under the condi-

tions as spelled out right above (37). The asymptotic negligibility of the error
sequence εn in (38) can, however, be studied on its own as n → +∞, freely from
the identical conditions for (37) and (38) that mn = o(n2) and n = o(m2

n), as
n,mn → +∞.

To further elaborate on the fact that (38) should work well as an asymptotic
(1 − α) size C.I. for the population mean µ in the case of a big data set, we
make use of some well known classical results on the complete convergence of
X̄n to µ under two or more moment conditions for X .

We first mention the Erdős-Hsu-Robbins theorem (cf. [19, 14] and [15]) that
concludes

+∞
∑

n=1

PX

(

|X̄n − µ| > ǫ
)

< +∞, for every ǫ > 0,

if and only if EXX2 < +∞. Thus, in addition to concluding that X̄n − µ =
εn = o(1) almost surely-PX , we also infer that, for any ǫ > 0, {PX(|εn| > ǫ)}+∞

n=1

approaches zero at a rate faster than O(1/n). In other words, as n → +∞, εn
approaches zero in probability-PX at a rate faster than the best possible rate of

convergence for T
(2)
mn,n (cf. Corollary 2.3). Therefore, even when assuming only

a two moment condition, (38) captures X̄n and µ simultaneously with a high
PX -probability, that is, typically, 1− 1/(n log2 n).

Further along these lines, we also mention the Baum and Katz theorem in
[3] that asserts

+∞
∑

n=1

nr/p−2PX

(

|X̄n − µ| > ǫ n1/p−1
)

< +∞,

for every ǫ > 0 and some p ∈ (0, 2), if and only if EX |X |r < +∞. Thus, when
EXX4 < +∞, then for a big sample of size n = 106, for example, with p = 1

PX(|εn| ≤ ǫ) >
≈ 1− 1

1018(log 106)2
for any ǫ > 0.

This shows that εn = X̄n − µ in (38) becomes arbitrarily small at a very fast
rate in probability-PX in terms of the original big sample size n, without paying
attention to how n and mn relate to each other when arriving at the asymptotic
(1− α) size confidence set for covering X̄n as in (37). Hence, the confidence set
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(37) for the unknown sample mean X̄n of a big data set of size n, viewed as in
(38), is also seen to be an asymptotic (1−α) size C.I. for the unknown population
mean µ under the same conditions that are used to arrive at having (37).

We now also illustrate how one goes about constructing the coinciding ran-
dom boundaries in (37) and (38) in general, and then in case of having a big
sample of size n = 106, as a convenient example.

First of all we emphasize that in the asymptotic confidence set (37) for X̄n

of a big data set, the bounds in hand, are computed by generating, indepen-
dently from the entire data set, a realization of the random multinomial weights

(w
(n)
1 , . . . , w

(n)
n ) as in Remark 1.1. Thus, instead of trying to process the entire

big data set {X1, . . . , Xn} in order to compute X̄n, sampling it only via its index
set {1, . . . , n} as above, we end up estimating X̄n in terms of a confidence set
as in (37) that can be based on significantly smaller sub-samples of size mn of
the entire big data set of size n, without having to deal with the latter directly,
whenever EXX4 < +∞ and mn = o(n2) and n = o(m2

n) (cf. Remark 5.2). In
this case the rate of convergence of the conditional CLT as in (36), as well as
its unconditional CLT as in (35), is

O
(

max{mn

n2
,

1

mn
,
n

m2
n

}
)

(39)

in view of (D) of Corollary 2.1 and (12) of Corollary 2.2 respectively.

We note that, on account of having n = o(m2
n), as mn, n → +∞ we cannot

consider taking mn = n1/2 in the context of (39). We may however consider
taking

mn = n1/2nδ, 0 < δ < 1/2, (40)

and then the rate of convergence in (39) reduces to

O(n−2δ), 0 < δ < 1/2. (41)

For example, on taking δ = 1/4, then mn = n3/4, and the rate of convergence
for covering X̄n as in (37) converts becomes O(n−1/2), that coincides with that
of the classical CLT for the Student t-statistic and pivot (cf. (1) and (2)). For
instance, in this case, for a big sample of size n = 106, the CLT of (36) and

its unconditional version for T
(2)
mn,n are both applied with a sub-sample of size

m106 =
∑106

i=1 w
(106)
i = (106)3/4 ≈ 31,623, where the random multinomially

distributed weights (w
(106)
1 , . . . , w

(106)
n ) are generated independently from the

data {X1, . . . , X106} with respective probabilities 1/106, i.e.,

(w
(106)
1 , . . . , w

(106)
106 ) d

= multinomial(31,623;
1

106
, . . . ,

1

106
). (42)

These multinomial weights, in turn, are used to construct a (1−α) size confidence
set à la (37), covering the unobserved mean X̄106 , as well as the unknown
population mean µ, with an error proportional to 0.001 (cf. (41) with δ = 1/4).
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More reduction of the sub-sample size mn can, for example, be achieved by
taking

mn = n1/2 log logn (43)

instead of that in (40) and, via (39), arriving at the rate of convergence

O(1/(log logn)2) (44)

for the CLT’s in hand, instead of that in (41). For instance, if we again con-
sider having a big sample of size n = 106, then (43) yields a sub-sample of size
mn = 103 log log 106 ≈ 2,626, and constructing a (1 − α) size confidence set
à la (37), will cover the unobserved X̄106 , as well as the unknown population
mean µ, with an error proportional to 1/(log log 106)2 ≈ 1/7. The latter in-
creased error, as compared to the previous example with respective sub-sample
size m106 = 31,623, is due to the much reduced sub-sample of size m106 = 2,626
in this context. This scenario can also be viewed in terms of using normal zα/2
percentiles for the Student t-pivot Tn(X − µ) when estimating the population
mean µ on the basis of n = 49 i.i.d. observations with an error proportional to
1/

√
49 = 1/7.

6. Randomized CLT’s and C.I.’s for the empirical and theoretical

distributions with application to big data sets

In this section we put our randomization technique into use for estimating the
percentiles of a population based on a given sample. When the sample size is
relatively small or moderate, then our randomization technique as in Section 4
provides increased accuracy in making inference about the percentiles of the
original population. When, dealing with super-populations with unobservable
samples, such as big data sets or big finite populations, the results in this section
rhyme with those discussed in Section 5.

Let X,X1, X2, . . . be independent real valued random variables with a com-
mon distribution function F as before, but now without assuming the existence
of any finite moments for X . Let {X1, . . . , Xn} be a random sample of size n ≥ 1
on X and, for each n, define the empirical distribution function

Fn(x) :=

n
∑

i=1

1(Xi ≤ x)/n, x ∈ R, (45)

and the sample variance of the indicator variables 1(Xi ≤ x)

S2
n(x) :=

1

n

n
∑

i=1

(

1(Xi ≤ x) − Fn(x)
)2

= Fn(x)(1 − Fn(x)), x ∈ R. (46)

With mn =
∑n

i=1 w
(n)
i and the multinomial weights as in Remark 1.1,

(

w
(n)
1 , . . . , w(n)

n

)

d
= multinomial

(

mn;
1

n
, . . . ,

1

n

)

,
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that are independent from the random sample of n labeled units {X1, . . . , Xn},
define the randomized standardized empirical process

α(1)
mn,n(x) :=

∑n
i=1(

w
(n)
i

mn
− 1

n )1(Xi ≤ x)

√

F (x)(1 − F (x))

√

∑n
j=1(

w
(n)
j

mn
− 1

n )
2

(47)

=

∑n
i=1

w
(n)
i

mn
1(Xi ≤ x)− Fn(x)

√

F (x)(1 − F (x))

√

∑n
j=1(

w
(n)
j

mn
− 1

n )
2

=
Fmn,n(x)− Fn(x)

√

F (x)(1 − F (x))

√

∑n
j=1(

w
(n)
j

mn
− 1

n )
2

, x ∈ R

where

Fmn,n(x) :=

n
∑

i=1

w
(n)
i

mn
1(Xi ≤ x), x ∈ R, (48)

is the randomized empirical distribution function.
We note that, point-wise in x ∈ R,

EX|w(Fmn,n(x)) = F (x) = EX,w(Fmn,n(x)). (49)

Define also the randomized sub-sample variance of the indicator random vari-
ables 1(Xi ≤ x) by putting

S2
mn,n(x) :=

n
∑

i=1

w
(n)
i

(

1(Xi ≤ x) − Fmn,n(x)
)2/

mn (50)

= Fmn,n(x)(1 − Fmn,n(x)), x ∈ R.

With n fixed and m = mn → +∞, along the lines of (31) we arrive at

Fmn,n(x) −→ Fn(x) in probability − PX,w, point− wise in x ∈ R, (51)

and, consequently, point-wise in x ∈ R, as m = mn → +∞,

S2
mn,n(x) −→ Fn(x)(1 − Fn(x)) = S2

n(x) in probability− PX,w . (52)

Furthermore, à la (32), as n,mn → +∞, point-wise in x ∈ R, we conclude

(

Fmn,n(x) − Fn(x)
)

−→ 0 in probability− PX,w, (53)

that, in turn, point-wise in x ∈ R, as n,mn → +∞, implies

(

S2
mn,n − S2

n(x)
)

−→ 0 in probability − PX,w, (54)

with S2
mn,n and S2

n(x) respectively as in (50) and (46).
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We wish to note and emphasize that, unlike in (25), for concluding (54), we
do not have to assume that n = o(mn) as n,mn → +∞.

Further to the randomized standardized empirical process α
(1)
n,mn(x), we now

define the following Studentized/self-normalized versions with x ∈ R, as follows:

α̂(1)
mn,n(x) :=

∑n
i=1(

w
(n)
i

mn
− 1

n )1(Xi ≤ x)

√

Fn(x)(1 − Fn(x))

√

∑n
j=1(

w
(n)
j

mn
− 1

n )
2

(55)

ˆ̂α(1)
mn,n(x) :=

∑n
i=1(

w
(n)
i

mn
− 1

n )1(Xi ≤ x)

√

Fmn,n(x)(1 − Fmn,n(x))

√

∑n
j=1(

w
(n)
j

mn
− 1

n )
2

(56)

α̂(2)
mn,n(x) :=

∑n
i=1

∣

∣

w
(n)
i

mn
− 1

n

∣

∣

(

1(Xi ≤ x)− F (x)
)

√

Fn(x)(1 − Fn(x))

√

∑n
j=1(

w
(n)
j

mn
− 1

n )
2

(57)

ˆ̂α(2)
mn,n(x) :=

∑n
i=1

∣

∣

w
(n)
i

mn
− 1

n

∣

∣

(

1(Xi ≤ x)− F (x)
)

√

Fmn,n(x)(1 − Fmn,n(x))

√

∑n
j=1(

w
(n)
j

mn
− 1

n )
2

. (58)

Clearly, on replacing Xi by 1(Xi ≤ x) and µ by F (x), x ∈ R, in the formula
in (18), we arrive at the respective statements of (17) and (19) in this context.
Also, replacing Xi by 1(Xi ≤ x) in the formula as in (20), we conclude the
statement of (21) with µ replaced by F (x), x ∈ R.

As to the latter statement, on letting

F̂mn,n(x) :=

∑n
i=1 |

w
(n)
i

mn
− 1

n |1(Xi ≤ x)

∑n
j=1 |

w
(n)
j

mn
− 1

n |
, (59)

as n,mn → +∞, such that mn = o(n2), point-wise in x ∈ R, by virtue of (21),

F̂mn,n(x) −→ F (x) in probability − PX,w. (60)

In Lemma 5.2 of Csörgő et al. [7] it is shown that, if mn, n → +∞ so that
mn = o(n2), then

Mn :=
max1≤i≤n

(w
(n)
i

n − 1
n

)2

∑n
j=1

(w
(n)
j

n − 1
n

)2
→ 0 in probability− Pw. (61)

This, mutatis mutandis, combined with (a) of Corollary 2.1 of Csörgő et al. [7],
as n,mn → +∞ so that mn = o(n2), yields

PX|w

(

α̂(s)
mn,n(x) ≤ t

)

→ P (Z ≤ t) in probability − Pw, for all x, t ∈ R, (62)
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with s = 1 and also for s = 2, and via Lemma 1.2 in S. Csörgő and Rosalsky [9],
this results in having also the unconditional CLT

PX,w

(

α̂(s)
mn,n(x) ≤ t

)

→ P (Z ≤ t) for all x, t ∈ R, (63)

with s = 1 and also for s = 2.
On combining (63) and (54), as n,mn → +∞ so that mn = o(n2), when

s = 1 in (63), we conclude
ˆ̂α(1)
mn,n(x)

d
−→Z (64)

and, when s = 2 in (63), we arrive at

ˆ̂α(2)
mn,n(x)

d
−→Z (65)

for all x ∈ R.

Remark 6.1. The Berry-Esséen type inequality (A) of our Theorem 2.1 con-

tinues to hold true for α̂
(2)
mn,n(x), and so does also (B) of Theorem 2.1 for

α̂
(1)
mn,n(x), without the assumption EX |X |3 < +∞, for the indicator random

variable 1(X ≤ x) requires no moments assumptions.

Remark 6.2. In view of Remark 6.1, in the context of this section, (A) and (B)
of Corollary 2.1 read as follows: As n,mn → +∞ in such a way that mn = o(n2),

then, mutatis mutandis, (A) and (B) hold true for α̂
(1)
mn,n(x) and α̂

(2)
mn,n(x), with

O(max{mn/n
2, 1/mn}) in both. Consequently, statements (9) and (10) of Corol-

lary 2.2 also read similarly for α̂
(1)
mn,n and α̂

(2)
mn,n(x) in terms of the conditions

and the rates of convergence. Thus, on taking mn = n, we immediately obtain
the optimal O(n−1) rate conclusion of Remark 2.1 in this context as well, i.e.,

uniformly in t ∈ R and point-wise in x ∈ R for α̂
(1)
mn,n(x) and α̂

(2)
mn,n(x).

Remark 6.3. As to the rate of convergence of the respective CLT’s in terms
of PX,w as in (64) and (65), and also in terms of PX|w, via (C) and (D)

of Corollary 2.1, for ˆ̂α
(1)
mn,n(x) and ˆ̂α

(2)
mn,n(x), as n,mn → +∞ in such away

that mn = O(n2), we obtain the rate O(max{mn/n
2, 1/mn}). Thus, on taking

mn = n, we conclude the optimal rate of convergence O(n−1) for ˆ̂α
(1)
mn,n(x) and

ˆ̂α
(2)
mn,n(x), uniformly in t ∈ R and point-wise in x ∈ R.

The CLT’s for α̂
(1)
mn,n and ˆ̂α

(1)
mn,n can be used to construct point-wise confi-

dence sets for the empirical distribution function Fn(.), while those for α̂
(2)
mn,n

and ˆ̂α
(2)
mn,n provide point-wise C.I.’s for the distribution function F (.). We spell

out the ones, respectively based on ˆ̂α
(1)
mn,n and ˆ̂α

(2)
mn,n, that are valid both in

terms of PX|w and PX,w with the rate of convergence O(max{mn/n
2, 1/mn})

(cf. Remark 6.3). Thus, as n,mn → +∞ so that mn = o(n2), the CLT’s in hand
respectively result in the following asymptotically exact (1 − α) size C.I.’s, for
any α ∈ (0, 1) and point-wise in x ∈ R:

Fmn,n(x)− zα/2Smn,n(x)Dn ≤ Fn(x) ≤ Fmn,n(x) + zα/2Smn,n(x)Dn (66)
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F̂mn,n(x) − zα/2
Smn,n(x)Dn

∑n
j=1 |

w
(n)
j

mn
− 1

n |
≤ F (x) ≤ F̂mn,n(x) + zα/2

Smn,n(x)Dn

∑n
j=1 |

w
(n)
j

mn
− 1

n |
(67)

with zα/2 as in (29), Dn :=

√

∑n
j=1(

w
(n)
j

mn
− 1

n )
2, Smn,n(x) = Fmn,n(x)(1 −

Fmn,n(x)) as in (50), F̂mn,n(x) as in (48), and Fmn,n(x) as in (59).
On taking mn = n, then, for each x ∈ R, both of the preceding C.I.’s achieve

their nominal level at the optimal rate of O(n−1). This is a significant achieve-
ment in capturing the population distribution by (67), for each x ∈ R, when
the available sample is of moderate size or small.

In case of having a big data set of size n, when processing the entire data
set may not be possible, then both Fn(.) and F (.) are to be estimated. In
this case the confidence set (66) can serve not only for covering Fn(x), but
F (x) as well with any desirable accuracy for each x ∈ R. Namely, on putting
εn(x) = Fn(x) − F (x), x ∈ R, we simply re-write it as follows

Fmn,n(x) − zα/2Smn,n(x)Dn ≤ F (x) + εn(x) ≤ Fmn,n(x) + zα/2Smn,n(x)Dn

(68)
and argue via the Glivenko-Cantelli theorem that in case of big data sets εn
is negligible with any desired accuracy for each x ∈ R at a fast enough rate
of convergence as n → +∞, without paying attention to how mn and n relate
to each other when arriving at the asymptotic (1 − α) size confidence set that
covers Fn(x) for each x ∈ R as in (66). This, in turn, is guaranteed by the
Dvoretzky-Kiefer-Wolfowitz [11] inequality that asserts for all ǫ > 0

PX( sup
−∞<x<+∞

|εn(x)| > ǫ) ≤ 2 exp(−2nǫ2). (69)

On summing in (69), one concludes the Glivenko-Cantelli theorem at the
indicated exponentially fast rate of convergence to zero in PX -probability that
of course also holds true point-wise in x ∈ R for εn(x) as in (68). Thus, the error
induced when estimating F (x), point-wise in x ∈ R, as in (68) is practically zero
for data sets of big size n.

For example, in view of inequality (69), where the best possible constant 2
in front of the exponential function is due to Massart [23], when a large sample
of size n = 106 is at hand, then we have

PX( sup
−∞<x<+∞

|εn(x)| > ǫ) ≤ 2 exp(−2ǫ2(106)) (70)

for all ǫ > 0. Thus, practically, the confidence set (66) for Fn(x) is also a C.I.
for F (x) in the case of big data sets of size n.

Another spectacular illustration of the negligibility of εn(x) in (68) is provided
by taking ǫ = (logn/n)1/2 in (69).

Recall now that as n,mn → +∞ in such a way that mn = o(n2), then the
rate of convergence for having the (1 − α) size confidence set (66) for Fn(x),
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and also for F (x), in view of (68), for x ∈ R, is O(mn/n
2, 1/mn). Consequently,

when drawing a significantly smaller sub-sample of size mn = n1/2, for example,
the rate of convergence becomes O(n−1/2) that coincides with the rate of con-
vergence of the classical CLT for the Student t-statistic and pivot, based on n
observations as in (1) and (2) respectively. Needless to say that in case of a big
data set, a sub-sample of size mn = n1/2 can be a huge reduction in the number
of observations that we are to deal with instead of the original sample that, in
our approach, results in the same magnitude of error as that of the classical
CLT when the entire sample of size n is to be observed.

To illustrate the reduction provided by our confidence set (66) when it used
to cover Fn(x) or F (x), point-wise in x ∈ R, we consider a big data set

of size n = 106. By generating the random weights (w
(106)
1 , . . . , w

(106)
106 ), with

m106 =
∑106

i=1 w
(106)
i =

√
106 = 1000, independently from the original sample

(cf. Remark 1.1), our confidence set (66) to capture Fn(x) is achieved with an
error proportional to 1/1000. Recalling also that in this case εn = Fn(x)−F (x)
is negligible already (cf. (70)), we also conclude that (66) captures F (x) with
an error proportional to 1/1000.

7. Proofs

Proof of Theorem 2.1

Due to similarity of the two cases we only give the proof of part (A) of this

theorem. The proof relies on the fact that, via conditioning on the weights w
(n)
i ’s,

∑n
i=1 |

w
(n)
i

mn
− 1

n |(Xi−µ) is a sum of independent and non-identically distributed
random variables. This in turn enables us to use a Berry-Esséen type inequality
for self-normalized sums of independent and non-identically distributed random
variables. Also, some of the ideas in the proof are similar to those of Slutsky’s
theorem.

We now write

G(1)
mn,n =

∑n
i=1

∣

∣

w
(n)
i

mn
− 1

n

∣

∣(Xi − µ)

σ

√

∑n
i=1(

w
(n)
i

mn
− 1

n )
2

+

∑n
i=1

∣

∣

w
(n)
i

mn
− 1

n

∣

∣(Xi − µ)

σ

√

∑n
i=1(

w
(n)
i

mn
− 1

n )
2

( σ

Sn
− 1

)

=: Zmn
+ Ymn

. (71)

In view of the above setup, for t ∈ R and ε1 > 0, we have

− PX|w(|Ymn
| > ε) + PX|w(Zmn

≤ t− ε)

≤ PX|w(G
(1)
mn,n ≤ t)

≤ PX|w(Zmn
≤ t+ ε) + PX|w(|Ymn

| > ε). (72)

Observe now that for ε1 > 0 we have

PX|w(|Ymn
| > ε) ≤ PX|w

(

|Zmn
| > ε

ε1

)

+ PX

(

|S2
n − σ2| > ε21

)

. (73)
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One can readily see that

PX|w

(

|Zmn
| > ε

ε1

)

≤ (
ε2
ε1

)2
∑n

i=1(
w

(n)
i

mn
− 1

n )
2EX(X1 − µ)2

σ2
∑n

i=1(
w

(n)
i

mn
− 1

n )
2

= (
ε1
ε
)2.

Combining now the preceding conclusion with (73), (72) can be replaced by

−(
ε1
ε
)2 − PX

(

|S2
n − σ2| > ε21

)

+ PX|w(Zmn
≤ t− ε)

≤ PX|w(G
(1)
mn,n ≤ t)

≤ (
ε1
ε
)2 + PX

(

|S2
n − σ2| > ε21

)

+ PX|w(Zmn
≤ t+ ε). (74)

Now, the continuity of the normal distribution Φ allows us to choose ε2 > 0 so
that Φ(t+ ε)− Φ(t) < ε2 and Φ(t− ε)− Φ(t) > −ε2. This combined with (74)
yields

−(
ε1
ε
)2 − PX

(

|S2
n − σ2| > ε21

)

+ PX|w(Zmn
≤ t− ε)− Φ(t− ε)− ε2

≤ PX|w(G
(1)
mn,n ≤ t)− Φ(t)

≤ (
ε1
ε
)2 + PX

(

|S2
n − σ2| > ε21

)

+ PX|w(Zmn
≤ t+ ε)− Φ(t+ ε) + ε2. (75)

We now use the Berry-Esséen inequality for independent and not necessarily
identically distributed random variables (cf., e.g., Serfling [25]) to write

PX|w(Zmn
≤ t+ ε1)− Φ(t+ ε1) ≤ (

CEX |X − µ|3
σ3/2

)

∑n
i=1 |

w
(n)
i

mn
− 1

n |3
(
∑n

i=1(
w

(n)
i

mn
− 1

n )
2
)3/2

and

PX|w(Zmn
≤ t− ε1)− Φ(t− ε1) ≥ (

−CEX |X − µ|3
σ3/2

)

∑n
i=1 |

w
(n)
i

mn
− 1

n |3
(
∑n

i=1(
w

(n)
i

mn
− 1

n )
2
)3/2

,

where C is a universal constant as in the Berry-Esséen inequality in this context
(cf. page 33 of Serfling [25]).

Incorporating these approximations into (75) we arrive at

sup
−∞<t<+∞

∣

∣PX|w(G
(1)
mn,n ≤ t)− Φ(t)

∣

∣

≤ (
ε1
ε
)2 + PX

(

|S2
n − σ2| > ε21

)

+ (
CEX |X − µ|3

σ3/2
)

∑n
i=1 |

w
(n)
i

mn
− 1

n |3
(
∑n

i=1(
w

(n)
i

mn
− 1

n )
2
)3/2

+ ε2.
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From the preceding relation we conclude that

Pw

(

sup
−∞<t<+∞

∣

∣PX|w(G
(1)
mn,n≤ t)−Φ(t)

∣

∣>δ
)

≤Pw

(

∑n
i=1|

w
(n)
i

mn
− 1

n |3
(
∑n

i=1(
w

(n)
i

mn
− 1

n )
2
)3/2

>δn
)

(76)

with δn as defined in the statement of Theorem 2.1.
For ε > 0, the right hand side of (76) is bounded above by

Pw

{

n
∑

i=1

∣

∣

w
(n)
i

mn
− 1

n

∣

∣

3
>

δn(1− ε)
3
2 (1− 1

n )
3
2

m
3
2
n

}

+ Pw

(

∣

∣

∣

mn

1− 1
n

n
∑

i=1

(w
(n)
i

mn
− 1

n

)2 − 1
∣

∣

∣
> ε

)

=: Π1(n) + Π2(n).

We bound Π1(n) above by

δ−2
n (1 − ε)−3(1− 1

n
)−3m−3

n (n+ n2)Ew(w
(n)
1 − mn

n
)6

= δ−2
n (1− ε)−3(1− 1

n
)−3m−3

n (n+ n2){15m
3
n

n3
+

25m2
n

n2
+

mn

n
}. (77)

As for Π2(n), recalling that Ew(
∑n

i=1(
w

(n)
i

mn
− 1

n )
2) =

(1− 1
n
)

mn
, an application

of Chebyshev’s inequality yields

Π2(n) ≤ m2
n

ε2(1− 1
n )

2
Ew

(

n
∑
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(
w

(n)
i

mn
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n
)2 − (1− 1

n )

mn

)2
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m2

n

ε2(1− 1
n )

2
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n
∑

i=1

(
w
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i
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2

m2
n

}2
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m2

n

ε2(1− 1
n )

2

{

nEw

(w
(n)
1

mn
− 1

n

)4

+ n(n− 1)Ew

[(w
(n)
1

mn
− 1

n

)2(w
(n)
2

mn
− 1

n

)2]− (1− 1
n )

2

m2
n

}

. (78)

We now use the fact that w(n)’s are multinomially distributed to compute the
preceding relation. After some algebra it turns out that it can be bounded above
by

m2
n

ε2(1− 1
n )

2

{1− 1
n

n3m3
n

+
(1 − 1

n )
4

m3
n

+
(mn − 1)(1− 1

n )
2

nm3
n

+
4(n− 1)

n3mn
+

1

m2
n

− 1

nm2
n

+
n− 1

n3m3
n

+
4(n− 1)

n2m3
n

− (1− 1
n )

2

m2
n

}

. (79)

Incorporating (77) and (79) into (76) completes the proof of part (A) of Theo-
rem 2.1.
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Proof of Corollary 2.1

The proofs of parts (A) and (B) of this corollary are immediate consequences
of Theorem 2.1.

To prove parts (C) and (D) of this corollary, in view of Theorem 2.1 it suffices
to show that, for arbitrary ε1, ε2 > 0, as n,mn → +∞,

Pw

(

PX|w(|Smn,n − S2
n| > ε1) > ε2

)

= O(
n

m2
n

). (80)

To prove the preceding result we first note that

S2
mn,n − S2

n =
∑

1≤i6=j≤n

( w
(n)
i w

(n)
j

mn(mn − 1)
− 1

n(n− 1)

) (Xi −Xj)
2

2

=
∑

1≤i6=j≤n

( w
(n)
i w

(n)
j

mn(mn − 1)
− 1

n(n− 1)

)( (Xi −Xj)
2

2
− σ2

)

.

By virtue of the preceding observation, we proceed with the proof of (80) by

first letting d
(n)
i,j :=

w
(n)
i w

(n)
j

mn(mn−1) − 1
n(n−1) and writing

Pw

{

PX|w(
∣

∣

∑

1≤i6=j≤n

d
(n)
i,j

( (Xi −Xj)
2

2
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)
∣
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}

≤ Pw
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d
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2
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. (81)

Observe now that

EX|w

(

∑

1≤i6=j≤n

d
(n)
i,j

( (Xi −Xj)
2

2
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))2

= EX
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. (82)

We note that in the preceding relation, since i, j, k are distinct, we have that

EX
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(
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2
− σ2)(
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− σ2)
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= E
{
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E
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=
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Also, since i, j, k, l are distinct, we have that

EX

(

(
(Xi −Xj)

2

2
− σ2)(

(Xk −Xl)
2

2
− σ2)

)

= E2
X

( (Xi −Xj)
2

2
− σ2) = 0.

Therefore, in view of (82) and (81), the proof of (80) follows if we show that

∑

1≤i6=j≤n

(d
(n)
i,j )

2 = OPw
(
1

m2
n

) (83)

and
∑

1≤i,j,k≤n
i,j,k are distinct

d
(n)
i,j d

(n)
i,k = OPw

(
n

m2
n

). (84)

Noting that, as n,mn → +∞,

Ew

{

∑

1≤i6=j≤n

(d
(n)
i,j )

2
}

∼ 1

m2
n

and
Ew

∣

∣

∑

1≤i,j,k≤n
i,j,k are distinct

d
(n)
i,j d

(n)
i,k

∣

∣ ≤ n3Ew(d
(n)
1,2 )

2 ∼ n

m2
n

.

The preceding two conclusions imply (83) and (84), respectively. Now the proof
of Corollary 2.1 is complete.

Proof of Corollary 2.2

The proof of this result is relatively easy. Due to their similarity, we only give the
proof for (9) of Corollary 2.2 as follows. With arbitrary positive δ, as n,mn →
+∞ so that mn = o(n2), in view of (A) of Corollary 2.1, we have

sup
−∞<t<+∞

∣

∣PX,w

(

G(1)
mn,n ≤ t

)

− Φ(t)
∣

∣ ≤ δ + 2P
(∣

∣PX|w(G
(1)
mn,n ≤ t)− Φ(t)

∣

∣ > δ
)

= δ +O
(

max{mn

n2
,

1

mn
}
)

. (85)

Now for any given arbitrary small ǫ > 0, take the arbitrary δ > 0, in (85) so
that ǫ − δ > 0. Thus, there exists an n0 = n(ǫ, δ) and mn0 = mn(ǫ, δ) so that
for all n ≥ n0 and mn ≥ mn0 , with mn = o(n2) we have O(max{mn

n2 ,
1

mn
}) < ǫ,

i.e., the indicated upper bound in (85) becomes arbitrary small at the rate
O(max{mn

n2 ,
1

mn
}) as n,mn → +∞ so that mn = o(n2).

Appendix A

Consider the original sample {X1, . . . , Xn} and assume that the sample size
n ≥ 1 is fixed. We are now to show that when n is fixed, as m → +∞, we have
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X̄m,n → X̄n in probability PX,w as in (32). To do so, without loss of generality
we assume that µ = 0. Let ε1, ε2 > 0, and write

Pw

{

PX|w
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(86)

The preceding conclusion means that PX|w(|X̄m,n− X̄n| > ε1) → 0 in probabil-

ity-Pw. Hence, by the dominated convergence theorem, we conclude that X̂m →
X̄n in probability PX,w.

We are now to show that the randomized sample variance S2
mn,n is an in

probability consistent estimator of the ordinary sample variance S2
n for each

fixed n, when m → +∞. Employing now the u-statistic representation of the
sample variance enables us to rewrite S2

mn,n, as in (8), as follows
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mn,n =

∑

1≤i≤j≤n w
(n)
i w

(n)
j (Xi −Xj)

2

2m(m− 1)
.

In view of the preceding formula, we have
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The preceding relation can be bounded above by:
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Clearly, the latter term approaches zero when m → +∞, for each fixed n. By
this we have shown that S2

mn,n → S2
n in probability-PX,w, when n is fixed and

only m → +∞.

Proof of the consistency of X̂mn,n in (21)

We give the proof of (21) for mn = n, noting that the proof below remains the
same for mn ≤ n and it can be adjusted for the case mn = kn, where k is a
positive integer. In order to establish (21) when mn = n, we first note that
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and, with ε1, ε2, ε3 > 0, we proceed as follows.
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564 M. Csörgő and M. M. Nasari
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A similar argument to that in (86) implies that, as n → +∞, and then ε3 → 0,
we have K1(n) → 0. As to K2(n), we note that

Ew(
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Observing now that, as n → +∞,

n(n− 1)Ew
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we conclude that, as n → +∞, K2(n) → 0. By this we have concluded the
consistency of X̂mn,n for the population mean µ, when mn = n.

Appendix B

The convergence in distribution of the partial sums of the form
∑n

i=1 w
(n)
i Xi

associated with T
(i)
mn,n, i = 1, 2, were also studied in the context of the boot-

strap by Csörgő et al. [7] via conditioning on the weights (cf. Theorem 2.1
and Corollary 2.2 therein). We note that the latter results include only ran-

domly weighted statistics that are similar to T
(i)
mn,n, i = 1, 2, which are natu-

ral pivots for the sample mean X̄n. In view of the fact that G
(i)
mn,n, i = 1, 2,

as defined by (4) and (7), are natural pivots for the population mean µ :=
EXX , in a similar fashion to Theorem 2.1 and its Corollary 2.2 of Csörgő

et al. [7], here we state conditional CLT’s, given the weights w
(n)
i ’s, where

(w
(n)
1 , . . . , w

(n)
i ) d

= multinomial(mn; 1/n, . . . , 1/n), for the partial sums
∑n

i=1 |
w

(n)
i

mn
− 1

n |(Xi − µ). The proofs of these results are essentially identical
to that of Corollary 2.2 of Csörgő et al. [7] in view of the more general setup in
terms of notations in the latter paper.

Theorem A.1. Let X,X1, . . . be real valued i.i.d. random variables with mean
µ and variance σ2, where 0 < σ2 < +∞.

(a) If mn, n → ∞, in such a way that mn = o(n2), then

PX|w(G
(1)
mn,n ≤ t) −→ Φ(t) in probability − Pw for all t ∈ R.
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(b) If mn, n → ∞ in such a way that mn = o(n2) and n = o(mn), then

PX|w(G
(2)
mn,n ≤ t) −→ Φ(t) in probability − Pw, for all t ∈ R.
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[9] Csörgő, S. and Rosalsky, A. (2003). A survey of limit laws for boot-
strapped sums. International Journal of Mathematics and Mathematical
Sciences 45, 2835–2861.

[10] Das Gupta, A. (2008). Asymptotic Theory of Statistics and Probability.
Springer. MR2664452

[11] Dvoretzky, A., Kiefer, J. and Wolfowitz, J. (1956). Asymptotic
minimax character of the sample distribution function and of the classi-
cal multinomial estimator. Annals of Mathematical Statistics 27, 642–669.
MR0083864

[12] Efron, B. (1979). Bootstrap methods: Another look at the jackknife. An-
nals of Statistics 7, 1–26. MR0515681

[13] Efron, B. and Tibshirani, R. (1993). An Introduction to the Bootstrap.
Chapman & Hall, New York, London. MR1270903

http://www.ams.org/mathscinet-getitem?mr=1387650
http://www.ams.org/mathscinet-getitem?mr=2195545
http://www.ams.org/mathscinet-getitem?mr=0198524
http://www.ams.org/mathscinet-getitem?mr=1400598
http://www.ams.org/mathscinet-getitem?mr=1387647
http://www.ams.org/mathscinet-getitem?mr=0830424
http://www.ams.org/mathscinet-getitem?mr=3295059
http://www.ams.org/mathscinet-getitem?mr=3090476
http://www.ams.org/mathscinet-getitem?mr=2664452
http://www.ams.org/mathscinet-getitem?mr=0083864
http://www.ams.org/mathscinet-getitem?mr=0515681
http://www.ams.org/mathscinet-getitem?mr=1270903
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