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Abstract

We consider time-dependent random walks among time-dependent conductances.
For discrete time random walks, we show that, unlike the time-independent case,
two-sided Gaussian heat kernel estimates are not stable under perturbations. This
is proved by giving an example of a ballistic and transient time-dependent random
walk on Z among uniformly elliptic time-dependent conductances. For continuous
time random walks, we show the instability when the holding times are i.i.d. exp(1),
and in contrast, we prove the stability when the holding times change by sites in such
a way that the base measure is a uniform measure.
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1 Introduction

The study of heat kernels of diffusions on manifolds and Markov chains on graphs has
a very long and fruitful history. One of the motivations was to obtain a priori estimates
such as the estimates of the Hölder continuity for the solutions of heat equations. In the
framework of the divergence operator L =

∑d
i,j=1

∂
∂xi

(aij(x) ∂
∂xj

) on Rd where aij(·) is
measurable and symmetric, there are significant work by De Giorgi, Nash and Moser
around late 50s to early 60s. For the divergence form satisfying a uniformly elliptic
condition, Aronson [Ar] proved the following two-sided Gaussian heat kernel estimates
for all t > 0, x, y ∈ Rd:

c1t
−d/2 exp

(
− c2d(x, y)2

t

)
≤ pt(x, y) ≤ c3t−d/2 exp

(
− c4d(x, y)2

t

)
. (1.1)

Later in the last century, the two-sided Gaussian estimates were obtained for many
operators in many spaces and the heat kernel estimates were investigated from various
aspects. One of the important directions is to establish the stability of the estimates,
namely to show that the estimates are preserved when the operator (or the corresponding
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Stability and instability of Gaussian heat kernel estimates

Dirichlet form) is perturbed in a suitable way. Consider the Laplace-Beltrami operator on
a complete Riemannian manifold with d(·, ·) and µ being the Riemannian metric and the
Riemannian measure. Early in 90s, Grigor’yan [Gr] and Saloff-Coste [SC] independently
proved that for the Laplace-Beltrami operator, a variant of (1.1) (i.e. changing t−d/2

into µ(B(x, t1/2))−1) is equivalent to a volume doubling condition (VD) plus Poincaré
inequalities (PI(2)) via the equivalence to parabolic Harnack inequalities –see Theorem
1.2 for definitions of the terminologies. Since (VD) and (PI(2)) are stable under the
perturbations, one can obtain the stability of the heat kernel estimates. The results were
later extended to the framework of Dirichlet forms on metric measure spaces by Sturm
[St1, St2] and graphs by Delmotte [De]. We note that such a stability theory has been
extended to the sub-Gaussian heat kernel estimates, also to locally irregular graphs such
as the super-critical Bernoulli percolation cluster ([BC]); the theory has been very useful
in the recent developments of the random walk among random conductances (see for
example [MB, Kum]).

In this note, we are mainly interested in cases when the edge conductances of the
graph are themselves changing in time, independently of the walk. We will consider the
stability of the two-sided Gaussian heat kernel estimates in this setting. A naive guess is
that the stability holds at least when the time-dependent conductance is bounded from
above and below uniformly by positive constants. However, this naive guess is completely
wrong for discrete time (time-dependent) random walks. Indeed, in Proposition 1.4(i),
we give an example of a ballistic and transient time-dependent random walk on Z among
uniformly elliptic time-dependent conductances. We also give a counter example in
the setting of continuous time (time-dependent) random walks, called constant speed
random walks, when the holding times are i.i.d. exp(1) (Proposition 1.4(ii)). Contrary to
the above, when the holding times change by sites in such a way that the base measure
is a uniform measure (called a variable speed random walk), we can prove the stability
by proving the equivalence of the heat kernel estimates to (VD) and (PI(2)) under some
regularity condition of the conductances –see Theorem 1.2. We note that the stability of
parabolic Harnack inequalities and estimates of the heat kernel were already established
in the framework of time-dependent Dirichlet forms on metric measure spaces by Sturm
[St1, St2], and in [DD, GOS] it was proved that for random walks on Zd among uniformly
elliptic time-dependent conductances, the two-sided Gaussian heat kernel estimates
hold. Also in [GP], some criteria was given on the recurrence and transience of a set
using the heat kernel estimates. These are results for variable speed random walks. The
purpose of this note is to demonstrate a fundamental difference between discrete time
random walks (or constant speed random walks) and variable speed random walks even
in the framework that the random walks are uniformly elliptic and uniformly lazy. In
particular, we find that both the upper and lower Gaussian bounds can be violated in
these situations (see Proposition 1.4 and 1.5), and consequently they are unstable even
though (VD)+(PI(2)) are still stable. This contrasts to the above mentioned situation on
graphs with time-independent conductances, where the discrete time and the two types
of continuous time random walks share the same long-time properties at least in the
uniformly elliptic setting.

Let us mention some related works. [ABGK, DHS] study recurrence versus transience
of discrete time simple random walks on graphs with monotonically changing conduc-
tances. To be fair, we note that our example in Proposition 1.4(i) borrowed an idea
from [ABGK, Example 3.5]. In [GPZ], they consider controlled random walks, namely
random walks that are martingales with uniformly bounded increments and nontrivial
jump probabilities (that may depend on the behavior of the random walks), and show
that anomalous behavior of the heat kernels can occur in the framework. The readers
may find further related works in the references of the above papers.
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Stability and instability of Gaussian heat kernel estimates

1.1 Framework and main results

LetG = (V,E) be a connected graph with bounded degree. Assume that for each t ≥ 0,
the graph G is endowed with a conductance (weight) µ(t)(x, y) which is a symmetric
nonnegative deterministic function on V × V such that µ(t)(x, y) > 0 if and only if
{x, y} ∈ E. Suppose further that the map t 7→ µ(t)(x, y) is right continuous and has
left limit (RCLL for short) for each {x, y} ∈ E. We call (G, {µ(t)(x, y)}) a time-dependent
weighted graph. Let µ(t)(x) :=

∑
y µ

(t)(x, y) for each x and define a measure µ(t) on V by

setting µ(t)(A) =
∑
x∈A µ

(t)(x) for each A ⊂ V . Let ν be a uniform measure on V , that is
ν(A) = |A| for A ⊂ V where |A| is a cardinality of A. Throughout the paper, we assume
the following: there exists c1 ∈ (0, 1] such that

c1 ≤ µ(t)(x, y) ≤ c−11 , ∀{x, y} ∈ E. (1.2)

We now define a quadratic form on (G, {µ(t)(x, y)}) as follows:

Et(f, g) =
1

2

∑
x,y∈V

(f(x)− f(y))(g(x)− g(y))µ(t)(x, y)

for each f, g ∈ H2
t , where

H2
t = {f : V → R :

∑
x,y∈V

(f(x)− f(y))2µ(t)(x, y) <∞}.

Define discrete Laplace operators as follows:

LCt f(x) =
∑
y

(f(y)− f(x))
µ(t)(x, y)

µ(t)(x)
, LVt f(x) =

∑
y

(f(y)− f(x))µ(t)(x, y).

For each f, g that has finite support, we have

Et(f, g) = −(LVt f, g)ν = −(LCt f, g)µ(t) ,

where (f, g)θ :=
∑
x f(x)g(x)θ(x) for a measure θ.

We next provide definitions for discrete time and continuous time constant/variable
speed random walks on (G, {µ(t)(x, y)}). One way to construct such processes is through
the theory of time-dependent Dirichlet forms (see [O]), but this will require some
knowledge of probabilistic potential theory and some more notation. Here we give a
more direct definition. For x, y ∈ V , we define

P (t)(x, y) := µ(t)(x, y)/µ(t)(x).

Definition 1.1. (i) The V -valued stochastic process {Xt}t∈N is called a discrete time
random walk onG, if its transition probabilities at time t ∈ N are given by P (t, x; t+1, y) =

P (t)(x, y), for any {x, y} ∈ E.
(ii) The V -valued stochastic process {Yt}t∈R+ of RCLL sample path t 7→ Yt is called a
constant speed random walk (in short CSRW), if it waits i.i.d. exp(1) times between
successive jumps, and if YT− = x just prior to the current random jump time T , then the
process jumps across each {x, y} ∈ E with probability P (T )(x, y).
(iii) The V -valued stochastic process {Yt}t∈R+ of RCLL sample path t 7→ Yt is called a
variable speed random walk (in short VSRW), if the holding time of the particle at x ∈ V
at time t ∈ R+ is independent with the law exp(µ(t)(x)), and if YT− = x just prior to
the current random jump time T , then the process jumps across each {x, y} ∈ E with
probability P (T )(x, y).
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CSRW and VSRW as defined above are associated with the operators LCt and LVt respec-
tively, in particular the heat kernel of CSRW P (Yt = y|Ys = x)/µ(t)(y) solves ∂

∂tp(s, x; t, y) =

LCt p(s, x; t, y) in the weak sense, whereas the heat kernel of VSRW P (Yt = y|Ys = x) solves
∂
∂tp(s, x; t, y) = LVt p(s, x; t, y), where the operators act on the y variable. These can be
seen from the fact that independently at time t and vertex x, the exponential rate at
which the random walk jumps across edge (x, y) is given by µ(t)(x, y)/µ(t)(x) for CSRW and
µ(t)(x, y) for VSRW.

We first show that, for the VSRW we have the stability of Gaussian heat kernel estimates
as expected. While we could not find out the precise statement as given below, the proof
is a careful line by line modifications of the known proof (such as the proof in [De]). Once
again we note that it is proved in [DD, Sect. 4] and [GOS, Appendix B] that any VSRW on
Zd among uniformly elliptic time-dependent conductances must satisfy the two-sided
Gaussian heat kernel bounds. In the setting of time-dependent local regular Dirichlet
forms on metric measure spaces, similar results are given in [St1] and the equivalence of
the parabolic Harnack inequalities and the volume doubling property plus the Poincaré
inequalities are given in [St2].

Theorem 1.2. Let G = (V,E) be a connected graph with bounded degree and {µ(t)(x, y) :

x, y ∈ V } be time-dependent conductances that satisfy (1.2). Then the following are
equivalent:
(a) The graph G satisfies the volume doubling with constant C1 <∞, namely

ν(B(x, 2r)) ≤ C1ν(B(x, r)) (1.3)

for all x ∈ G, r > 0; and the Poincaré inequality holds with a constant C2 <∞, namely∑
x∈B(x0,r)

|f(x)− fB|2 ≤ C2r
2

∑
x,y∈B(x0,2r)

(f(x)− f(y))2µ(t)(x, y), (1.4)

for all f : V → R, x0 ∈ G, r > 0, where fB =
∑
x∈B(x0,r)

f(x)/ν(B(x0, r)).
(b) The parabolic Harnack inequality holds for all non-negative solutions of equation

∂u(t, x)

∂t
= LVt u(t, x).

That is, set η ∈ (0, 1) and 0 < θ1 < θ2 < θ3 < θ4, we have for all x0, s, r, and every
non-negative solution on cylinder Q = [s, s+ θ4r

2]×B(x0, r),

sup
Q−

u ≤ C3 inf
Q+

u,

where Q− = [s+ θ1r
2, s+ θ2r

2]×B(x0, ηr) and Q+ = [s+ θ3r
2, s+ θ4r

2]×B(x0, ηr), with
some C3 <∞.
(b∗) The parabolic Harnack inequality holds for all non-negative solutions of equation

∂u(t, x)

∂t
= LV u(t, x),

where LV f(x) :=
∑
y:{x,y}∈E(f(y)− f(x)).

(c) The following two-sided heat kernel estimates hold for the corresponding VSRW: there
exist positive constants C4, C5, c6, c7 <∞ such that

p(0, x; t, y) ≤


C4

ν(B(x,t1/2))
exp

(
− C5d(x, y)(1 ∨ log(d(x,y)t )

)
, ∀t ≤ d(x, y),

C4

ν(B(x,t1/2))
exp

(
− C5

d(x,y)2

t

)
, ∀t ≥ d(x, y),

(1.5)

c6
ν(B(x, t1/2))

exp
(
− c7

d(x, y)2

t

)
≤ p(0, x; t, y), ∀t ≥ d(x, y), (1.6)

for all x, y ∈ V , t > 0 (with a restriction t ≥ d(x, y) in (1.6)).
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Remark 1.3. We note that the uniformly elliptic condition (1.2) is a natural assumption
when discussing the stability of VSRWs even for the time-independent case. Indeed,
consider one parameter family of conductances {Mµ(x, y) : x, y ∈ V } with M ≥ 1 and
assume that (1.3) and (1.4) hold when M = 1. Then they also hold for all M ≥ 1.
However, the corresponding VSRW is a constant (M times) time change of the process
for M = 1, so (1.5) and (1.6) cannot hold uniformly. The lower bound of (1.2) can be
deduced by applying (1.4) with r = 1 and f(z) = δ{x}(z).

Since the proof of Theorem 1.2 is similar to that of the time-independent case, we will
simply give a sketch of the proof in the next section. As a consequence of this theorem,
we can see that the VSRW on Zd among uniformly elliptic time-dependent conductances
enjoys the Gaussian heat kernel estimates (1.5) and (1.6).

In contrast to the above theorem, for the discrete time random walk and the CSRW, one
can construct a transient random walk on Z among uniformly elliptic time-dependent
conductances as in the next proposition (cf. [ABGK, Example 3.5]).

Let γ < 1. We say a time-dependent discrete time random walk is γ-lazy if P (t)(x, x) ≥
γ for all x ∈ V and all t ≥ 0.

Proposition 1.4. (i) For any γ < 1 and ε > 0 there exist time-dependent conductances
{µ(t)(x, x± 1), µ(t)(x, x) : x ∈ Z} on Z with

1− ε ≤ µ(t)(x, x± 1) ≤ 1 + ε, ∀x ∈ Z, t ∈ N

such that the corresponding discrete time random walk {Xt}t∈N is γ-lazy, and it is
ballistic and transient almost surely (i.e. it returns to starting point finitely often).

(ii) For any ε, c > 0, there exist time-dependent, piecewise-constant conductances
{µ(t)(x, x± 1) : x ∈ Z} on Z with

1− ε ≤ µ(t)(x, x± 1) ≤ 1 + ε, ∀x ∈ Z, t ∈ R+

and the times {tn} at which the conductances change satisfying tn/n→ 1/c, such that
the corresponding CSRW {Yt}t∈R+ is ballistic and transient almost surely.

In particular, both walks violate the Gaussian heat kernel on-diagonal lower bound as
well as off-diagonal upper bound on Z.

In this proposition, we give examples where the edge conductances are periodically
fluctuating in time. It remains open whether adding monotone condition on the edge
conductances would recover the expected Gaussian lower bound.

In a similar manner, we also give in the next proposition examples of discrete time
random walks and CSRW on Z2 ×Z≥0 with uniformly elliptic time dependent conductances
that violate the on-diagonal Gaussian upper bound. Let {e1, e2, e3} be the Cartesian
standard basis of Z3.

Proposition 1.5. (i) For any γ < 1 and ε > 0 there exist time-dependent conductances
{µ(t)(x, x± ei), µ(t)(x, x) : x ∈ Z2 ×Z≥0, i = 1, 2, 3} on Z2 ×Z≥0 with

1− ε ≤ µ(t)(x, x± ei) ≤ 1 + ε, i = 1, 2, 3, ∀x ∈ Z2 ×Z>0, t ∈ N

such that the corresponding discrete time random walk {Xt}t∈N is γ-lazy and recurrent
almost surely (i.e. it returns to starting point infinitely often).

(ii) For any ε, c > 0, there exist time-dependent, piecewise-constant conductances
{µ(t)(x, x± ei) : x ∈ Z2 ×Z≥0, i = 1, 2, 3} on Z2 ×Z≥0 with

1− ε ≤ µ(t)(x, x± ei) ≤ 1 + ε, i = 1, 2, 3, ∀x ∈ Z2 ×Z≥0, t ∈ R+
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and the times {tn} at which the conductances change satisfying tn/n→ 1/c, such that
the corresponding CSRW {Yt}t∈R+

is recurrent almost surely.
In particular, both walks violate the Gaussian heat kernel on-diagonal upper bound

on Z2 ×Z≥0.

As a consequence, for the random walks in Propositions 1.4 and 1.5 the stability of
Gaussian heat kernel estimates of Theorem 1.2 does not hold, even though (VD) and
(PI(2)) hold uniformly.

2 Proof

Sketch of the proof of Theorem 1.2.
(a)⇒ (b)⇒ (c): As explained in [DD, pg 374-375], it is possible to adapt Delmotte’s

argument ([De]) here by setting, in their notation, µxy = a(t, x, y) =: µ(t)(x, y) and
m(x) =: 1. (Note that Delmotte’s proof is for the discrete time random walk and CSRW.)
Note that although the framework of [DD] is Zd, the same modification can be employed
for general G. In both [De, DD] the term E(t,D) = exp(−D arg sinh D

t +t(
√

1 +D2/t2−1))

appears in the off-diagonal bounds, but simple computations show that it is comparable
with the exponential parts of (1.5), (1.6). Let us now overview the proof. Assuming
(a), (1.2) translates to a Poincaré inequality that holds uniformly for all t, as well as a
weighted Poincaré inequality and a Sobolev-Poincaré inequality needed along the way
([De, Proposition 2.2, 2.4]). Since [De, Section 2] is itself in continuous time, one thus
can re-produce the entire section, resulting in a parabolic Harnack inequality (b). Now
(b) implies the on-diagonal upper bound and the near diagonal (i.e. for d(x, y)2 ≤ t)
lower bound for the heat kernel of {Xt} and its dual process. (Note that unlike the
time-independent case, p(0, x, t, y) is no longer equal to p(0, y, t, x). However, it holds
that p(0, x, t, y) = p∗(0, y, t, x) where p∗(·, ·, ·, ·) is the heat kernel for the time reversal
conductances, i.e. {µ(t−·)(x, y)}; cf. [St1, Lemma 1.5].) The off-diagonal upper bound can
be deduced from the on-diagonal one and the integrated maximum principle using the
Davies’ argument. The off-diagonal lower bound (in the range d(x, y) ≤ t) follows from
the near diagonal one by the usual chain argument. See [De, Section 3.1] for details.

(a)⇔ (b∗): Note that (1.4) is equivalent to the inequality where the right hand side is
changed to C ′2r

2
∑
x,y∈B(x0,2r)

(f(x)− f(y))2. So, the equivalence for time-independent
case (that can be proved similarly to [De]) implies the desired equivalence.

(b)⇒ (b∗): This is trivial.
(c)⇒ (b): This can be proved using the Balayage argument as in [De, Theorem 3.10]

(see the proof of [BKM, Theorem 1.5] for more details on the Balayage argument in the
setting of continuous time Markov chains). In order to apply the Balayage argument, the
existence of the space-time dual process is required –in this case, we know the existence
by using the time reversal conductances mentioned above. In the proof, we need the
following estimate

sup
0<s≤R2

p(0, x, s, y) ≤ c1
ν(B(x0, R))

for all x, y ∈ B(x0, 2R) with d(x, y) ≥ R,

which can be deduced by (1.5) and the fact that there exists β > 0 such that ν(B(x,R)) ≤
cRβ for all x ∈ V,R ≥ 1. The last inequality is a consequence of (1.3) and the degree of
the graph being bounded. We note that we do not need the heat kernel lower bound for
t ≤ d(x, y) to establish (b).

Proof of Proposition. 1.4. (i) Here G = Z and we set the edge conductances to be

µ(t)(i, i− 1) = 1− ε, µ(t)(i, i) = b, µ(t)(i, i+ 1) = 1 + ε, when t+ i is even;

µ(t)(i, i− 1) = 1 + ε, µ(t)(i, i) = b′, µ(t)(i, i+ 1) = 1− ε, when t+ i is odd ,
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with b/(b + 2) = γ and b′/(b′ + 2) = γ′ > γ. We start at X0 = 0 and notice that this
random walk has two possible states: either Xt is at state A+ with his right edge having
conductance 1 + ε, or it is at state A− with his right edge having conductance 1 − ε.
Whenever the random walk Xt moves either to its left or right vertex, it keeps the current
state, while if it stays put (i.e. Xt+1 = Xt), then due to the change of conductance values,
it moves to the opposite state. Let {Zt}t∈N be the {A±}-valued Markov chain describing
the state of {Xt}, then the transition probabilities of Zt are thus

q(A+, A+) = 1− γ, q(A+, A−) = γ, q(A−, A−) = 1− γ′, q(A−, A+) = γ′ . (2.1)

and its invariant measure is

π(A+) =
γ′

γ′ + γ
, π(A−) =

γ

γ′ + γ
, (2.2)

whereas by the strong law for occupation time Nt(·) :=
∑t−1
i=0 I{Zi=·} (Cf. [Du, (5.5) pg

320]),

Nt(A±)/t
a.s.→ π(A±). (2.3)

Further, whenever at state A+ the random walk has drift ∆(A+) = ε(1− γ) to its right
while at state A− it has drift ∆(A−) = −ε(1−γ′). We enumerate sequentially the random
times m1 < m2 < ... when the random walk is at state A+, and similarly enumerate the
random times n1 < n2 < ... when the random walk is at state A−, then S+ := {Di :=

Xi+1 −Xi, i ∈ {m1,m2, ...}} are i.i.d. with drift ∆(A+), and S− := {Di : i ∈ {n1, n2, ...}}
are i.i.d. with drift ∆(A−), while S± are also mutually independent. Hence by the strong
law of large numbers (SLLN) and (2.3), we have that

Xt

t
=

∑t−1
i=0DiI{Di∈S+}

Nt(A+)

Nt(A+)

t
+

∑t−1
i=0DiI{Di∈S−}

Nt(A−)

Nt(A−)

t

a.s.→ ∆(A+)π(A+) + ∆(A−)π(A−) = ε
γ′(1− γ)− γ(1− γ′)

γ′ + γ
= ε

γ′ − γ
γ′ + γ

=: β > 0. (2.4)

It is thus ballistic and transient almost surely, violating the Gaussian heat kernel on-
diagonal lower bound (1.6). If the Gaussian off-diagonal upper bound (1.5) holds,
then integrating over the region y ∈ [(β − ε)t, (β + ε)t] for any ε ∈ (0, β), we see that
P(Xt ∈ [(β − ε)t, (β + ε)t]) decays exponentially for t, which contradicts (2.4). So this
walk also violates the Gaussian heat kernel off-diagonal upper bound (1.5).

To have a non-lazy example, set b = b′ = 0 and observe that {Xt} then keeps the state
A+ at all times.

(ii) Here again G = Z, and let {τk}k∈N be the successive jump times of a Poisson
process of intensity c− 1 ∈ (0,∞), with τ0 = 0, independent of the CSRW {Yt}, and then we
set the edge conductances to be

µ(t)(i, i+ 1) = 1− ε, µ(t)(i+ 1, i+ 2) = 1, µ(t)(i+ 2, i+ 3) = 1 + ε,

when t ∈ [τk, τk+1), and i ≡ k mod 3.

We start at Y0 = 0 and notice that this CSRW has three possible states: either it is at
state A1 with left/right (L/R for short) edge conductances 1 + ε, 1− ε, or it is at state A2

with L/R edge conductances 1− ε, 1, or at state A3 with L/R edge conductances 1, 1 + ε.
On the other hand, there are two independent Poisson clocks, one (“CE") governing
the environment shift which has intensity c− 1, and one (“CJ") governing jumps of CSRW

which has intensity 1. Denote {Tk}k∈N the sequence of times when the state of {Yt}
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changes, then it is the successive jump times of a Poisson process of intensity c ∈ (1,∞).
Let {Zk}k∈N be the {A1, A2, A3}-valued process describing the state of YTk

, then the
transition from Zk to Zk+1 is determined by which clock rings first, and in case CJ does,
what are the adjacent edge conductances, but not on {Z0, ..., Zk−1}. In other words, the
process {Zk} is a time-homogeneous Markov chain with state space {A1, A2, A3}.

Using properties of exponential distribution (i.e. if ξ1 and ξ2 are independent exp(γ1)
and exp(γ2) random variables, then P(ξ1 < ξ2) = γ1/(γ1 + γ2)), one can calculate the
transition probabilities of {Zk}:

q(A1, A2) =
1− ε

2c
, q(A1, A3) =1− 1− ε

2c
, q(A2, A3) =

1

(2− ε)c
, q(A2, A1) = 1− 1

(2− ε)c
,

q(A3, A1) =
1 + ε

(2 + ε)c
, q(A3, A2) = 1− 1 + ε

(2 + ε)c
.

and its invariant measure is proportional to

π =
[

2[(−4c2 + 2c− 1)+(c− 1)ε+ c2ε2], (2− ε)[(4c2 − 2c+ 1) + (2c2 − 2c)ε− ε2],

(2 + ε)[(4c2 − 2c+ 1) + (−2c2 + 3c− 1)ε− cε2]
]
.

Further, the drift Yt is subject to when at states Ai, i = 1, 2, 3 for its immediate next
change of state is ∆ =

[
− ε

c ,
ε

(2−ε)c ,
ε

(2+ε)c

]
. By SLLN the speed of {Yt} is proportional

to π · ∆, and one can check that the speed is positive when ε ∈ (−1,− 3
2c+1 ) ∪ (0, 1),

and negative when ε ∈ (− 3
2c+1 , 0) (see also Remark 2.1). This implies that for arbitrary

ε ∈ (0, 1), c > 1, {Yt} has non-zero speed, w.p.1 under the annealed measure on the
environment.

Furthermore, the annealed result implies that for a.e. realization of the isolated
Poisson jump times {τn}, {Yt} is w.p.1. transient, ballistic and violates the Gaussian heat
kernel on-diagonal lower bound (1.6) and off-diagonal upper bound (1.5) in the quenched
sense. That is, there exist some (in fact uncountably many) choices of non-random
{tn} with tn/n → 1/(c − 1), so that with the conductances changing at times {tn} the
corresponding CSRW on Z is transient, ballistic and violates the on-diagonal lower bound
(1.6) and off-diagonal upper bound (1.5).

Remark 2.1. An intuitive explanation of the phenomenon concerning the region of
positive/negative speed in the above example is as follows. Its asymmetry comes from the
fact that, although the conductances are symmetric in both directions, the environment
is shifting only to the right, and this breaks the symmetry of ε. Also, when ε is sufficiently
close to −1, the speed becomes positive again. Take the special case when c→∞, then
the shift of conductances is so quick that at every time the CSRW jumps (which happens
independently at rate 1), its neighborhood is one of the three choices with almost
equal probability. But the drift at these three neighborhoods are −ε, ε/(2− ε), ε/(2 + ε)

respectively, one can check that their average is positive regardless of ε ∈ (−1, 0) ∪ (0, 1).

Remark 2.2. The effect of oscillating edge conductances can be mapped to monotone
but unboundedly increasing or decreasing conductances. Take one dimension and
discrete time for example, with a > 0 the oscillating conductances {.., 1, a, 1, a...} on Z
shifting at speed 1, is equivalent to setting at time 2n the conductances {.., a2n, a2n+1, a2n,

a2n+1, ..} and at time 2n + 1 {.., a2n+2, a2n+1, a2n+2, a2n+1, ..} etc. However, we expect
that among monotone and uniformly elliptic conductances, the walks follow recur-
rence/transience of the starting and ending graphs. This has been proved for discrete
time non-lazy walks on trees in [ABGK, Theorems 5.1, 5.2].

Proof of Proposition 1.5. (i) Here the vertex set is V = Z2 × Z≥0 and we set the edge
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conductances to be

µ(t)(ξ, ξ + e3) = 1 + ε, µ(t)(ξ, ξ − e3) = 1− ε, µ(t)(ξ, ξ) = b,

when ξ = (i, j, k) ∈ Z2 ×Z>0, t+ i+ j + k is odd;

µ(t)(ξ, ξ + e3) = 1− ε, µ(t)(ξ, ξ − e3) = 1 + ε, µ(t)(ξ, ξ) = b′,

when ξ = (i, j, k) ∈ Z2 ×Z>0, t+ i+ j + k is even;

µ(t)(ξ, ξ ± el) = 1, l = 1, 2, for all ξ ∈ Z2 ×Z>0, and all t ;

µ(t)(ξ, ξ ± el) = 0, l = 1, 2, for all ξ = (i, j, 0), and all t,

µ(t)(ξ, ξ) = f, when ξ = (i, j, 0), t+ i+ j is odd;

µ(t)(ξ, ξ) = f ′, when ξ = (i, j, 0), t+ i+ j is even.

with b/(b+ 6) = f/(f + 1 + ε) = γ and b′/(b′ + 6) = f ′/(f ′ + 1− ε) =: γ′ < γ.
Starting at X0 = 0 the random walk has two possible states. Either it is at state A+

with upper edge conductance 1+ ε, or it is at state A− with upper edge conductance 1− ε.
Whenever the random walk moves, it keeps the same state; and whenever it stays put, it
changes to the opposite state. Let {Zt}t∈N denote the state of {Xt}. Define the sequence
of stopping times {σn} starting from σ0 = 0, and for i ≥ 1, σi := inf{t > σi−1 : (Xt)3 = 0},
and let Mn :=

(
(Xσn

)1, (Xσn
)2
)

be the two-dimensional random walk on Z2 × {0}. When
Rt := (Xt)3 > 0, the state transition probabilities {q(·, ·)} are given by (2.1) and they
have an invariant measure π(·) given by (2.2); whereas at state A+, the random walk
has drift ∆(A+) = (2ε)/(6 + b) and at state A− it has drift ∆(A−) = −(2ε)/(6 + b′). Let

β := ∆(A+)π(A+) + ∆(A−)π(A−) =
2ε

6 + b

γ′

γ + γ′
− 2ε

6 + b′
γ

γ + γ′
< 0.

Because β < 0, by the large deviation arguments, there exists some positive constant
c1 = c1(β) such that for all k large enough and every n,

P(||Dn|| > k|Fn) ≤ P(σn+1 − σn > k|Fn) = P( min
1≤i≤k

Rσn+i > 0|Fn) ≤ c−11 e−c1k, (2.5)

where Fn := FXσn
is the canonical filtration of {Xt} stopped at σn, and Dn := Mn+1 −Mn.

We enumerate sequentially the random times m1 < m2 < ... when the state of Mn

is A+, and similarly the random times n1 < n2 < ... when the state of Mn is A−.
Then the collection S+ := {Di : i ∈ {m1,m2...}} are i.i.d. with some law ν+, and the
collection S− := {Di : i ∈ {n1, n2...}} are i.i.d. with some law ν−, while S± are mutually
independent. Also, the sequence of states {Zσn

} approach an invariant measure which
we denote by π̃(·) (different from π(·)). Let p(·, ·) be the heat kernel of {Mn}, and p±(·, ·)
the heat kernels of aperiodic random walks of i.i.d. increments with law ν±, which have
all moments finite by (2.5), we have by the strong law for state occupation time of π̃(·)
that

lim
n→∞

p(n, 0)(
p+(π̃(A+)n, ·) ∗ p−(π̃(A−)n, ·)

)
(0)

= 1, (2.6)

where ∗ denotes convolution on Z2. By the local central limit theorem for p±(·, ·) ([LL,
Theorem 2.3.5]), there exists some positive constant c2 such that for all z satisfying
||z|| ≤

√
n, we have that p±(π̃(A±)n, z) ≥ c2/n, therefore(

p+(π̃(A+)n, ·) ∗ p−(π̃(A−)n, ·)
)
(0) ≥

∫
{||z||≤

√
n}
p+(π̃(A+)n, z)p−(π̃(A−)n,−z)dz ≥ c22/n,

(2.7)
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which by (2.6) then implies that {Mn} is recurrent almost surely, and the same for {Xt}.
As a consequence, the Gaussian heat kernel on-diagonal upper bound (1.5) does not hold
for {Xt}.

To have a non-lazy example, set b = b′ = f = f ′ = 0 and observe that {Xt} then keeps
the state A− at all times.

(ii) Here again V = Z2 × Z≥0, and let {τn}n∈N be the successive jump times of a
Poisson process of intensity c− 1 ∈ (0,∞), with τ0 = 0, independent of the CSRW {Yt}, and
then we set the edge conductances to be

µ(t)(ξ, ξ + e3) = 1 + ε, µ(t)(ξ, ξ − e3) = 1− ε, µ(t)(ξ, ξ ± el) = 1 + ε/2, l = 1, 2

when ξ = (i, j, k) ∈ Z2 ×Z>0, t ∈ [τn, τn+1), n+ k is odd;

µ(t)(ξ, ξ + e3) = 1− ε, µ(t)(ξ, ξ − e3) = 1 + ε, µ(t)(ξ, ξ ± el) = 1− ε/2, l = 1, 2

when ξ = (i, j, k) ∈ Z2 ×Z>0, t ∈ [τn, τn+1), n+ k is even;

µ(t)(ξ, ξ ± el) = 1 + ε/2,when ξ = (i, j, 0), l = 1, 2, t ∈ [τn, τn+1), n is odd;

µ(t)(ξ, ξ ± el) = 1− ε/2,when ξ = (i, j, 0), l = 1, 2, t ∈ [τn, τn+1), n is even.

Starting at Y0 = 0 the CSRW has two possible states: either it is at state A+ with its
upper edge conductance 1 + ε, or at state A− with its upper edge conductance 1 − ε.
Let {Tn}n∈N be the sequence of times when the state of {Yt} changes, then it is the
successive jump times of a Poisson process of intensity c ∈ (1,∞). Let {Zn}n∈N be
the {A±}-valued time-homogeneous Markov chain describing the state of {YTn

}. When
RTn

:= (YTn
)3 > 0, the transition probabilities of {Zn} are given by

q(A+, A−) =
c− 1

c
+

1

(3 + ε)c
, q(A+, A+) =

2 + ε

(3 + ε)c
,

q(A−, A+) =
c− 1

c
+

1

(3− ε)c
, q(A−, A−) =

(2− ε)
(3− ε)c

,

and they have an invariant measure (where Z is the normalizing constant)

π(A+) =
(c− 1

c
+

1

(3− ε)c
)
/Z, π(A−) =

(c− 1

c
+

1

(3 + ε)c

)
/Z;

whereas at state A+, the CSRW has drift (for its immediate next change of state) ∆(A+) =

(2ε)/((6 + 2ε)c), while at state A−, it has drift ∆(A−) = −(2ε)/((6− 2ε)c).

Hence working analogously to part (i) and defining {σn} for the embedded Markov
chain {YTn}, with

β̂ := ∆(A+)π(A+) + ∆(A−)π(A−)

=
ε

(3 + ε)c

c− 1 + (3− ε)−1

cZ
− ε

(3− ε)c
c− 1 + (3 + ε)−1

cZ
< 0

we thus have the tail bound (2.5) holding and can carry out the rest of the proof
resulting in the heat kernel estimates (2.6)-(2.7) as well as almost sure recurrence of
{Yt} under the annealed measure on the environment {τn}. By the same argument as
in the proof of Proposition 1.4 (ii), this implies that there exists some non-random {tn}
with tn/n → 1/(c − 1), such that almost surely under the quenched measure with the
conductances changing at {tn}, Yt is recurrent. It thus follows that the Gaussian heat
kernel on-diagonal upper bound does not hold for {Yt}.
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