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Abstract. Extraction of a signal in the presence of stochastic noise via
wavelet shrinkage has been studied under assumptions that the noise is in-
dependent and identically distributed (IID) and that the samples are equis-
paced (evenly spaced in time). Previous work has relaxed these assumptions
either to allow for correlated observations or to allow for random sampling,
but very few papers have relaxed both together. In this paper we relax both
assumptions by assuming the noise to be a stationary Gaussian process and
by assuming a random sampling scheme dictated either by a uniform distri-
bution or by an evenly spaced design subject to jittering. We show that, if the
data are treated as if they were autocorrelated and equispaced, the resulting
wavelet-based shrinkage estimator achieves an almost optimal convergence
rate. We investigate the efficacy of the proposed methodology via simulation
studies and illustrate it by the extraction of the light curve for a variable star.

1 Introduction

A mathematical problem of considerable interest is to approximate a continu-
ous function f (t), t ∈ [0,1], based upon samples f (ti), i = 1, . . . , n. We do not
observe f (ti) directly, but only in the presence of correlated zero mean noise
{ε(t1), . . . , ε(tn)}, which we assume throughout to obey a multivariate Gaussian
distribution. The data are {(t1, y(t1)), . . . , (tn, y(tn))}, where y(ti) = f (ti) + ε(ti),
for i = 1, . . . , n, and our objective is to extract the signal f from the data using an
estimator f̂ with low integrated mean squared error (IMSE), defined as

E‖f̂ − f ‖2
2 =

∫ 1

0
E

(
f̂ (x) − f (x)

)2
dx.

Wavelet shrinkage methods have been very successful in signal extraction and
nonparametric regression, but most methods are focused on a regular design (i.e.,
equispaced samples over a regular grid ti = i/n) with independent and identi-
cally distributed (IID) errors. The assumption of a regular design has been relaxed
to handle unequally spaced samples with either a fixed design (Cai and Brown,

Key words and phrases. Autocorrelation, denoising, semi-parametric estimation, smoothing,
wavelets, non-parametric regression.

Received June 2014; accepted July 2015.

614

http://imstat.org/bjps/
http://dx.doi.org/10.1214/15-BJPS296
http://www.redeabe.org.br/


Wavelet shrinkage for regression 615

1998), a uniformly distributed design (Cai and Brown, 1999) or a general random
design (Antoniadis and Pham, 1998, Sardy et al., 1999, Delouille, Simoens and
von Sachs, 2004, Kerkyacharian and Picard, 2004), but these extensions are re-
stricted to IID errors. More recent work considering random design and IID errors
include those from Chesneau (2007), Gaïffas (2009) and Antoniadis, Pensky and
Sapatinas (2014). Wavelet shrinkage methods have also been adapted to handle
correlated errors, in the context of equispaced samples (Neumann and von Sachs,
1995, Johnstone and Silverman, 1997, von Sachs and Macgibbon, 2000) and of un-
equally spaced samples with a fixed design (Porto, Morettin and Aubin, 2008). In
this paper, we call “design” the set of values {t1, . . . , tn}. The design can be fixed or
random, depending on their values being deterministic or realizations from a ran-
dom variable. The design can also be regular or irregular depending on whether the
difference between any two successive ordered values is constant (equally spaced)
in the entire set or not (unequally spaced).

In this paper, we investigate wavelet shrinkage for certain unequally sampled
designs in the presence of correlated errors. Although our main result is valid
for very general sampling schemes and correlation structure, the random sam-
pling schemes that we explicitly consider are stochastic, where either the sam-
ple points ti are uniformly distributed in [0,1] or they come from a jittering; that
is, ti = (2i − 1)/(2n) + ji , where ji are IID uniform [−1/(2n),1/(2n)] random
variables. Stochastic sampling techniques are of interest because they can over-
come certain aliasing problems associated with a regular design (Dippé and Wold,
1985). We show that under our assumptions the samples can be treated as if they
were equispaced with correlated noise (Johnstone and Silverman, 1997), and hence
we can apply the VisuShrink procedure (Donoho and Johnstone, 1994) with level-
dependent thresholds.

Two recent papers also address unequally sampled designs with correlated er-
rors using wavelets. Delouille and von Sachs (2005) deal with correlated obser-
vations and random design, but use a totally different model (a non-parametric
autoregression). The paper by Kulik and Raimondo (2009) is more closely related
to our work and is in two ways more general than ours, but with one key difference.
The functions they consider belong to Besov classes (we focus on more restrictive
Hölder classes), with errors that can be drawn from weak- or strong-dependent
stochastic processes (we only consider weak dependence); however, they impose
a correlation structure prior to a random distribution of design points, rather than
after specifying the points, as we do in this paper (see Corollary 1 in Section 3
for details). While mathematically interesting, their approach is not in keeping
with traditional time series models, whereas ours is. Our approach is much more
closely related to the irregularly observed processes discussed in Brillinger (1996)
in the context of linear estimators.

In the literature, general nonparametric regression methods with correlated er-
rors have been studied, but also with settings different from ours. For instance, the
works of Efromovich (1999) and Yang (2001) differ from ours for the same reasons
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as cited for Kulik and Raimondo (2009). Similarly our work differs from those of
Hofmann (1999) and Baraud, Comte and Viennet (2001) for the same reasons as
cited for Delouille and von Sachs (2005).

The paper is organized as follows. In Section 2, we review some basic prop-
erties of wavelets along with earlier research on wavelet shrinkage that we ex-
ploit within the text. Our new results on wavelet shrinkage for stochastic sampling
schemes with correlated errors are given in Section 3, after which we present some
simulation results and apply the methodology to an unequally sampled series of
magnitude measurements for a variable star. All the proofs are given in detail in
the last section, after the summary and a discussion on results for situations more
complex than those considered here.

2 Wavelets and wavelet shrinkage

Consider an orthonormal wavelet basis generated from dilation and translation of
a “father” wavelet φ (or scaling function) and a “mother” wavelet ψ . We assume
that both functions are compactly supported in [0,N] and [(1 − N)/2, (1 + N)/2]
respectively,

∫
φ = 1,

∫
ψ = 0 and ψ has r vanishing moments. Let

φj,k(t) = 2j/2φ
(
2j t − k

)
and ψj,k(t) = 2j/2ψ

(
2j t − k

)
so that ψj,k has support [2−j ((1 −N)/2 + k),2−j ((1 +N)/2 + k)]. For t ∈ [0,1],
let

φ
p
j,k(t) = ∑

l∈Z
φj,k(t − l) and ψ

p
j,k(t) = ∑

l∈Z
ψj,k(t − l)

denote the periodized wavelets, which we use henceforth, but with the superscript
“p” suppressed, since it is a standard way of handling boundary conditions even if
the signal is not regarded as periodic (see e.g. Ogden (1997), for details). For some
coarse scale j0 ≥ 0, the collection formed by φj0,k , k = 0, . . . ,2j0 − 1, and ψj,k ,
j ≥ j0, k = 0, . . . ,2j − 1, constitutes an orthonormal basis of L2[0,1] (see, e.g.,
Härdle et al. (1998), for details).

Denote the inner product by 〈·, ·〉. For a given square-integrable function f on
[0,1], let

cj,k = 〈f,φj,k〉 and dj,k = 〈f,ψj,k〉.
The function f can be expanded into a wavelet series as

f (t) =
2j0−1∑
k=0

cj0,kφj0,k(t) +
∞∑

j=j0

2j−1∑
k=0

dj,kψj,k(t).

This expansion decomposes f into components with different resolutions. The
coefficients cj0,k at the coarsest level capture the gross structure of the function f .
The detail coefficients dj,k represent finer and finer structures in f as the resolution
level j increases.
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2.1 Regular design with IID errors

Suppose we have data sampled on a regular grid that obeys the model

yi = f

(
i

n

)
+ ei, i = 1, . . . , n, (2.1)

where the noise ei is drawn from some stochastic process. Our task is to formulate
an estimator f̂ of f with small IMSE. In practice, we do this by transforming
yi into empirical wavelet coefficients and then defining f̂ in terms of the inverse
transform of wavelet coefficients that have been denoised using wavelet shrinkage.
The most widely used shrinkage method is the VisuShrink procedure (Donoho and
Johnstone, 1994) described as follows.

An orthonormal wavelet basis has an associated exact orthogonal discrete
wavelet transform W that transforms sampled data into discrete wavelet coeffi-
cients. Let y = (y1, . . . , yn)

T be the vector of observations, where n = 2J for some
J ∈ N, and let

θ̃ = Wy = (c̃j0,0, . . . , c̃j0,2j0−1, d̃j0,0, . . . , d̃j0,2j0−1, . . . ,

d̃J−1,0, . . . , d̃J−1,2J−1−1)
T

be the coefficients of the discrete wavelet transform. Define the soft threshold func-
tion by

ηS(d,λ) = sgn(d)
(|d| − λ

)
+,

for some threshold λ, where x+ = max(x,0) (the theoretical results of this paper
focus on soft thresholding, but the results of this and of the following sections re-
main valid for hard thresholding function ηH (d,λ) = dI (|d| ≥ λ), with I (·) being
the usual indicator function). If the errors ei , i = 1, . . . , n are IID N(0, σ 2) ran-
dom variables with known σ 2, the VisuShrink estimator of {f (i/n), i = 1, . . . , n}
is constructed by thresholding the wavelet coefficients d̃j,k with threshold λ =
σ
√

2 logn and then transforming back. Thus, we define

d̂j,k = ηS(d̃j,k, λ)

and the estimator

f̂ = WT θ̂,

where

θ̂ = (c̃j0,0, . . . , c̃j0,2j0−1, d̂j0,0, . . . , d̂j0,2j0−1, . . . , d̂J−1,0, . . . , d̂J−1,2J−1−1)
T .

In practice, the transform W and its inverse WT are carried out by a fast O(n)

algorithm. Note that thresholding is restricted to levels j above some user-specified
primary resolution level j0. It is supposed that signal predominates over noise in
levels below j0.



618 Porto, Morettin, Percival and Aubin

2.2 Uniform design with IID errors

Consider the model

y(ti) = f (ti) + εi, i = 1, . . . , n,

where ti are IID uniform [0,1] random variables, and εi are IID N(0, σ 2) variables
with σ 2 known and independent of ti . Let 0 ≤ t(1) < t(2) < · · · < t(n) ≤ 1 be the
order statistics of the ti . Changing the labels accordingly to the order of the ti , the
model can be rewritten as

yi = f (t(i)) + ei, i = 1, . . . , n, (2.2)

where yi ≡ y(t(i)) and ei = y(t(i)) − f (t(i)) (note that the values ei represent a
reordering of the εi ). The data consist of observed pairs {(t(1), y1), (t(2), y2), . . . ,

(t(n), yn)}. Because the ti are uniformly distributed on [0,1], the t(i) are distributed
as Beta(i, n − i + 1) and E(t(i)) = i/(n + 1) (Cai and Brown, 1999). Hence, in
expectation this is a regular sampled design (i/(n + 1), yi), and we can apply the
VisuShrink procedure directly to the data y = (y1, . . . , yn)

T . To within a logarith-
mic factor, this procedure achieves the optimal convergence rate over the range of
Hölder classes 	α(M) with 1/2 ≤ α ≤ r , a result that holds for both hard and soft
thresholding (Cai and Brown, 1999). In the case of random uniform design and
independent Gaussian errors, the data thus can be treated as if they were sampled
in a regular design. An argument in terms of an isometry involving a risk mea-
sure with a non-Euclidian norm can be used to justify this practice for other types
of nonuniform sampling (Sardy et al., 1999). In fact, Kerkyacharian and Picard
(2004) obtained similar asymptotic results but for very general random designs
and wider function classes.

2.3 Regular design with correlated errors

Let us consider model (2.1) again, but now suppose that the error vector e =
(e1, . . . , en)

T has a multivariate Gaussian distribution with mean 0 and covari-
ance matrix �. Also, assume that the errors are stationary so that � has entries
γ (|r − s|), for r, s = 1, . . . , n. Let z = We be the wavelet transform of the scaled
error vector and let V = W�WT be the covariance matrix of z. Neglecting bound-
ary effects, within each level zj,k will be a portion of a stationary process with
level-dependent variance σ 2

j = Var(zj,k) (Johnstone and Silverman, 1997), where
zj,k is the element at level j and index k of z.

The properties of the wavelet transform have two heuristic consequences. First,
for many (but not all) models encountered in practice, the autocorrelation of the
zj,k within each level dies away rapidly. Second, there will tend to be little correla-
tion between the wavelet coefficients at different levels (Johnstone and Silverman,
1997). For a process with positively correlated long-range dependence, the wavelet
coefficients form series with negligible autocorrelation and cross-correlations.
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In view of these facts, a natural extension of the VisuShrink procedure is to
apply level-dependent thresholding to the transformed data d̃j,k , j = j0, . . . , J −1,
k = 0, . . . ,2j − 1:

d̂j,k = ηS(d̃j,k, λj ), (2.3)

where λj = σj

√
2 logn, and the estimator is

f̂ = WT θ̂,

with θ̂ given by (2.1). In practice, the noise variance σ 2
j is often estimated from

the coefficients in each level, through a robust estimator like the median absolute
deviation from zero. Note that the number of coefficients at the coarsest level j0
could be small if j0 is set too small, resulting in dicey estimates of σ 2

j0
.

3 Wavelet shrinkage for random design with correlated errors

Consider a sample (t1, y(t1)), (t2, y(t2)), . . . , (tn, y(tn)) from some stochastic sam-
pling scheme with corresponding order statistics 0 ≤ t(1) < t(2) < · · · < t(n) ≤ 1.
Given the data, assume the model

yi = f (t(i)) + ei, (3.1)

where yi ≡ y(t(i)) and the errors ei = e(t(i)) are Gaussian with mean zero, finite
variance and finite covariance. Let f̂ (t) be the estimator of f (t) for all t ∈ [0,1],
where

f̂ (t) =
2j0−1∑
k=0

ĉj0,kφj0,k(t) +
J ′−1∑
j=j0

2j−1∑
k=0

d̂j,kψj,k(t); (3.2)

ĉj0,k = c̃j0,k , d̂j,k is given by

d̂j,k = ηS(d̃j,k, λj,k), (3.3)

where c̃j0,0, . . . , d̃J ′−1,2J ′−1−1 are the empirical wavelet coefficients, the thresh-

old λj,k = σj,k

√
2 logn is used by the soft threshold function ηS(d̃j,k, λj,k) =

sgn(d̃j,k)(|d̃j,k| −λj,k)+, σ 2
j,k is the variance of the respective (non observed) em-

pirical wavelet coefficient of the error vector e = (e1, . . . , en)
T , and J ′ ≤ J is any

cutoff resolution level, J ′ ∈N.
In matrix calculations, W is neither affected by the design nor by the correlated

errors and the empirical wavelet coefficients are obtained in the same usual way,
ignoring the unequally spaced design, treating the data as if they were equally
spaced. However, the threshold is affected by the correlated errors but not by the
design.



620 Porto, Morettin, Percival and Aubin

Our results are for Hölder classes, that is, f ∈ 	α(M) which, by definition,
if 0 < α ≤ 1, |f (x) − f (y)| ≤ M|x − y|α ; if α > 1, |f (�α)(x) − f (�α)(y)| ≤
M|x −y|α′

and |f (1)(x)| ≤ M , where f (m)(x) is the mth derivative of the function
f at x, �α is the largest integer less than α, and α′ = α − �α (Cai and Brown,
1999, Definition 1). The following theorem states our main result.

Theorem 1. Suppose that model (3.1) is valid, and ei = e(t(i)) are multivariate
Gaussian noise with zero mean and finite variance. Suppose also that the “mother”
wavelet ψ has r vanishing moments and is compactly supported. Then, over the
range of Hölder classes 	α(M) with α ∈ (0, r] and M ∈ (0,∞), the risk of the
estimator f̂ given by (3.2) is such that

E
(‖f̂ − f ‖2

2
) ≤ 20C1n

−2s(α) + 40
C2

M,ψ(H)

1 − 2−2α
2−2αJ

+ 20
M

n

n∑
i=1

{
Var(t(i)) +

[
E

(
t(i) − i

n

)]2}s(α)

+
2j0−1∑
k=0

Var(r̃j0,k)

+ 8
∑

(j,k)∈I2

d2
j,k + C2

M,ψ

1 − 2−2α
2−2αJ ′

+ 6 logn
∑

(j,k)∈I1

σ 2
j,k + 2

n

J ′−1∑
j=j0

2j−1∑
k=0

σ 2
j,k,

where C1, CM,ψ(H) and CM,ψ are positive constants that do not depend on n;

s(α) = min(α,1); r̃j0,k = 〈R,φj0,k〉, R(x) = ∑n−1
i=0 ei+1I ((nx − i) ∈ (0,1]); I1 is

the set of pairs of indexes (j, k) such that 6σ 2
j,k logn < 8d2

j,k (i.e., the signal is
much stronger than the noise); I2 is the complement of I1; j ∈ {j0, . . . , J

′ − 1}
and k ∈ {0, . . . ,2j − 1}.

This theorem is very general, and, as special cases, we can deduce and general-
ize results already stated in the literature for scenarios discussed in Section 2 (and
noiseless variations thereof), as follows (proofs for the theorem and the following
corollaries and proposition are given in the last section).

The cutoff resolution level J ′ is a theoretical device used to show that one can
discard some of the finest resolution levels and still achieve the almost minimax
risk. This also work for theoretical comparison with other works, as we do in the
comments following the corollaries. In practice, one can always consider J ′ = J

to achieve the fastest rate of decay but sometimes using J ′ < J can lead to a better



Wavelet shrinkage for regression 621

estimator, that is, the same rate of decay but with smaller constants. Selecting the
best value J ′ is not trivial since it depends on α which is usually unknown. For
practical situations, we advocate to consider J ′ = J , try some J ′ < J and make a
decision based on the researcher’s experience or comparison with other studies.

In what follows, we refer to the following three designs, already cited in Sec-
tion 1:

1. regular: the points ti are deterministic and equally sampled, that is, ti = t(i) =
i/n;

2. uniform: the n random points ti are IID uniform [0,1] random variables,
which implies that t(i) ∼ Beta(i, n − i + 1);

3. jittered: the random points are jittered, that is, ti = t(i) = (2i − 1)/(2n) + ji ,
where the ji are IID uniform [−1/(2n),1/(2n)] random variables.

Corollary 1 (Uniform or jittered design with correlated errors). Suppose the
conditions of Theorem 1 but that the noise is a portion of a Gaussian stochastic
process with mean zero, finite variance γ (0), and finite covariances Cov(ei, ej ),
for i, j = 1, . . . , n. Suppose also that the stochastic process is stationary and short-
memory, where Cov(e(t(i)), e(t(j))) = γ (|i−j |) and limn→∞

∑n−1
u=−(n−1) |γ (u)| =

Cγ < ∞, and that the design is either uniform or jittered. Then the fastest decay
of the risk is the same as stated in Corollary 3.

This result is related to Theorem 4.8 in Kulik and Raimondo (2009). It is less
general since they consider Besov classes; however, it is more general since they
only consider α > 1/2 and known (or estimated) distribution function that gener-
ates the design, while we require only its two first moments.

Corollary 2 (Regular design with correlated errors). Suppose the conditions
of Theorem 1 but that the noise is a portion of a Gaussian stochastic pro-
cess with mean zero, finite variance γ (0), and finite covariances Cov(ei, ej ), for
i, j = 1, . . . , n. Suppose also that the design is regular and the stochastic pro-
cess is stationary and short-memory, where Cov(e(t(i)), e(t(j))) = γ (|i − j |) and
limn→∞

∑n−1
u=−(n−1) |γ (u)| = Cγ < ∞. Then, the fastest decay of the risk is the

same as stated in Corollary 4.

This result is closely related to Theorem 3 in Johnstone and Silverman (1997).
It is less general in that they consider both short- and long-memory processes and
functions in Besov classes; on the other hand, it is more general in that they only
consider α > 1/2.

Corollary 3 (Uniform or jittered design with IID errors). Suppose the con-
ditions of Theorem 1 but that the noise is IID normal with mean zero and finite
variance γ (0). Suppose also that the design is either uniform or jittered. Then the
fastest decay of the risk is achieved as
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1. E(‖f̂ − f ‖2
2) = O((logn/n)2α/(1+2α)) for all J ′ ∈ {J1, . . . , J } if 1/2 −

log logn/ logn ≤ α ≤ r , where 2J1 = O((n/ logn)1/(1+2α));
2. E(‖f̂ − f ‖2

2) = O((logn/n)2α/(2+2α)) for all J ′ ∈ {J2, . . . , J } if α is
such that − log logn/ logn ≤ α < 1/2 − log logn/ logn, where 2J2 = O((n/

logn)1/(2+2α));
3. E(‖f̂ − f ‖2

2) = O(n−s(α)) when J ′ = J if 0 < α < − log logn/ logn.

This result expands upon Cai and Brown (1999), which considers only α ≥ 1/2
and J ′ = J . This result is also closely related to those in Kerkyacharian and Picard
(2004). It is less general because they consider functions in Besov classes, but it is
more general because they only consider α > 1/2, 2J ′ = √

n/ logn ≤ 2J1 and full
knowledge of the design distribution function, while we require only its two first
moments.

Corollary 4 (Regular design with IID errors). Suppose the conditions of Theo-
rem 1 but that the noise is IID normal with mean zero and finite variance γ (0). Sup-
pose also that the design is regular. Then, the fastest decay of the risk is achieved
for all J ′ ∈ {J1, . . . , J }, where 2J1 = O((n/ logn)1/(1+2α)), as

E
(‖f̂ − f ‖2

2
) = O

(
(logn/n)2α/(1+2α)).

This result is classic and can be found in Donoho et al. (1995) and Donoho and
Johnstone (1996), for instance.

Corollary 5 (Noiseless observations, uniform or jittered design). Suppose the
conditions of Theorem 1 but that the noise is degenerate (i.e., the variance and
covariances are zero) and the design is either uniform or jittered. Then, in both
cases, the fastest decay of the risk is achieved when J ′ = J as

E
(‖f̂ − f ‖2

2
) = O

(
n−s(α)).

Here the risk converges to zero slower than in the regular design. The result
for the uniform design is already shown in Cai and Brown (1999), at Lemma 3.
Although not widely used in statistics, these results can be useful for analyzing
antialiasing techniques in signal processing as, for instance, those in Dippé and
Wold (1985).

Corollary 6 (Noiseless observations, regular design). Suppose the conditions of
Theorem 1 but that the noise is degenerate (i.e., the variance and covariances are
zero) and the design is regular. Then, the fastest decay of the risk is achieved when
J ′ = J as

E
(‖f̂ − f ‖2

2
) = O

(
n−2s(α)).
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In this case, the risk is exactly the usual approximation error. This result is already
known (see, e.g., Lemma 2 and Theorem 1 in Cai and Brown (1998)).

Since Theorem 1 is very general, in practice we use it through its corollaries
which, in the case of those correlated errors, use one threshold for each resolution
level, as cited in Section 2.3. The proofs of Lemmas 6 and 8 (see the last sec-
tion) show the threshold affect only I1 and, consequently, I2. The proofs of the
corollaries for correlated errors show that I1 can be determined only by a set of
resolution levels (do not consider k). Thus, using one threshold for each resolution
level is enough in the simulations and the application (where we do not reject the
null hypothesis of uniform design).

The noise conditions of Corollaries 2 and 1 occur in diverse applications (see,
e.g., Cochrane and Orcutt (1949), Kutner et al. (2004), Qin and Gilbert (2001)),
and specific cases of interest where the design conditions of Corollaries 3 and 1
also occur are given by the following proposition.

Proposition 1. Suppose that model (3.1) holds. Let {ei = e(t(i)), i = 1, . . . , n} be
a portion of a continuous-time zero-mean stationary process e(t), where t(i) comes
from either a uniform or jittered design. Let

Cov
(
e(t(i)), e(t(j))

) = E
(
σ 2e−n′β|t(i)−t(j)|)

for some β > 0, 0 < σ 2 < ∞ and fixed i and j , where n′ = n + 1 for the uniform
design and n′ = n for the jittered design. Then Cov(e(t(i)), e(t(j))) = γ (|i − j |)
and limn→∞

∑n−1
u=−(n−1) |γ (u)| = Cγ < ∞.

Two remarks are in order here. First, a sufficient condition for the noise condi-
tions of Corollary 1 to hold is that∣∣Cov

(
e(t(i)), e(t(j))

)∣∣ ≤ Cσ 2e−β|i−j |

for some positive constant C < ∞. This exponential decay condition seems to be
stronger than the convergence of the sum of covariances but we leave the weak-
ening of this condition for further research. Second, the covariances we assume in
the proposition are similar to that for a continuous-time first-order autoregressive
(AR(1)) process, but not exactly so. We are essentially mapping a process on the
real axis to the (0,1) interval, so the correlation between two fixed points in this
interval must decrease as the sample size increases, whereas it would remain fixed
for a true AR(1) process.

We must note that the condition in the covariance matrix is not assumed in the
proofs. We only state it is a sufficient condition with the following practical appeal.
Suppose we want to estimate the function with an almost minimax risk but our
error process is such that the condition is not met for, say, the pair of errors e(0.42)

and e(0.48) from a sample of size n = 100 using the 42th and 48th observations,
that is, at t(42) = 0.42 and t(48) = 0.48 the absolute value of the covariance between
the respective pair of errors is greater than Cσ 2e−β|48−42|. However, the sufficient
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condition (an upper bound, in fact) says that a sample of size n = 1000 could
be enough if |Cov(e(0.42), e(0.48))| ≤ Cσ 2e−β|480−420| because there are more
observations between these two time points which would weaken the respective
correlation. Notice that the upper bound for the pair e(0.42) and e(0.48) with n =
100 is the same for the pair e(0.042) and e(0.048) with n = 1000 since both are
based on t(42) and t(48).

4 Simulations

We conducted a simulation study to compare the estimator based on unequally
spaced samples (with uniform and jittered samples) with the estimator based on a
regular design. The package Wavethresh (Nason, Kovac and Maechler, 2006), im-
plemented in R language (R Core Team, 2013), was used (code needed to replicate
the results can be obtained from the first author upon request).

We considered three test functions f (t), representing different degrees of spatial
variability: sine, Heavisine and Doppler. The formulas for the last two functions are
given by Donoho and Johnstone (1994). The sampled functions were normalized
such that their standard deviations are equal to 10; that is,

SDsignal =
(

1

n − 1

n∑
i=1

[
f (ti) − f̄

]2
)1/2

= 10,

where f̄ = n−1 ∑
i f (ti). We generated three samples of noise, one for each type

of design, from the process described at Proposition 1 with β = − log(0.7). For the
regular design, this corresponds to a discrete-time AR(1) process with coefficient
φ = 0.7. Then, the noise samples were standardized to achieve a signal-to-noise
ratio (SNR) of either 5 or 7; that is, letting ei = e(ti) represent the standardized
noise, we have

SNR = SDsignal

SDnoise
where SDnoise =

(
1

n − 1

n∑
i=1

[ei − ē]2

)1/2

and ē = 1

n

n∑
i=1

ei .

For both SNRs, we considered sample sizes from n = 256 to 2048.
Table 1 reports the average of the mean-square error (MSE) over 200 replica-

tions of the test functions, calculated across the sampled times for each realization,
given by

average MSE = 1

200

200∑
r=1

1

n

n∑
i=1

[
f̂r (ti) − f (ti)

]2
,

where f̂r (ti) is the estimative of f (ti) from the r th simulated replication. We
take this as an approximation of the IMSE, as defined in Section 1. We have
used the Daubechies orthonormal compactly supported wavelet of length L = 8
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Table 1 Average (and standard errors) MSE over 200 replications of the test functions, calculated
across the sampled times for each realization, from the simulation study with correlated errors. The
Daubechies orthonormal compactly supported wavelet of length L = 8 (Daubechies, 1992), least
asymmetric family, was used with soft level-dependent thresholding beginning at the level j0 indi-
cated

SNR = 5 SNR = 7

n j0 Regular Jittered Uniform j0 Regular Jittered Uniform

Sine
256 2 0.80 0.82 1.17 2 0.41 0.42 0.72

(0.34) (0.37) (0.37) (0.18) (0.18) (0.21)
512 2 0.41 0.41 0.64 2 0.21 0.21 0.38

(0.21) (0.20) (0.23) (0.10) (0.10) (0.12)
1024 2 0.21 0.20 0.35 2 0.11 0.11 0.21

(0.11) (0.11) (0.13) (0.05) (0.06) (0.06)
2048 2 0.12 0.12 0.20 2 0.06 0.06 0.12

(0.06) (0.06) (0.07) (0.03) (0.03) (0.04)

Heavisine
256 3 1.96 2.00 2.47 3 1.27 1.30 1.63

(0.35) (0.37) (0.47) (0.18) (0.18) (0.29)
512 3 1.40 1.41 1.68 4 0.92 0.93 1.13

(0.22) (0.22) (0.28) (0.12) (0.13) (0.13)
1024 3 1.01 1.01 1.18 3 0.74 0.75 0.88

(0.12) (0.13) (0.20) (0.12) (0.11) (0.17)
2048 4 0.66 0.67 0.76 4 0.41 0.42 0.50

(0.10) (0.09) (0.11) (0.08) (0.08) (0.08)

Doppler
256 5 3.55 3.84 4.50 5 1.87 2.05 2.53

(0.22) (0.27) (0.42) (0.10) (0.15) (0.28)
512 5 3.05 3.24 3.92 5 1.61 1.77 2.24

(0.22) (0.25) (0.41) (0.16) (0.16) (0.27)
1024 5 2.52 2.59 3.28 6 1.40 1.44 1.79

(0.25) (0.25) (0.42) (0.08) (0.08) (0.12)
2048 5 1.97 2.06 2.46 5 0.91 0.94 1.44

(0.32) (0.35) (0.35) (0.13) (0.14) (0.21)

(Daubechies, 1992), least asymmetric family, and the wavelet coefficients were
soft-thresholded from the indicated level j0 to the greatest one (finest scale). The
chosen level j0 was the level of the coarsest scale of the regular design which
resulted in the smaller average MSE and the σj values were estimated using the
median absolute deviation from zero. The chosen level j0 happened to be the one
with less average MSE for the other designs in almost all cases.

Table 1 shows that the average MSEs on random designs are bigger than those
on regular design in all the cases. The average MSEs for jittering fall between
those for uniform and regular designs in almost all the cases. However, the jittered
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Figure 1 Sine test function and wavelet estimatives based on n = 1024 points and SNR = 7. Gaus-
sian correlated noise was added to the test function. The Daubechies orthonormal compactly sup-
ported wavelet of length L = 8 (Daubechies, 1992), least asymmetric family, was used with soft
level-dependent thresholding beginning at the level j0 = 3.

sampling yields almost the same results as the regular design so that the effect of
small timing errors is small, mainly for bigger sample sizes. The average MSEs
for uniform design are always greater than those for jittered design. However, as
the sample size increases, they decay at approximately the same rate, as prescribed
by Corollary 3. Visually, the reconstruction with uniform design is a little more
wrinkled than the regular and jittered designs. The jittering is visually almost in-
distinguishable from the regular design. One realization for the sine, Heavisine and
Doppler functions is shown in Figures 1, 2 and 3 respectively, relative to the cases
reported in Table 1, with n = 1024 and SNR = 7.

5 Application

As an example of the application of our methodology, let us consider the problem
of estimating the light curve for the variable star RU Andromeda using data ob-
tained from the American Association of Variable Star Observers (AAVSO) Inter-
national Database at www.aavso.org (see Sardy et al. (1999) for an earlier attempt
to estimate this light curve under the presumption of uncorrelated noise). The data
consist of magnitudes of the star measured at irregularly spaced times (the irreg-
ular sampling is due to many factors, including blockage of the star by the sun,

http://www.aavso.org
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Figure 2 Heavisine test function and wavelet estimatives based on n = 1024 points and SNR = 7.
Gaussian correlated noise was added to the test function. The Daubechies orthonormal compactly
supported wavelet of length L = 8 (Daubechies, 1992), least asymmetric family, was used with soft
level-dependent thresholding beginning at level j0 = 4.

weather conditions and availability of telescope time). Prior to analysing the data,
we eliminated observations reported as upper limits on the star’s magnitude (due to
atmospheric conditions and the light gathering capabilities of various telescopes).
We also replaced multiple observations on the same date by their median value.
For our example, we focused on the 256 successive observations recorded from
Julian Day 2,440,043 to 2,441,592 (July 5, 1968 to October 1, 1972).

Figure 4(a) shows the RU Andromeda data, along with a light curve estimated
using the Haar wavelet (for possible visual comparison with the analysis in Sardy
et al. (1999)) and the VisuShrink threshold (see Section 2.1). As noted in Sec-
tion 2.3, the presence of correlated noise manifests itself as a dependence in the
standard deviations σj of the wavelet coefficients on the level j .

Figure 4(b) shows σj (as estimated by the median absolute deviation from zero)
versus j , along with 95% confidence intervals (CIs) obtained by a bootstrapping
procedure. The fact that the CIs for σ4 and σ7 just barely overlap suggests that we
use the threshold of equation (2.3). We used a Kolmogorov–Smirnov test to assess
the null hypothesis that the observation times are uniformly distributed, obtaining
a p-value of 0.2161. Since we cannot reject the null hypothesis at any reason-
able level of significance, we can use Proposition 1 to support using our proposed
methodology (this apparent agreement with uniformly distributed sampling times
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Figure 3 Doppler test function and wavelet estimatives based on n = 1024 points and SNR = 7.
Gaussian correlated noise was added to the test function. The Daubechies orthonormal compactly
supported wavelet of length L = 8 (Daubechies, 1992), least asymmetric family, was used with soft
level-dependent thresholding beginning at level j0 = 6.

is one of the reasons we chose this particular subset of the RU Andromeda data).
Figure 4(c) shows the estimated light curve using threshold (2.3). We also used
J ′ = J as we did in the simulations and j0 = 4, based on the simulation results
and trying to achieve an estimated function visually similar to those in Sardy et al.
(1999). Note that this light curve differs from the one in Figure 4(a) at various
dates as can be seen, for instance, in the first half of the series, likely due to the
autocorrelated errors. Figure 4(d) shows the sample autocorrelation sequence for
the residuals from the fitted curve. The fact that this sequence damps down rapidly
is an indication that assuming the noise conditions of the Corollary 1 is reasonable
here.

6 Summary and discussion

In this paper, we have considered the special cases of uniformly distributed and
jittered sampling from a signal in the presence of Gaussian stationary errors with
summable autocovariances. We proved that, in these special cases, the samples
can be treated as if they were equispaced and with correlated noise; that is, we
can use a discrete wavelet transform followed by a level-dependent thresholding
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Figure 4 (a) Data points and estimated light curve through VisuShrink. (b) Mean absolute deviation
(MAD) from zero of the wavelet coefficients at each resolution level j . Level j = 7 is the finest.
Endpoints of the error bars are the 0.025 and 0.975 quantiles of MAD obtained from 500 samples
(with replacement) of the wavelet coefficients at each resolution level j . (c) Data points and estimated
light curve considering correlated errors. (d) Residuals sample autocorrelation function and 95%
confidence interval.

of the wavelet coefficients and an inverse transform to obtain estimators that adap-
tively achieve—within a logarithmic factor—the optimal convergence rate across
a range of Hölder classes. We carried out a brief simulation study to evaluate the
finite-sample performance of the proposed methodology. The study found mean-
squared errors comparable to those from samples from a regular design (our study
involved correlated errors, but Cai and Brown (1999) found the same to be true for
uncorrelated errors). We also used our methodology to extract a light curve from
unequally spaced observations of a variable star.

The focus of this paper has been on presenting detailed proofs for relatively
simple classes of functions, sampling schemes, correlation structures and thresh-
olding rules. Open issues for future research are to consider more complex classes,
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for example, to consider noise drawn from long-memory stochastic processes and
functions that belong to wider Besov classes. Using proofs similar to the ones we
have presented, it is straightforward to extend our results to functions that belong
to piecewise Hölder classes or Besov classes, but the proofs would be much more
technical and notationally dense. Similarly, although our Theorem 1 is valid for
very general sampling schemes (we only require that the two first moments are fi-
nite) and correlation structures often found in practical applications, it is of interest
to consider other random designs and other types of error dependence (e.g., long-
range, alternating). Finally, we conjecture that convergence rates can be improved
by considering thresholding rules different from the ones we have focused on.

7 Proofs

We begin by restating the problem clearly showing all the assumptions that we are
going to need for the proofs of the theorem and the corollaries.

Consider a sample (t1, y(t1)), (t2, y(t2)), . . . , (tn, y(tn)) from some stochastic
sampling scheme with respective order statistics 0 ≤ t(1) < t(2) < · · · < t(n) ≤ 1,
n = 2J , J ∈N, and suppose that

1. the data are generated by the model yi = f (t(i)) + ei , where yi ≡ y(t(i)), the
function f is unknown, and the errors ei ≡ e(t(i)), for i = 1, . . . , n;

2. the function f ∈ L2[0,1] belongs to a Hölder class 	α(M), with M > 0,
α ∈ (0, r], and known r > 0;

3. the errors ei follow a multivariate normal distribution with mean zero and
finite variance Var(ei) = γ (0) < ∞, for i = 1, . . . , n;

4. for some j0 ∈ N fixed, the functions φj0,k , k = 0, . . . ,2j0 − 1, and ψj,k ,
k = 0, . . . ,2j − 1, j0 ≤ j ∈ N, form a compactly supported orthonormal wavelet
basis of L2[0,1], where the “mother” wavelet ψ has r ≥ α vanishing moments.

Note that we require r vanishing moments, not r-regularity, for the “mother”
wavelet.

It is also important to observe that the design has order statistics with finite
expected value E(t(i)) < ∞, and finite variance Var(t(i)) < ∞, for i = 1, . . . , n,
since the order statistics are bounded, that is, 0 ≤ t(1) < t(2) < · · · < t(n) ≤ 1.

Additionally, we need the following eight lemmas. The first lemma is by Cai and
Brown (1999), Lemma 1, which we restate with a proof developed by us, since it
is omitted in their article.

Lemma 1 (Cai and Brown (1999), Lemma 1). Under assumptions 2 and 4, the
wavelet coefficients dj,k = 〈f,ψj,k〉 are such that

|dj,k| ≤ CM,ψ2−j (1/2+α),

where CM,ψ is a positive constant that does not depend on n but only on M and ψ .
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Proof. Since f ∈ 	α(M), by definition we have that if 0 < α ≤ 1, |f (x) −
f (y)| ≤ M|x−y|α ; if α > 1, |f (�α)(x)−f (�α)(y)| ≤ M|x−y|α′

and |f (1)(x)| ≤
M , where f (m)(x) is the mth derivative of the function f at x, �α is the
largest integer less than α, and α′ = α − �α (Cai and Brown, 1999, Defini-
tion 1). Notice also that since the wavelets are compactly supported, we have that∫ |x|r |ψ(x)|dx < ∞.

Now we follow closely the proof of Theorem 2.9.1 in Daubechies (1992). Since∫
ψ(x)dx = 0 we have

〈f,ψj,k〉 =
∫ ∑

l∈Z
ψj,k(x − l)f (x) dx

=
∫ ∑

l∈Z
2j/2ψ

(
2j x − k − l

)
f (x) dx

=
∫ ∑

l∈Z
2j/2ψ

(
2j x − 2j (k + l)

2j

)(
f (x) − f

(
k + l

2j

))
dx;

hence if 0 < α ≤ 1∣∣〈f,ψj,k〉
∣∣ ≤

∫ ∑
l∈Z

2j/2
∣∣∣∣ψ

(
2j

[
x − (k + l)

2j

])∣∣∣∣M
∣∣∣∣x − k + l

2j

∣∣∣∣
α

dx

≤
∫

(N + 1)2j/2∣∣ψ(y)
∣∣M2−jα|y|α2−j dy

= 2−j (1/2+α)M(N + 1)

∫ ∣∣ψ(y)
∣∣|y|α dy

≤ 2−j (1/2+α)CM,ψ,

where N + 1 is the length of the support of ψ .
If 1 < α ≤ r , the Taylor formula let us write

f

(
k + l

2j

)
− f (x) = 1

m!
�α−1∑
m=1

f (m)(x)

(
k + l

2j
− x

)m

+ R,

where R is the remainder in the Schlömilch form such that

|R| ≤ |f (�α)(c)|
�α!

�α
α

∣∣∣∣k + l

2j
− c

∣∣∣∣
−α′ ∣∣∣∣k + l

2j
− x

∣∣∣∣
α

≤ 2�α−1M

�α!
∣∣∣∣k + l

2j
− x

∣∣∣∣
α

≤ M

∣∣∣∣k + l

2j
− x

∣∣∣∣
α

,

for some c strictly between x and 2−j (k + l). Thus, since the moments of ψ of
orders 1 up to �α − 1 vanishes, we just follow the same steps when 0 < α ≤ 1. �
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Lemma 2. Under assumptions 2 and 4, any estimator f̂ (x) of f (x), where

f̂ (x) =
2j0−1∑
k=0

ĉj0,kφj0,k(x) +
J ′−1∑
j=j0

2j−1∑
k=0

d̂j,kψj,k(x),

for all x ∈ [0,1], and for any J ′ ∈ N where J ′ ≤ J , has a risk that is equal to

E
(‖f̂ − f ‖2

2
) =

2j0−1∑
k=0

E
(
(ĉj0,k − cj0,k)

2)

+
J ′−1∑
j=j0

2j−1∑
k=0

E
(
(d̂j,k − dj,k)

2)

+
∞∑

j=J ′

2j−1∑
k=0

d2
j,k,

where ĉj0,k and d̂j,k are any estimators of the respective coefficients cj0,k =
〈f,φj0,k〉, and dj,k = 〈f,ψj,k〉.

Proof. By the assumption 2, the function f can be expanded into the wavelet basis
of the assumption 4 and the risk can be written as

E
(‖f̂ − f ‖2

2
) = E

(∫ 1

0

[
f̂ (x) − f (x)

]2
dx

)

= E

(∫ 1

0

[2j0−1∑
k=0

ĉj0,kφj0,k(x) +
J ′−1∑
j=j0

2j−1∑
k=0

d̂j,kψj,k(x)

−
2j0−1∑
k=0

cj0,kφj0,k(x) −
∞∑

j=j0

2j−1∑
k=0

dj,kψj,k(x)

]2

dx

)

= E

(∫ 1

0

[2j0−1∑
k=0

(ĉj0,k − cj0,k)φj0,k(x)

+
J ′−1∑
j=j0

2j−1∑
k=0

(d̂j,k − dj,k)ψj,k(x)

−
∞∑

j=J ′

2j−1∑
k=0

dj,kψj,k(x)

]2

dx

)
.
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By the orthogonality of the wavelet basis, this expression is equal to

E

(2j0−1∑
k=0

∫ 1

0
(ĉj0,k − cj0,k)

2φ2
j0,k

(x) dx +
J ′−1∑
j=j0

2j−1∑
k=0

∫ 1

0
(d̂j,k − dj,k)

2ψ2
j,k(x) dx

+
∞∑

j=J ′

2j−1∑
k=0

∫ 1

0
d2
j,kψ

2
j,k(x) dx

)
,

and by orthonormality we have

E
(‖f̂ − f ‖2

2
) =

2j0−1∑
k=0

E
(
(ĉj0,k − cj0,k)

2) +
J ′−1∑
j=j0

2j−1∑
k=0

E
(
(d̂j,k − dj,k)

2)

+
∞∑

j=J ′

2j−1∑
k=0

d2
j,k.

�

Lemma 3. For all α > 0 and any J1 < J ′, where J1 ∈ N and J ′ ∈ N, under as-
sumptions 2 and 4,

∞∑
j=J ′

2j−1∑
k=0

d2
j,k ≤ C2

M,ψ

1 − 2−2α
2−2αJ ′

and
J ′−1∑
j=J1

2j−1∑
k=0

d2
j,k ≤ C2

M,ψ

(
2−2αJ1 − 2−2αJ ′

1 − 2−2α

)
,

where dj,k = 〈f,ψj,k〉, and CM,ψ is a positive constant that does not depend on n

but only on M and ψ .

Proof. According to Lemma 1, |dj,k| ≤ CM,ψ2−j (1/2+α). Thus, for all α > 0,

∞∑
j=J ′

2j−1∑
k=0

d2
j,k ≤ C2

M,ψ

∞∑
j=J ′

2j 22(−j (1/2+α)) = C2
M,ψ

∞∑
j=J ′

2−2jα

= C2
M,ψ

( ∞∑
j=0

2−2jα −
J ′−1∑
j=0

2−2jα

)

= C2
M,ψ

(2−2α)J
′

1 − 2−2α
,

and
J ′−1∑
j=J1

2j−1∑
k=0

d2
j,k ≤ C2

M,ψ

J ′−1∑
j=J1

2−2jα = C2
M,ψ

(
2−2αJ1 − 2−2αJ ′

1 − 2−2α

)
.

�
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Lemma 4. Consider the assumption 1 and let

f̃ (x) =
n−1∑
i=0

n−1/2yi+1φ
(H)
J,i (x),

where

φ
(H)
J,i (x) = 2J/2φ(H)(2J x − i

) = √
nI ((nx − i) ∈ (0,1]),

is the Haar scaling function, for i = 0, . . . , n − 1, and I (·) denotes the usual indi-
cator function. Let also

fn(x) =
n−1∑
i=0

n−1/2f

(
i + 1

n

)
φ

(H)
J,i (x),

and consider the function

A(x) = fn(x) − f (x),

which is a deterministic completion of f (x), the function

B(x) =
n−1∑
i=0

n−1/2f (t(i+1))φ
(H)
J,i (x) − fn(x),

which is random but depends only on t(1), . . . , t(n), and the function

R(x) =
n−1∑
i=0

n−1/2ei+1φ
(H)
J,i (x),

which is also random but depends only on e1, . . . , en. Then, under the assump-
tion 2, f̃ (x) ∈ L2[0,1] is a piecewise constant function that approximates f (x)

for all x ∈ [0,1] such that f̃ (k/n) = yk , and conveniently separates the sources of
uncertainties as

f̃ (x) = f (x) + A(x) + B(x) + R(x).

Proof. The proof is straightforward since by assumption 2, f (x) can be written as

f (x) =
n−1∑
k=0

c
(H)
J,k φ

(H)
J,k (x) +

∞∑
j=J

2j−1∑
k=0

d
(H)
j,k ψ

(H)
j,k (x),

where ψ
(H)
j,k denotes the respective Haar wavelet function (see, e.g., Härdle et al.

(1998), for details), c
(H)
J,k = 〈f,φ

(H)
J,k 〉, and d

(H)
j,k = 〈f,ψ

(H)
j,k 〉.
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Thus,

f̃ (x) = f (x) + [
fn(x) − f (x)

] + [
f̃ (x) − fn(x)

]

= f (x) + [
fn(x) − f (x)

] +
[

n−1∑
i=0

n−1/2(
f (t(i+1)) + ei+1

)
φ

(H)
J,i (x) − fn(x)

]

= f (x) + A(x) + B(x) + R(x).

Also, for k = 1, . . . , n,

f̃ (k/n) =
n−1∑
i=0

yi+1/
√

nφ
(H)
J,i (k/n) =

n−1∑
i=0

yi+1I ((nk/n − i) ∈ (0,1]) = yk,

so that f̃ (x) is a piecewise constant approximation to f (x), based on the observed
points y1, . . . , yn. Similarly, we also have

fn

(
k

n

)
= f

(
k

n

)
, R

(
k

n

)
= ek. �

Lemma 5. Under assumptions 1 and 2, let f̃ (x), A(x), B(x) and R(x) be the
functions of Lemma 4. Consider also the assumption 4, and let r̃j0,k = 〈R,φj0,k〉,
ãj0,k = 〈A,φj0,k〉, b̃j0,k = 〈B,φj0,k〉, and

ĉj0,k = c̃j0,k = cj0,k + ãj0,k + b̃j0,k + r̃j0,k =
∫ 1

0
f̃ (x)φj0,k(x) dx.

Then, under the additional assumption 3,

2j0−1∑
k=0

E
(
(ĉj0,k − cj0,k)

2) ≤
2j0−1∑
k=0

Var(r̃j0,k) + 2
2j0−1∑
k=0

ã2
j0,k

+ 2
2j0−1∑
k=0

E
(
b̃2
j0,k

)
.

Proof. Let E1(Y ) = E(Y |t(1), . . . , t(n)) for any random variable Y . Using the (nu-
merical) Hölder inequality (a + b)2 ≤ 2a2 + 2b2, a, b ∈ R, we have that

E
(
(ĉj0,k − cj0,k)

2) = E
(
E1

(
(ĉj0,k − cj0,k)

2))
= E

(
E1

(
(r̃j0,k + ãj0,k + b̃j0,k)

2))
= E

(
r̃2
j0,k

) + 0 + E
(
E1

(
(ãj0,k + b̃j0,k)

2))
≤ E

(
r̃2
j0,k

) + E
(
E1

(
2ã2

j0,k
+ 2b̃2

j0,k

))
= E

(
r̃2
j0,k

) + 2ã2
j0,k

+ 2E
(
b̃2
j0,k

)
.

In the last expression,

E
(
r̃2
j0,k

) = Var(r̃j0,k) + (
E(r̃j0,k)

)2 = Var(r̃j0,k)
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since, by the form of R(x) in Lemma 4 and by assumption 3,

E(r̃j0,k) = E

(∫ 1

0

n−1∑
i=0

n−1/2ei+1φ
(H)
J,i (x)φj0,k(x) dx

)
= 0.

Thus,

2j0−1∑
k=0

E
(
(ĉj0,k − cj0,k)

2) ≤
2j0−1∑
k=0

Var(r̃j0,k) + 2
2j0−1∑
k=0

ã2
j0,k

+ 2
2j0−1∑
k=0

E
(
b̃2
j0,k

)
.
�

Lemma 6. Under assumptions 1 and 2, let A(x), B(x) and R(x) be the functions
of Lemma 4. Consider also the assumption 4, and let aj,k = 〈A,ψj,k〉, bj,k =
〈B,ψj,k〉, rj,k = 〈R,ψj,k〉, dj,k = 〈f,ψj,k〉, d ′

j,k = dj,k +aj,k +bj,k , d̃j,k = d ′
j,k +

rj,k , and d̂j,k = sgn(d̃j,k)(|d̃j,k − λj,k|)+, where λj,k = σj,k

√
2 logn and σ 2

j,k =
Var(rj,k). Then, under the additional assumption 3,

J ′−1∑
j=j0

2j−1∑
k=0

E
(
(d̂j,k − dj,k)

2)

≤ 6 logn
∑

(j,k)∈I1

σ 2
j,k + 8

∑
(j,k)∈I2

d2
j,k + 20

J ′−1∑
j=j0

2j−1∑
k=0

(
a2
j,k + E

(
b2
j,k

))

+ 2

n

J ′−1∑
j=j0

2j−1∑
k=0

σ 2
j,k,

where I1 is the set of pairs of indexes (j, k) where the signal is much stronger
than the noise, such that 6σ 2

j,k logn < 8d2
j,k , I2 is the complement of I1, j ∈

{j0, . . . , J
′ − 1} and k ∈ {0, . . . ,2j − 1}.

Proof. Let E1(Y ) = E(Y |t(1), . . . , t(n)) for any random variable Y , and σ 2
j,k;1 =

E1(r
2
j,k). Using the (numerical) Hölder inequality (a + b)2 ≤ 2a2 + 2b2, a, b ∈ R,

we have that

E
(
(d̂j,k − dj,k)

2) = E
((

d̂j,k − d ′
j,k + aj,k + bj,k

)2)
≤ E

(
2
(
d̂j,k − d ′

j,k

)2 + 2(aj,k + bj,k)
2)

(7.1)

= E
(
E1

(
2
(
d̂j,k − d ′

j,k

)2) + 2(aj,k + bj,k)
2)

.

Denote min(x, y) by x ∧ y. Using Lemma 4 in Cai and Brown (1999), we obtain

E1
((

d̂j,k − d ′
j,k

)2) ≤ (
2
(
d ′
j,k

)2 + n−1σ 2
j,k;1

) ∧ (2 logn + 1)σ 2
j,k;1

≤ (
2
(
d ′
j,k

)2 + n−1σ 2
j,k;1

) ∧ (2 logn + logn + 1/n)σ 2
j,k;1
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= (
2
(
d ′
j,k

)2 + n−1σ 2
j,k;1

) ∧ ((
3σ 2

j,k;1 logn
) + n−1σ 2

j,k;1
)

= (
2
(
d ′
j,k

)2 ∧ (
3σ 2

j,k;1 logn
)) + n−1σ 2

j,k;1.

Now, use this result in (7.1):

E1
(
2
(
d̂j,k − d ′

j,k

)2) + 2(aj,k + bj,k)
2

≤ E1
(
2
(
d̂j,k − d ′

j,k

)2) + 4a2
j,k + 4b2

j,k

≤ 2
((

2
(
d ′
j,k

)2 ∧ 3σ 2
j,k;1 logn

) + n−1σ 2
j,k;1

) + 4a2
j,k + 4b2

j,k

= 2
((

2(dj,k + aj,k + bj,k)
2 ∧ 3σ 2

j,k;1 logn
) + n−1σ 2

j,k;1
) + 4a2

j,k + 4b2
j,k

≤ 2
((

2
(
2d2

j,k + 4a2
j,k + 4b2

j,k

) ∧ 3σ 2
j,k;1 logn

) + n−1σ 2
j,k;1

) + 4a2
j,k + 4b2

j,k

= 2
(((

4d2
j,k + 8a2

j,k + 8b2
j,k

) ∧ 3σ 2
j,k;1 logn

) + n−1σ 2
j,k;1

) + 4a2
j,k + 4b2

j,k

≤ 2
((

4d2
j,k ∧ 3σ 2

j,k;1 logn
) + 8a2

j,k + 8b2
j,k + n−1σ 2

j,k;1
) + 4a2

j,k + 4b2
j,k

= (
8d2

j,k ∧ 6σ 2
j,k;1 logn

) + 20a2
j,k + 20b2

j,k + 2n−1σ 2
j,k;1,

and thus,

E
(
(d̂j,k − dj,k)

2)
≤ (

8d2
j,k ∧ 6E

(
σ 2

j,k;1
)

logn
) + 20a2

j,k + 20E
(
b2
j,k

) + 2n−1E
(
σ 2

j,k;1
)

= (
8d2

j,k ∧ 6σ 2
j,k logn

) + 20a2
j,k + 20E

(
b2
j,k

) + 2n−1σ 2
j,k.

Then,

J ′−1∑
j=j0

2j−1∑
k=0

E
(
(d̂j,k − dj,k)

2)

≤ 6 logn
∑

(j,k)∈I1

σ 2
j,k + 8

∑
(j,k)∈I2

d2
j,k + 20

J ′−1∑
j=j0

2j−1∑
k=0

(
a2
j,k + E

(
b2
j,k

))

+ 2

n

J ′−1∑
j=j0

2j−1∑
k=0

σ 2
j,k. �

Lemma 7. Under assumptions 1 and 2, let A(x) and B(x) be the functions of
Lemma 4. Then

‖A‖2
2 =

∫ 1

0
A(x)2 dx ≤ C1n

−2s(α) + 2
∞∑

j=J

2j−1∑
k=0

(
d

(H)
j,k

)2
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and

E‖B‖2
2 = E

(∫ 1

0
B(x)2 dx

)

≤ M

n

n∑
i=1

{
Var

(
t(i) − i

n

)
+

[
E

(
t(i) − i

n

)]2}s(α)

,

where s(α) = min(α,1), and the constant C1 > 0 does not depend on n.

Proof. For the first part, we can expand f (x) using the Haar wavelet basis, and
obtain

‖A‖2
2 =

∫ 1

0
A(x)2 dx =

∫ 1

0

[
fn(x) − f (x)

]2
dx

=
∫ 1

0

[
n−1∑
i=0

n−1/2f

(
i + 1

n

)
φ

(H)
J,i (x) −

n−1∑
i=0

c
(H)
J,i φ

(H)
J,i (x)

−
∞∑

j=J

2j−1∑
k=0

d
(H)
j,k ψ

(H)
j,k (x)

]2

dx

=
∫ 1

0

[
n−1∑
i=0

(
n−1/2f

(
i + 1

n

)
− c

(H)
J,i

)
φ

(H)
J,i (x)

−
∞∑

j=J

2j−1∑
k=0

d
(H)
j,k ψ

(H)
j,k (x)

]2

dx

≤
∫ 1

0
2

[
n−1∑
i=0

(
n−1/2f

(
i + 1

n

)
− c

(H)
J,i

)
φ

(H)
J,i (x)

]2

dx

+
∫ 1

0
2

[ ∞∑
j=J

2j−1∑
k=0

d
(H)
j,k ψ

(H)
j,k (x)

]2

dx

= 2
n−1∑
i=0

(
n−1/2f

(
i + 1

n

)
− c

(H)
J,i

)2

+ 2
∞∑

j=J

2j−1∑
k=0

(
d

(H)
j,k

)2

≤ C1n
−2s(α) + 2

∞∑
j=J

2j−1∑
k=0

(
d

(H)
j,k

)2
,

by Lemma 2(i) in Cai and Brown (1998), where the constant C1 > 0 does not
depend on n. Note that Lemma 2(i) in Cai and Brown (1998) is presented with-
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out proof, but it is straightforward and uses Theorem 2.9.1 in Daubechies (1992),
which requires r vanishing moments, not regularity, for the “mother” wavelet.

For the second part,

E‖B‖2
2 = E

(
E1‖B‖2

2
)

= E

(
E1

∫ 1

0
B(x)2 dx

)

= E

(
E1

∫ 1

0

[
n−1∑
i=0

n−1/2f (t(i+1))φ
(H)
J,i (x) − fn(x)

]2

dx

)

= E

(
E1

∫ 1

0

[
n−1∑
i=0

n−1/2f (t(i+1))φ
(H)
J,i (x)

−
n−1∑
i=0

n−1/2f

(
i + 1

n

)
φ

(H)
J,i (x)

]2

dx

)

= E

(
E1

∫ 1

0

[
n−1∑
i=0

n−1/2
{
f (t(i+1)) − f

(
i + 1

n

)}
φ

(H)
J,i (x)

]2

dx

)

= E

(
E1

(
n−1∑
i=0

1

n

[
f (t(i+1)) − f

(
i + 1

n

)]2
))

= E

(
E1

(
1

n

n∑
i=1

[
f (t(i)) − f

(
i

n

)]2
))

,

using the orthogonality of the Haar wavelet basis.
Using the Definition 1 from Cai and Brown (1999), we have that |f (x) −

f (y)| ≤ M|x − y|s(α), where s(α) = min(α,1). Thus, the approximation error

1

n

n∑
i=1

E

((
f (t(i)) − f

(
i

n

))2)

≤ M

n

n∑
i=1

E

((
t(i) − i

n

)2s(α))

≤ M

n

n∑
i=1

[
E

((
t(i) − i

n

)2)]s(α)

= M

n

n∑
i=1

{
Var

(
t(i) − i

n

)
+

[
E

(
t(i) − i

n

)]2}s(α)
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by Jensen’s inequality and observing that the design has order statistics with finite
expected value E(t(i)) < ∞, and finite variance Var(t(i)) < ∞, for i = 1, . . . , n,
since the order statistics are bounded, that is, 0 ≤ t(1) < t(2) < · · · < t(n) ≤ 1. �

Lemma 8. Under assumptions 1 and 2, let R(x) be the function of Lemma 4, and,
considering also the assumption 4, let rj,k = 〈R,ψj,k〉. Then,

Var(rj,k) ≤ γ (0)

n
+ 2j‖ψ‖2∞

n2

n−1∑
i=0

n−1∑
t=0,t �=i

∣∣Cov(ei+1, et+1)
∣∣,

and, if Cov(ei+1, et+1) = γ (|t − i|), for i, t = 0,1, . . . , n − 1,

Var(rj,k) ≤ 2Cφ,ψ

∑n−1
u=0 |γ (u)|
n

,

where Cφ,ψ is a positive constant that does not depend on n. Inequalities for
Var(r̃j0,k), where r̃j0,k = 〈R,φj0,k〉, are similar but replacing 2j‖ψ‖2∞ and Cφ,ψ

by 2j0‖φ‖2∞ and Cφ , respectively, where Cφ is also a positive constant that does
not depend on n.

Proof.

rj,k = 〈R,ψj,k〉 =
∫ 1

0
R(x)ψj,k(x) dx

=
∫ 1

0

n−1∑
i=0

n−1/2ei+1φ
(H)
J,i (x)ψj,k(x) dx

=
n−1∑
i=0

∫ 1

0
n−1/2ei+1φ

(H)
J,i (x)ψj,k(x) dx

=
n−1∑
i=0

∫ (i+1)/n

i/n
n−1/2ei+1φ

(H)
J,i (x)ψj,k(x) dx

=
n−1∑
i=0

∫ (i+1)/n

i/n
n−1/2ei+1n

1/2ψj,k(x) dx

=
n−1∑
i=0

∫ (i+1)/n

i/n
ei+1ψj,k(x) dx,

such that

Var(rj,k)

= Cov

(
n−1∑
i=0

∫ (i+1)/n

i/n
ei+1ψj,k(x) dx,

n−1∑
i=0

∫ (i+1)/n

i/n
ei+1ψj,k(x) dx

)
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≤
n−1∑
i=0

(∫ (i+1)/n

i/n
ψj,k(x) dx

)2

γ (0)

+
n−1∑
i=0

n−1∑
t=0
t �=i

(∫ (i+1)/n

i/n
ψj,k(x) dx

)(∫ (t+1)/n

t/n
ψj,k(y) dy

)
Cov(ei+1, et+1).

By the Cauchy–Schwarz inequality,

n−1∑
i=0

(∫ (i+1)/n

i/n
ψj,k(x) dx

)2

γ (0)

≤
n−1∑
i=0

(∫ (i+1)/n

i/n
ψ2

j,k(x) dx

)(∫ (i+1)/n

i/n
dx

)
γ (0)

=
n−1∑
i=0

∫ (i+1)/n

i/n
ψ2

j,k(x) dx
γ (0)

n

= γ (0)

n

∫ 1

0
ψ2

j,k(x) dx

= γ (0)

n
.

Now, notice that∣∣∣∣
∫ (i+1)/n

i/n
ψj,k(x) dx

∣∣∣∣ ≤
∫ (i+1)/n

i/n

∣∣ψj,k(x)
∣∣dx ≤

∫ (i+1)/n

i/n
2j/2‖ψ‖∞ dx

= 2j/2‖ψ‖∞
n

,

for all i = 0,1, . . . , n − 1.
Then,

Var(rj,k) ≤ γ (0)

n
+ 2j‖ψ‖2∞

n2

n−1∑
i=0

n−1∑
t=0,t �=i

∣∣Cov(ei+1, et+1)
∣∣.

If Cov(ei+1, et+1) = γ (|t − i|), for i, t = 0,1, . . . , n − 1, Var(rj,k) is equal to

Cov

(
n−1∑
i=0

∫ 1

0
n−1/2ei+1φ

(H)
J,i (x)ψj,k(x) dx,

n−1∑
i=0

∫ 1

0
n−1/2ei+1φ

(H)
J,i (x)ψj,k(x) dx

)
,
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which is also equal to

n−1∑
i=0

n−1∑
t=0

n−1γ
(|t − i|) ∫ 1

0
φ

(H)
J,i (x)ψj,k(x) dx

∫ 1

0
φ

(H)
J,i (y)ψj,k(y) dy.

We are going to use the following inequality, obtained by using y = 2j (x − l)− k.∫
f (x)ψj,k(x) dx =

∫ ∑
l∈Z

f

(
y + k + 2j l

2j

)
2j/2ψ(y)

dy

2j

≤ 2−j/2
∫ ∑

l∈Z
‖f ‖∞

∣∣ψ(y)
∣∣dy

≤ 2−j/2(N + 1)‖f ‖∞‖ψ‖1.

Then we have that

|Var(rj,k)|

≤
n−1∑

u=−(n−1)

n−1∣∣γ (|u|)∣∣

×
n−1−|u|∑

t=0

∫ 1

0

∣∣φ(H)
J,t (x)

∣∣∣∣ψj,k(x)
∣∣dx

∣∣∣∣
∫ 1

0
φ

(H)
J,t+|u|(y)ψj,k(y) dy

∣∣∣∣

≤
n−1∑

u=−(n−1)

n−1∣∣γ (|u|)∣∣

×
n−1−|u|∑

t=0

∫ 1

0

∣∣φ(H)
J,t (x)

∣∣∣∣ψj,k(x)
∣∣dx

∣∣2−J/2∥∥φ(H)
∥∥

12j/2‖ψ‖∞2
∣∣

=
n−1∑

u=−(n−1)

n−1∣∣γ (|u|)∣∣

×
n−1−|u|∑

t=0

∫ (t+1)/n

t/n
2J/2∣∣φ(H)(2J x − t

)∣∣∣∣ψj,k(x)
∣∣dx

× (
2−J/2∥∥φ(H)

∥∥
12j/2‖ψ‖∞2

)

=
n−1∑

u=−(n−1)

n−1∣∣γ (|u|)∣∣(2−J/2∥∥φ(H)
∥∥

12j/2‖ψ‖∞2
)

×
∫ (n−|u|)/n

0
2J/2∣∣φ(H)(x)

∣∣∣∣ψj,k(x)
∣∣dx
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≤
n−1∑

u=−(n−1)

n−1∣∣γ (|u|)∣∣∥∥φ(H)
∥∥

12j/2‖ψ‖∞2
∫ 1

0

∣∣φ(H)(x)
∣∣∣∣ψj,k(x)

∣∣dx

≤
n−1∑

u=−(n−1)

n−1∣∣γ (|u|)∣∣∥∥φ(H)
∥∥

12j/2‖ψ‖∞22−j/2‖ψ‖1
∥∥φ(H)

∥∥∞(N + 1)

= 2(N + 1)
∥∥φ(H)

∥∥
1‖ψ‖∞‖ψ‖1

∥∥φ(H)
∥∥∞

n−1∑
u=−(n−1)

n−1∣∣γ (|u|)∣∣

= 2Cφ,ψ

∑n−1
u=0 |γ (u)|
n

,

where Cφ,ψ is a positive constant that does not depend on n.
By analogous arguments we can bound Var(r̃j0,k) similarly, with 2j0‖φ‖2∞ and

Cφ instead of 2j‖ψ‖2∞ and Cφ,ψ , respectively, where Cφ is also a positive constant
that does not depend on n. �

Now we are ready to prove the Theorem 1, its corollaries, and the Proposition 1.

7.1 Proof of Theorem 1

We first use Lemma 2 to decompose the risk function E(‖f̂ − f ‖2
2) and follow by

applying Lemmas 4, 5 and 6, in order to bound the risk from above as

E
(‖f̂ − f ‖2

2
) ≤ 2

2j0−1∑
k=0

ã2
j0,k

+ 20
J ′−1∑
j=j0

2j−1∑
k=0

a2
j,k

+ 2
2j0−1∑
k=0

E
(
b̃2
j0,k

) + 20
J ′−1∑
j=j0

2j−1∑
k=0

E
(
b2
j,k

)

+
2j0−1∑
k=0

Var(r̃j0,k)

+ 8
∑

(j,k)∈I2

d2
j,k +

∞∑
j=J ′

2j−1∑
k=0

d2
j,k

+ 6 logn
∑

(j,k)∈I1

σ 2
j,k + 2

n

J ′−1∑
j=j0

2j−1∑
k=0

σ 2
j,k.

Now, by the orthogonality of the wavelet basis (assumption 4), we have that

2
2j0−1∑
k=0

ã2
j0,k

+ 20
J ′−1∑
j=j0

2j−1∑
k=0

a2
j,k ≤ 20‖A‖2

2
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and

2
2j0−1∑
k=0

E
(
b̃2
j0,k

) + 20
J ′−1∑
j=j0

2j−1∑
k=0

E
(
b2
j,k

) ≤ 20E‖B‖2
2,

which, together with a direct application of the results of Lemmas 7 and 3, permit
us to write that

E
(‖f̂ − f ‖2

2
) ≤ 20C1n

−2s(α) + 40
C2

M,ψ(H)

1 − 2−2α
2−2αJ

+ 20
M

n

n∑
i=1

{
Var(t(i)) +

[
E

(
t(i) − i

n

)]2}s(α)

+
2j0−1∑
k=0

Var(r̃j0,k)

+ 8
∑

(j,k)∈I2

d2
j,k + C2

M,ψ

1 − 2−2α
2−2αJ ′

+ 6 logn
∑

(j,k)∈I1

σ 2
j,k + 2

n

J ′−1∑
j=j0

2j−1∑
k=0

σ 2
j,k.

7.2 Proof of Corollary 1

In order to make the proof easier to follow, we rewrite the result of Theorem 1 as
E(‖f̂ − f ‖2

2) ≤ T1 + T2 + · · · + T8, where

T1 = 20C1n
−2s(α), T2 = 40

C2
M,ψ

1 − 2−2α
2−2αJ ,

T3 = 20
M

n

n∑
i=1

{
Var(t(i)) +

[
E

(
t(i) − i

n

)]2}s(α)

,

T4 =
2j0−1∑
k=0

Var(r̃j0,k), T5 = 8
∑

(j,k)∈I2

d2
j,k, T6 = C2

M,ψ

1 − 2−2α
2−2αJ ′

,

T7 = 6 logn
∑

(j,k)∈I1

σ 2
j,k and T8 = 2

n

J ′−1∑
j=j0

2j−1∑
k=0

σ 2
j,k.

For the uniform design, E(t(i)) = i/(n + 1) implies that∣∣∣∣E(t(i)) − i

n

∣∣∣∣ = i

n(n + 1)
≤ 1√

n
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and

Var(t(i)) = (n + 1)i − i2

(n + 1)2(n + 2)
<

1

n
.

For the jittered design, E(t(i)) = (2i − 1)/(2n), such that∣∣∣∣E(t(i)) − i

n

∣∣∣∣ =
∣∣∣∣− 1

2n

∣∣∣∣ ≤ 1√
n

and

Var(t(i)) = E(ji) = 1

12n2 <
1

n
.

In both cases we have T3 ≤ 20n−1M
∑n

i=1(2/n)s(α) = 20M(2/n)s(α).
Since by Lemma 1 d2

j,k ≤ C2
M,ψ2−j (1+2α), we have that T5 is less than or equal

to 8
∑

(j,k)∈I2
C2

M,ψ2−j (1+2α).
Consider the stationary short-memory case, where Cov(e(t(i)), e(t(j))) = γ (|i −

j |) and limn→∞
∑n−1

u=−(n−1) |γ (u)| = Cγ < ∞. Then by Lemma 8

Var(rj,k) ≤ 2Cφ,ψ

∑n−1
u=0 |γ (u)|
n

≤ 2Cφ,ψCγ

n
,

and similarly, Var(rj,k) ≤ n−12CφCγ , where Cφ,ψ and Cφ are positive constants
that do not depend on n. Thus, we can write

T4 ≤ 2j0
2CφCγ

n
, T7 ≤ 6 logn

∑
(j,k)∈I1

(
2Cφ,ψCγ

n

)

and

T8 ≤ 2

n

J ′−1∑
j=j0

2j−1∑
k=0

(
2Cφ,ψCγ

n

)
≤ 2J ′

n

4Cφ,ψCγ

n
.

Compare the previous results for T5 and T7. The set of levels j where
6 logn(2Cφ,ψCγ )/n < 8C2

M,ψ2−j (1+2α) is delimited by J1, which is the largest

integer such that 2J1 < C3(n/ logn)1/(1+2α), where

C3 = {
8C2

M,ψ/
[
6(2Cφ,ψCγ )

]}1/(1+2α)
.

We may have J1 ≤ J ′ or J1 > J ′.
In the first case, that is, J1 ≤ J ′,

T5 ≤ 8
∑

(j,k)∈I2

C2
M,ψ2−j (1+2α) ≤ 8

J ′−1∑
j=J1

2j−1∑
k=0

C2
M,ψ2−j (1+2α) ≤ 8C2

M,ψ

2−2αJ1

1 − 2−2α
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and

T7 ≤ 6 logn
∑

(j,k)∈I1

(
2Cφ,ψCγ

n

)

≤ 6 logn

J1−1∑
j=j0

2j−1∑
k=0

2Cφ,ψCγ

n

≤ 6 logn
2Cφ,ψCγ

n
2J1 .

Since

(C3 − 1)

(
n

logn

)1/(1+2α)

< C3

(
n

logn

)1/(1+2α)

− 1 < 2J1 < C3

(
n

logn

)1/(1+2α)

,

then 2−2αJ1 < (C3 − 1)−2α(n/ logn)−2α/(1+2α) and

2J1
logn

n
< C3

(
n

logn

)1/(1+2α) logn

n
= C3

(
logn

n

)2α/(1+2α)

.

Thus, a little algebra shows that for r ≥ α ≥ 1/2 − (logn)−1 log logn, the rate
of decay of the risk is dominated by the terms with J1 for all J ′ in the interval
{J1, . . . , J }. For 0 < α < 1/2 − (logn)−1 log logn, the rate of decay is dominated
by the term with s(α) and is the fastest when J ′ = J .

In the second case (when J ′ < J1), T5 = 0 and

T7 ≤ 6 logn

J ′∑
j=j0

2j−1∑
k=0

2Cφ,ψCγ

n
≤ 6 logn

2Cφ,ψCγ

n
2J ′+1.

Thus, as before, a little algebra shows that for 1/2 − (logn)−1 log logn ≤ α ≤ r ,
the fastest rate of decay occurs when J ′ = J1 − 1 and it is in the order of
(logn/n)2α/(1+2α). For 0 < α < 1/2−(logn)−1 log logn, the rate of decay is dom-
inated by the term with s(α) and is the fastest also when J ′ = J1 − 1.

In any case, notice that for 0 < α < −(logn)−1 log logn,

1

ns(α)
= 1

nα
>

(
logn

n

)2α/(2+2α)

.

Considering also that(
logn

n

)2α/(1+2α)

<

(
logn

n

)2α/(2+2α)

,

we conclude that, when −(logn)−1 log logn ≤ α < 1/2 − (logn)−1 log logn, the
rate of decay of the risk can be improved for all J ′ in the interval {J2, . . . , J },
where J2 is the largest integer such that

2J2 <
(
8C2

M,ψ/
(
6γ (0)

))1/(2+2α)
(n/ logn)1/(2+2α).
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Thus, the rate of decay is O(n−α) only for 0 < α < (logn)−1 log logn. A rate of
convergence in the order of (logn/n)2α/(2+2α) can also be obtained by using the
first result in Lemma 8.

7.3 Proof of Corollary 2

Follow the proof of Corollary 1 but note that T3 = 0.
Thus, if J ′ ≥ J1, the rate of decay of the risk is dominated by T7 for all J ′

in the interval {J1, . . . , J }. If J ′ < J1, the rate of decay of the risk is also domi-
nated by T7, which is minimized when J ′ = J1 − 1. In both cases, T7 is of order
O((logn/n)2α/(1+2α)).

7.4 Proof of Corollary 3

Follow the proof of Corollary 1 but with Cγ = γ (0).

7.5 Proof of Corollary 4

Follow the proof of Corollary 2 but with Cγ = γ (0).

7.6 Proof of Corollary 5

Follow the proof of Corollary 1 but note that T4, T5, T7 and T8 are all equal to zero.
In the case when J ′ = J , and 0 < α ≤ 1, T1, T2 and T6 are of order O(n−2α).

When J ′ = J and 1 < α ≤ r , T1 is of order O(n−2) and T2 and T6 are of order
O(n−2α). In all these cases, T3 is of order O(n−s(α)). Thus, for 0 < α ≤ r , the rate
of convergence is dominated by T3 and it is on the order of O(n−s(α)).

7.7 Proof of Corollary 6

Following the proof of Corollary 1, note that T3, T4, T5, T7 and T8 are all null.
In the case when J ′ = J , and 0 < α ≤ 1 the remaining terms are of order

O(n−2α). When J ′ = J and 1 < α ≤ r , T1 is of order O(n−2) and the other terms
are of order O(n−2α). Thus, for 0 < α ≤ r , the rate of convergence is dominated
by T1 and it is on the order of O(n−2s(α)).

7.8 Proof of Proposition 1

Consider the jittered design. Since Cov(e(r), e(s)) = E(σ 2e−nβ|r−s|), for some
β > 0, 0 < σ 2 < ∞ and fixed r and s, then,

Cov
(
e(t(r)), e(t(s))

)
= E

(
σ 2 exp

(
−nβ

∣∣∣∣r − s

n
+ jr − js

∣∣∣∣
))

= γ
(|r − s|).
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Replacing the random variables jr and js by their maximum and minimum, re-
spectively, this expression turns to be less than or equal to

E

(
σ 2 exp

(
−nβ

∣∣∣∣r − s

n
+ 2

2n

∣∣∣∣
))

= σ 2e−β|u+1|,

where u = r − s. Then,

lim
n→∞

n−1∑
u=−(n−1)

∣∣γ (u)
∣∣

≤ σ 2e−β lim
n→∞

n−1∑
u=−(n−1)

e−βu < ∞.

Consider the uniform design such that

Cov
(
e(t(i)), e(t(j))

) = E
(
σ 2e−(n+1)β|t(i)−t(j)|),

for some β > 0, 0 < σ 2 < ∞ and fixed i and j .
Now, note that (Johnson, Kotz and Balakrishnan, 1995, page 217):

E
(
(t(i) − t(j))

k) = �(|i − j | + k)�(n + 1)

�(|i − j |)�(n + 1 + k)

= (|i − j | + k − 1)!n!
(|i − j | − 1)!(n + k)! .

Then,
Cov

(
e(t(i)), e(t(j))

)
= σ 2

∞∑
k=0

(−1)k
(n + 1)kβk

k! E
(|t(i) − t(j)|k)

= γ
(|i − j |).

To evaluate limn→∞
∑n−1

u=1 |γ (u)|, note first that∣∣γ (|i − j |)∣∣ = ∣∣E(
σ 2e−(n+1)β|t(i)−t(j)|)∣∣ = γ

(|i − j |).
Note also that

n−1∑
u=1

(u + k − 1)!
(u − 1)! = k!

(
k + (n − 2) + 1

k + 1

)
= (n + k − 1)!

(k + 1)(n − 2)! , (7.2)

where (7.2) comes from the equation 0.151.1 in Gradshteı̆n and Ryzhik (2007).
Then using these facts,

n−1∑
u=1

∣∣γ (u)
∣∣ =

n−1∑
u=1

γ (u) = σ 2
∞∑

k=0

(−1)k
(n + 1)kβkn!
k!(n + k)!

(n + k − 1)!
(k + 1)(n − 2)!

(7.3)

= σ 2
∞∑

k=0

(−1)k
(n + 1)kβk

k!
n(n − 1)

(n + k)(k + 1)
.
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Evaluating the summation in (7.3), we have that

∞∑
k=0

(−1)k(n + 1)kβk

k!
1

(n + k)(k + 1)

=
∞∑

k=0

(−1)k(n + 1)kβk

k!
(n)k(1)k

(n + 1)k(2)k

1

n
(7.4)

= 1

n
2F2

(
n,1;n + 1,2; (−1)(n + 1)β

)
,

where �(n) denotes the gamma function, the Pochhammer symbol (a)k = �(a +
k)/�(a), and 2F2(a, b; c, d; z) denotes a generalized hypergeometric function.

Denoting by 1F1(a, b, z) the confluent hypergeometric function of the first kind,
we have that (http://functions.wolfram.com/07.25.03.0005.01)

1

b − a

(
b1F1(a, a + 1, z) − a1F1(b, b + 1, z)

)
= 2F2(a, b;a + 1, b + 1; z),

and applying this result to equation (7.4),

1

n
2F2

(
n,1;n + 1,2; (−1)(n + 1)β

)

= 1

n

1

1 − n

(
1F1

(
n,n + 1, (−1)(n + 1)β

)
− n1F1

(
1,2, (−1)(n + 1)β

))
.

From equation 9.236.4 in Gradshteı̆n and Ryzhik (2007), applying

1F1(a, a + 1, z) = a(−z)−a(
�(a) − �(a,−z)

)
(7.5)

to the last expression we have that

∞∑
k=0

(−1)k(n + 1)kβk

k!
1

(n + k)(k + 1)

= 1

(n + 1)(n − 1)

×
(

1

[(n + 1)β]n
[−(n + 1)�(n) + (n + 1)�

(
n, (n + 1)β

)])

+ 1F1(1,2, (−1)(n + 1)β)

n − 1
,

http://functions.wolfram.com/07.25.03.0005.01
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where �(n, a) = ∫ ∞
a tn−1e−t dt denotes the incomplete gamma function. Us-

ing (7.5), we also have that

1F1(1,2, (−1)(n + 1)β)

n − 1

= 1

β(n2 − 1)

[
1 −

∫ ∞
β(n+1)

t1−1e−t dt

]

= 1

β(n2 − 1)

[
1 − e−β(n+1)].

Thus, for n > 1,

∞∑
k=0

(−1)k
(n + 1)kβk

k!(n + k)(k + 1)

= [−(n + 1)�(n) + (n + 1)�(n,β(n + 1))]
(n2 − 1)[β(n + 1)]n

+ 1 − e−β(n+1)

β(n2 − 1)
,

where the incomplete gamma function

�
(
n,β(n + 1)

) ≤ (n − 1)!e−β(n+1)
∞∑

k=0

βk(n + 1)k/k!

= �(n),

when n is an integer. Applying these results in (7.3), we get that for every n > 1,

n−1∑
u=1

∣∣γ (u)
∣∣

≤ σ 2
{
n(n − 1)[−(n + 1)�(n) + (n + 1)�(n)]

(n2 − 1)[β(n + 1)]n + 1

β

}

= σ 2

β
.

Thus, limn→∞
∑n−1

u=1 |γ (u)| ≤ σ 2/β < ∞.
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