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Bayesian Lattice Filters for Time-Varying
Autoregression and Time–Frequency Analysis

Wen-Hsi Yang∗, Scott H. Holan†, and Christopher K. Wikle‡

Abstract. Modeling nonstationary processes is of paramount importance to many
scientific disciplines including environmental science, ecology, and finance, among
others. Consequently, flexible methodology that provides accurate estimation
across a wide range of processes is a subject of ongoing interest. We propose
a novel approach to model-based time–frequency estimation using time-varying
autoregressive models. In this context, we take a fully Bayesian approach and al-
low both the autoregressive coefficients and innovation variance to vary over time.
Importantly, our estimation method uses the lattice filter and is cast within the
partial autocorrelation domain. The marginal posterior distributions are of stan-
dard form and, as a convenient by-product of our estimation method, our approach
avoids undesirable matrix inversions. As such, estimation is extremely computa-
tionally efficient and stable. To illustrate the effectiveness of our approach, we
conduct a comprehensive simulation study that compares our method with other
competing methods and find that, in most cases, our approach performs superior
in terms of average squared error between the estimated and true time-varying
spectral density. Lastly, we demonstrate our methodology through three model-
ing applications; namely, insect communication signals, environmental data (wind
components), and macroeconomic data (US gross domestic product (GDP) and
consumption).

Keywords: locally stationary, model selection, nonstationary, partial
autocorrelation, piecewise stationary, sequential estimation, time-varying
spectral density.

1 Introduction

Recent advances in technology have lead to the extensive collection of complex high-
frequency nonstationary signals across a wide array of scientific disciplines. In contrast
to the time-domain, the time-varying spectrum may provide better insight into impor-
tant characteristics of the underlying signal (e.g., Holan et al., 2010, 2012; Rosen et al.,
2012; Yang et al., 2013, and the references therein). For example, Holan et al. (2010)
demonstrated that features in the time–frequency domain of nonstationary Enchenopa
treehopper mating signals may describe crucial phenotypes of sexual selection. Other ex-
amples of using time–frequency methods to extract salient features from nonstationary
time series include Holan et al. (2012), Yang et al. (2013), and Martinez et al. (2013),
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among others. The former example, Holan et al. (2012), incorporates time–frequency
representations of high-dimensional nonstationary time series of daily NASDAQ log-
returns, over several quarters, as a regressor in a predictive model for economic reces-
sions. Subsequently, Yang et al. (2013) use time–frequency methods to predict spawn-
ing success of shovelnose sturgeon in the Lower Missouri River. Finally, Martinez et al.
(2013) use time–frequency representations to study chirp syllables of free-tailed bats
using Bayesian functional mixed models.

In general, time–frequency analyses can either proceed using a nonparametric or
model-based (parametric) approach. The most common nonparametric approach is the
short-time Fourier transform (i.e., windowed Fourier transform) which produces a time–
frequency representation characterizing local signal properties (Gröchenig, 2001; Oppen-
heim and Schafer, 2009). Another approach to obtain time–frequency representations
proceeds using smoothing splines (Rosen et al., 2009, 2012) or by parameterizing the
spectral density to estimate the local spectrum via the Whittle likelihood (Everitt et al.,
2013). Similarly, time–frequency representations can be achieved by applying smooth
localized complex exponential (SLEX) functions to the observed signal (Ombao et al.,
2001). In contrast to window based approaches, the SLEX functions are produced us-
ing a projection operator and are, thus, simultaneously orthogonal and localized in
both time and frequency. Alternatively, one can use the theory of frames and over-
complete bases to produce a time–frequency representation. For example, continuous
wavelet transforms (Vidakovic, 1999; Percival and Walden, 2000; Mallat, 2008) or Gabor
frames (Wolfe et al., 2004; Feichtinger and Strohmer, 1998; Fitzgerald et al., 2000) could
be used. By introducing redundancy into the basis functions, these representations may
provide better simultaneous resolution over both time and frequency.

Model-based approaches typically proceed through the time-domain in order to pro-
duce a time–frequency representation for a given nonstationary signal. In this setting
common approaches include fitting piecewise autoregressive (AR) models as well as
time-varying autoregressive (TVAR) models. The former approach assumes that the
nonstationary signal is piecewise stationary. Consequently, the estimation procedure at-
tempts to identify the order of the AR models along with the location of each piecewise
stationary series. For example, Davis et al. (2006) propose the AutoPARMmethod using
minimum description length (MDL) in conjunction with a genetic algorithm (GA) to
automatically locate the break points and AR model order within each segmentation.
In addition to providing a time–frequency representation, this approach also locates
changepoints. Wood et al. (2011) propose fitting mixtures of AR models within each
segment via Markov chain Monte Carlo (MCMC) methods. Their approach selects a
common segment length and then divides the signal into these segments prior to im-
plementation of the fitting procedure. Although such approaches may accommodate
signals with several piecewise stationary structures, they lack the capability of captur-
ing momentary shocks to the system (i.e., changes to the evolutionary structure that
only occur over relatively few time points).

For many processes, TVAR models may provide superior resolution within the time–
frequency domain for both large and small scale features through modeling time-varying
parameters. To estimate the TVAR model coefficients, Kitagawa and Gersch (1996) and
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Kitagawa (2010) treat the coefficients as a stochastic process and model them using
difference equations under the assumption of a maximum fixed order of the TVAR
model. Their estimation procedure for the coefficients is then based on state-space
models with smoothness priors. In this context, the innovation variances are treated
as constant and estimated using a maximum likelihood approach. Subsequently, West
et al. (1999) propose a fully Bayesian TVAR framework that simultaneous models the
coefficients and the innovation variances using random walk models. Alternatively, by
assuming a constant innovation variance, Prado and Huerta (2002) model the coefficients
and order of the TVAR model using random walk models. Further, to make the TVAR
models stable, the constraint that the roots of the characteristic polynomial lie within
the unit circle could be imposed. However, such an added condition makes estimation
more complicated and computationally expensive.

To avoid these issues, we instead work with the partial autocorrelation coefficients
(i.e., in the partial correlation (PARCOR) coefficient domain) and then use the Levin-
son recursion to connect the PARCOR coefficients and TVAR model coefficients (Kita-
gawa and Gersch, 1996; Godsill et al., 2004). Godsill et al. (2004) model the PARCOR
coefficients and innovation standard deviations using a truncated normal first-order au-
toregression and a log-Gaussian first-order autoregression, respectively, with a given
constant order. To estimate these values, a sequential Monte Carlo algorithm is used.
Alternatively, as previously alluded to, by assuming a constant innovation variance,
Kitagawa and Gersch (1996) implement the smoothness prior within a lattice filter to
estimate the PARCOR coefficients. After the PARCOR coefficients have been estimated,
a constant innovation variance is estimated using a maximum likelihood approach. How-
ever, the former approach is computationally expensive and may suffer from the degen-
eracy problem (i.e., the collapse of approximations of the marginal distributions) when
TVAR model order is large. In addition, certain hyperparameter values (i.e., the TVAR
coefficients associated with the two latent models) may be sensitive to starting values
and may require prior knowledge or expert supplied subjective information to achieve
convergence (Godsill et al., 2004). Although the latter takes advantage of the lattice
form to estimate the PARCOR coefficients, estimation of the innovation variance is
achieved outside of the lattice structure; that is, the estimation procedure is a two-
stage method. Importantly, this approach is designed for a constant innovation variance
and cannot deal with time-dependent innovation variances. As such, we propose a novel
approach that addresses these issues within a fully Bayesian context.

Kitagawa (1988) and Kitagawa and Gersch (1996) constitute the first attempts at
utilizing the lattice structure to estimate the coefficients of a TVAR model when the in-
novations follow a Gaussian distribution with mean zero and constant variance. At each
stage of the lattice filter, they assume that the residual at each time between the forward
and backward prediction errors follows a Cauchy distribution, and that the PARCOR
coefficient is modeled as a Gaussian random walk. This produces a non-Gaussian state
space model at each stage and thus, a numeric algorithm is conducted for estimation.
Moreover, the assumptions of their approach ignore an implicit connection between the
innovation term of the TVAR model and the residual term between the forward and
backward prediction errors. That is, the distribution of residual term should be a Gaus-
sian distribution rather than a Cauchy distribution. Consequently, their approach leads
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to a TVAR model with innovation terms following a Cauchy distribution; hence the
innovation variances do not exist. In contrast, our approach assumes the residual term
follows a Gaussian distribution.

We propose a fully Bayesian approach to efficiently estimate the TVAR coefficients
and innovation variances within the lattice structure. One novel aspect of our approach
is that we model both the PARCOR coefficients and the TVAR innovation variances
within the lattice structure and then estimate them simultaneously. This is different
from the frequentist two-stage method of Kitagawa (1988) and Kitagawa and Gersch
(1996). Another novel aspect is that we take advantage of dynamic linear model (DLM)
theory (West and Harrison, 1997; Prado and West, 2010) to regularize the PARCOR co-
efficients instead of using truncated distributions. Thus, our method provides marginal
posterior distributions with standard forms for both the PARCOR coefficients and in-
novation variances. Since our approach takes advantage of the lattice structure, the
computational efficiency of our approach is not affected by the order of the TVAR
model; that is, our approach avoids having to calculate higher dimensional inverse ma-
trices. To select the TVAR model order, we provide both a visual and a numerical
method. Importantly, the simulation study we provide demonstrates that our approach
leads to superior performance in terms of estimating the time–frequency representa-
tion of various nonstationary signals, as measured by average squared error. Thus, our
approach provides a stable and computationally efficient way to fit TVAR models for
time–frequency analysis.

The remainder of this paper is organized as follows. Section 2 briefly introduces
the lattice structure and describes our methodology along with prior specification. Sec-
tion 3 presents a comprehensive simulation study that illustrates the effectiveness of our
approach across an expansive array of nonstationary processes. Subsequently, in Sec-
tion 4, our methodology is demonstrated through three modeling applications; namely,
insect communication signals, environmental data (i.e., wind components), and macroe-
conomic data (i.e., US gross domestic product (GDP) and consumption). Lastly, Sec-
tion 5 concludes with discussion. For convenience of exposition, details surrounding the
estimation algorithms and additional figures are left to a Supplemental Appendix.

2 Methodology

2.1 Time-Varying Coefficient Autoregressive Models

The TVAR model of order P for a nonstationary univariate time series xt, t = 1, . . . , T ,
can be expressed as

xt =

P∑
m=1

a
(P )
t,mxt−m + εt, (1)

where a
(P )
t,m and εt are the TVAR coefficients associated with time lag m at time t

and the innovation at time t, respectively. Typically, the innovations are assumed to
be uncorrelated mean-zero Gaussian random variables (i.e., εt ∼ N(0, σ2

t ), with time-
varying variance σ2

t ). Therefore, the TVAR model corresponds to a nonstationary AR
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model with the AR coefficients and variances evolving through time. In such settings,
the model is locally stationary but nonstationary globally. As will be illustrated, the
assumption of local stationarity is not required for our approach; that is, the forward and
backward partial autocorrelations (defined in Section 2.2) need not be equal. Because
this model generally allows both slow and rapid changes in the parameters, it can flexibly
model the stochastic pattern changes often exhibited by complex nonstationary signals.

2.2 Lattice Structures

The Levinson–Durbin algorithm yields a unique correspondence between the PARCOR
coefficients and the AR coefficients (Shumway and Stoffer, 2006; Kitagawa, 2010). There-
fore, a disciplined approach to fitting AR models can be achieved through estimation of
the PARCOR coefficients. The lattice structure described below provides a direct way
of associating the PARCOR coefficients with the observed time series (see Hayes (1996,
p. 225) and the Supplementary Appendix (Yang et al., 2015) for additional discussion).
As such, the lattice structure provides an effective path to AR model estimation. In
fact, the Levinson–Durbin algorithm for a stationary time series can be derived using
the lattice structure (see Kitagawa, 2010, Appendix B).

Let f
(P )
t and b

(P )
t denote the prediction error at time t for a forward and backward

AR(P ) model, respectively, where

f
(P )
t = xt −

P∑
m=1

a(P )
m xt−m and b

(P )
t = xt −

P∑
m=1

d(P )
m xt+m.

Then, the mth stage of the lattice filter can be characterized by the pair of input–output
relations between the forward and backward predictions,

f
(m−1)
t = α(m)

m b
(m−1)
t−m + f

(m)
t , (2)

b
(m−1)
t = β(m)

m f
(m−1)
t+m + b

(m)
t , m = 1, 2, . . . , P, (3)

with the initial condition, f
(0)
t = b

(0)
t = xt, and where α

(m)
m and β

(m)
m are the lag m

forward and backward PARCOR coefficients, respectively. Equation (2) shows that the
forward PARCOR coefficient of lag m is a regression coefficient of the forward predic-

tion error f
(m−1)
t regressed on the backward prediction error b

(m−1)
t−m and the residual

term f
(m)
t is the forward prediction error of the forward AR(m) model. Similarly, (3)

shows that the backward PARCOR coefficient of lag m is a regression coefficient of the

backward prediction error b
(m−1)
t regressed on the forward prediction error f

(m−1)
t+m and

the residual term b
(m)
t is the backward prediction error of the backward AR(m) model.

Using (2) and (3) recursively, we can derive the PARCOR coefficients for a given lag.
In the stationary case, the forward and backward PARCOR coefficients are equivalent,

i.e., α
(m)
m = β

(m)
m .

The PARCOR coefficients α
(P )
P are equal to the last component of the coefficients

of the forward AR(P ) model, i.e., α
(P )
P = a

(P )
P . Using the Levinson–Durbin algorithm,
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the remainder of the AR coefficients and the innovation variance can be obtained as
follows:

a(P )
m = a(P−1)

m − a
(P )
P a

(P−1)
P−m , m = 1, . . . , P − 1. (4)

This equation implies that once the PARCOR coefficient α
(P )
P is estimated, then all of

the other coefficients are immediately determined as well.

2.3 The Lattice Structure of the TVAR Model

Given the assumption of second-order stationarity, the forward and backward PARCOR
coefficients are constant over time (i.e., shift-invariant). However, since most real-world
signals are nonstationary, the shift-invariant PARCOR coefficients are typically inap-
propriate. In such cases we can modify (2) and (3) as follows:

f
(m−1)
t = α

(m)
t,m b

(m−1)
t−m + f

(m)
t , (5)

b
(m−1)
t = β

(m)
t,m f

(m−1)
t+m + b

(m)
t , m = 1, 2, . . . , P, (6)

with both the forward and backward PARCOR coefficients α
(m)
t,m and β

(m)
t,m now time

dependent. Note that for notational simplicity, f
(m−1)
t and b

(m−1)
t here denote the pre-

diction error at time t of the forward and backward TVAR(m−1). For locally stationary

signals, we may impose the constraint that α
(m)
t,m = β

(m)
t,m at each time t. However, for

general nonstationary cases, α
(m)
t,m and β

(m)
t,m may not be identical at each time t. There-

fore, our approach will proceed without this constraint. Also, the residual terms, f
(m)
t

and b
(m)
t , are assumed to follow zero-mean Gaussian distributions, N(0, σ2

f,m,t) and

N(0, σ2
b,m,t), respectively. Importantly, when the true process is TVAR(P ), the variance

σ2
f,P,t is equal to the innovation variance σ2

t . To verify this statement, we use the fact
that PARCOR coefficient of AR(P ) is equal to zero when the lag is larger than P . This
property can be applied to TVAR models since TVAR models correspond to AR models

at each time t. Using such property, α
(m)
t,m of (5) is equal to zero form > P . Consequently,

f
(m)
t = f

(m+1)
t for m ≥ P . The forward prediction error f

(P )
t is identical to εt, i.e., f

(P )
t

and εt are identically distributed. Therefore, as mentioned in Section 1, the Gaussian
distribution provides a more reasonable assumption for the target model (1) than the
Cauchy distributions used by Kitagawa (1988) and Kitagawa and Gersch (1996).

In principle, it would be possible to choose distributions for f
(m)
t and b

(m)
t other than

N(0, σ2
f,t,m) and N(0, σ2

b,t,m), respectively. However, by assuming f
(m)
t and b

(m)
t follow

non-Gaussian distributions, we will lose the computational efficiency of the current
model specification. Specifically, under a non-Gaussian distribution assumption, the
algorithm in Supplemental Appendix A will no longer be applicable due to lack of
conjugacy. Consequently, more computationally expensive algorithms such as sequential
Monte Carlo methods would be needed (see Godsill et al., 2004).

For each stage m of the lattice structure, we construct the following equations to

obtain the coefficients, a
(m)
t,k and d

(m)
t,k , of the forward and backward TVAR models

(Hayes, 1996; Kitagawa and Gersch, 1996; Haykin, 2002):
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a
(m)
t,k = a

(m−1)
t,k − a

(m)
t,md

(m−1)
t,m−k , (7)

d
(m)
t,k = d

(m−1)
t,k − d

(m)
t,k a

(m−1)
t,m−k , k = 1, 2, . . . ,m− 1, (8)

with a
(m)
t,m = α

(m)
t,m and d

(m)
t,m = β

(m)
t,m . Equations (7) and (8) describe the relationship be-

tween the coefficients of the forward and backward TVAR models. In particular, these
relations illustrate that the forward coefficients at the current stage are a linear combi-
nation of the forward and backward coefficients of the previous stage, with the weights
equal to the PARCOR coefficients. Importantly, such a combination also includes the

stationary and locally stationary cases. For the stationary case, since α
(m)
t,m = β

(m)
t,m are

constant over time, the general equations (7) and (8) can be reduced to (4). For locally

stationary cases, since α
(m)
t,m = β

(m)
t,m at time t, (7) and (8) are identical.

2.4 Model Specification and Bayesian Inference

Since both the forward and backward PARCOR coefficients of (5) and (6) as well
as the corresponding innovation variances require time-varying structures, we consider
random walk models for their evolutions. In such cases, the following two hierarchical
components are added to (5) and (6). The evolution of the forward and backward
PARCOR coefficients are modeled, respectively, as follows:

α
(m)
t,m = α

(m)
t−1,m + εα,m,t, εα,m,t ∼ N(0, wα,m,t), (9)

β
(m)
t,m = β

(m)
t−1,m + εβ,m,t, εβ,m,t ∼ N(0, wβ,m,t), (10)

where wα,m,t and wβ,m,t are time dependent system variances. These system variances
are then defined in terms of hyperparameters γf,m and γb,m, so called discount fac-
tors with range (0, 1), respectively (West and Harrison, 1997); see the Supplemental
Appendix for further details. Usually, we treat γf,m = γb,m = γm at each stage m.
These two equations also imply a sequential update form that the PARCOR coeffi-
cient at time t + 1 is equal to the sum of the PARCOR coefficient at time t plus a
correction.

Similarly, both the evolution innovation variances, σ2
f,m,t and σ2

b,m,t, are modeled
through multiplicative random walks as follows

σ2
f,m,t = σ2

f,m,t−1(δf,m/ηf,m,t), ηf,m,t ∼ Beta(gf,m,t, hf,m,t), (11)

σ2
b,m,t = σ2

b,m,t−1(δb,m/ηb,m,t), ηb,m,t ∼ Beta(gb,m,t, hb,m,t), (12)

where δf,m and δb,m are hyperparameters (i.e., discount factors on the range (0,1)), and
the multiplicative innovations, ηf,t,m and ηb,t,m follow beta distributions with parame-
ters, (gf,m,t, hf,m,t) and (gb,m,t, hb,m,t), respectively (West et al., 1999). These param-
eters are defined at each time t by the discount factors, δf,m and δb,m, as detailed in
the Supplemental Appendix. In many cases, we also assume that δf,m = δb,m = δm
at each stage m. The series of stochastic error terms εα,m,t, εβ,m,t, ηf,m,t, and ηb,m,t

are mutually independent, and independent of the forward and backward innovations,

f
(m)
t and b

(m)
t of (5) and (6). It is worth noting that in the context of (9)–(12) that the

level of smoothness of the PARCOR coefficients (and hence the TVAR coefficents) is
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related to the magnitude of γ whereas the smoothness and deviation of the estimated
time-varying innovation variance is related to both γ and δ.

We specify conjugate initial priors for α
(m)
0,m and σ2

f,m,0 at each stage m as follows:

p(α
(m)
0,m|Df,m,0, σ

2
f,m,0) ∼ N(μf,m,0, cf,m,0), (13)

p(σ−2
f,m,0|Df,m,0) ∼ G(vf,m,0/2, κf,m,0/2), (14)

where Df,m,0 denotes the information set at the initial time t = 0, G(·, ·) is the gamma
distribution, μf,m,0 and cf,m,0 are the mean and variance for a normal distribution,
and vf,m,0/2 and κf,m,0/2 are the shape and rate parameters for a gamma distribu-
tion. Usually, we treat the starting values μf,m,0, cf,m,0, vf,m,0, and κf,m,0 as common
constants over stage m. Typically, we choose μf,m,0 and cf,m,0 to be zero and one, re-
spectively. In addition, to set vf,m,0, we first fix vf,m,0 = 1 and calculate the sample
variance of the initial components of the signal. Given these two values, we can ob-
tain κf,m,0 through the formula for the expectation of the gamma distribution. In such
prior settings, the DLM sequential filtering and smoothing algorithms provide the nec-
essary components for the marginal posterior distributions (West and Harrison, 1997).
Specifically, for each stage m = 1, . . . , P and times t = 1, . . . , T , with the information

set Df,m,T up to time T , the marginal posterior distributions p(α
(m)
t,m |Df,m,T ) is a t-

distribution and p(σ−2
f,m,t|Df,m,T ) is approximated by a gamma distribution. Analogous

to α
(m)
0,m and σ2

f,m,0, the same conjugate initial priors for β
(m)
0,m and σ2

b,m,0 are specified
at each stage m. In general, based on a sensitivity analysis, the simulation studies pro-
vided in Section 3 and the case studies provided in Section 4 are not overly sensitive
to the prior specification, with the chosen priors able to glean the important features
contained in the time–frequency representation. Details of the sequential filtering and
smoothing for the PARCOR coefficients and innovation variances for each stage m are
discussed in the Supplemental Appendix.

2.5 Model Selection

Selection of the model order and set of discount factors {P, γm, δm;m = 1, . . . , P} is
essential for our approach. First, one can assume γm = γ and δm = δ, for m = 1, . . . , P .
Then, the analysis will proceed using a set of various pre-specified combinations of
(P, γ, δ). Since γ is related to the variability of the PARCOR coefficients, it also affects
the variability of the TVAR coefficients. Hence, one can model the variance of the time-
varying coefficients and the innovation variances of the TVAR models using discount
factors γ and δ, respectively (West et al., 1999). Note that, in our context, the discount
factors (γm, δm) are a function of m (the lattice filter stage), whereas the West et al.
(1999) setting does not make use of the lattice filter and, thus, there is only one set
of discount factors (γ, δ) that need to be estimated. However, estimation of (P, γ, δ)
using the approach of West et al. (1999) entails repeatedly having to calculate inverse
matrices in the sequential filtering process. Our approach allows γm and δm to vary by
stage. Thus, we first specify a potential maximum value of P and a set of combinations
of {γm, δm} for each stage m. Given a value of P , we search for the combination of
{γ1, δ1} maximizing the log-likelihood of (5) at stage one. Using the selected γ1 and
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δ1, we can obtain the corresponding series {f (2)
t } and {b(2)t }, for t = 1, . . . , T , as well

as the value, L1, of log-maximum-likelihood of (5). We then, repeat the above search

procedure for stage two using the output {f (2)
t } and {b(2)t } obtained from implementing

the selected hyperparameters γ1 and δ1. In turn, this produces a new series of {f (3)
t }

and {b(3)t }, for t = 1, . . . , T , as well as a value L2. We repeat the procedure until the set
of {γm, δm,Lm}, m = 1, . . . , P , has been selected.

Here, we provide both a visual and numerical method to select the order. Similar
to the scree plot widely used in multivariate analysis (Rencher, 2002), we can plot Lm

against the order m. When the observed series follows an AR or TVAR model, the
values of Lm will stop increasing after a specific lag, this lag can be chosen as the order
for the estimated model. Henceforth, this plot is referred to as “BLF-scree.” This type
of visual order determination can be directly quantified through the relative change of
Lm. Specifically, we provide a numerical method of order selection based on calculating
the percent change in going from Lm−1 to Lm with respect to m,

|(Lm − Lm−1)/Lm−1| ∗ 100 < τ. (15)

Based on simulation of various TVAR models, we choose τ = 0.5 with m − 1 re-
flecting the “best” value for the order. That is, we have found that 0.5 provides an
effective cut-off for choosing the order. Although this approach provides a good guide
to order selection, other model selection methods could be considered (e.g., shrinkage
through Bayesian variable selection, reversible jump MCMC, or by minimizing an infor-
mation criteria). Development of alternative model selection approaches in this setting
constitutes an area of future research.

We now summarize our approach for fitting TVAR models. Given a set of hyperpa-

rameters {P, γm, δm;m = 1, . . . , P}, the procedure starts by setting f
(0)
t = b

(0)
t = xt,

for t = 1, . . . , T . Next, plugging {f (0)
t } and {b(0)t } into (5) and (6) and using sequential

filtering and smoothing algorithms, we obtain a series of estimated parameters {α̂(1)
t,1},

{β̂(1)
t,1 }, {σ̂2

f,1,t}, and {σ̂2
b,1,t}, as well as the new series of forward and backward predic-

tion errors, {f (1)
t } and {b(1)t }, for t = 1, . . . , T . We then repeat the above procedure until

{α̂(P )
t,P }, {β̂(P )

t,P }, {σ̂2
f,P,t}, and {σ̂2

b,P,t} have been obtained. Then, recursively plugging

the estimates of {α(m)
t,m} and {β(m)

t,m }, from m = 1, . . . , P into (7) and (8), we obtain
the estimated time-varying coefficients of (1). As part of this algorithm, the series of
estimated innovation variances are equal to {σ̂2

f,P,t}. Finally, for t = 1, . . . , T , the time–
frequency representation associated with the TVAR(P ) model can be obtained by the
following equation:

S(t, ω) =
σ2
t∣∣∣1−∑P

m=1 a
(P )
t,mexp(−2πimω)

∣∣∣2
, − 1/2 ≤ ω ≤ 1/2, (16)

where i =
√
−1 (Kitagawa and Gersch, 1996). Plugging the estimated values â

(P )
t,m,

m = 1, . . . , P , and σ̂2
f,P,t into (16) yields the estimated time-varying AR(P ) time–

frequency representation Ŝ(t, ω). See the Supplemental Appendix for further discussion.
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3 Simulation Studies

In this section, we simulate various nonstationary time series in order to compare the
performance of our approach with five other approaches used to estimate the time–
frequency representation. The first approach is AdaptSPEC proposed by Rosen et al.
(2012). This approach adaptively segments the signal into finite pieces and then esti-
mates the time–frequency representation using smoothing splines to fit local spectra via
the Whittle likelihood approximation. The size of a segment and the number of spline
basis functions are two essential parameters for this approach. To reduce any subjec-
tivity in our comparisons, we choose settings for these two parameters similar to those
considered in Rosen et al. (2012) (with their tmin = 40), as well as the same settings for
MCMC iterations and burn-in. However, rather than using 10 spline basis functions we
use 15, as this provides slightly better results along with superior computational sta-
bility. We note that the approach of Everitt et al. (2013) is not considered here due to
the fact that the parameterization of the spectral density through the Wittle likelihood
requires subjective knowledge.

The second approach is the AutoPARM method (Davis et al., 2006). Although this
approach combines the GA and MDL to automatically search for potential break points
along with the AR orders for each segment, four parameters are crucial for the GA: the
number of islands, the number of chromosomes in each island, the number of generations
for migration, and the number of chromosomes replaced in a migration; see Davis et al.
(2006) for a comprehensive discussion. All of these parameters were chosen identical to
those used in Davis et al. (2006).

The third approach is the AutoSLEX method (Ombao et al., 2001). Given a fixed
value for the complexity penalty parameter of the cost function, AutoSLEX can au-
tomatically segment a given signal and choose a smoothing parameter. Following the
suggestion of Ombao et al. (2001), we set this parameter equal to one. The fourth
approach we consider is the approach of Kitagawa and Gersch (1996), referred to as
KG1996. The last method we consider is the approach of West et al. (1999), referred
to as WPK1999. This approach requires specification of three parameters: the TVAR
order and two discount factors – one associated with the variance of the time-varying
coefficients and the other with the innovation variances. In general, the discount factor
values are in the range 0.9 − 0.999 (West et al., 1999). Therefore, for our simulations,
we give each discount factor a set of values from 0.8 to 1 (with equal spacing of 0.02)
and, further, a set of values for the TVAR order from 1 to 15. Given these values, we
choose the combination that achieves the maximum likelihood (West et al., 1999).

Our approach uses the two selection methods discussed in Section 2.5 to search for
the TVAR order with appropriate discount factor values. The selected combination of
(P, γ, δ) with γ and δ held fixed over all stages of the Bayesian lattice filter is referred
to as BLFFix. The selected combination of (P, γm, δm), for m = 1, . . . , P , is referred
to as BLFDyn. Again, the candidate space of parameters for both discount factors are
from 0.8 to 1 (with equal spacing of 0.02), along with orders from 1 to 15.

We consider five types of nonstationary signals: (i) TVAR of order 6 with constant
innovation variance; (ii) a piecewise AR process with constant innovation variance;
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(iii) simulated signals based on an Enchenopa treehopper communication signal (Holan
et al., 2010) – see Section 4.1; (iv) TVAR of order 2 with time-varying innovation
variance; and (v) TVMA of order 2 with time-varying innovation variance. Note that
these simulations were specifically chosen based on previous simulations in the litera-
ture coupled with the necessity of having a known time–frequency representation. These
simulations also are designed to demonstrate the performance in the time-varying in-
novation variance context. Each simulation consists of 200 realizations. To evaluate the
performance in estimating the various time–frequency representations, we calculate the
average squared error (ASE) for each realization as follows (Ombao et al., 2001):

ASEn = (TL)
−1

T∑
t=1

L∑
l=1

(
logŜ(t, ωl)− logS(t, ωl)

)2

, (17)

where n = 1, . . . , 200, ωl = 0, 0.005, . . . , 0.5, and T denotes the length of the simulated
series. Lastly, we denote ASE = (1/200)

∑200
n=1 ASEn. For each simulation study, Table 1

summarizes the mean values and standard deviations for ASEn.

In the case of the AutoSLEX method the number of frequencies in (17) differs
from the other approaches considered. In particular, the AutoSLEX approach dyadically
segments the signal up to a given maximum scale J such that 2J is less than signal
length, T . Subsequently, AutoSLEX automatically determines whether a segment at a
particular scale will be included in final segmentation. Once this has been completed,
the frequency resolution for the AutoSLEX approach is equal to T/2(j+1) where j is the
scale of the largest segment included in the final segmentation.

ASE(sdASE)
TVAR6 PeiceAR SimBugs TVAR2Tvar TVMA2Tvar

AdaptSPEC 0.2195 (0.0351) 0.1070 (0.0227) 1.4760 (0.2237) 3.2913 (0.9571) 0.6000 (0.0837)
AutoPARM 0.2233 (0.0439) 0.0702 (0.0392) 0.6711 (0.0725) 7.0674 (0.0253) 0.6227 (0.0713)
AutoSLEX 0.2885 (0.0796) 0.1141 (0.0296) 2.3993 (0.6078) 3.2434 (0.6721) 1.5568 (0.4414)
WPK1999 0.0771 (0.0171) 0.0931 (0.0218) 0.4627 (0.0796) 1.8253 (0.6049) 0.3231 (0.0370)
BLFFix 0.0841 (0.0191) 0.0921 (0.0205) 0.3444 (0.0659) 1.6530 (0.5701) 0.3117 (0.0364)
BLFDyn 0.0543 (0.0276) 0.1607 (0.1107) 0.3237 (0.1075) 1.0496 (0.3096) 0.3151 (0.0383)
KG1996 0.1914 (0.2955) 0.1204 (0.0513) 17.5660 (0.3336) 5.7748 (0.1631) 7.1856 (0.0315)

Table 1: The mean, ASE and standard deviation, sdASE , of the ASE values for the
simulations. Note that the bold values represent the approach having minimum ASE.
TVAR2Tvar and TVMA2Tvar denote the TVAR(2) and TVMA(2) with time-varying
innovation variance, respectively.

3.1 Time-Varying AR(6) Process

We consider signals from the same time-varying AR(6) process of order six (TVAR6)
used in Rosen et al. (2009). This time-varying AR(6) process can be compactly expressed
as φt(B)xt = εt, t = 1, . . . , T , in terms of a characteristic polynomial function φt(B),

with εt
iid∼ N(0, 1) and B the backshift operator (i.e., Bpxt = xt−p). The characteristic

polynomial function for this process can be factorized as

φt(B) = (1− at,1B)(1− a∗t,1B)(1− at,2B)(1− a∗t,2B)(1− at,3B)(1− a∗t,3B),
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where the superscript ∗ denotes the complex conjugate. Also, for p = 1, 2, 3, let a−1
t,p =

Apexp(2πiθt,p), where the θt,ps are defined by θt,1 = 0.05 + (0.1/(T − 1))t, θt,2 = 0.25,
and θt,3 = 0.45− (0.1/(T − 1))t, with T = 1024 and the values of A1, A2, and A3 equal
to 1.1, 1.12, and 1.1, respectively.

The BLF-scree plot (not shown) suggests that order six is the appropriate choice
for all 200 realizations. The TVAR(6) contains three pairs of time-varying conjugate
complex roots. Figure 1 illustrates that the TVAR(6) has a time-varying spectrum
with three peaks. For this case, the TVAR-based models outperform the group of non-
TVAR-based models, with BLFDyn performing superior to the others. Moreover, the
percent reduction in ASE is significant relative to the other approaches considered
(Table 1).

Figure 1: Plots (a) and (b) depict one realization along with the true time–frequency rep-
resentation of the time-varying AR(6) process (TVAR6), respectively (Section 3.1). Plot
(c) illustrates the box-plots of the average squared error (ASE) values corresponding
to the time–frequency representation of the TVAR6 for all of the approaches consid-
ered.

3.2 Piecewise Stationary AR Process

The signals simulated here are based on the same piecewise stationary AR process, used
by Davis et al. (2006) and Rosen et al. (2009, 2012) and is defined as follows:
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Figure 2: Plots (a) and (b) depict one realization along with the true time–frequency
representation of the piecewise AR process (PieceAR), respectively (Section 3.2). Plot
(c) illustrates the box-plots of the average squared error (ASE) values corresponding to
the time–frequency representation of the PieceAR for all of the approaches considered.

xt =

⎧⎨
⎩

0.9xt−1 + εt; if 1 ≤ t ≤ 512,
1.69xt−1 − 0.81xt−2 + εt; if 513 ≤ t ≤ 768,
1.32xt−1 − 0.81xt−2 + εt; if 769 ≤ t ≤ 1024,

where εt
iid∼ N(0, 1). These generated signals are referred to as PieceAR. Since it is

difficult to choose the order for some realizations visually using the BLF-scree plot, we
use (15), with τ = 0.5, to choose the order. The numerical method suggests order two
for some realizations and order three for the others. The true process includes three
segments, with each of the segments mutually independent. The piecewise nature of
this process is clearly depicted by its time-varying spectrum (Figure 2(b)). The box-
plot (Figure 2(c)) shows that AutoPARM exhibits superior performance in terms of the
smallest median ASE. However, WPK1999 and BLFFix may perform more robustly
(i.e., less outlying ASE values). Although we see a 23.78% reduction in ASE for Au-
toPARM versus BLFFix, we find that BLFFix performs superior to the remainder of the
approaches and has the smallest standard deviation across the 200 simulations. Table 1
summarizes the mean values and standard deviations for this simulation. The findings
here are not surprising as AutoPARM is ideally suited toward identifying and estimat-
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Figure 3: Plot (a) depicts one realization of the simulated insect communication signals
(SimBugs), Section 3.3. Plot (b) illustrates the box-plots of the average squared error
(ASE) values corresponding to the time–frequency representation of the SimBugs for all
of the approaches considered. Note that the minimum ASE for the KG1996 approach
is 16.49.

ing piecewise AR processes. For our approach, taking (γ, δ) fixed is advantageous for
processes that are not slowly-varying.

3.3 Simulated Insect Communication Signals

The signals considered in this simulation are formulated such that they exhibit the same
properties as an Enchenopa treehopper mating signal; see Section 4.1 for a complete
discussion. Specifically, we fit a TVAR(6) model to the signal xt, t = 1, . . . , 4096, to
obtain time-varying AR coefficients and innovation variances. Typically, with these type
of nonstationary signals, the innovation variances are time dependent, which is markedly
different from the previous examples where the innovation variance was constant. The
signals generated by these parameters are referred to as SimBugs. As expected, the BLF-
scree plot (not shown) suggests that order six may be an appropriate choice for all 200
realizations. Figure 3(a) illustrates one realization of the SimBugs, whereas Figure 3(b)
provides box-plots that characterize the distribution of ASEn over the 200 simulated
signals. Specifically, from Figure 3(b), we see that BLFFix and BLFDyn perform better
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Figure 4: Time-varying innovation variance used for the TVAR2Tvar and the
TVMA2Tvar simulations in Sections 3.4 and 3.5, respectively.

than the other approaches, in terms of median ASE. Further, we find that BLFFix and
BLFDyn are similar, in terms of ASE, although the median of BLFDyn (0.2675) is
smaller than that of BLFFix (0.3176).

Table 1 summarizes the mean values and standard deviations for this simulation.
From this table we see that the reduction in ASE for BLFDyn is 6.01% over BLFFix
and that both exhibit a substantial percent reduction in ASE over the other methods
considered.

3.4 Time-Varying AR(2) Process with Time-Varying Variance

We simulate 200 signals from a time-varying AR(2) process with time-varying variance
(TVAR2Tvar), which is defined as follows:

xt = atxt−1 − 0.81xt−2 + εt,

at = 0.8(1− 0.5cos(πt/1024)),

where εt
iid∼ N(0, σ2

t ) and t = 1, . . . , 1024. Figure 4 illustrates the time-varying in-
novation, σ2

t , used to simulate the TVAR2Tvar signals. Aside from the time-varying
innovation variance, the time-varying AR(2) (TVAR2) process used for this simulation
is identical to the TVAR2 used in Davis et al. (2006) and Rosen et al. (2009, 2012).
Specifically, Davis et al. (2006) and Rosen et al. (2009, 2012) used these equations to
generate time-varying AR(2) processes with constant variance. Since the time-varying
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Figure 5: Plots (a) and (b) depict one realization along with the true time–frequency
representation of TVAR2Tvar, respectively. Plot (c) illustrates the box-plots of the
average squared error (ASE) values corresponding to the time–frequency representation
of the TVAR2Tvar for all of the approaches considered. Note that the minimum ASE
the KG1996 approach is 7.0413.

coefficient at varies slowly with time, this process naturally exhibits a slowly evolving
time-varying spectrum (Figure 5). In contrast, the time-varying innovation variance
produces several regions of higher spectral energy at the beginning of the time series.
For this simulation, the order is chosen using (15), with τ = 0.5. The box-plots of the
ASE values in Figure 5 show that the group of TVAR-based models with time-varying
innovations (i.e., WPK1999, BLFFix, and BLFDyn) perform superior to the group of
non-TVAR-based models (i.e., AdaptSPEC, AutoPARM, and AutoSLEX), with BLF-
Dyn performing the best. In particular, there is a significant percent reduction in ASE
for BLFDyn relative to the other methods considered (Table 1).

3.5 Time-Varying MA(2) Process with Time-Varying Variance

We also simulate 200 signals from a time-varying MA(2) process with time-varying
variance (TVMA2Tvar), which is defined as follows:

xt = 0.5εt−2 + atεt−1 + εt,

at = 1.122{1− 1.781sin(πt/2048)},
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Figure 6: Plots (a) and (b) depict one realization along with the true time–frequency
representation of TVMA2Tvar, respectively. Plot (c) illustrates the box-plots of the
average squared error (ASE) values corresponding to the time–frequency representation
of the TVMA2Tvar for all of the approaches considered. Note that the minimum ASE
for the KG1996 approach is 7.1236.

where εt
iid∼ N(0, σ2

t ) and t = 1, . . . , 1024. Figure 4 illustrates the usage of σ2
t for simu-

lating the TVMA2Tvar signals. Davis et al. (2006) also used these equations to simulate
time-varying MA(2) processes but with constant variance. Similar to the TVAR2Tvar
signals, the order is chosen using (15), with τ = 0.5. Again, the box-plots of the ASE
values in Figure 6 show that the group of TVAR-based models with time-varying in-
novations (i.e., WPK1999, BLFFix, and BLFDyn) perform superior to the group of
non-TVAR-based models (i.e., AdaptSPEC, AutoPARM, and AutoSLEX), with BLF-
Fix performing the best. In particular, there is a significant percent reduction in ASE for
BLFFix relative to AdaptSPEC, AutoPARM, AutoSLEX, and the KG1996 approach
(Table 1).

4 Case Studies

4.1 Animal Communication Signals

Understanding the dynamics of populations is an important component of evolutionary
biology. Many organisms exhibit complex characteristics that intricately relate to fitness.
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Figure 7: (a) An example of typical signal corresponding to a successful mater (Sec-
tion 4.1). Plots (b) and (c) present posterior mean and standard deviation of the
TVAR(6) spectral representation of the signal in plot (a).

For example, the mating signal of the Enchenopa treehopper represents a phenotype of
the insect that is used in mate selection. During the mating season, males in competition
deliver their vibrational signals through stems of plants to females (see Cocroft and
McNett, 2006, and the references therein). The data considered here comes from an
experiment that was previously analyzed in Cocroft and McNett (2006) and Holan et al.
(2010). The experiment was designed with the goal of reducing potential confounding
effects between environmental and phenotypical variation. In this experiment, males
signals were recorded one week prior to the start of mating. Figure 7(a) displays a typical
signal of from a successful mater, with length 4,739 downsampled from registered signals
of length 37,912. Justification for the appropriateness of downsampling the original
signal, in this context, can be found in Holan et al. (2010). Also, as discussed in Holan
et al. (2010), this signal shows a series of broadband clicks preceding a frequency-
modulated sinusoidal component, followed by a series of pulses.

For this analysis, we used the BLFDyn approach to search for a model having both
discount factors in the range of 0.8 to 1 (with equal spacing of 0.02) and an order be-
tween 1 and 25. Figure 8(a) shows an increase in Lm along with the order, which is
different from the simulated TVAR(6) model in Section 3.3. Hence, we use (15) with the
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Figure 8: Plot (a) shows the BLF-scree plot of the treehopper communication signal.
Plot (b) depicts the first six time-varying estimated PARCOR coefficients. Plots (c)
and (d) show the estimated time-varying coefficients and innovation variances of the
TVAR(6) model.

model order chosen by τ = 0.5. This rule yields a TVAR(6) model. In Figure 8(b), the
PARCOR coefficients of lag larger than two are close to zero following time around 0.3
(where the time axis has been normalized such that t ∈ (0, 1)). Thus, the last four TVAR
coefficients after time 0.3 are close to zero (Figure 8(c)). Such phenomena suggests that
the period before time 0.3 has a more complex dependence structure. Figure 8(d) il-
lustrates that the innovation variance exhibits higher volatility at the beginning signal.
These bursts in the innovation variance are related to the series of broadband clicks at
the beginning of the signal. Finally, Figure 7(b) presents the time–frequency representa-
tion of the treehopper signal using the TVAR(6) model and corroborates the significance
of the broadband clicks at the beginning of the signal. Figure 7(c) shows the posterior
standard deviation of the time–frequency representation using 2,000 MCMC samples
(in order to obtain a posterior distribution of the time–frequency surface for uncertainty
quantification) from 210,000 MCMC iterations by discarding the first 10,000 iterations
as burn-in and keeping every 100th iteration of the remainder.

In general, goodness-of-fit is an important component of model assessment. Al-
though the fitted model produced residuals that are normally distributed, as determined
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Figure 9: Plots (a) and (b) show daily time series (1964–1994) of east/west and
north/south components of wind, respectively. Both components are measured in meters
per second (m/s).

through visual inspection of the histogram, QQ plot, and Shapiro–Wilk test (results not
shown), they do not behave like white-noise. Additionally, increasing the model order
did not remedy this issue. Nevertheless, it is important to note that the estimated time–
frequency representation presented for the animal communication signal corroborates
previous analyses (e.g., Holan et al. (2010)) and subject matter expertise.

4.2 Wind Components

We study the time–frequency representations of the east/west and north/south wind
components, recorded daily at Chuuk Island in the tropical Pacific during the period of
1964 to 1994 (see Cressie and Wikle, 2011, Sections 3.5.3 and 3.5.4). The data studied
are at the level of 70 hPa, which is important scientifically due to the likely presence
of westward and eastward propagating tropical waves, and the presence of the quasi-
biennial oscillation (QBO) (Wikle et al., 1997). Figure 9 shows the two wind component
time series from which we can discern visually that the east/west series clearly exhibits
the QBO signal, but no discernible smaller-scale oscillations are present in either se-
ries. Our interest is then whether the time-varying spectra for these series suggest the
presence of time-varying oscillations, which are theorized to be present.
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Figure 10: Plots (a) and (c) display the posterior mean and standard deviation of
time–frequency representations of the wind east/west component by fitting a TVAR(18)
model. Plots (b) and (d) display the posterior mean and standard deviation of time–
frequency representations of the wind north/south component by fitting a TVAR(4)
model.

We consider the same search space for the model order and discount factors as
that used for the treehopper communication signal (Section 4.1). The BLF-scree plot
for the east/west component shows an increase of Lm along with the order. There-
fore, we use (15) with τ = 0.5 along with goodness-of-fit testing results (i.e., white-
noise residuals) and choose the order equal to 18. Additionally, the lag-one PARCOR
coefficient is time dependent whereas the remaining 17 PARCOR coefficients appear
to be constant. The innovation variances of TVAR(18) model are also time depen-
dent. On the other hand, the BLF-scree plot for the north/south component shows
a turning point at order four so that we choose the order equal to four. The PAR-
COR coefficients are time independent but the innovation variances of the TVAR(4)
model are time dependent. The preceding findings are illustrated in Figures 6 and 7
of the Supplemental Appendix. Figures 10(a) and 10(b) show the estimated time–
frequency representations of the wind east/west and north/south components. Fig-
ures 10(c) and 10(d) present the associated posterior standard deviations of the time–
frequency representation using 2,000 MCMC samples (in order to obtain a posterior
distribution of the time–frequency surface for uncertainty quantification) from 210,000
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MCMC iterations by discarding the first 10,000 iterations as burn-in and keeping ev-
ery 100th iteration of the remainder. Goodness-of-fit for the models presented is as-
sessed through white-noise residuals, as determined through acf plots and the Ljung–
Box test (not shown). Further, through visual inspection of the histogram, QQ plot,
and Shapiro–Wilk test all of the residuals are seen to be normally distributed (not
shown).

The east/west component time-varying spectrum does suggest that the QBO in-
tensity varies considerably as evidenced by the power in the low-frequencies. Perhaps
more interesting is the suggestion of time-varying equatorial waves in the north/south
wind component time-varying spectrum. In particular, the lower-frequency (Kelvin and
Rossby) waves with frequencies between 0.1 and 0.2 show considerable variation in du-
ration of wave activity, as well as intensity. One also sees time-variation in the likely
mixed-Rossby gravity waves in the frequency band between 0.2 and 0.35. Interestingly,
in some cases these are in phase with the lower-frequency wave activity but more often
act in opposition. We also note the almost complete collapse of the equatorial wave
activity centered on 1984.

4.3 Economic Index

Koopman andWong (2011) study the time–frequency representation of the log-difference
of the US gross domestic product (GDP), consumption, and investment from the first
quarter of 1947 to the first quarter of 2010. For comparison, we obtained the series
from the Federal Reserve Bank of St. Louis (http://research.stlouisfed.org/fred2). Since
the investment series is unavailable from the website, we only consider the GDP and
consumption in our study. Figure 11(a) illustrates the trend of the logarithm of the
GDP and consumption series. Similar to Koopman and Wong (2011), we analyzed the
log-difference of these two series (Figures 11(b) and 11(c)).

We consider the same search space for the model order and discount factors as that
used for the treehopper communication signal (Section 4.1). By using (15) with τ = 0.5,
we choose TVAR(1) for the log-difference of GDP and TVAR(2) for the log-difference
of consumption. Goodness-of-fit for the models presented is assessed through white-
noise residuals, as determined through acf plots and the Ljung–Box test (not shown).
In addition, through visual inspection of the histogram, QQ plot, and Shapiro–Wilk test
all of the residuals are normally distributed (not shown). Figures 12(a) and 12(b) show
the estimated time–frequency representations and the associated standard deviations of
the log-difference of GDP and consumption series, respectively. Similar to the results
of Koopman and Wong (2011), both the US macroeconomic indices exhibit relatively
larger spectra (or fluctuations) for the early period around 1950. Then, due to the oil
crisis, another fluctuation comes out in the period of 1970–1980. The fluctuation at the
end of the sample reflects the 2008–2009 worldwide financial crisis. See Koopman and
Wong (2011) for further discussion. Using the same number of MCMC iterations as
Section 4.1 (in order to obtain a posterior distribution of the time–frequency surface
for uncertainty quantification), Figures 12(c) and 12(d) present the associated posterior
standard deviations.

http://research.stlouisfed.org/fred2
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Figure 11: Plot (a) displays the logarithm of GDP (solid line) and consumption (dashed
line) in from the first quarter of 1947 to the first quarter of 2010. Plots (b) and (c)
present the log-difference of GDP and the log-difference of consumption.

5 Discussion

This paper develops a computationally efficient method for model-based time–frequency
analysis. Specifically, we consider a fully Bayesian lattice filter approach to estimating
time-varying autoregressions. By taking advantage of the partial autocorrelation do-
main, our approach is extremely stable. That is, the PARCOR coefficients and the
TVAR innovation variances are specified within the lattice structure and then esti-
mated simultaneously. Notably, the marginal distributions arising from our approach
are all of standard form and, thus, facilitate easy estimation.

The framework we propose extends the current model-based approaches to time–
frequency analysis and, in most cases, provides superior performance, as measured by
the average squared error between the true and estimated time-varying spectral den-
sity. In fact, for slowly-varying processes we have demonstrated significant estimation
improvements from using our approach. In contrast, when the true process comes from
a piecewise AR model the approach of Davis et al. (2006) performed best, with our
approach a close competitor and performing second best. This is not unexpected as the
AutoPARM method is a model-based segmented approach and more closely mimics the
behavior of a piecewise AR.
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Figure 12: Plots (a) and (b) display the time–frequency representations of the log-
difference of GDP and consumption series, respectively. Plots (c) and (d) show the
standard deviations of the time–frequency representations of the log-difference of GDP
and consumption series, respectively.

In addition to a comprehensive simulation study we have provided three real-data
examples, one from animal (insect) communication, one from environmental science,
and one from macro-economics. In all cases, the exceptional time–frequency resolution
obtained using our approach helps identify salient features in the time–frequency surface.
This is especially important when the primary interest is in producing a time–frequency
representation to use as a functional predictor in a hierarchical model (e.g., see Holan
et al., 2010, 2012, among others). Finally, as a by-product of taking a fully Bayesian
approach, we are naturally able to quantify uncertainty and, thus, use our approach to
draw inference.

Supplementary Material

Supplemental Materials: Bayesian Lattice Filters for Time-Varying Autoregression and
Time–Frequency Analysis (DOI: 10.1214/15-BA978SUPP; .pdf). Supplementary Mate-

http://dx.doi.org/10.1214/15-BA978SUPP
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rials: Details surrounding the estimation algorithms, computation times associated with
the applications in Section 4, and additional figures for Section 4

References
Cocroft, R. B. and McNett, G. D. (2006). “Vibrational communication in treehop-
pers (Hemiptera: Membracidae).” In: Insect Sounds and Communication: Physiology,
Ecology and Evolution, Drosopoulos, S. and Claridge, M. F. (Eds.), 305–317. Taylor
& Francis. 994

Cressie, N. and Wikle, C. K. (2011). Statistics for Spatio-Temporal Data. John Wiley
& Sons. MR2848400. 996

Davis, R. A., Lee, T. C. M., and Rodriguez-Yam, G. A. (2006). “Structural break
estimation for nonstationary time series models.” Journal of the American Sta-
tistical Association, 101(473): 223–239. MR2268041. doi: http://dx.doi.org/

10.1198/016214505000000745. 978, 986, 988, 991, 993, 999

Everitt, R. G., Andrieu, C., and Davy, M. (2013). “Online Bayesian inference in
some time–frequency representations of non-stationary processes.” IEEE Transac-
tions of Signal Processing, 61: 5755–5766. MR3130040. doi: http://dx.doi.org/
10.1109/TSP.2013.2280128. 978, 986

Feichtinger, H. G. and Strohmer, T. (1998). Gabor Analysis and Algorithms: The-
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