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New Classes of Priors Based on Stochastic
Orders and Distortion Functions
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Abstract. In the context of robust Bayesian analysis, we introduce a new class
of prior distributions based on stochastic orders and distortion functions. We
provide the new definition, its interpretation and the main properties and we also
study the relationship with other classical classes of prior beliefs. We also consider
Kolmogorov and Kantorovich metrics to measure the uncertainty induced by such
a class, as well as its effect on the set of corresponding Bayes actions. Finally, we
conclude the paper with some numerical examples.
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1 Introduction

Robust Bayesian analysis, also called Bayesian sensitivity analysis, aims to quantify
and interpret the uncertainty induced by the partial knowledge of one (or more) of the
three elements in Bayesian analysis (prior, likelihood and loss). Studies mainly focus on
computing the range of some quantities of interest when the prior distribution π varies
in a class Γ. The use of a class of priors somehow overcomes the common criticism
about the choice of a unique prior on the grounds of arbitrariness and bias. On the
other hand, changes in the likelihood have been rarely addressed for several reasons,
including the mathematical complexity and the fact that the choice of the statistical
model is somehow considered more objective. The limited interest for classes of loss
functions relies on the fact that in inference problems just the quadratic or absolute
losses are, in general, considered and no elicitation method about preferences is used.
Nonetheless, not long ago, researchers’ attention turned to classes of loss functions (i.e.,
L ∈ L), being mostly interested in the changes of posterior expected losses and optimal
actions. A thorough review of the robust Bayesian approach can be found in Ŕıos Insua
and Ruggeri (2000).

Regarding prior distribution, Basu (1994) nicely summarized that any elicitation
process, leading to a prior π, is to some extent arbitrary and, therefore, any prior
in a “neighborhood” of the elicited prior would also be a reasonable representation
of the prior beliefs. Consequently, neighborhoods have been specified in literature in
many different ways depending on their use. For instance, neighborhoods have been
defined as parametric families, contamination classes, density bands, densities with a few
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specified percentiles, distributions bands, etc. The “neighborhood” classes entertained
in literature are not always topological neighborhoods of a prior distribution π0, i.e.,
neighborhoods determining a topology on the space of all the probability measures. The
most widely used example is provided by the ε-contamination class, defined as:

Γε = {π : π = (1− ε)π0 + εQ, Q ∈ Q},

where π is given by a mixture and Q is called the class of contaminations; see, e.g.,
Berger and Berliner (1986), Moreno and Cano (1991), Betrò et al. (1994), among others.
A variety of proper topological neighborhoods has been considered, such as the class
based on the concentration function; see Fortini and Ruggeri (2000) and references
therein. Another relevant class, important also for the current paper, is the one based
on distribution bands proposed by Basu and DasGupta (1995). The classes based on
concentration functions and distribution bands have connections with the proposed
class of distortion functions, as thoroughly discussed in the next sections. For a detailed
illustration of classes of priors, we refer to Berger (1985), Berger (1994) and Moreno
(2000).

With respect to the loss functions, extensive surveys of sensitivity analyses have been
presented in Mart́ın et al. (1998), Dey et al. (1998), Makov (1994) and more recently
in Arias-Nicolás et al. (2006) and Arias-Nicolás et al. (2009), among others.

The major contribution of the current paper consists in the introduction of new
classes of priors (especially) and loss functions, based on notions from other fields in
Statistics (e.g., stochastic ordering). In particular, we consider the distorted band class
of priors (stemming from stochastic ordering), and a subclass of convex loss functions,
the submodular ones, which contains the most widely used loss functions: quadratic,
absolute value, quantile and LINEX loss functions, among others. The proposed class
fulfills all the requirements that Berger (1994) discussed about the choice of a class.
First of all, elicitation of the class should be easy, as well as its interpretation, and
its size should reflect the prior uncertainty, with no exclusion of reasonable priors and
inclusion of unreasonable ones (e.g., discrete ones in many problems). Furthermore, the
class should be extendable to high dimensions and allow for incorporation of features like
symmetry, unimodality, independence, etc. Finally, computations of sensitivity measures
should be as easy as possible, possibly looking for the extremal distributions generating
the class since such measures are usually computed over such set of distributions.

The concept of distorted distributions has been used in many applied fields to rep-
resent a change in the probability measure, see, e.g., Quiggin (1982), Yaari (1987) and
Schmeidler (1989) in the Rank Dependent Expected Utility model, Denneberg (1990),
Wang (1995) and Wang (1996) in actuarial science and Goovaerts and Laeven (2008)
about insurance premiums and risk measures. In this context, it is assumed that each
decision-maker replaces the probability P [π ≤ t], which models a particular event of
interest, by a distorted probability h(P [π ≤ t]), for a particular distortion function h.
The choice of different distortion functions leads to different ways of measuring the
uncertainty. For example, a convex (concave) distortion function will give more (less)
weight to larger events.
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We also find in the literature many papers connecting distorted distributions and
stochastic orderings; see Shaked and Shanthikumar (2007) for a general survey on
stochastic orderings. In a formal way, the theory of stochastic orders deals with the
comparison of two random behaviors. Let X and Y be two random variables, then it
is said that X is smaller than Y , denoted by X ≤∗ Y , if some specific conditions are
satisfied, where the meaning of ≤∗ depends on what we try to compare. For example,
it is a very common practice to compare X and Y in terms of variability or magni-
tude of their values, e.g., the magnitude of the expectations. The connection between
distorted distributions and stochastic orderings arises since some orderings are consis-
tent with some measures associated with the distorted distributions of the underlying
variables. Important contributions in this field are Chew et al. (1987) and Wang and
Young (1998) and, for recent works on this topic, see Shaked et al. (2010) and Sordo
and Suárez-Llorens (2011).

The major reasons for the proposed class of priors are the relative easiness in specify-
ing it through stochastic ordering and the class of posterior distributions being again a
class of distorted distributions. The latter property is very uncommon among the classes
proposed in literature. In the paper we will be interested in the distance among the pos-
terior probability measures, using different metrics. This is a different approach with
respect to (w.r.t.) most of the works in literature, where the most common measures
of interest are the posterior mean, the posterior variance and the posterior expected
loss, see, e.g., Berger and Berliner (1986), Sivaganesan (1989), Sivaganesan and Berger
(1989), Moreno and Cano (1991), and Ŕıos Insua and Mart́ın (1994), among others. If
ψ(π) is the posterior functional of interest (e.g., the posterior mean), global robustness
studies are concerned about finding (ψ, ψ) where

ψ = inf
π∈Γ

ψ(π), and ψ = sup
π∈Γ

ψ(π).

The difference ψ − ψ, called range, is the most important sensitivity measure in global
robustness. The range has a simple interpretation: when Γ reasonably reflects the uncer-
tainty in the prior, a “small” range indicates robustness w.r.t. the changes of the latter.
On the other hand, a “large” range is an indication that there is lack of robustness
w.r.t. the prior and further elicitation, data collection, or analysis is necessary. As an
example, when considering a neighborhood Γ of a prior π0, then the sensitivity is related
to deviations from ψ0 = ψ(π0). If the range is “small”, then one may use, for example,
ψ0, as the Bayesian answer being aware that it is robust w.r.t. possible misspecifications
of the prior. An analogous measure will be defined in our context.

The class of distorted bands will be introduced in Section 2, along with its properties,
whereas its connection with the class of concentration functions will be discussed in
Section 3. In Section 4, the Kolmogorov and Kantorovich metrics are introduced. The
class of submodular loss functions is introduced in Section 5. Sampling from the class of
posterior distributions is presented in Section 6 and applied to numerical examples in
Section 7. Concluding remarks and pointers for future researches are finally presented
in Section 8.
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2 A new distribution prior class: the distorted band

The following notation will be used in the paper. Given a random variable X with
distribution function F , we define the quantile function as F−1

X (p) = inf{x : FX(x) ≥ p},
for all real values p ∈ (0, 1). The symbol =st means equality in law. For every random
variable Z and an event A, let [Z|A] denote a random variable whose distribution is the
conditional distribution of Z given A.

We start by recalling the definition of the stochastic orders that we will consider in
this paper. Let X and Y be two random variables with distribution functions FX and
FY , respectively, such that

FX(t) ≥ FY (t), ∀t ∈ R. (1)

Then X is said to be smaller than Y in the usual stochastic order (denoted by X ≤st Y ).
Roughly speaking, (1) says that X is less likely than Y to take on large values. We would
like to point out that the usual stochastic order has an interesting characterization in
terms of the expectations of increasing transformations, i.e., X ≤st Y if and only if

E[g(X)] ≤ E[g(Y )] (2)

holds for all increasing functions g for which the expectations exist.

Let X and Y be absolutely continuous [discrete] random variables with distribution
functions FX and FY and densities [discrete densities] fX and fY , respectively, such
that

fY (t)

fX(t)
increases over the union of the supports of X and Y , (3)

(here a/0 is taken to be equal to ∞ whenever a > 0). Then X is said to be smaller than
Y in the likelihood ratio order (denoted by X ≤lr Y ). It is well known that

X ≤lr Y ⇒ X ≤st Y. (4)

For more details about stochastic and likelihood orders, see Müller and Stoyan (2002)
and Shaked and Shanthikumar (2007).

After introducing stochastic orders, we also recall the standard Bayesian decision
theoretic framework for statistical problems, see French and Ŕıos Insua (2000) among
others. Let X be an observation from a distribution Pθ with density pθ(x), π a prior
belief, over the set of states Θ, belonging to a class of distributions Γ, L a loss function
belonging to a class L and A a set of alternatives. We will denote by π(θ) the density
of the prior distribution.

Let πx denote the posterior distribution and let πx(θ) be its density function, when
x is observed, belonging to Γx, the class of all posterior distributions; mπ(x) denotes
the marginal density, l(θ) the likelihood function for a fixed experiment x and ρ(π, L, a)
the posterior expected loss of a, i.e.,

ρ(π, L, a) =

∫
L(a, θ)l(θ)π(θ)dθ

mπ(x)
= Eπx [L(a, θ)].
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On the other hand, for any (L, π) ∈ L× Γ, a Bayes action corresponding to (L, π), i.e.,
an action minimizing ρ(π, L, a) in A, will be denoted by a∗(L,π)

ρ(π, L, a∗(L,π)) = min
a∈A

ρ(π, L, a).

Finally, we will denote by B(L, π) the set of all Bayes actions associated with the pair
(L, π) and by a∗(L,π) and a∗(L,π) the infimum and supremum, respectively, of all Bayes
actions.

For our purpose of connecting stochastic orders with the Bayesian decision theoretic
framework, we will finally recall the concept of distortion function. Let X be a random
variable with distribution function FX and let h be a distortion function, i.e., a non-
decreasing continuous function h : [0, 1] → [0, 1] such that h(0) = 0 and h(1) = 1. For
each distortion h, the transformation of the distribution function of X given by

Fh(x) = h ◦ F (x) = h [F (x)] , (5)

represents a perturbation of the accumulated probability in order to measure the uncer-
tainty about the underlying distribution function F . It is worth mentioning that, under
such assumptions, Fh(x) is also a distribution function for a particular random variable,
denoted by Xh, that we will call the distorted random variable. The choice of h depends
on the particular “flavor” of the distortion. For example, in insurance pricing and in
financial risk management, a distortion typically represents a change in the probability
measure. Under some particular hypothesis, it is assumed that each decision-maker has
a distortion function h and that he values some characteristics of X as its distorted
characteristics, see Section 2.6 in Denuit et al. (2005), for a review.

If we focus on the perspective of robust Bayesian analysis, it seems natural to incor-
porate the uncertainty about specification of a prior belief by considering a distorted
one. It is then assumed that each decision-maker has a distortion function h and he
is able to represent the changes of prior beliefs by reasonable distorted prior beliefs.
As we have mentioned, a distribution function can be distorted according to differ-
ent criteria. In this paper we are just going to consider convex and concave distortion
functions because they represent satisfactorily a change in magnitude and variability of
the underlying prior belief and have desirable properties when we compare the original
variable with the distorted one.

At this point, it is natural to wonder about the relationship between a prior distri-
bution belief and its distorted version. Given a prior belief π and a distortion function
h we will denote by πh its distorted version, i.e., a “distorted prior belief” having distri-
bution function Fπh

(θ) = h◦Fπ(θ). Next we present a lemma which plays an important
role in the definition of a new neighborhood band.

Lemma 1. Let π be a specific prior belief with distribution function Fπ (absolutely
continuous or discrete) and let h be a convex (concave) distortion function in [0, 1].
Then π ≤lr (≥lr)πh.

Proof. Let h be a convex distortion function. First, we will assume that Fπ is absolutely
continuous. Due to (5), the distorted distribution function associated with Fπ is given
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by Fπh
(θ) = h(Fπ(θ)) which is, trivially, a continuous function. It is well known that a

convex function has left and right derivatives at all points, and these are monotonically
non-decreasing, and there are only countably many points where they do not coincide.
Therefore, the distribution function Fπh

(θ) is also absolutely continuous and its density
function is given by πh(θ) = h′(Fπ(θ))π(θ) almost everywhere, where h′ represents the
derivative of h. The proof follows easily just considering the ratio defined in (3) and
taking in account that h′(Fπ(θ)) is increasing almost everywhere. If we assume now that
Fπ is discrete, the result follows from the fact that the ratio of discrete probabilities can
be expressed as

πh(θi)

π(θi)
=

h(Fπ(θi))− h(Fπ(θi−1))

Fπ(θi)− Fπ(θi−1)
,

and taking in account that the function

R(a, b) =
h(b)− h(a)

b− a

is symmetric in a and b and monotonically non-decreasing in b, for a fixed (or vice
versa). For a concave distortion function the proof holds using a similar argument.

Remark 2. Note that given two random variables X and Y and assuming continuous
and strictly increasing distributions functions FX and FY , respectively, it is evident that
the function hXY (t) = FY (F

−1
X (t)) is a distortion function that maps the distribution

function of X to the corresponding of Y . We would like to emphasize that Lehmann and
Rojo (1992) proved that, under the mentioned regularity conditions, the likelihood ratio
order between X and Y is equivalent to checking if the function hXY (t) is convex or,
analogously, if hY X(t) is concave. Therefore, assuming continuous and strictly increas-
ing distributions functions, the existence of a convex or a concave distortion that maps
a distribution function to another one is a necessary and sufficient condition for the
likelihood ratio order. In this paper, we are mainly interested in using some particular
family of distortion functions in order to measure the uncertainty.

Let us assume now that the decision-maker is able to represent the changes of a
prior belief, π, by a concave distortion function, h1, and a convex distortion function,
h2. This fact, jointly with Lemma 1, leads him to two distorted distributions πh1 and
πh2 such that πh1 ≤lr π ≤lr πh2 . Clearly inspired by this fact, we present the following
neighborhood band for π.

Definition 3. Let π be a specific prior belief. We will define the distorted band Γh1,h2,π

associated with π based on h1 and h2, a concave distortion function and a convex dis-
tortion function, respectively (distorted band, for short), as

Γh1,h2,π = {π′ : πh1 ≤lr π′ ≤lr πh2} .

As a consequence of Lemma 1, it is evident that π ∈ Γh1,h2,π. Therefore, the distorted
band can be seen as a particular ”neighborhood” band of π, where the lower and upper
bound distributions are given by the distorted distributions. It is also clear from the
definition that uncertainty could be introduced just through an upper (lower) bound by
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considering h1 (h2) the identity function. In order to give a meaningful understanding
of the distorted band, we provide the following interpretations.

First, from (4) the distorted distribution is a subclass of the well known band class:

Γh1,h2,π ⊆ {π′ : πh1 ≤st π
′ ≤st πh2} ,

=
{
π′ : Fπh1

(θ) ≥ Fπ′(θ) ≥ Fπh2
(θ), ∀θ ∈ Θ

}
. (6)

It is worth mentioning that, in the classical notation for the band class, the distribution
function of πh1 is called ”the upper bound”, FU , and the distribution function of πh2 is
called ”the lower bound”, FL.

On the other hand, using expression (1.C.6) in Shaked and Shanthikumar (2007),
it is also remarkable that the distorted band has a nice interpretation in terms of prior
probability sets:

Γh1,h2,π = {π′ : πh1(·|A) ≤st π
′(·|A) ≤st πh2(·|A)} ,

for all measurable A ⊆ Θ.

It is worth mentioning that the likelihood ratio order does not apply, in general,
when comparing two priors π′

1 and π′
2 in Γh1,h2,π. Each of them is just ordered w.r.t.

πh1 and πh2 .

Remark 4. The class Γh1,h2,π contains all the priors πε = (1− ε)π1+ επ2, for any pair
of priors π1 and π2 in Γh1,h2,π, obtained as a mixture of π1 and π2, for any 0 ≤ ε ≤ 1.
In particular, it contains the mixture between the underlying prior π and any other prior
in the band. The proof that πh1 ≤lr πε follows from

πε(θ)

πh1(θ)
= (1− ε)

π2(θ)

πh1(θ)
+ ε

π1(θ)

πh1(θ)
,

which is an increasing function of θ. Similarly, it is possible to prove that πε ≤lr πh2 .

Since Definition 3 is based on h1 and h2, we can provide many possible bands just by
considering different concave and convex distortion functions. Of course, the choice of
those functions cannot be arbitrary and should represent the uncertainty about the prior
belief in each problem. Next, we present some examples. A classical way of inducing a
distortion is given by the power functions

h1(x) = 1− (1− x)α and h2(x) = xα, ∀α > 1. (7)

Note that if we take α = n ∈ N in (7), then Fπh1
(θ) = 1 − (1 − Fπ(θ))

n and
Fπh2

(θ) = (Fπ(θ))
n which correspond to the distribution functions of the minimum

and the maximum, respectively, of an i.i.d. random sample of size n from the baseline
prior distribution π.

Another classical family of concave and convex distortion functions is given by

h1(x) = min{x
α
, 1} and h2(x) = max{x− α

1− α
, 0}, 0 < α < 1. (8)

In this case, h1 and h2 represent the truncated variables πh1 =st π(·|A1) and πh2 =st

π(·|A2) where A1 = (−∞, F−1
π (α)] and A2 = (F−1

π (α),∞).
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Finally, an interesting family of distortion functions is given by the concept of skewed
distributions. If π represents a prior belief with an absolutely continuous symmetric
distribution around 0, the skewed distribution associated with π, denoted by skew-π, is
a continuous probability distribution that generalizes π to allow for non-zero skewness.
Given π, the probability density function of the skew-π with parameter α is given by

πα(θ) = 2π(θ)Fπ(αθ).

The distribution is right skewed if α > 0 and left skewed if α < 0. A simple computation
shows that π ≤lr πα for all α > 0 and πα ≤lr π for all α < 0; see Azzalini (1985) for a
detailed explanation of this class of distributions and Ferreira and Steel (2006) for more
details about representation of skewed distributions. From Remark 2, a straightforward
computation shows that the distortion function given by

hππα(x) =

∫ F−1
π (x)

−∞
2π(θ)Fπ(αθ)dθ,

maps the distribution function of the prior π to the corresponding one of the skewed
version πα and satisfies

h′
ππα

(x) = 2Fπ(αF
−1
π (x)). (9)

Since both distributions Fπ and F−1
π are increasing and differentiable, it easy to check

that h′
ππα

(x) is increasing for all α > 0 and decreasing for all α < 0, which implies that
hππα(x) is convex or concave, respectively. In order to distinguish between concave and
convex functions, we consider the family of functions given by

h1(x) =

∫ F−1
π (x)

−∞
2π(θ)Fπ(−βθ)dθ and h2(x) =

∫ F−1
π (x)

−∞
2π(θ)Fπ(βθ)dθ, (10)

for all β ≥ 0.

Now we present the following example to clarify the previous ideas.

Example 5. Suppose that the prior belief is given by π ∼ N(0, 1), and consider the
distortion functions defined in (7) with α = 1.3. Then the distorted distributions are
given by Fπh1

(θ) = 1−(1−ΦZ(θ))
1.3 and Fπh2

(θ) = (ΦZ(θ))
1.3, where ΦZ is the standard

normal distribution function. Fπh1
and Fπh2

have been represented with a dotted line
in Figure 1(a), where we can see how they differ from the baseline prior distribution
function. We also represent in Figure 1(b) the densities of the distorted distributions
compared with the baseline prior density. With a similar argument, if the prior belief is
given by π ∼ U(0, 1) and we take α = 1.1, we can see in Figure 2 (a)–(b) the effect of
the distortion functions in both distribution and density functions, respectively.

We conclude this section showing that the distorted band for a prior belief leads
to another distorted band for posterior distributions. As a direct consequence of the
likelihood ratio order definition, see Spizzichino (2001), if two prior distributions are
ordered in the ≤lr order sense, then the corresponding posterior distributions are also
ordered in the same sense, i.e., given two prior distribution π1 and π2 such that π1 ≤lr π2

then π1x ≤lr π2x. Therefore, since posterior distributions inherit the likelihood ratio
order, we present the following proposition whose proof is omitted.
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Figure 1: Distorted N(0,1), α = 1.3.

Figure 2: Distorted U(0,1), α = 1.1.

Proposition 6. Let π be a specific prior belief and let Γh1,h2,π be a distorted band
associated with π based on h1 and h2. Then for all π′ ∈ Γh1,h2,π we obtain that πh1,x ≤lr

π′
x ≤lr πh2,x.

Proposition 6 says that the posterior distributions of the lower and upper bound
of the prior distortion band are also lower and upper bounds for the family of all
posterior distributions, Γx, in the ≤lr order sense. Assuming the regularity conditions
in Remark 2, Γx can be also interpreted as a distortion band of the posterior belief for
some particular concave and convex functions.

3 Relation with concentration functions

In this section we show that the distorted band class is, under very general conditions,
contained in the concentration function class proposed by Fortini and Ruggeri (1995).
The result is somehow surprising since it relates classes which, apparently, are obtained
in very different ways. Exploiting the properties of the concentration function class,
the new class can be embedded in a neighborhood of a prior in a proper topological
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sense and, furthermore, upper (lower) bound on the supremum (infimum) of the poste-
rior quantity of interest can be computed. Furthermore, all the priors in the distorted
band class are obtained as a mixture of the extremal distributions in the concentration
function class. As a relevant difference, the prior distorted band class leads to another
distorted band class a posteriori, as shown in Proposition 6; the concentration function
class does not, in general, lead to a similar class.

Cifarelli and Regazzini (1987) introduced their notion of concentration function (c.f.)
as an extension of the Lorenz curve to compare two probability measures Π and Π0 de-
fined on the same measurable space (Θ,F). According to the Radon–Nikodym theorem,
there is a unique partition {N,NC} ⊂ F of Θ and a nonnegative function m on NC

such that

Π(E) =

∫
E∩NC

m(θ)Π0(dθ) + Πs(E ∩N),

∀E ∈ F , Π0(N) = 0, Πs(N) = Πs(Θ), where Πa and Πs denote the absolutely con-
tinuous and the singular part of Π w.r.t. Π0, respectively. Set m(θ) = ∞ all over N
and define H(y) = Π0({θ ∈ Θ : m(θ) ≤ y}), c(x) = inf{y ∈ � : H(y) ≥ x}. Finally, let
L(x) = {θ ∈ Θ : m(θ) ≤ c(x)} and L−(x) = {θ ∈ Θ : m(θ) < c(x)}.
Definition 7. The function ϕ : [0, 1] → [0, 1] is said to be the concentration function
of Π w.r.t. Π0 if ϕ(x) = Π(L−(x)) + c(x){x −H(c(x)−)} for x ∈ (0, 1), ϕ(0) = 0 and
ϕ(1) = Πa(Θ).

Here we assume all the measures are absolutely continuous w.r.t. the Lebesgue mea-
sure. As a consequence, m(θ) is the likelihood ratio given by the densities of the prob-
ability measures and ϕ(x) = Π(L(x)), having got rid of the singular component.

To favor a better understanding of the c.f., we provide a constructive way to obtain
it on the real space. Consider the probability measures Π and Π0 on the real space,
with densities π(θ) and π0(θ), respectively. In Definition 7, likelihood subsets were
determined by x via c(x) but now we can fix their levels and compute, at the same
time, their probabilities under Π0 and Π, which are x and ϕ(x), respectively.

Let m(θ) = π(θ)
π0(θ)

the likelihood ratio and consider the likelihood subsets Ly =

{θ : m(θ) ≤ y}, for all y > 0. Consider the pairs (xy, ϕ(xy)) where xy = Π0(Ly) and
ϕ(xy) = Π(Ly) for all y > 0. Removing from now on the dependence on y, it follows
from Definition 7 that the function ϕ : [0, 1] → [0, 1] is the c.f. of Π w.r.t. Π0.

Observe that ϕ(x) is a nondecreasing, continuous and convex function, such that
ϕ(x) ≡ 0 =⇒ Π ⊥ Π0, and ϕ(x) = x, ∀x ∈ [0, 1] ⇐⇒ Π = Π0.

We conclude the illustration of the properties of the c.f. mentioning that, regarding
the simplifying assumptions made earlier, singularity of Π w.r.t. Π0 implies ϕ(1) < 1
whereas singularity of both measures w.r.t. Lebesgue measure (e.g., a mixture with a
Dirac measure in the same point and, possibly, different weights) implies an interpolating
term in the definition of c.f.

Consider a nondecreasing, continuous and convex distortion function h(x), a baseline
random variable X with distribution function F (x) and density f(x) and a distorted
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random variable Xh with distribution function Fh(x) = h[F (x)] and density fh(x) =

h′[F (x)]f(x). The likelihood ratio m(x) = fh(x)
f(x) = h′[F (x)] is increasing since h

′′
>

0 because of the convexity of the function h (and this is also a consequence of the
≤lr order). Therefore it is possible to consider likelihood subsets Lz = (−∞, z] with
probability F (z) and Fh(z) under the two probability measures.

Take xz = F (z) and assume F invertible so that z = F−1(xz). Consider ϕh(xz) =
Fh(z) = h[F (z)] = h[F (F−1(xz))] = h(xz). Dropping the dependence on z it follows
that ϕh(x) = h(x) is the c.f. of the probability measure Π (corresponding to the random
variable Xh) w.r.t. the probability measure Π0 (corresponding to the random variable
X). Therefore, given a distorted measure, its distortion function can be interpreted as
the c.f. of the distorted measure w.r.t. the baseline. Given a nondecreasing, continuous
and convex function h(x), there exists an infinity of probability measures (including
the corresponding distorted measure) whose c.f. w.r.t. the baseline measure is given by
h(x). Further details on this fact can be found in Fortini and Ruggeri (1995) and the
example at the end of the proof of the next theorem.

Fortini and Ruggeri (1995) proved that it is possible to obtain topological neighbor-
hoods of a baseline measure Π0 when considering all the probability measures whose
c.f. is above a nondecreasing, continuous and convex function h(x), which is a c.f. as
well (for an infinity of probability measures). We will denote such set of probability
measures by Ψπ0,h, and we consider the distorted band Γπ0,h = {π′ : π0 ≤lr π′ ≤lr πh}.
The latter class is properly included in the former as shown by the following

Theorem 8. The distorted band class Γπ0,h is properly included in the concentration
function class Ψπ0,h.

Proof. Consider a prior π′ ∈ Γπ0,h with distribution function Fπ′(x), and let F (x)
be the distribution function corresponding to the prior π0, then the likelihood ratio

m(x) = π′(x)
π0(x)

is increasing because of the likelihood order and the computation of the

c.f. ϕ̃ is as before:
ϕ̃(x) = Fπ′(F−1(x)),

since we consider likelihood subsets Lz = (−∞, z]. Assuming Fπ′(x) and F (x) contin-
uous and strictly increasing, then Remark 2 implies that ϕ̃(x) is a distortion function
since it is obtained by the combination of the distribution function Fπ′(x) with the in-
verse of the distribution function F (x). We now prove that ϕ̃(x) ≥ ϕh(x) for x ∈ [0, 1].
We have that

ϕ̃(x) ≥ ϕh(x), ∀x ∈ [0, 1] ⇔
∫ z

−∞

(
1− πh(t)

π′(t)

)
π′(t)dt ≥ 0, ∀z.

The previous condition follows from observing that both likelihood ratios are increasing
and x = F (z), ϕ̃(x) = Fπ′(z) and ϕh(x) = Fh(z).

Suppose there exists z∗ such that∫ z∗

−∞

(
1− πh(t)

π′(t)

)
π′(t)dt < 0. (11)



1118 New Classes of Priors

Since πh(t)
π′(t) is an increasing function (because of the likelihood order in Γπ0,h) then

it is not possible that πh(z
∗)

π′(z∗) < 1 since the integral in (11) would be positive. As a

consequence, the same integral over the interval (z∗,∞) would be negative as well,
which is impossible since the integral over the real line should be equal to 0.

We have proved that each measure in the distorted band has a corresponding c.f.
lying above h(x), so that it belongs as well to the family Ψπ0,h, as proved in Fortini and
Ruggeri (1995). The class Γπ0,h is properly included in Ψπ0,h as shown by the following
example.

Consider a uniform distribution on [0, 1] as a baseline prior π0 and the function
h(x) = x2. The corresponding distorted distribution has density πh(x) = 2x, whose ratio
w.r.t. the uniform density is increasing. The distribution with density π∗(x) = 2(1− x)
has the same c.f. ϕ∗(x) = x2 as the distorted distribution (w.r.t. π0) but the ratio of its
density w.r.t. the uniform one is decreasing so that it does not belong to Γπ0,h.

An interesting mathematical result is obtained as a consequence of Theorem 8:
based on Proposition 2 of Fortini and Ruggeri (1995), then the distorted band class is
embedded in a topological neighborhood, Ψπ0,h, of the prior π0. Furthermore, Theorem 3
in Fortini and Ruggeri (1995) applies to all the priors in the concentration function
class, including those in the distorted band class, whose elements can be represented as
mixture of extremal distributions in Ψπ0,h.

As a consequence of Theorem 8 and Theorem 4 in Fortini and Ruggeri (1995), it is
possible to provide an upper bound on the supremum of the expectation of an integrable
function g(x) w.r.t. the class of priors Γπ0,h, since

sup
π∈Γπ0,h

Eπ(g(X)) ≤ sup
π∈Ψπ0,h

Eπ(g(X)).

The supremum of the expectation of g(x) over the class Ψπ0,h is obtained for a dis-
tribution with c.f. h(x) w.r.t. π0, as proved in Fortini and Ruggeri (1995). A lower
bound on the infimum is obtained similarly. The finding can be useful, especially when
the difference between upper and lower bounds is small, when performing a sensitivity
analysis about a posterior expected value (e.g., of the function g(x)) aimed to measure
the influence of the choice of a prior in a class.

When considering a distorted band with lower band equal to the identity, then a
notion similar to the c.f. could be used: the only difference would be about the likelihood
sets defined now for values of the likelihood ratio above some quantities and not below
as before.

4 Using metrics to measure uncertainty

In robust Bayesian analysis, it is natural using probability metrics in order to incorpo-
rate the uncertainty in the elicitation process allowing for an error in the specification,
see, e.g., Basu and DasGupta (1995). A nice summary of the most common probability
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metrics and the relationships among them is described in Gibbs and Su (2002). In our
context, it is natural to use probability metrics to evaluate how a prior belief differs
from its distorted version and how the corresponding posterior distributions differ, see
López-Dı́az et al. (2012) for a recent paper that deals with distances between proba-
bility distributions and their distortions. Due to the mathematical tractability when
we compute probability metrics between a distribution function and its distorted ver-
sion we are mainly interested in the Kolmogorov and Kantorovich metrics. We start by
recalling the definition of the well known Kolmogorov (or uniform) metric. Given two
random variables X and Y with distribution functions FX and FY , respectively, the
Kolmogorov (or uniform) metric is defined by

K(X,Y ) = sup
x∈R

|FX(x)− FY (x)|, (12)

which represents the largest absolute difference between FX and FY . On the other hand,
the Kantorovich metric (or Wasserstein metric) is defined by

KW (X,Y ) =

∫ ∞

−∞
|FX(x)− FY (x)|dx. (13)

The metrics above have been widely used in the literature. In particular, the Kol-
mogorov metric was used in Basu and DasGupta (1995) to measure the uncertainty
in the distribution band and we can also find applications of that metric in Chapter 9
of the book by Denuit et al. (2005) in the context of distortion functions. It is worth
mentioning that Kolmogorov metric suffers from the shortcoming of being completely
insensitive to the losses in the tail of the distributions (this is because the difference
|FX(x)−FY (x)| converges to zero as x increases or decreases). However, the Kantorovich
metric provides aggregate information about the deviations between the two probabili-
ties and, in contrast to the Kolmogorov metric, it is sensitive to the differences between
the probabilities in the tails. Note that different decision makers may accentuate the
differences in the body or in the tails of the baseline prior distribution. In our context,
we can make use of both metrics, Kolmogorov and Kantorovich, in order to measure
uncertainty in the elicitation process. Next we will show how those metrics work in our
particular context.

4.1 The Kolmogorov metric

In practice, we can make use of Lemma 9 in order to compute the Kolmogorov distance
between a prior belief π and its distortion function πh, where the distortion function h
is differentiable.

Lemma 9. Let π be a prior belief with an absolutely continuous distribution function
and let h be a differentiable (concave or convex) distortion function. The Kolmogorov
distance between π and πh is given by

K(π, πh) = sup
x∈R

|Fπ(x)− Fπh
(x) |,
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=

{
p0 − h(p0) if h is convex,
h(p0)− p0 if h is concave.

where p0 satisfies h′(p0) = 1 and the argument of the maximum is achieved at θ0 =
F−1
π (p0).

Proof. Let h be a differentiable convex function. From Lemma 1 π ≤lr πh holds and,
using (4), then π ≤st πh also holds and it trivially implies that

K(π, πh) = sup
θ∈R

|Fπ(θ)− Fπh
(θ)|,

= sup
θ∈R

Fπ(x)− Fπh
(x),

= sup
θ∈R

Fπ(θ)− h(Fπ(θ)).

Just taking derivatives we obtain that (Fπ(θ) − h(Fπ(θ)))
′ = 0 if and only if π(θ) −

π(θ)h′(Fπ(θ)) = 0, i.e., if and only if 1 − h′(Fπ(θ)) = 0. As a direct application of
the well-known mean value theorem applied to h in the interval [0, 1], there exists p0
such that h′(p0) = 1. Since both h′ and Fπ(θ) are increasing, it follows directly that
θ0 = F−1

π (p0) is a maximum.

We would like to emphasize that the distance in Lemma 9 depends only on the
distortion function. Therefore, it seems intuitive that the Kolmogorov distance is useful
to measure the uncertainty in the distorted band. Here we present two examples.

Example 10. Let us consider the distortion functions defined in (7) and a baseline
prior distribution π. Assuming that π is absolutely continuous, from Lemma 9, the
Kolmogorov metric is given by the following expression:

K(π, πh1) = K(π, πh2) =
α− 1
α−1
√
αα

. (14)

Just computing the derivative of the logarithm of the distance, we observe that expres-
sion (14) increases when α increases. Therefore, it can be useful to determine a fixed
uncertainty ε. For example, α = 1.2 will provide a distance equal to ε = K(π, πh1) =
K(π, πh2) = 0.0669796 which can be interpreted in terms of probability, i.e., the largest
absolute uncertainty between the accumulated probabilities of the underlying prior belief
and its distorted versions is about 6.7%. Note that we can also consider different values
for α when we compute K(π, πh1) or K(π, πh2).

Example 11. Let us consider the distortion functions defined in (10) and a baseline
prior distribution π with an absolutely continuous symmetric distribution around 0.
From Lemma 9 and using (9), the Kolmogorov metric is given by the following expres-
sion:

K(π, πh1) = K(π, πh2) =

∫ ∞

0

2π(θ)Fπ(βθ)dθ −
1

2
. (15)

From the property of Fπ(βθ), expression (15) increases when β increases. It is also
apparent that the distance cannot be greater than 0.5.
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Finally, Lemma 9 is not valid for non-differentiable distortion functions. For example,
if we consider the distortion families defined in (8), it is easy to compute K(π, πh2) = α
and K(π, πh1) = 1− α.

From the well-known fact that there is no closed-form expression of the posterior
distributions, computing the Kolmogorov distance to evaluate the posterior distorted
band could be difficult in practice. However, as we will see in Section 6, we will provide
a way of estimating that distance based on the empirical posterior distributions.

4.2 The Kantorovich metric

Considering the Kantorovich metric, first observe that given any two random variables,
X and Y , with distribution functions FX and FY , respectively, such that X ≤st Y we
have

KW (X,Y ) =

∫ ∞

−∞
|FX(x)− FY (x)|dx,

=

∫ ∞

−∞
(FX(x)− FY (x))dx,

= E(Y )− E(X), (16)

where it is assumed that expectations exist. Note that the second equality in (16)
follows from the fact that FX(x) ≥ FY (x), for all x, and the last one from the well
known expression of the expectation of a random variable in terms of its distribution
function. It is also remarkable, see Theorem 1.A.8. in Shaked and Shanthikumar (2007),
that if X ≤st Y and E(X) = E(Y ), i.e., KW (X,Y ) = 0, then necessarily X and Y are
equal in distributions, i.e., X =st Y .

From expression (16) and using the implication given in (4), it follows directly that
we can compute uncertainty, in the sense of the Kantorovich metric, in both prior and
posterior distorted bands. In particular, we obtain that

KW (πh1 , πh2) = Eπh2 (θ)− Eπh1 (θ),

KW (πh1,x, πh2,x) = Eπh2,x(θ)− Eπh1,x(θ),

KW (π, πh1) = Eπ(θ)− Eπh1 (θ),

KW (π, πh2) = Eπh2 (θ)− Eπ(θ),

KW (πx, πh1,x) = Eπx(θ)− Eπh1,x(θ),

KW (πx, πh2,x) = Eπh2,x(θ)− Eπx(θ). (17)

We emphasize that uncertainty in both prior and posterior distorted bands can be eval-
uated by computing the difference between prior expectations or posterior expectations,
respectively. It is worth mentioning that KW (πh1 , πh2) = KW (π, πh2) + KW (π, πh1)
so that it is possible to establish which bound, h1 or h2, is contributing the most to the
uncertainty measure. A similar statement can be made for the posterior distributions. It
is apparent that the difference between prior or posterior expectations depends strongly
on the underlying prior belief and the choice of the distortion functions. Analogously
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to the Kolmogorov metric, we will see later on that simulation methods can be used to
compute the posterior expectations.

Example 12. Let us consider the distortion functions defined in (7) and a baseline
prior belief given by π ∼ U(0, 1). Using (17), a straightforward computation shows that
the Kantorovich metric is given by

KW (π, πh1) = KW (π, πh2) =
1

2
− 1

α+ 1
.

It is clear that the distance increases when α increases. It is also apparent that the
distance between expectations cannot be greater than 0.5.

At this point, it is natural to wonder how to choose distortion functions and how
to elicit their parameters. The choice of the distortion functions and their parameters
depends on the problem at hand and the level of uncertainty about the priors. In a
financial context, the class might allow for both risk aversion and proneness through
the use of convex and concave distortion functions, possibly one more than the other
through a proper choice of parameters. For example, a convex distortion function gives
more weight to higher risk events. Other aspects of the problem at hand could lead
to specific choices, like the ones we have introduced earlier. In particular, the power
functions given in (7) can satisfactorily represent uncertainty in the tails of the prior
belief, the distortion functions given in (8) discard potentially information because they
map some percentiles to a single point and the distortion functions given in (10) can be
useful to elicit prior knowledge with ”normal-like” shape but with lack of symmetry. All
those families of distortion functions depend on parameters that represent the degree
of distortion and they can be elicited by fixing a reasonable distance in terms of the
Kolmogorov and Kantorovich metrics.

Following with the Bayesian perspective, we investigate now the relationship between
lower and upper bounds of the posterior distorted band, i.e., πh1,x and πh2,x and Bayes
actions. In the next section, we will show how in practice we can take advantage of
Proposition 6 when we check for dominance among Bayes actions.

5 Ordering Bayes actions

First of all, we would like to emphasize that from (2) and (4) we easily obtain that

Eπh1 (g(θ)) ≤ Eπ′
(g(θ)) ≤ Eπh2 (g(θ)), ∀π′ ∈ Γh1,h2,π,

for all increasing functions g for which the expectations exist. Analogously for the pos-
terior distorted band,

Eπh1,x(g(θ)) ≤ Eπ′
x(g(θ)) ≤ Eπh2,x(g(θ)), ∀π′

x ∈ Γx,h1,h2,π.

Just taking g(x) = x, we easily obtain the range of posterior means. We will show that
this result can be extended when we compute the range of other classical Bayes actions.
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Before introducing the main result, we first recall the definition of a submodular
function in the bivariate case. A function L(a, θ) : R2 → R is submodular if for all
(a1, θ1), (a2, θ2) ∈ R2,

L((a1, θ1) ∨ (a2, θ2)) + L((a1, θ1) ∧ (a2, θ2)) ≤ L(a1, θ1) + L(a2, θ2), (18)

where
(a1, θ1) ∨ (a2, θ2) = (max{a1, a2},max{θ1, θ2})

and
(a1, θ1) ∧ (a2, θ2) = (min{a1, a2},min{θ1, θ2}).

We also recall that if L is submodular then −L is called supermodular. The concept
of supermodularity is used in the social sciences to analyze how one agent’s decision
affects the incentives of others. It is also known that, if L is twice differentiable, then it
is submodular if

∂2L(a, θ)

∂θ∂a
≤ 0, ∀a, θ. (19)

On the other hand, given two real numbers a1 and a2 such that a1 ≤ a2, it is apparent
from expression (18) that L is submodular if and only if the function

L(a2, θ)− L(a1, θ) is decreasing in θ. (20)

For more details about submodular and supermodular functions see, e.g., Topkis (1978)
and Topkis (1998).

From now on, we will consider the class of all convex loss functions L in A which
satisfy the submodularity property and we will denote it by Lsm. Note that widely used
loss functions in the literature are included in the class Lsm. As a direct consequence
of (19) and (20) this class includes the class of Lp loss functions given by

L = {Lp(a, θ) = |a− θ|p , p ≥ 1},

where p = 1 and p = 2 correspond to the absolute error loss and the squared error loss,
respectively. The class of Lq quantile loss functions given by

L = {Lq(a, θ) = |a− θ|+ a(2q − 1), q ∈ [0, 1]},

where q = 1/2 corresponds to the absolute error loss, is included as well. The class of
Lk LINEX loss functions given by

L = {Lk(a, θ) = exp(k(a− θ))− k(a− θ)− 1, (k �= 0)}

is contained, as well as the class of Lα,β linear loss functions given by

L = {Lα,β(a, θ) =

{
α(a− θ) a ≥ θ,
β(θ − a) a < θ,

α, β > 0}.

Mart́ın et al. (1998) provided another interesting example of loss functions included in
the class Lsm given by
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L = {Lλ(·)(a, θ) =

∫ θ−a

0

λ(t)dt},

where λ(t) is positive (negative, null) if and only if t > 0 (t < 0, t = 0) and λ′(t) > 0.

Finally, we will show that the class of loss functions expressed as

L = {Lφ(·)(a, θ) = φ(θ − a)},

where φ is a differentiable convex function is also included in the class Lsm. Let a1 and
a2 be two real numbers such that a1 ≤ a2. Just taking derivatives, we obtain that

∂
(
Lφ(·)(a2, θ)− Lφ(·)(a1, θ)

)
∂θ

= φ′(θ − a2)− φ′(θ − a1) ≤ 0, ∀θ,

where the last inequality holds from the fact that φ′ is increasing. The result follows as
direct consequence of (20).

Next we provide a useful result in order to check dominance among Bayes actions
when the distorted band is considered. As commented earlier, relatively recent researches
in Bayesian robustness have focused attention on computing the changes in posterior
expected loss and optimal actions under classes of prior and/or loss functions. In par-
ticular, the search for optimal actions has lead, as a first approximation, to consider the
set of nondominated actions; see Ŕıos Insua and Criado (2000). Using the range of this
set as a measure of the robustness is a common practice in the literature; see Moreno
(2000), among others. Moreover, using strictly convex loss functions, this range coin-
cides with the range of the Bayes alternatives. This result is not true using non-strictly
convex loss functions, see Arias-Nicolás et al. (2006). Therefore, our goal here will be
to provide results which enable us to order the Bayes actions.

Remark 13. First, we recall that, given a convex loss function in A, the posterior
expected loss ρ(π, L, a) is also convex in A. In addition, if the set of Bayes actions
B(L,π) is not empty, the function ρ(π, L, a) is strictly decreasing in (−∞, a∗(L,π)) and

strictly increasing in (a∗(L,π),+∞), where

a∗(L,π) = inf
a∈B(L,π)

a,

a∗(L,π) = sup
a∈B(L,π)

a,

with B(L,π) = [a∗(L,π), a
∗
(L,π)].

Theorem 14. Let π be a specific prior belief and let Γh1,h2,π be the corresponding
distorted band. Then

a∗(L,πh1
) ≤ a∗(L,π′) ≤ a∗(L,πh2

)

and
a∗(L,πh1

) ≤ a∗(L,π′) ≤ a∗(L,πh2
),

for all L ∈ Lsm and for all π′ ∈ Γh1,h2,π such that the set of Bayes actions is not empty.
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Proof. We will provide the inequalities for πh1 and π′. Let us consider a∗(L,π′) ∈ B(L,π′) =

[a∗(L,π′), a
∗
(L,π′)]. Given an alternative a ≥ a∗(L,π′),

0 ≤ ρ(π′
x, L, a)− ρ(π′

x, L, a
∗
(L,π′))

= Eπ′
x(L(a, θ)− L(a∗(L,π′), θ))

≤ Eπh1,x(L(a, θ)− L(a∗(L,π′), θ))

= ρ(πh1,x, L, a)− ρ(πh1,x, L, a
∗
(L,π′)).

The first inequality holds from the fact that a∗(L,π′) is a Bayes action. From (20), the

function L(a, θ) − L(a∗(L,π′), θ) is decreasing in θ. Due to fact that πh1,x ≤st π′
x, the

second inequality holds just using (2). Therefore, we conclude that ρ(πh1,x, L, a) ≥
ρ(πh1,x, L, a

∗
(L,π′)) for all a ≥ a∗(L,π′) and for all a∗(L,π′) ∈ B(L,π′). Hence, using Re-

mark 13, a∗(L,πh1
) ≤ a∗(L,π′) and a∗(L,πh1

) ≤ a∗(L,π′) hold. An analogous result holds for

πh2 and π′.

6 Obtaining a sample of the posterior distorted
distributions

In practice, it is not easy in general to compute the exact distributions of the pos-
terior distorted distributions. However, we can make use of the relationship between
the posterior distribution and the distorted posterior distribution to apply simulation
methods. We will assume that the prior π has a probability density function and the
distortion functions are differentiable. Then the posterior distortion density πh,x we
wish to simulate from has also a probability density which can be expressed as

πh,x(θ) =
l(θ)πh(θ)

mπh
(x)

=
l(θ)π(θ)h′(Fπ(θ))

mπh
(x)

=
l(θ)π(θ)h′(Fπ(θ))

mπh
(x)

mπ(x)

mπ(x)

= πx(θ)
mπ(x)h

′(Fπ(θ))

mπh
(x)

. (21)

Since convex and concave functions have increasing and decreasing derivative functions,
respectively, just assuming h′ to be a bounded function, it follows that

πh,x(θ) ≤

⎧⎨
⎩

πx(θ)
mπ(x)h

′(1)
mπh

(x) if h is convex,

πx(θ)
mπ(x)h

′(0)
mπh

(x) if h is concave.

Therefore, πh,x seems to be ”close” to πx due to the fact that the ratio between the
densities is bounded by a constant. Just considering that constant and applying the
well known acceptance–rejection method in Simulation Theory by John von Neumann,
if we are able to generate a sample from πx, we will be also able to generate a sample
from πh,x. Next we provide two algorithms:
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1. Algorithm 1, for h2 convex.

• Sample θ from πx and u from U(0, 1), independently.

• Check whether or not u <
h′
2(Fπ(θ))
h′
2(1)

– If this holds, accept θ as a realization of πh2,x;

– If not, reject the value of θ and repeat the sampling step.

2. Algorithm 2, for h1 concave.

• Sample θ from πx and u from U(0, 1), independently.

• Check whether or not u <
h′
1(Fπ(θ))
h′
1(0)

– If this holds, accept θ as a realization of πh1,x;

– If not, reject the value of θ and repeat the sampling step.

7 Numerical examples

7.1 Normal–normal model

Let X1, X2, . . . , Xn be i.i.d. random variables with normal distribution, N(θ, σ2), where
the mean θ is unknown and the variance σ2 is known, and let π be a normal N(μ, τ2)
prior distribution of θ. We are interested in computing the range of the Bayes actions
when we consider the squared error loss function, L2, and a distorted class Γh1,h2,π

defined by skewed distributions, where h1 and h2 are given by (10). Note that it is
assumed that prior beliefs lead to a normal distribution whereas uncertainty is associated
with some lack of symmetry. It is well-known that πx is normally distributed with
posterior mean Eπx(θ) = (σ2μ + nx̄τ2)/(σ2 + nτ2) and variance (σ2τ2)/(σ2 + nτ2).
As a specific example, we will consider μ = 0, τ2 = 1, σ2 = 1 and β = 1.2 as the
distortion parameter. In practice, the parameter β provides the degree of distortion and
can be elicited by fixing a reasonable distance in terms of Kolmogorov and Kantorovich
metrics. In our case, from expressions (15) and (17) and using the numerical integration
command “integrate” available in software R, we obtain that

K(πh2 , πh1) = 0.5577 and KW (πh2 , πh1) = 1.2259. (22)

Since the exact distributions of the posterior distorted distributions are not known,
all characteristics of both πh2,x and πh1,x have been estimated from their empirical
distributions after simulating a sample of size 1, 000, 000 using Algorithms 1 and 2 in
Section 6.

We first show in Figure 3 the effect of the distortion functions on the posterior
distributions combining several values of sample mean with sample sizes n = 1 and
n = 10. It seems intuitive that uncertainty decreases when sample size increases.

Second, in a similar way as Sivaganesan and Berger (1989) and using a sample size
equal to 1, we have computed in Table 1 all Bayes actions for different values of x, where
we recall that Bayes actions are given by the posterior means.
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Figure 3: Posterior Distorted Distributions for β = 1.2.

x –3 –2 –1 0 1 2 3
Eπx(θ) –1.5 –1 –0.5 0 0.5 1 1.5
Eπh2,x(θ) –0.660 –0.320 0.007 0.360 0.746 1.148 1.577
Eπh1,x(θ) –1.570 –1.140 –0.740 –0.360 –0.007 0.329 0.661
K(πh2,x, πh1,x) 0.541 0.492 0.460 0.450 0.460 0.492 0.541
KW (πh2,x, πh1,x) 0.913 0.812 0.752 0.720 0.752 0.813 0.913

Table 1: Range of posterior means, n = 1, β = 1.2.

It is shown graphically in Figure 4 that the range of Bayes actions decreases when
|x| decreases. Here it is worth mentioning that the range of Bayes actions coincides with
the Kantorovich distance, see (17).

Sivaganesan and Berger (1989) use an ε-contamination prior class, ε = 0.1, with
symmetric unimodal contaminations sharing a common mode as that of the underlying
baseline prior π, and conclude that the range can be considered fairly small for values of
x such that |x| < 3. Here we reach a similar conclusion, since we see in Table 1 that both
posterior distances KW (πh1,x, πh2,x) and K(πh1,x, πh2,x) show a decrease with respect
to the prior distances given in (22).

Finally, Figure 5 shows the effect on the range of the posterior Bayes actions fixing
different sample sizes, n = 1 and 10, and using different distorted prior bands given by
β = 0.5, 1.2 and 1.5. It is apparent that the range of Bayes actions is larger when the
uncertainty about the prior distribution π increases, i.e., when the value of β increases.
Moreover, the range decreases when the sample size increases and/or |x| decreases. It is
also worth mentioning that the bound h1 contributes the most to the uncertainty when
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Figure 4: Range of the posterior means against x, n = 1 and β = 1.2.

negative values are sampled, like h2 does for positive ones.

7.2 Pareto–exponential model

Let X1, X2, . . . Xn be an i.i.d. random sample from the Pareto income distribution
P (θ, β) where θ is the unknown shape parameter and the scale parameter, β, is known.

We are interested in computing the range of the Bayes actions, when we consider a
distorted class Γ defined by the classical power functions (see (7) in Section 2) and a
LINEX loss function Lk defined in Section 6, where k �= 0 is a known parameter.

The value of a that minimizes the posterior risk Eπx [Lk(a, θ)], i.e., the Bayes alter-
native, is reached for

a∗(Lk,π)
= −1

k
logEπx [exp (−kθ)], (23)

provided that Eπx [exp (−kθ)] exists and is finite.

Here we assume a fixed truncated two-parameter exponential prior distribution for
θ, π = π(μ,λ) ∼ Exp(λ, μ), where the hyperparameters λ and μ are assumed to be
known. Then the posterior distribution of θ is a truncated gamma with parameters μ,
tλ and n+ 1, where tλ = Z + λ, Z = n log ( x̄G

β ) and x̄G = (
∏n

i=1 xi)
1
n is the geometric

mean of the sample.

The Bayes actions of θ under LINEX loss functions are given by

a∗(Lk,π)
=

1

k
log

((
k + tλ
tλ

)n+1
Γ(n+ 1, tλμ)

Γ(n+ 1, kμ+ tλμ)

)
. (24)

As a specific example, we consider a Pareto distribution with known parameter
β = 2, a truncated exponential prior for θ with known parameter λ = 1 and μ = 1, and



J. P. Arias-Nicolás, F. Ruggeri, and A. Suárez-Llorens 1129

Figure 5: Range of the posterior means against x̄, for β = 0.5, 1.2 and 2.5 and sample
sizes n = 1 and 10.
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Figure 6: Posterior Distorted Distributions for α = 2.5.

2.05 2.23 2.26 2.26 2.27 2.27 2.27 2.28 2.33 2.35
2.35 2.42 2.46 2.57 2.58 2.59 2.63 2.81 3.01 3.35
3.43 3.77 4.95 5.07 5.10 5.36 6.09 6.47 8.33 14.33

Table 2: Range of Bayes actions.

a distorted class Γh1,h2,π defined by the classical power functions, where h1 and h2 are
given by (7) with α = 2.5. Using the same argument as in the previous example, we
obtain that

K(πh2 , πh1) = 0.6464 and KW (πh2 , πh1) = 1.2804. (25)

Remark 15. Note that, if π is a truncated two-parameter exponential distribution, π ∼
Exp(μ, λ), it is easy to verify that the distorted distribution with h1 is a truncated two-
parameter exponential distribution too, πh1 ∼ Exp(μ, λα). This is not verified for h2.

Since the exact distribution of the posterior distorted distribution associated to func-
tion h2 is unknown, all characteristics of πh2,x have been estimated from their empirical
distribution after simulating a sample of size 1, 000, 000 using Algorithm 1 in Section 6.
Figure 6 shows the effect of the distortion function on the posterior distributions com-
bining several values of sample geometric mean (x̄G = 2.5, 3 and 5) with sample sizes
n = 1 and n = 10.

To discuss the sensitivity of the Bayes estimator considering the distorted band class
of priors, we present in Table 2 the range of Bayes actions for the following random
sample of 30 observations generated from a Pareto distribution with parameters θ = 2
and β = 2, see Upadhyay and Shastri (1997): The sampling scheme considered in
such paper and later in Saxena and Singh (2007) involves only those individuals whose
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k –3 –2 –1 –0.5 –0.2
a∗(Lk,π)

2.0029 1.9180 1.8428 1.8083 1.7885

a∗(Lk,πh1
) 1.7838 1.7182 1.6599 1.6331 1.6178

a∗(Lk,πh2
) 2.1429 2.0656 1.9935 1.9632 1.9439

Min./Max. 0.8324 0.8318 0.8327 0.8319 0.8322

k 0.2 0.5 1 2 3
a∗(Lk,π)

1.7632 1.7449 1.7158 1.6622 1.614170

a∗(Lk,πh1
) 1.5981 1.5840 1.5614 1.5200 1.4831

a∗(Lk,πh2
) 1.9199 1.9035 1.8746 1.8238 1.7797

Min./Max. 0.8324 0.8321 0.8329 0.8334 0.8334

K(πh2,x, πh1,x) 0.3786
KW (πh2,x, πh1,x) 0.3221

Table 3: Bayes actions of θ, for k = ±3,±2,±1,±0.5,±0.2 and for α = 2.5.

annual incomes do not exceed the fixed value w = 5 (in the current paper, several
values for λ = 0.25, 0.5, 0.75, 1 − 5 and k = ±3,±2,±1,±0.5,±0.2 are considered).
They assume, among other distributions, a fixed truncated two-parameter exponential
prior distribution for θ, π0 = π(μ,λ) ∼ Exp(λ, μ), where the hyperparameters λ and μ
are assumed to be known.

Remark 16. When censored sample data are considered (i.e., when exact incomes
are available only when they do not exceed a prescribed value, say w (w > β)), the
likelihood function can be expressed as l(θ) ∝ θre−Zwθ, where r is the number of available
incomes and Zw = log (β−nPw), being Pw = wn−r(

∏r
i=1 xi) the product income statistic

introduced by Ganguly et al. (1992). The posterior distribution of θ is a truncated gamma
with parameters μ, tw,λ = Zw+λ and r+1. To compute the Bayes actions under LINEX
loss functions, we may take n = r and tλ = tw,λ in (24).

After thresholding, Saxena and Singh (2007) considered 23 ordered observations
(n = 30, r = 23 and Zw = 12.56) and found the Bayes estimates for LINEX and
quadratic loss functions for different values of k and λ. Similarly, Table 3 shows all
Bayes actions for different LINEX loss functions, where we recall that Bayes actions
are computed using (23). The table also shows the ratio of minimum to maximum
of Bayes estimates and the posterior distances between distorted distributions. Note
that the Bayes actions associated to the baseline truncated exponential distribution π
and the distorted distribution with h1, are computed using (24) with tw,λ and tw,λα,
respectively. Obviously, for small values of |k|, optimal Bayes estimates under LINEX
loss functions are not much different from those obtained with squared loss functions
(the posterior mean associated to baseline prior π is 1.7757). We can see too that both
posterior distances KW (πh1,x, πh2,x) and K(πh1,x, πh2,x) show a great decrease with
respect to the prior distances given in (25).

Figure 7 shows how the range of Bayes actions has barely changed subject to varia-
tion in k. In Saxena and Singh (2007) (Table 4.3), it is displayed that the estimators only
overestimate θ when both λ and k are quite small. Here we reach a similar conclusion.
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Figure 7: Range of Bayes action against k, for α = 2.5 and μ = λ = 1.

Moreover, all Bayes estimators obtained under LINEX loss functions are very robust, for
variations in π within the class Γh1,h2,π, as the ratio of minimum to maximum is consid-
erably close to unity (greater than 0.83). Note that Saxena and Singh (2007) consider
different fixed truncated two-parameter exponential priors (λ = 0.25, 0.5, . . . , 1 − 5),
whereas we consider a distorted band associated with prior π ∼ Exp(μ, λ), with λ = 1.

8 Concluding remarks

In this paper we have illustrated a methodology which addresses the major criticisms
about the Bayesian approach, i.e., arbitrariness in the choice of the prior distribution.
For such a purpose, we have introduced a new class of prior (especially) and loss func-
tions, based on notions from other fields in Statistics (e.g., stochastic ordering). In
particular, we consider the distorted band class of priors (stemming from stochastic
ordering), and a subclass of convex loss functions, the submodular ones, which contains
the most widely used loss functions: quadratic, absolute value, quantile and LINEX loss
functions, among others. The proposed class fulfills all the requirements that Berger
(1994) discussed about the choice of a class. First of all, elicitation of the class should
be easy, as well as its interpretation, and its size should reflect the prior uncertainty,
with no exclusion of reasonable priors and inclusion of unreasonable ones (e.g., discrete
ones in many problems). The major novelties of the proposed class are two: preserva-
tion of the same defining property (stochastic ordering) a posteriori and distortion of
a baseline prior. The former aspect makes possible a quite straightforward extension
of the properties found for the prior class to the posterior one, and vice versa. The
latter aspect allows for natural and reasonable modifications of the baseline prior: as
an example, compare the distortion of a prior allowing for risk aversion/proneness with
the hardly interpretable mixture with a contaminating measure in the ε-contaminated
class. Additionally, computations of sensitivity measures should be as easy as possible,
possibly looking for the extremal distributions generating the class. Future works will
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be addressed to compute classes of priors based on particular distortion functions de-
pending on their use. Finally, we plan to consider the case of a n-dimensional model
parameter, stemming from the works by Shaked and Shanthikumar (2007) on the def-
initions of multivariate likelihood ratio order and multivariate stochastic order and by
Di Bernardino and Rullière (2013) on the extension of the notion of distortion to the
multivariate case.
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