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Abstract. This paper presents a spatiotemporal dynamic model which allows
Bayesian inference of precipitation states in some Venezuelan meteorological
stations. One of the limitations that are reported in digital databases is the re-
liability of the records and the lack of information for certain days, weeks, or
months. To complete the missing data, the Gibbs algorithm, a Markov Chain
Monte Carlo (MCMC) procedure, was used. A feature of precipitation series
is that their distribution contains discrete and continuous components imply-
ing complicated dynamics. A model is proposed based on a discrete repre-
sentation of a stochastic integro-difference equation. Given the difficulty of
obtaining explicit analytical expressions for the predictive posterior distribu-
tion, approximations were obtained using a sequential Monte Carlo algorithm
called the parallelized ensemble Kalman filter. The proposed method permits
the completion of the missing data in the series where required and secondly
allows the splitting of a large database into smaller ones for separate eval-
uation and eventual combination of the individual results. The objective is
to reduce the dimension and computational cost in order to obtain models
that are able to describe the reality in real time. It was shown that the ob-
tained models are able to predict spatially and temporally the states of rain-
fall for at least three to four days quickly, efficiently and accurately. Three
methods of statistical validation were used to evaluate the performance of
the model and showed no significant discrepancies. Speedup and efficiency
factors were calculated to compare the speed of calculation using the par-
allelized ensemble Kalman filter algorithm with the speed of the sequential
version. The improvement in speed for four pthread executions was great-
est.

1 Introduction

Rainfall data is observed in many locations at many different times and usually has
a chaotic behaviour that varies in space and time. This phenomenon can be charac-
terized by complex mathematical models that can be solved by approaches based
on simulations of physical models; in practice they are used to predict, forecast,
and make inferences about a response variable in a spatial domain. The results
of these models can help solve important problems in areas such as agriculture,
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ecology, public health, environmental science, meteorology, hydrology and other
scientific areas. Hierarchical dynamic models are appropriate tools to deal with
these processes due to their flexibility and because they take into consideration
sources of variability such as the correlation that arises between the covariates
over time, their frequencies in space at different scales and the interactions be-
tween them. These could be spatial series, pure time series without a spatial di-
mension or dynamic fields in space and time (Fasso and Cameletti (2007)). There
are two basic paradigms for modeling spatiotemporal phenomena described by
Wikle and Hooten (2006). The first method is descriptive and comes from the clas-
sical techniques of geostatistics which consider different ways to model the covari-
ance functions in space and time (e.g., Cressie and Huang (1999), Banerjee, Carlin
and Gelfand (2004), Gneiting (2002), Stein (2005), Fernández-Casal, González-
Manteiga and Febrero-Bande (2003), Jones and Zhang (1997) and Ma (2003)).
The second method is dynamic and takes into account the variability that cannot
be explained by the covariates. They use a variable with a dependency structure in
the form of a dynamic model represented in state space form. There is an exten-
sive literature on these models (e.g., Wikle and Hooten (2006), Cressie and Wikle
(2011), Sigrist, Künsch and Stahel (2012), Cocchi, Greco and Trivisano (2007),
Cameletti, Ignaccolo and Bande (2010), Cameletti et al. (2012) and Sahu (2011)).

In the context of Bayesian inference, some hierarchical models for environ-
mental data have been implemented through MCMC methods. For example, see
the work of Sigrist, Künsch and Stahel (2012), Lasinio, Sahu and Mardia (2007),
Sahu, Yip and Holland (2011), Sahu (2011), Banerjee and Fuentes (2011), Calder
et al. (2011), Cressie and Wikle (2011), Amisigo and van de Giesen (2005), Sansó
and Guenni (1999a, 1999b, 2000), Hernández, Guenni and Sansó (2009, 2011)
and Stroud et al. (2010). The tuning of these models involve matrix operations
for which the computational cost of each iteration and the number of iterations of
the MCMC algorithms increase dramatically with the size of the data sets. To get
around this problem, we propose the use of a recursive filtering algorithm based
on sequential Monte Carlo techniques (SMC). A filtering algorithm is the process
used to obtain the best statistical estimate of a system modeled from partial obser-
vations of the true signal from nature (Majda and Harlim (2012)). The technique
consists of a system of two predictor-corrector steps, adjusting the a priori estimate
and updating the posterior distribution using Bayes theorem. The updated estimate
is introduced into the model as an initial condition for the future forecast. This
approach is known as a data assimilation technique. In the data assimilation com-
munity, there are many well developed algorithms based on hierarchical Bayesian
spatio-temporal modeling (see Berliner, Milliff and Wikle (2003), Cressie and
Wikle (2011) and Sánchez and Infante (2013) among others). The general objec-
tive of this work is to propose a dynamic model to filter the available information
in real time and predict, spatial and/or temporarily, the distribution of rainfall sig-
nals across partially observed samples. A first objective is to complete the missing
data using a statistical technique to augment data. A second objective is to write
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the model in state space form and parameterize it for a set of weighted base func-
tions where the state equation represents the unknown system and the observation
equation represents the partially observed measurements. A third objective is to
implement a parallelized version of the ensemble Kalman Filter (Evensen (2009)),
to estimate and predict the weather states.

The rest of the paper is organized as follows. In Section 2, the spatio-temporal
hierarchical model, the rainfall model, and the procedure to generate the missing
data are defined. In Section 3, the computational scheme of the ensemble Kalman
filter is defined, and the parallelization method is described. In Section 4, validation
criteria are given. Section 5 shows the results and Section 6 provides discussions
and conclusions.

2 Spatio temporal hierarchical models

Consider a real-valued spatio-temporal process{
yt (s) : s = (x, y)T ∈ s ⊂ R2}

, (2.1)

where s is the spatial domain under study that can be finite or countably infinite.
A discretized version of the process can be represented as {y1(s1), . . . , yt (si), . . .},
where yt (si) represents the value of an underlying scientific process at time t and
location si , t = 1, . . . , T , i = 1, . . . , n. Let yt = (yt (s1), . . . , yt (sn))

T . Let wt =
(wt (r1), . . . ,wt (rm))T be the vector containing the observed data values at spatial
locations rj at time t , for j = 1, . . . ,m. The two sets of spatial locations, {si : i =
1, . . . , n} ⊆ s and {rj : j = 1, . . . ,m} ⊆ s, need not be the same. We are interested
in predicting yt the unobserved process based in wt the observed process. The
state-space representation for the prediction can be written as a model of the form:

yt = Mt (yt−1) + ut ; ut ∼ N(0,Qt), (2.2)

wt = Ht (yt ) + vt ; vt ∼ N(0,Rt), (2.3)

y0 ∼ N(μ0,P0), (2.4)

where (2.2) is the state equation, (2.3) is called the measurement equation, and
(2.4) is the initial state equation. ut = (ut (s1), . . . , ut (sn))

T , denotes the random
noise which is spatially colored, temporally white and Gaussian with mean zero
and a covariance matrix Qt . Mt (·) is a nonlinear operator mapping the state space
into itself. Let Ht be the transition matrix that maps the state space into the obser-
vation space at time t . Let vt = (vt (r1), . . . , vt (rm))T be the random measurement
noise which has zero mean, is uncorrelated in time, and has Gaussian covariance
matrix Rt . The main goal is to estimate the hidden states (yt (s1), . . . , yt (sn))

T ,
given observed measures (wt (r1), . . . ,wt (rm))T .
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The aim of the state estimation problem utilizing the Bayesian approach is
to find the joint posterior distribution of the states y1:T given the observa-
tions w1:T , denoted by P(y1:T |w1:T ) or the conditional probability density func-
tion (filtered distribution) P(yt |w1:T ), where: y1:T = (y1, . . . ,yT )T , and w1:T =
(w1, . . . ,wT )T . There are three types of estimation that can be distinguished
within the state estimation problem according to the relation between the time
instants tk and tT ; the filtering problem with k = T , the prediction problem with
k > T , and the smoothing problem with k < T . We are interested in finding es-
timators such as E(yt |w1, . . . ,wk=T ), E(yt |w1, . . . ,wk>T ), E(yt |w1, . . . ,wk<T ),
or the maximum posterior probability (MAP) estimator, among others (see West
and Harrinson (1997), Cressie and Wikle (2011) or Sánchez and Infante (2013)
for details). In practice, the calculation of the posterior distribution has compli-
cations when the dimensionality of the system increases, requiring efficient com-
putational strategies to approximate it. This article proposes the implementation
of the ensemble Kalman filter algorithm (EnKF) (Evensen (1994)) using a paral-
lel programming approach to estimate the dynamics of rainfall in some weather
stations of Venezuela.

2.1 Model for rainfall

This dynamic temporal-space hierarchical model is now used for the daily rainfall
series or monthly averages of some weather stations of Venezuela. A typical fea-
ture of the precipitation is that its distribution is skewed. It consists of a discrete
component indicating the occurrence of precipitation and a continuous component
specifying the amount. The continuous and the discrete part are either modelled
separately or together (Sansó and Guenni (2000), Hernández, Guenni and Sansó
(2009), Sigrist, Künsch and Stahel (2012)).

The rainfall model given in (Sigrist, Künsch and Stahel (2012)) establishes that
the process yt (s) at time t on site s depends on a latent normal variable wt(s)

through

yt (s) =
{

0, if wt(s) ≤ 0,

wt (s)
λ, if wt(s) > 0,

where λ > 0. A power transformation is needed since rainfall is skewed and does
not follow a truncated normal distribution. The latent variable wt(s) can be inter-
preted as a precipitation potential.

An alternative way of expressing the previously given rainfall model, is to
use the space–time representation of the model based upon a stochastic integro-
difference equation (IDE) developed by Wikle et al. (2001), Wikle (2002), Xu,
Wikle and Fox (2005), Dewar (2007), Dewar, Scerri and Kadirkamanathan (2011),
Scerri et al. (2011), Scerri, Dewar and Kadirkamanathan (2009), Wikle and Hooten
(2006), Wikle and Holan (2011) and Calder et al. (2011) among others. The
integro-difference linear equation of first order is defined as

zt (s) =
∫

s
K(s, r)zt−1(r) dr + et (s), (2.5)
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where t denotes time and s, r ∈ s denote spatial locations in the n-dimensional spa-
tial region under investigation. The spatial field at time t and location s denoted
by zt (s) is related to the previous field via the convolution integral (2.5). The Ker-
nel of the integral, K(s, r) : Rn → R, is known as the spatial mixture. The spatial
field is subject to disturbance et (s), a normally distributed, zero-mean white noise
process such that et (s) ∼ N(0, σ 2), for all t, s, with covariance defined by

cov
(
et (s), et+τ (r)

) =
{

σ 2δ(s − r), τ = 0,
0, otherwise,

(2.6)

for all τ ∈ Z, δ denotes the Dirac delta function.
Given that the system zt (s) is unknown, consider that the dynamic field is ob-

served at every time instant t at m fixed spatial locations by

wt = zt + ηt , (2.7)

where wt = (wt (s1), . . . ,wt (sm))T , zt = (zt (s1), . . . , zt (sm))T , and ηt = (ηt (s1),

. . . , ηt (sm))T , with ηt (si) ∼ N(0,�η) for i = 1, . . . ,m.
The system given in (2.5) and (2.7) can be approximated in state-space form

using a set of weighted basis functions (Dewar (2007)),

zt (s) = φ(s)T yt (s),
(2.8)

K(s, r) = aT ψ(s, r),

where the unknown parameter vector a ∈ Rna weights the kernel basis functions
ψ : Rns → Rna and the state vector yt ∈ Rn weights the vector of the field basis
functions φ : Rns → Rn at time t . It is required that the sets of basis functions
ψ(s, r) = (ψ1(s, r), . . . ,ψna (s, r))

T and φ(s) = (φ1(s), . . . , φny (s))
T are linearly

independent.
Using Lemma 4 given in (Dewar (2007)), for a white noise process et (s) with

covariance as defined in (2.6), the integral

λt =
∫

s
φ(s)et (s) ds (2.9)

is vector valued with E(λt ) = 0, and cov(λt ) = E(λtλ
T
t ) = σ 2ψy , where ψy =∫

s φ(s)φ(s)T ds.
The spatio-temporal IDE model defined by the equations (2.5), (2.7), and de-

composed as in (2.8) can be written as a parameterized model in state-space of the
form (Dewar (2007))

yt+1 = Ayt + ut , ut ∼ N
(
0, σ 2ψ−1

y

)
,

(2.10)
wt = Cyt + vt , vt ∼ N

(
0, σ 2

v I
)
,
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where A ∈ Rny×ny is constructed using an orthogonal set of basis functions to
facilitate computation and dimension reduction. The matrix A is obtained as A =

−1

y 
a , where

�a(s) =
∫
s
ψ(s, r)φT (r) dr,


y =
∫
s
φ(s)φT (s) ds,


a =
∫
s
φ(s)aT �a(s) ds.

The observation matrix, C = (φ(s1), φ(s2), . . . , φ(sny ))
T , can be used to indicate

the location of the stations where each φ(s) represents a Gaussian radial basis
function of the form:

[
φ(s)

]
j ≈ exp

{
−(s − [μfbr]j )2

σ 2
fbr

}
,

where [μfbr]j , and σ 2
fbr are the mean and variance of the j th radial basis function,

and s is the spatial location. The Kernel ψ(s, r), is represented by

[
ψ(s, r)

]
i ≈ exp

{−(r − (s + [μkfbr]i ))2

σ 2
kfbr

}
,

where [μkfbr]i and σ 2
kfbr represent the mean and variance of the ith radial basis

function that defines the Kernel, and where r and s are different spatial locations.
We consider a spatial mixing Kernel with Gaussian basis functions because they
are invariant across space and time (Dewar, Scerri and Kadirkamanathan (2011)).
Considering that φi(s) ∼ N(μi,Ci), φj (s) ∼ N(μj ,Cj ), we have


y = 
ij =
∫

φi(s)φj (s) ds ≈ πn/2∣∣C−1
ij

∣∣1/2 exp{−rij },
where

Cij = [Ci + Cj ],
rij = (μi − μj)

T (Ci + Cj )
−1CiCj (μi − μj)

and

�a(s) =
∫ [

ψ(s, r)
]
i

[
φ(r)

]
j dr

≈ π1/2

|σ 2
fbr + σ 2

kfbr|1/2
exp

{
−(s − [μfbr]j − [μkfbr]i )2

σ 2
fbr + σ 2

kfbr

}
,

which represents the Kernel of a normal distribution with mean [μfbr]j − [μkfbr]i
and variance σ 2

fbr + σ 2
kfbr.
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The hierarchical space temporal model proposed in this article is a combination
of the rainfall model given in (Sigrist, Künsch and Stahel (2012)) and the following
model proposed in (Dewar (2007)):

θ0 ∼ N(μ0,�0),

θ t+1 = Aθ t + ut , ut ∼ N
(
0, σ 2ψ−1

θ

)
,

(2.11)
wt = Cθ t + vt , vt ∼ N

(
0, σ 2

v I
)
,

yt = [
max(0,wt )

]λ
,

where the matrices A and C are obtained using the methodology given in (Dewar
(2007)) and the maximum and power in the last equation are for each spatial com-
ponent of the vector. The IDE model describes the spatio-temporal dynamics in
discrete time and continuous space. The evolution is governed by a kernel mixture
whose form describes the dynamical nature of the system response. It is an attrac-
tive representation in the spatio-temporal context since it simultaneously interpo-
lates spatially and predicts temporarily permitting the consideration of unknown
fields in unobserved points of interest. This technique has been used in situations
such as bacteria growth, wave propagation, population growth, dispersion models,
changes in the spatial patterns of real estate prices and complex models for study-
ing climatic change (see Scerri, Dewar and Kadirkamanathan (2009), Wikle and
Holan (2011) and Calder et al. (2011)). It provides tools for estimation and pre-
diction using large data sets in space–time facilitating computation and dimension
reduction.

2.2 Generation of missing data with the Gibbs sampler

Since the Venezuelan meteorological stations data base has missing data, it is nec-
essary first of all to simulate the missing data using the Gibbs algorithm. Once the
data is complete, the model proposed in (2.11) will be implemented. The Gibbs
sampler for sampling from a truncated multivariate normal can be described as
follows.

A random variable w is said to follow a truncated multivariate normal distribu-
tion (w ∼ TNd(μ,�;a, b)) subject to linear inequality constraints if its probability
density function is

fw(w,μ,�,a, b) = exp{−(1/2)(w − μ)T �−1(w − μ)}∫ b
a exp{−(1/2)(w − μ)T �−1(w − μ)}dw

I{a≤w≤b}.

Suppose that wt = w, wobserved
t = wobs is observed data and wmissing

t = wmiss is
unobserved data. Then using the Proposition 2 given in Li and Ghosh (2013), we
partition w, μ, and � as

w =
(

wobs

wmiss

)
, μ =

(
μobs

μmiss

)
and � =

(
�obs,obs �obs,miss

�miss,obs �miss,miss

)
,
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where wobs is a random vector of dimension d1, wmiss is a random vector of di-
mension d2, and d1 + d2 = d . Using the fact that the conditional density of a mul-
tivariate normal distribution is also a multivariate normal, then the conditional dis-
tribution wmiss|wobs has a truncated normal distribution given by

wmiss|wobs ∼ TN
(
μmiss|obs,�miss|obs,R(wobs)

)
,

where

μmiss|obs = μmiss + �miss,obs�
−1
obs,obs(wobs − μobs),

�miss|obs = �miss,miss − �miss,obs�
−1
obs,obs�obs,miss

and

R(wobs) = {
wmiss ∈ Rd2 : a ≤ R(wobs,wmiss) ≤ b

}
.

The main goal is to generate independent random variables with the Gibbs sampler,
sampling from a truncated normal distribution (Robert (1995), Kotecha and Djuric
(1999), Wilhelm (2013), Li and Ghosh (2013)). We can then construct a Markov
Chain which continuously draws from f (w−i |wi) = f (wi |w1, . . . ,wi−1,wi+1,

. . . ,wd) subject to ai ≤ wi ≤ bi .
Considering wobs = wi , wmiss = w−i , μobs = μi , μmiss = μ−i , �obs,obs = �i,i ,

�obs,miss = �i,−i , �miss,obs = �−i,i , and �miss,miss = �−i,−i , then w, μ and �
given by

w =
(

wi

w−i

)
∼ N(μ,�), μ =

(
μi

μ−i

)
and � =

(
�i,i �i,−i

�−i,i �−i,−i

)
then the distribution of w−i conditional on wi is normal (w−i |wi) ∼ N(μ−i|i ,
�−i|i), with mean

μ−i|i = μ−i + �−i,i�
−1
i,i (wi − μi) (2.12)

and variance

�−i|i = �−i,−i − �−i,i�
−1
i,i �i,−i = H−1

ii . (2.13)

Let w(j) denote the sample drawn at the j th MCMC iteration. The steps of the
Gibbs sampler for generating n samples w(1), . . . ,w(n) are:

Step 1. Since the conditional variance �−i|i is independent from the observa-

tion w
(j)
−i , we can precalculate it before running the Markov chain.

Step 2. Choose a starting value w(0) = (w
(0)
1 , . . . ,w

(0)
d ) of the Markov chain.

Step 3. In each round j = 1, . . . , n, we go from i = 1, . . . , d , and sample from
the conditional density

w
(j)
−i |w(j)

1 , . . . ,w
(j−1)
i−1 ,w

(j−1)
i+1 , . . . ,w

(j−1)
d ∼ N(μ−i|i ,�−i|i),

where the mean and variance of the normal distribution are given by (2.12),
and (2.13).
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Step 4. Draw a uniforme random variate u ∼ Unif(0,1).
Step 5. Draw a normal random variate y ∼ N(μ,σ 2) and a univariate truncated

random variate w ∼ TN(μ,σ 2, a, b). For each realization y we can find a w such
as P(Y ≤ y) = P(W ≤ w),

�((w − μ)/σ) − �((a − μ)/σ)

�((b − μ)/σ) − �((a − μ)/σ)
= �

(
y − μ

σ

)
= u, (2.14)

where �(·) denotes its cumulative standard normal distribution function.
Step 6. Draw w−i from conditional univariate truncated normal distribution

(w−i ∼ TN(μ−i|i ,�−i|i , ai, bi)), using the inverse method

w−i = μ−i|i + σ−i|i�−1
{
u

[
�

(
bi − μ−i|i

σ−i|i

)
− �

(
ai − μ−i|i

σ−i|i

)]

+ �

(
ai − μ−i|i

σ−i|i

)}
.

3 Ensemble Kalman filter

The ensemble Kalman filter (EnKF) (Evensen (2009, 1994, 2003), Evensen and
van Leeuwen (1996)), is a sequential Monte Carlo algorithm used to approximate
the forecasting and filtering distributions in nonlinear high-dimensional state-space
models. The state distribution is represented at each time period by an equally
weighted sample of states. The ensemble is propagated forward through time us-
ing the equation (2.2) and is updated using the equation (2.3) when new data arrive.
The algorithm proceeds as follows. Let {θa

t,i , i = 1, . . . , n} and {θb
t,i , i = 1, . . . , n}

denote the forecast and filtered ensemble at time t , respectively. Let θ̂ b
t and P̂ b

t

denote the mean and covariance from the state filtered distribution. The algorithm
is initialized at time t = 0 by drawing θa

0,i ∼ N(θ̂0, P̂
b
0 ), for i = 1, . . . , n. The en-

semble is then propagated forward through time, alternating between the forecast
and update. Starting with the filtering ensemble at time t − 1, the one-step-ahead
forecasts at time t are obtained using the evolution equation. The algorithm is
summarized as follows:

Step 1. Propagation. We begin by creating n initial ensemble members, say
θa

0,i drawn from the normal distribution {θa
0,i ∼ N(θ̂0, P̂

b
0 ), i = 1, . . . , n}. This is

accomplished by first factoring P̂ b
0 = S0S

T
0 , and defining,

θa
0,i = θ̂0 + S0n

i
0, i = 1, . . . , n, where ni

0 ∼ N(0, I ). (3.1)

The ensemble mean is given by

θ̂ b
0 = 1

n

n∑
i=1

θa
0,i . (3.2)
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Similarly, the ensemble covariance is given by

P̂ b
0 = 1

n − 1

n∑
i=1

(
θa

0,i − θ̂ b
0
)(

θa
0,i − θ̂ b

0
)T

. (3.3)

Step 2. Ensemble forecast. Inductively consider the time instant t . Given
(θ̂b

t , P̂ b
t ), let P̂ b

t = Ŝt Ŝ
T
t . Create an ensemble

θa
t,i = θ̂ b

t + Ŝtn
i
t , i = 1, . . . , n, where ni

t ∼ N(0, I ). (3.4)

The n members of the ensemble forecast at time t + 1 are generated

θb
t+1,i =Mt

(
θa
t,i

) + ui
t+1, i = 1, . . . , n, ui

t+1 ∼ N(0,Qt+1). (3.5)

The unbiased estimator of the sample mean is then given by

θ̂ b
t+1 = 1

n

n∑
i=1

θb
t+1,i . (3.6)

The forecast error is estimated by

ei
t+1 = θb

t+1,i − θ̂ b
t+1. (3.7)

The unbiased estimator of the sample covariance is then given by

P̂ b
t+1 = 1

n − 1

n∑
i=1

(
θb
t+1,i − θ̂ b

t+1
)(

θb
t+1,i − θ̂ b

t+1
)T + Qt+1. (3.8)

In practice, it is not common to approximate P̂ b
t ; instead

P̂ cr
t+1 = 1

n − 1

n∑
i=1

(
θb
t+1,i − θ̂ b

t+1
)[
Ht+1

(
θb
t+1,i

) −Ht+1
(
θ̂ b
t+1

)]T (3.9)

and

P̂
pr
t+1 = 1

n − 1

n∑
i=1

[
Ht+1

(
θb
t+1,i

) −Ht+1
(
θ̂ b
t+1

)]
(3.10)

× [
Ht+1

(
θb
t+1,i

) −Ht+1
(
θ̂ b
t+1

)]T
are estimated where P̂ cr

t+1 is the (sample) cross covariance between the background

ensemble and its predicted projection onto the observation space, while P̂
pr
t+1 is the

(sample) covariance of the predicted projection of the background ensemble onto
the observation space.

Step 3. Data assimilation. If observations are available at time t , then we up-
date the ensemble using the perturbed observations algorithm as described above
(Stroud et al. (2010)). We first generate synthetic observations from the measure-
ment equation

wi
t+1 = Ht+1

(
θb
t+1,i

) + vi
t+1, i = 1, . . . , n, vi

t+1 ∼ N(0,Rt+1). (3.11)
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Then, wi
t+1 are updated with the rainfall model given in (Sigrist, Künsch and Sta-

hel (2012))

yi
t+1 = [

max
(
0,wi

t+1
)]λ

, i = 1, . . . , n. (3.12)

This provides samples from the joint state and observation forecast distribution
P(θt , yt |y1:t−1). The update is completed using Bayes linear fit,

θ̂ a
t+1 = θ̂ b

t+1 + Kt+1
(
wt+1 − yi

t+1
)

(3.13)

and

P̂ a
t+1 = P̂ b

t+1 − Kt+1
(
P̂ cr

t+1
)T

, (3.14)

where

Kt+1 = P̂ cr
t+1

(
P̂

pr
t+1 + Rt+1

)−1 (3.15)

is the Kalman gain matrix.

4 Criteria for validation of models

To compare the quality of predictions and forecasts obtained from the fitted model,
we use validation criteria as in (Bakar (2011)). These validation criteria are:

1. Root mean squared error

RMSE =
√√√√1

n

n∑
j=1

(
ŷ

j
t − y

j
t

)2 (4.1)

2. Mean absolute error

MAE = 1

n

n∑
j=1

∣∣(ŷj
t − y

j
t

)∣∣ (4.2)

3. Relative bias

RB = 1

ny

n∑
j=1

(
ŷ

j
t − y

j
t

)
, (4.3)

where

• y
j
t is the true state for the j th simulation, j = 1, . . . , n.

• ŷ
j
t , is the predicted posterior mean of the adjusted data of day t for the j th

signal, j = 1, . . . , n.
• y is the arithmetic mean of the observations.
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Figure 1 Weather stations: Aragua, Guárico and Táchira.

5 Results

To illustrate the methodology proposed in this paper, we consider series of daily
mean precipitation from January 2011, until May 2012 for five weather sta-
tions in Venezuela; three located in Aragua state (Ceniap, Tamarindo, and Tu-
cutunemo), one in the Guárico state (San Pedro) and another located in Táchira
state (Hondo Pueblo) (see Figure 1 for station locations). The data is available
in http://agrometeorologia.inia.gob.ve/. The Gibbs algorithm, as defined in Sec-
tion 2.2, was implemented to generate missing data of daily precipitation; it was
programmed in one Intel Core i7 CPU 3.6 GHz machine with 16 GB RAM run-
ning 64 Bit Debian Linux, using the ANSI C programming environment. To cali-
brate the parameters of the Gibbs algorithm, the first 400 samples were discarded;
the samples were generated from Time = 401 up to Time = 890 to complete the
data. The total execution time of the Gibbs algorithm was 405,062 μs for the five
weather stations.

The prior distributions generate truncated normal random variables using the
following initial parameters:

• The prior mean

μ =
(

0
0

)
.

• The prior covariance matrix

� =
(

100 0.1
0.1 100

)
.

• The lower and upper limits for the truncated Normal a = 0, b = 10,000.

http://agrometeorologia.inia.gob.ve/
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Figure 2 Stochastic field generated by 4 basis functions.

• Time: 890 days.
• Samples, n = 100.

Once the completion of the missing data in the weather stations is performed, the
prior distributions given the parameters in the model are initialized (2.10). A nor-
mal Kernel of four basis functions is used whose parameters are Local amplitude
80, surround amplitude −80, lateral amplitude 5, and anisotropic amplitude 15
(Aram et al. (2007)). An approximated stochastic field by the four selected basis
functions is shown in Figure 2.

The EnKF algorithm running in parallel for the precipitation data of each
weather station was implemented using the POSIX threads library (Pthread) of
the ANSI C programming environment, Appendix. Due to the great distances be-
tween the stations, the data from each weather station is considered independent of
the others so that each station could be analysed separately. A covariance structure
would permit a joint analysis of several weather stations with spatial interpolation
however this was not studied in this article.

In order to test the procedure for making predictions, the series from January
2011 until May 2012 were used to predict the 30 days of June 2012. To initialize
the PEnKF in the stations of Aragua state, the priors chosen after performing many
runs were the following:

• Ceniap station σ 2
uψ−1

0 = 100, σ 2
v = 10, A0 = 1,y0 = 1.3, C0 = 1.0001, μfbr =

μkfbr = 1.3, and σfbr = σkfbr = 1000, λ = 5
3 .
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Figure 3 Actual, augmented, and reconstructed data (top panel), prediction and actual data (bot-
tom panel), Ceniap station.

• Tamarindo station σ 2
uψ−1

0 = 100, σ 2
v = 10, A0 = 1,y0 = 96.25, C0 = 0, μfbr =

μkfbr = 96.25, and σfbr = σkfbr = 1000, λ = 5
3 .

• Tucutunemo station σ 2
uψ−1

0 = 100, σ 2
v = 10, A0 = 1,y0 = 142.11, C0 = 0,

μfbr = μkfbr = 142.11, and σfbr = σkfbr = 1000, λ = 5
3 .

The Figures 3, 4, 5 in the top panel show three graphs in which the real data sets
are indicated with black color; the completed data obtained by the Gibbs algo-
rithm denoted in red color, and the reconstructed data by the parallelized ensemble
Kalman filter (PEnKF) denoted by cyan color. In the bottom panel of Figures 3,
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Figure 4 Actual, augmented, and reconstructed data (top panel), prediction and actual data (bot-
tom panel), Tamarindo station.

4, 5 the daily predictions are shown by the PEnKF together with the series of true
values of precipitation; reliable predictions are seen for the first four days whereas
for the fifth day, a notable difference between the predicted values and the true
values are observed.

For the San Pedro station in the Guárico state, the following specifications were
taken:

• San Pedro station σ 2
uψ−1

0 = 100, σ 2
v = 10, A0 = 1,y0 = 48.23, C0 = 1, μfbr =

μkfbr = 48.23, and σfbr = σkfbr = 0.1, λ = 5
3 .
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Figure 5 Actual, augmented, and reconstructed data (top panel), prediction and actual data (bot-
tom panel), Tucutunemo station.

In Figure 6, the top panel shows a graph of the actual data in black; the augmented
data in red, and the reconstructed data for the PEnKF denoted in cyan, showing
that the PEnKF has a good performance in the reconstruction of the real system. In
Figure 6, the bottom panel shows a graph of the daily predictions by the PEnKF,
together with the series of true values of precipitation. Just as the predictions ob-
tained for the Aragua state, the predictions are good to the fourth day.

Finally, for the Hondo Pueblo station, located in the state of Táchira, the speci-
fications of the prior distributions are
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Figure 6 Actual, augmented, reconstructed data (top panel), prediction and actual data (bottom
panel), San Pedro station.

• Pueblo Hondo station σ 2
uψ−1

0 = 1, σ 2
v = 10, A0 = 1, y0 = 0, C0 = 1, μfbr =

μkfbr = 0, and σfbr = σkfbr = 1, λ = 5
3 .

In Figure 7 the top panel shows, similarly to the previous graphics, the augmented
real data, as well as the reconstructed data. The bottom panel of Figure 7 shows
the daily predictions and real values of precipitation. As in the previous cases, the
predictions are good until the fourth day.
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Figure 7 Actual, augmented, reconstructed data (top panel), prediction and actual data (bottom
panel), Pueblo Hondo station.

Table 1 shows the three validation criteria to measure the quality of prediction
of the proposed model. One can see that for the measures considered, the errors
are low, and show little variability among them.

Table 2 shows the speedup and efficiency factors of the parallelized EnKF al-
gorithm for different pthreads numbers. To measure the time it takes to execute
the algorithm, the gettimeofday function is used, which is located in the library
sys/time.h. The execution time of the sequential EnKF algorithm is 6,364,039 μs
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Table 1 Validation criteria to measure the quality of prediction of the proposed model

Measures Pueblo Hondo San Pedro Ceniap Tamarindo Tucutunemo

RMSE 0.2905 0.1037 0.1819 0.1461 0.2125
MAE 0.2082 0.1630 0.2116 0.1740 0.2410
RB 0.2250 0.1217 0.2019 0.1764 0.2525

Table 2 The speedup and efficiency factors of the parallelized EnKF algorithm for different
pthreads numbers

Pthread Time (μs) Speedup Efficiency

p = 2 5,860,180 1.085 0.54
p = 3 4,879,710 1.304 0.43
p = 4 5,042,585 1.262 0.315
p = 8 4,960,206 1.283 0.160
p = 16 7,098,805 0.896 0.056
p = 32 7,344,040 0.866 0.027

for the 5 weather stations, using 520 precipitation states and 500 members of the
ensemble.

It is seen that by increasing the number of pthreads greater than 4, the effi-
ciency is not increased so that it may be concluded that not all the pthreads are
executing useful work. Perhaps the loss of efficiency is due to the increased cost
of communication among processors, and to the delays in the communications and
synchronizations with the non-parallelizable processes. Considering this, the ideal
case would be P = 2 which provides a 8% increase in speed with respect to the
sequential algorithm.

6 Discussion and conclusions

The traditional way to forecast rainfall is by using numerical prediction models.
These models are posed in terms of systems of nonlinear differential equations that
simulate the dynamics of the atmosphere. The problem encountered with these
methods is that they require a lot of computation, the models are very complex
and they are not freely available. Recently, other statistical techniques using pre-
diction models and algorithms based on Monte Carlo Markov Chains (MCMC)
have been developed. These computational methods are also tedious, but predic-
tions are made at a much cheaper cost than the numerical models. They are also
available in several libraries of free distribution, implemented in the R language
platform. Statistical models based on MCMC techniques, and those proposed in
this paper are inspired by the sequential Monte Carlo algorithms (SMC). They are
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useful in situations where numerical models are not available or when it is required
to obtain finer predictions with different temporal resolutions than those obtained
by the numerical prediction model. The main contributions of this paper include
the proposal of using a computational technique to complete missing data of daily
rainfall at different weather stations and the implementation of a sequential Monte
Carlo parallelized algorithm on a stochastic integro-difference equation model for
data that varies in space and time. The parametrization of the model uses radial
basis functions which reduce the computational cost and the size of the problem
when working with large data sets that contain many variables. It was shown that
the proposed methodology is able to predict the unknown states of rainfall, both
spatially and temporally, quickly, efficiently and accurately for the first three to
four days. To evaluate the performance of the model, three statistical validation
methods are used: the square root of the mean squared error, the mean absolute
error, and the relative bias. The three measures showed small errors with low vari-
ability among them. To evaluate the algorithm PEnKF, the speedup factor and the
efficiency factor were used. For up to four threads, the algorithm executes faster
than the sequential version.

Appendix: Paralleling the ensemble Kalman filter

The main program receives a set of daily rainfall at the weather stations which
is stored independently in local variables. The program executes the ensemble
Kalman filter in parallel using multiple threads for each local variable. That is
to say, the main program, after storing the individual data of each weather sta-
tion, creates p threads; each thread receives the means and variances of the base
functions as parameters φ(s) and ψ(s, r). When all the threads have finished cal-
culating the ensemble Kalman filter for each local variable, the principal program
shows the result. The high level algorithm, as defined in Sánchez, Infante, Marcano
and Griffin (2015), is as follows:

a. Initialization.

• The daily precipitation data from weather stations is read.
• The precipitation data is assigned to independent variables.
• The mean and variance of the base functions φ(s) and ψ(s, r) is read.

b. Creating Pthread.

• For each variable, p threads are created.
• The threads execute the EnKF.
• The EnKF generates the calculation of the posterior mean and covariance.

c. Ending.

• The runtime for the entire program is calculated.
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• The criteria for validation of models are calculated.
• The speedup and efficiency factors for p threads are calculated.

To measure the speed of calculation using the parallelized ensemble Kalman filter
algorithm, the speedup and efficiency factors, as defined in Wilkinson and Allen
(2005), are used.
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